[go: up one dir, main page]

CN101749193B - High-efficient wind powered generator with start-up wind speed being set and blades thereof - Google Patents

High-efficient wind powered generator with start-up wind speed being set and blades thereof Download PDF

Info

Publication number
CN101749193B
CN101749193B CN200910188890A CN200910188890A CN101749193B CN 101749193 B CN101749193 B CN 101749193B CN 200910188890 A CN200910188890 A CN 200910188890A CN 200910188890 A CN200910188890 A CN 200910188890A CN 101749193 B CN101749193 B CN 101749193B
Authority
CN
China
Prior art keywords
blade
mrow
msub
mfrac
chord length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910188890A
Other languages
Chinese (zh)
Other versions
CN101749193A (en
Inventor
韩建景
李永泉
欧业墅
韩洁
林韧锋
卢俊华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen City Feisheng New Energy Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN200910188890A priority Critical patent/CN101749193B/en
Publication of CN101749193A publication Critical patent/CN101749193A/en
Application granted granted Critical
Publication of CN101749193B publication Critical patent/CN101749193B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

The invention discloses a high-efficient wind powered generator with start-up wind speed being set and a blade thereof. The wind powered generator comprises the blade, wherein the blade comprises a root part and a blade tip; the root part is arranged at one end of the blade for installation, and the blade tip is arranged at the other end of the blade; the installation angle of the blade near the root part is greater; and the chord length of the blade is increased near the area of the root part non-linearly. The wind powered generator can be started up with low wind speed on the premise that the generated power is not lost basically, thereby greatly improving the power generation efficiency.

Description

High-efficiency wind driven generator capable of setting starting wind speed and blade thereof
Technical Field
The invention relates to a generator, in particular to a high-efficiency wind driven generator capable of setting starting wind speed and a blade thereof.
Background
The design theory of the blade of the wind driven generator is various, such as Betz theory, vortex theory, phyllotactic theory, momentum theory and the like, and the theories provide great help for the design of the blade of the wind driven generator and the design of the whole machine.
The simplified windmill model derived from the Betz theory is based on the theoretical optimal operation condition, and does not consider the distribution and the influence of the blade vortex, so that the simplified windmill model has a larger difference from the actual application; in the later period, Schmits and Glauert fully consider peripheral vortexes such as a central vortex, a boundary vortex and a vortex of a blade tip of a wind wheel and vortexes behind the wind wheel, a Schmits and Glauert design model based on a vortex and chlorophyll theory is generated, and the design theory of blades is further improved; wilson further researches the influence of tip loss and lift-drag ratio of the blade on the optimal performance of the blade and the performance of the wind wheel under the non-design working condition on the basis of a Glauert design model, and provides a Wilson design model. Besides, many other aerodynamics experts have studied more relevant theories, and the design methods most used in the wind turbine blade design in the industry at present are schmitts and Glauert models.
The above various blade design models are based on how the blade exerts the best efficiency at the rated wind speed, and the analysis and inference made by the blade in the standard rotation process state are set without considering the factors such as the starting wind speed, so that the starting wind speed of the blade designed according to the model in the market at present is higher and is difficult to grasp. In practical application, the designed external conditions of the blade are greatly different between a static state and a moving state, so that the designed blade has the problems of high starting wind speed, low efficiency and the like.
Chinese patent application No. 200810120290.8, published on 21.1.2009, discloses a fan structure of a wind power generator, wherein the fan comprises a hub, a pressure plate and blades. Set up first through-hole on the clamp plate, be provided with the second through-hole on the blade, be provided with the screw hole on the wheel hub, first screw passes first through-hole and second through-hole respectively and screw hole cooperation, first through-hole and second through-hole are provided with screw adjustment clearance, wheel hub's inboard is provided with blade jacking system, be used for with blade jack-up, the existence in screw adjustment clearance, the purpose makes first screw still can pass the clamp plate respectively and the blade is fixed on wheel hub, in order to reach the purpose that adjusting blade installation angle improves wind energy utilization.
Although the above-mentioned patent application technology can adjust the installation angle of the blade according to different environments, once the wind turbine generator is installed, the installation angle of the blade cannot be adjusted during use, and the requirement of low starting wind speed and high power generation efficiency cannot be met.
Disclosure of Invention
The invention mainly solves the technical problem of providing a high-efficiency wind driven generator capable of setting a starting wind speed and a blade thereof, which can realize low wind speed starting on the premise of basically not losing generating power and greatly improve generating efficiency.
In order to solve the technical problems, the invention adopts a technical scheme that: there is provided a blade for a wind turbine, the blade comprising a root portion at one end for mounting and a tip portion at the other end, the mounting angle of the blade adjacent the root portion being relatively large and the chord length of the blade increasing in non-linear acceleration in the region adjacent the root portion.
Wherein the chord length CrsAnd the mounting angle thetarsThe airfoil chord length and the installation angle of the blade at the radius r are as follows:
Crs=Cr×kcrs
θrs=θr×kθrs
wherein, <math><mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <mi>r</mi> </mrow> <mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mi>B</mi> </mrow> </mfrac> <msup> <mi>Sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> <math><mrow> <mi>&theta;r</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&alpha;</mi> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade and the center of the wind wheel and is a position R, the R is the design radius of the blade, and the a is an adjusting coefficient.
Wherein the chord length CrsAnd the mounting angle thetarsIs the airfoil chord length and stagger angle of the blade at radius r, CrsAnd thetarsRespectively as follows:
Crs=Cr×kcrs
θrs=θr×kθrs
wherein, <math><mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <msqrt> <msup> <msub> <mi>k</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> <mfrac> <mi>r</mi> <msub> <mi>BC</mi> <mi>L</mi> </msub> </mfrac> <mo>,</mo> </mrow></math> θr=arc cotk4-α, <math><mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <msqrt> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msup> <msub> <mi>k</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </msqrt> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>cos</mi> <msub> <mi>k</mi> <mn>1</mn> </msub> <msqrt> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>3</mn> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade and the center of the wind wheel and is a position R, the R is the design radius of the blade, and the a is an adjusting coefficient.
Wherein the adjustment coefficient a is 2, 3, 4, 5 or 6, and the value of a is inversely proportional to the manufacturing level of the generator and the blade.
Wherein the blade length is increased by 1-15% compared with the standard theoretical calculation method and is inversely proportional to the starting wind speed.
Wherein, the blade tip of the blade is provided with a winglet smoothly connected with the blade tip.
The winglet is of a symmetrical wing type structure, the length of the winglet is 5% -10% of the designed length of the blade, the winglet inclines backwards from the windward side, the inclination angle is 15-60 degrees, the winglet inclines backwards along the rotation plane of the impeller along the downwind direction, the inclination angle is 8-30 degrees, and the connecting radius of the winglet and the blade tip is 1/4 of the length of the winglet.
In order to solve the technical problem, the invention adopts another technical scheme that: there is provided a wind power generator comprising a blade having a root at one end for mounting and a tip at the other end, the blade having a relatively large mounting angle adjacent the root and the chord length of the blade increasing in non-linear acceleration adjacent the root region.
Wherein the chord length CrsAnd the mounting angle thetarsThe airfoil chord length and the installation angle of the blade at the radius r are as follows:
Crs=Cr×kcrs
<math><mrow> <msub> <mi>&Theta;</mi> <mi>rs</mi> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> <mo>&times;</mo> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> </mrow></math>
wherein, <math><mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <mi>r</mi> </mrow> <mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mi>B</mi> </mrow> </mfrac> <msup> <mi>Sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> <math><mrow> <mi>&theta;r</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&alpha;</mi> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade and the center of the wind wheel and is a position R, the R is the design radius of the blade, and the a is an adjusting coefficient.
Wherein the chord length CrsAnd the mounting angle thetarsIs the airfoil chord length and stagger angle of the blade at radius r, CrsAnd thetarsRespectively as follows:
Crs=Cr×kcrs
<math><mrow> <msub> <mi>&Theta;</mi> <mi>rs</mi> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> <mo>&times;</mo> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> </mrow></math>
wherein, <math><mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <msqrt> <msup> <msub> <mi>k</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> <mfrac> <mi>r</mi> <msub> <mi>BC</mi> <mi>L</mi> </msub> </mfrac> <mo>,</mo> </mrow></math> θr=arccotk4-α, <math><mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <msqrt> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msup> <msub> <mi>k</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </msqrt> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>cos</mi> <msub> <mi>k</mi> <mn>1</mn> </msub> <msqrt> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>3</mn> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade and the center of the wind wheel and is a position R, the R is the design radius of the blade, and the a is an adjusting coefficient.
The invention has the beneficial effects that: compared with the condition that the prior art can not meet the requirements of low starting wind speed and high power generation efficiency, the invention introduces parameters such as starting wind speed and the like on the basis of a standard theory, particularly more applied Schmits and Glauert models through long-term theoretical analysis and multiple experiments, corrects the original calculation model, solves the theory and practice of blade design of the fixed-pitch wind driven generator related to the starting wind speed, can design blades related to the starting wind speed according to the requirement of the starting wind speed in a larger range, basically does not lose or hardly loses the power generation power compared with the prior art, greatly meets the requirements in the industry, and plays a larger role in the development of the wind driven generator technology. Experiments prove that the starting wind speed value can be as low as 1.2-3.2 m/s, namely, the wind power generator can be started and generate power smoothly under the wind power condition that the wind power generator in the prior art cannot be started, and the power generation efficiency is greatly improved.
Drawings
FIG. 1 is a schematic front view of a first embodiment of a blade according to the present invention;
FIG. 2 is a schematic comparison of a prior art blade in root section and a blade of the present invention in root section;
FIG. 3 is a perspective view of a second embodiment of the blade of the present invention;
fig. 4 is another perspective view of a second embodiment of a vane of the present invention.
Detailed Description
In order to explain technical contents, structural features, and objects and effects of the present invention in detail, the following detailed description is given with reference to the accompanying drawings in conjunction with the embodiments.
In order to solve the problems in the prior art, the inventor introduces parameters such as starting wind speed and the like on the basis of more applied Schmits and Glauert models through long-term theoretical analysis and multiple experiments, and corrects the original calculation model to obtain the blade embodiment of the wind driven generator shown in the figures 1 and 2.
Referring to fig. 1 and 2, the blade 10 includes a root 11 at one end for mounting and a tip 12 at the other end, and the mounting angle θ of the blade 10 adjacent to the root 11rsGreater, i.e. in the figure, mounting angle theta of region 13rsLarger than other regions and the chord length C of the blade 10rsThe nonlinear acceleration increases in the region adjacent to the root 11, i.e. the chord length C of the region 13 in the figurersThe non-linear acceleration increases, forming a bump-like structure. FIG. 2 shows a conventional blade 10' with a chord length Crs' and mounting Angle θrs' are significantly smaller adjacent the root 11 as compared to the present invention.
At the angle theta of the blade 10 adjacent the root 11rsLarge and chord length CrsThe non-linear acceleration increases in the area adjacent to the root 11, which increases the windward side, increases the torque generated on the blade 10 when the fluid passes through the blade 10, and does not substantially affect the entire generated power or causes less loss of generated power during power generation.
Compared with the condition that the prior art can not meet the requirements of low starting wind speed and high power generation efficiency, the invention introduces parameters such as starting wind speed and the like on the basis of a standard theory, particularly more applied Schmits and Glauert models through long-term theoretical analysis and multiple experiments, corrects an original calculation model, solves the theory and practice of blade design of the fixed-pitch wind driven generator related to the starting wind speed, can design blades related to the starting wind speed according to the requirement of the starting wind speed in a larger range, basically does not lose or hardly loses power generation power compared with the prior art, greatly meets the requirements in the industry, and plays a larger role in the development of the wind driven generator technology.
The nonlinear acceleration increase may be in the shape of a protrusion or a single-sided nonlinear acceleration increase.
In another embodiment, the chord length CrsAnd the mounting angle thetarsIs the airfoil chord length and stagger angle of the blade 10 at the radius r of the blade 10, CrsAnd thetarsRespectively as follows:
Crs=Cr×kcrs
<math><mrow> <msub> <mi>&Theta;</mi> <mi>rs</mi> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> <mo>&times;</mo> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> </mrow></math>
wherein, <math><mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <mi>r</mi> </mrow> <mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mi>B</mi> </mrow> </mfrac> <msup> <mi>Sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> <math><mrow> <mi>&theta;r</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&alpha;</mi> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade 10 and the center of the wind wheel and is the R position, the R is the design radius of the blade 10, and the a is an adjusting coefficient.
Experiments prove that the starting wind speed value can be as low as 1.2-3.2 m/s, namely, the wind power generator can be started and generate power smoothly under the wind power condition that the wind power generator in the prior art cannot be started, and the power generation efficiency is greatly improved.
The design method, the modified theory and the calculation formula can be modified on the basis of Schmits and Glauert calculation models (see the following attached below). The Schmits and Glauert calculation model refers to the chord length C of the blade 10rAnd the mounting angle thetarAnd (4) parameters. The chord length CrAnd the mounting angle thetarIs the chord length and stagger angle of the airfoil of the blade 10 at the radius r of the blade 10. The correction theory and the calculation formula refer to correction coefficient k which is obtained by derivation, analysis and experiment and is supplemented on the basis of Schmits and Glauert calculation modelscs
Figure G2009101888902D00071
The chord length C of the resulting blade 10rsAnd the mounting angle thetars. The chord length CrsAnd the mounting angle thetarsIs the chord length and stagger angle of the airfoil of the blade 10 at the radius r of the modified blade 10.
In one embodiment, the chord length CrsAnd the mounting angle thetarsIs the airfoil chord length and stagger angle of the blade 10 at the radius r of the blade 10, CrsAnd thetarsRespectively as follows:
Crs=Cr×kcrs
<math><mrow> <msub> <mi>&Theta;</mi> <mi>rs</mi> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> <mo>&times;</mo> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> </mrow></math>
wherein, <math><mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <msqrt> <msup> <msub> <mi>k</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> <mfrac> <mi>r</mi> <msub> <mi>BC</mi> <mi>L</mi> </msub> </mfrac> <mo>,</mo> </mrow></math> θr=arccotk4-α, <math><mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <msqrt> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msup> <msub> <mi>k</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </msqrt> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>cos</mi> <msub> <mi>k</mi> <mn>1</mn> </msub> <msqrt> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>3</mn> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade 10 and the center of the wind wheel and is the R position, the R is the design radius of the blade 10, and the a is an adjusting coefficient.
Wherein, when kcrsWhen the chord length is greater than or equal to 1, the corrected chord length CrsIs equal to the correction factor kcrsIs equal to the chord length CrThe product of (a); when the correction coefficient k iscrsPositive and negative 10% of 1, corrected chord length CrsMay be equal to the chord length Cr. Corrected and calculated chord length C of blade 10rsAnd the mounting angle thetarsThe correction is within the reasonable extension range of the calculation model, the values of the existing design correction theory and the calculation result of the calculation model are respectively extended within 10 percent, and the basic ideas and ideas of the existing design correction theory of the blade 10 and the calculation model are still used.
Experiments prove that the starting wind speed value can be as low as 1.2-3.2 m/s, namely, the wind power generator can be started and generate power smoothly under the wind power condition that the wind power generator in the prior art cannot be started, and the power generation efficiency is greatly improved.
The adjustment coefficient a of the above embodiments is 2, 3, 4, 5 or 6, and the value of a is inversely proportional to the manufacturing level of the generator and the blade 10. I.e., the higher the level, the smaller the coefficient may be; otherwise, it should take a larger value.
In order to better improve the generating efficiency of the generator, the length of the blade 10 is increased by 1-15% compared with the standard theoretical calculation method, and is inversely proportional to the starting wind speed. I.e. the lower the start-up wind speed requirement, the larger the value of the increase. After the increase of the length, because of the correction coefficient kcrsAndthe possible influence of (2) and the possible loss of generated power can be fully compensated for, or even increased.
Referring to fig. 3 and 4, in other embodiments, the blade 10 is provided with a smoothly connected winglet 14 at the tip 12. The winglet 14 is of a symmetrical wing type structure, the length of the winglet is 5% -10% of the design length of the blade 10, the winglet 14 inclines backwards from the windward side, the inclination angle is 15-60 degrees, the winglet 14 inclines backwards along the rotation plane of the impeller along the downwind direction, the inclination angle is 8-30 degrees, and the connecting radius of the winglet 14 and the blade tip 12 is 1/4 of the winglet length. In some embodiments, at least two or more airfoils may be provided throughout the length of the blade 10. Referring also to fig. 1 to 4, the present invention also provides a wind power generator according to the above theory and design, comprising a blade 10, wherein the blade 10 comprises a root 11 for mounting at one end and a tip 12 at the other end, the mounting angle of the blade 10 adjacent to the root 11 is larger, and the chord length of the blade 10 increases in the area adjacent to the root 11.
Wherein the chord length CrsAnd the mounting angle thetarsAt radius r of the blade 10Airfoil chord length and stagger angle of the blade 10, CrsAnd thetarsRespectively as follows:
Crs=Cr×kcrs
<math><mrow> <msub> <mi>&Theta;</mi> <mi>rs</mi> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> <mo>&times;</mo> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> </mrow></math>
wherein, <math><mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <mi>r</mi> </mrow> <mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mi>B</mi> </mrow> </mfrac> <msup> <mi>Sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> <math><mrow> <mi>&theta;r</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&alpha;</mi> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade 10 and the center of the wind wheel and is the R position, the R is the design radius of the blade 10, and the a is an adjusting coefficient.
The chord length CrsAnd the mounting angle thetarsIs the airfoil chord length and stagger angle of the blade 10 at the radius r of the blade 10, CrsAnd thetarsAre respectively provided withComprises the following steps:
Crs=Cr×kcrs
<math><mrow> <msub> <mi>&Theta;</mi> <mi>rs</mi> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> <mo>&times;</mo> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> </mrow></math>
wherein, <math><mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <msqrt> <msup> <msub> <mi>k</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> <mfrac> <mi>r</mi> <msub> <mi>BC</mi> <mi>L</mi> </msub> </mfrac> <mo>,</mo> </mrow></math> θr=arccotk4-α, <math><mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <msqrt> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msup> <msub> <mi>k</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </msqrt> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>cos</mi> <msub> <mi>k</mi> <mn>1</mn> </msub> <msqrt> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>3</mn> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>s</mi> </msub> <mi>&pi;</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <msubsup> <mi>v</mi> <mi>s</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mi>a</mi> </msup> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow></math> the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade 10 and the center of the wind wheel and is the R position, the R is the design radius of the blade 10, and the a is an adjusting coefficient.
In one example, a 2 kilowatt wind turbine was targeted and a Schmittz calculation model was used as an example to illustrate, in accordance with the present invention:
the main parameters of the design are as follows:
rated power: 2000W
Rated wind speed: 12 m/s
Rated rotation speed: 480 rpm
Theoretically calculating the diameter of the wind wheel: 2.9 m
Starting wind speed: 2 m/s
Adjusting coefficient: 4
The wind wheel diameter is corrected to 3.2 meters taking into account the influence of the air guide sleeve and the starting wind speed.
Meanwhile, before the radius ratio is 0.75,
Crs=Cr×kcrs
<math><mrow> <msub> <mi>&Theta;</mi> <mi>rs</mi> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> <mo>&times;</mo> <msub> <mi>k</mi> <mi>&theta;rs</mi> </msub> </mrow></math>
after the radius ratio is 0.75, take thetars=θr
Crs=Cr
According to the above main parameters, the calculation and comparison results are as follows:
table one: comparison between blade installation angle and chord length of the prior art and the embodiment of the invention
Figure G2009101888902D00101
Taking the section at radius ratio of 0.2 as an example, the blade 10 profile data and profile map for the airfoil design of NACA4415 are as follows:
table two: comparison of blade profile data in airfoil design of the prior art and an embodiment of the present invention
Figure G2009101888902D00102
Figure G2009101888902D00111
In the present invention, the correction coefficient kcrsAnd
Figure G2009101888902D00112
the correction design of the wing profile has no relation with aerodynamic parameters including but not limited to wing profile change, lift coefficient or drag coefficient of the wing profile, tip speed ratio and the like, so that the wing profile has very good applicability and simplicity.
The above description is only an embodiment of the present invention, and not intended to limit the scope of the present invention, and all modifications of equivalent structures and equivalent processes performed by the present specification and drawings, or directly or indirectly applied to other related technical fields, are included in the scope of the present invention.

Claims (8)

1. A blade for a wind power plant, characterised in that the blade comprises a root at one end for mounting and a tip at the other end, that the mounting angle of the blade adjacent the root is relatively large and that the chord length of the blade increases in a non-linear acceleration in the region adjacent the root, the chord length CrsAnd the mounting angle thetarsIs the airfoil chord length and stagger angle of the blade at radius r, CrsAnd thetarsRespectively as follows:
Crs=Cr×kcrs
θrsr×kθrs
wherein,
Figure FDA00001610889400011
Figure FDA00001610889400012
Figure FDA00001610889400013
Figure FDA00001610889400014
the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade and the center of the wind wheel and is a position R, the R is the design radius of the blade, and the alpha is an adjusting coefficient.
2. A blade for a wind power plant, characterised in that the blade comprises a root at one end for mounting and a tip at the other end, that the mounting angle of the blade adjacent the root is relatively large and that the chord length of the blade increases in a non-linear acceleration in the region adjacent the root, the chord length CrsAnd the mounting angle thetarsIs the airfoil chord length and stagger angle of the blade at radius r, CrsAnd thetarsRespectively as follows:
Crs=Cr×kcrs
θrsr×kθrs
wherein,θr=arccotk4-α,
Figure FDA00001610889400016
Figure FDA00001610889400017
Figure FDA00001610889400019
Figure FDA000016108894000110
Figure FDA000016108894000111
the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade and the center of the wind wheel and is a position R, the R is the design radius of the blade, and the alpha is an adjusting coefficient.
3. Blade of a wind power generator according to claim 1 or 2, characterized in that: the adjustment coefficient a is 2, 3, 4, 5 or 6, the value of a being inversely proportional to the manufacturing level of the generator and the blade.
4. Blade of a wind power generator according to claim 1 or 2, characterized in that: the length of the blade is increased by 1% -15% compared with that of a standard theoretical calculation method, and is inversely proportional to the starting wind speed.
5. Blade of a wind power generator according to claim 1 or 2, characterized in that: and winglets which are connected smoothly are arranged at the blade tips of the blades.
6. The blade for a wind power generator according to claim 5, wherein: the winglet is of a symmetrical wing type structure, the length of the winglet is 5% -10% of the designed length of the blade, the winglet inclines backwards from the windward side, the inclination angle is 15-60 degrees, the winglet inclines backwards along the rotation plane of the impeller along the wind direction, the inclination angle is 8-30 degrees, and the connecting radius of the winglet and the blade tip is 1/4 of the length of the winglet.
7. A kind ofWind turbine comprising a blade, characterised in that the blade comprises a root at one end for mounting and a tip at the other end, that the mounting angle of the blade adjacent the root is relatively large and that the chord length of the blade increases in a non-linear acceleration adjacent the root, said chord length CrsAnd the mounting angle thetarsThe airfoil chord length and the installation angle of the blade at the radius r are as follows:
Crs=Cr×kcrs
θrsr×kθrs
wherein,
Figure FDA00001610889400021
Figure FDA00001610889400022
Figure FDA00001610889400023
Figure FDA00001610889400024
the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade and the center of the wind wheel and is a position R, the R is the design radius of the blade, and the alpha is an adjusting coefficient.
8. A wind turbine comprising a blade, wherein the blade comprises a root at one end for mounting and a tip at the other end, wherein the mounting angle of the blade adjacent the root is relatively large and wherein the chord length of the blade increases in non-linear acceleration in the region adjacent the root, and wherein the chord length C is greater than the chord length CrsAnd the mounting angle thetarsIs the airfoil chord length and stagger angle of the blade at radius r, CrsAnd thetarsRespectively as follows:
Crs=Cr×kcrs
θrsr×kθrs
wherein,
Figure FDA00001610889400031
θr=arccotk4-α,
Figure FDA00001610889400032
Figure FDA00001610889400034
Figure FDA00001610889400035
the Vs is a preset starting wind speed value, the range is 1.2-3.2 m/s, the R is a value of the distance between the blade and the center of the wind wheel and is a position R, the R is the design radius of the blade, and the alpha is an adjusting coefficient.
CN200910188890A 2009-12-09 2009-12-09 High-efficient wind powered generator with start-up wind speed being set and blades thereof Expired - Fee Related CN101749193B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910188890A CN101749193B (en) 2009-12-09 2009-12-09 High-efficient wind powered generator with start-up wind speed being set and blades thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910188890A CN101749193B (en) 2009-12-09 2009-12-09 High-efficient wind powered generator with start-up wind speed being set and blades thereof

Publications (2)

Publication Number Publication Date
CN101749193A CN101749193A (en) 2010-06-23
CN101749193B true CN101749193B (en) 2012-09-26

Family

ID=42476685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910188890A Expired - Fee Related CN101749193B (en) 2009-12-09 2009-12-09 High-efficient wind powered generator with start-up wind speed being set and blades thereof

Country Status (1)

Country Link
CN (1) CN101749193B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029241B2 (en) * 2010-09-15 2011-10-04 General Electric Company Wind turbine rotor blade with aerodynamic winglet
JP5602060B2 (en) * 2011-02-28 2014-10-08 三菱重工業株式会社 Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method
CN102705173B (en) * 2012-02-07 2014-04-23 深圳市艾飞盛风能科技有限公司 Wind generator and blades thereof
DE102016110510A1 (en) * 2016-06-07 2017-12-07 Wobben Properties Gmbh Rotor blade of a wind turbine
CN110173391A (en) * 2019-05-24 2019-08-27 上海电力学院 A kind of Large marine Axis Wind Turbine With A Tip Vane fusion winglet and wind energy conversion system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562420A (en) * 1994-03-14 1996-10-08 Midwest Research Institute Airfoils for wind turbine
CN2606195Y (en) * 2002-11-29 2004-03-10 绵阳市中天科技有限责任公司 wind turbine blade
CN2869370Y (en) * 2006-01-20 2007-02-14 陈向阳 Wind rotor blade of a small wind turbine
CN100443720C (en) * 2005-11-09 2008-12-17 沈阳航空工业学院 Heavy-camber wind mill airfoil
CN201198842Y (en) * 2008-04-22 2009-02-25 西安市三桥机电设备有限公司 High lifting force and low noise airfoil blade

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562420A (en) * 1994-03-14 1996-10-08 Midwest Research Institute Airfoils for wind turbine
CN2606195Y (en) * 2002-11-29 2004-03-10 绵阳市中天科技有限责任公司 wind turbine blade
CN100443720C (en) * 2005-11-09 2008-12-17 沈阳航空工业学院 Heavy-camber wind mill airfoil
CN2869370Y (en) * 2006-01-20 2007-02-14 陈向阳 Wind rotor blade of a small wind turbine
CN201198842Y (en) * 2008-04-22 2009-02-25 西安市三桥机电设备有限公司 High lifting force and low noise airfoil blade

Also Published As

Publication number Publication date
CN101749193A (en) 2010-06-23

Similar Documents

Publication Publication Date Title
EP3037656B1 (en) Rotor blade with vortex generators
CN110094302B (en) Variable-propeller top edge self-rotating vertical axis wind turbine
CN101749193B (en) High-efficient wind powered generator with start-up wind speed being set and blades thereof
CN111550363B (en) Blade tip winglet, wind turbine blade and blade synergy calculation method thereof
CN103485973B (en) A kind of pneumatic equipment blades with tip vane
CN101498276A (en) Horizontal axle wind mill with blade tip winglet
CN104405596A (en) Wind turbine generator system low-wind-speed airfoil section family
CN203362391U (en) Wind turbine blade with tip vane
US11028823B2 (en) Wind turbine blade with tip end serrations
CN201599139U (en) Lift-Drag Hybrid Vertical-Axis Wind Turbine
CN102705173B (en) Wind generator and blades thereof
CN102278272B (en) Prominent type Blades For Horizontal Axis Wind before a kind of
CN215057878U (en) A low Reynolds number blade airfoil and horizontal axis wind turbine using the same
CN101498275A (en) Horizontal axle wind mill with S blade tip winglet
CN206111424U (en) Green&#39;s wing flap adds increase winglet wind -powered electricity generation blade
CN201155424Y (en) Horizontal axis wind turbine with S-shaped tiplets
CN201255076Y (en) Blade assembly for low wind-power generator
CN204755184U (en) Take vertical axis wind turbine blade of water conservancy diversion strip
CN211900866U (en) Wind power blade and horizontal shaft wind driven generator
CN106704092A (en) Synergistic spoiler blade
CN203441675U (en) Blade of novel horizontal-axis wind turbine
CN202991343U (en) Fan blade of vertical-axis wind turbine
WO2012117866A1 (en) Wind turbine blade, wind-powered electricity generator provided with same, and method for designing wind turbine blade
CN208870737U (en) A kind of pneumatic equipment bladess
CN209621519U (en) A kind of lift vertical shaft wind energy conversion system using full backward-swept blade

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: LI YONGQUAN OU YESHU HAN JIE LIN RENFENG LU JUNHUA

Effective date: 20150211

Owner name: SHENZHEN EFFSUN WIND POWER CO., LTD.

Free format text: FORMER OWNER: HAN JIANJING

Effective date: 20150211

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150211

Address after: 518000 Guangdong city of Shenzhen province Baoan District Guanlan Street Zhang Ge village community club chapter No. 452 Yuelu Guangxi

Patentee after: Shenzhen City, Feisheng new energy Co. Ltd.

Address before: Four, building 518000, building A1, Hua Hua Science Park, industrial Street, Baoan District, Shenzhen, Guangdong

Patentee before: Han Jianjing

Patentee before: Li Yongquan

Patentee before: Ou Yeshu

Patentee before: Han Jie

Patentee before: Lin Renfeng

Patentee before: Lu Junhua

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120926

Termination date: 20161209

CF01 Termination of patent right due to non-payment of annual fee