[go: up one dir, main page]

CN101748381A - Method for preparing high-performance doped diamond-like film - Google Patents

Method for preparing high-performance doped diamond-like film Download PDF

Info

Publication number
CN101748381A
CN101748381A CN200910217545A CN200910217545A CN101748381A CN 101748381 A CN101748381 A CN 101748381A CN 200910217545 A CN200910217545 A CN 200910217545A CN 200910217545 A CN200910217545 A CN 200910217545A CN 101748381 A CN101748381 A CN 101748381A
Authority
CN
China
Prior art keywords
ion source
source
ion
dlc
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910217545A
Other languages
Chinese (zh)
Inventor
付志强
王成彪
岳�文
彭志坚
于翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN200910217545A priority Critical patent/CN101748381A/en
Publication of CN101748381A publication Critical patent/CN101748381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

一种高性能掺杂类金刚石膜的制备方法,其特征是该方法首先利用超声波清洗技术去除基体表面污染层;然后利用离子束辅助沉积技术制备梯度过渡层;最后利用离子束沉积+磁控溅射合成多元掺杂DLC膜,在此步骤除了向离子源中通入甲烷、乙炔、苯、乙醇、丙酮等任何一种含碳气体外,还同时通入包括硅烷、硼烷、磷烷、四氟化碳等含非碳元素气体源的任何一种气体,并开启金属溅射源掺杂金属元素。本发明可合成同时掺杂金属元素和非金属元素的多元掺杂DLC膜,充分发挥掺杂金属元素和非金属元素的优势互补,显著改善DLC膜的综合性能。A method for preparing a high-performance doped diamond-like film, which is characterized in that the method first uses ultrasonic cleaning technology to remove the contamination layer on the surface of the substrate; then uses ion beam assisted deposition technology to prepare a gradient transition layer; finally uses ion beam deposition + magnetron sputtering In this step, in addition to passing any carbon-containing gas such as methane, acetylene, benzene, ethanol, acetone, etc. into the ion source, it also simultaneously passes into the ion source including silane, borane, phosphine, and four Any gas containing non-carbon element gas sources such as fluorinated carbon, and open the metal sputtering source to dope metal elements. The invention can synthesize a multi-component doped DLC film doped with metal elements and non-metal elements at the same time, give full play to the complementary advantages of doped metal elements and non-metal elements, and significantly improve the comprehensive performance of the DLC film.

Description

一种高性能掺杂类金刚石膜的制备方法 A kind of preparation method of high-performance doped diamond-like carbon film

所属技术领域:Technical field:

本发明专利涉及一种掺杂多种元素的高性能类金刚石(DLC)膜的制备技术,属于DLC膜材料的复合制备技术。The patent of the invention relates to a preparation technology of a high-performance diamond-like carbon (DLC) film doped with various elements, which belongs to the composite preparation technology of DLC film materials.

背景技术:Background technique:

类金刚石膜具有高硬度、高弹性模量、优异的摩擦磨损性能、化学稳定性及生物相容性,具有非常广泛的应用前景。但内应力大、膜/基结合力差、热稳定性差、脆性大等限制了DLC膜在苛刻服役条件下的应用。Diamond-like carbon films have high hardness, high elastic modulus, excellent friction and wear properties, chemical stability and biocompatibility, and have very broad application prospects. However, large internal stress, poor film/substrate bonding force, poor thermal stability, and high brittleness limit the application of DLC films in harsh service conditions.

采用优化的梯度过渡层可缓解DLC膜的内应力和提高DLC膜的膜/基结合力;通过掺杂金属元素形成以非晶碳膜为基体的复相结构会改善DLC膜的综合性能,但掺杂金属会导致DLC膜的摩擦系数较高,不能获得低的摩擦系数。掺杂非金属元素F、H可以显著降低DLC膜在特种条件下的摩擦系数,掺杂Si、SiO2等非金属组分可调控DLC膜的结构和性能。在DLC膜中同时掺入金属元素和非金属元素,实现不同掺杂元素的取长补短,是获得高性能DLC膜的一条有效途径,但目前这方面的研究还未见诸报道。The use of an optimized gradient transition layer can relieve the internal stress of the DLC film and improve the film/substrate bonding force of the DLC film; the formation of a multi-phase structure based on the amorphous carbon film by doping metal elements will improve the overall performance of the DLC film, but Doping metal will lead to a higher coefficient of friction of the DLC film, and a low coefficient of friction cannot be obtained. Doping non-metal elements F and H can significantly reduce the friction coefficient of DLC film under special conditions, and doping non-metal components such as Si and SiO2 can regulate the structure and performance of DLC film. It is an effective way to obtain high-performance DLC films by simultaneously doping metal elements and non-metal elements in DLC films to realize the complementarity of different doping elements, but the research in this area has not been reported yet.

发明内容:Invention content:

为了克服目前DLC膜制备技术和掺杂方案存在的不足,本发明专利提出了一种新型的DLC膜复合沉积技术,其特征在于:在离子束沉积合成DLC膜的过程中,除了向离子源中通入甲烷、乙炔、苯、乙醇、丙酮等任何一种含碳气体外,还同时通入包括硅烷、硼烷、磷烷、四氟化碳等含非碳元素气体源的任何一种气体,并开启金属溅射源掺杂金属元素,合成多元掺杂DLC膜,所述方法包括以下步骤:In order to overcome the shortcomings of the current DLC film preparation technology and doping scheme, the patent of the present invention proposes a new DLC film composite deposition technology, which is characterized in that: in the process of ion beam deposition and synthesis of DLC film, in addition to the ion source In addition to any carbon-containing gas such as methane, acetylene, benzene, ethanol, acetone, etc., any gas containing non-carbon element gas sources such as silane, borane, phosphine, and carbon tetrafluoride is simultaneously introduced. And turn on the metal sputtering source to dope the metal element, and synthesize the multi-element doped DLC film. The method includes the following steps:

(1)首先利用超声波清洗技术去除基体表面污染层;(1) First use ultrasonic cleaning technology to remove the contamination layer on the surface of the substrate;

(2)然后利用离子束辅助沉积技术制备梯度过渡层;(2) Then utilize the ion beam assisted deposition technique to prepare the gradient transition layer;

(3)最后在梯度过渡层上利用离子束沉积+磁控溅射合成多元掺杂DLC膜。(3) Finally, multiple doped DLC films were synthesized on the gradient transition layer by ion beam deposition and magnetron sputtering.

在上述制备方法中,步骤(2)离子源可采用阳极层离子源、卡夫曼离子源、霍尔离子源、射频感应耦合离子源、电子回旋共振离子源中的任何一种离子源。In the above preparation method, the ion source in step (2) can be any ion source in the anode layer ion source, Kafman ion source, Hall ion source, radio frequency inductively coupled ion source, electron cyclotron resonance ion source.

在上述制备方法中,步骤(2)离子源产生的离子束的组成为氩离子、氩/氮混合离子、氩/碳混合离子或氩/氮/碳混合离子,不同离子的比例根据需要控制。In the above preparation method, the composition of the ion beam generated by the ion source in step (2) is argon ions, argon/nitrogen mixed ions, argon/carbon mixed ions or argon/nitrogen/carbon mixed ions, and the ratio of different ions is controlled as required.

在上述制备方法中,步骤(2)离子束的离子能量为50eV~500eV。In the above preparation method, the ion energy of the ion beam in step (2) is 50eV-500eV.

在上述制备方法中,步骤(2)的蒸发/溅射源可采用磁控溅射靶、阴极电弧蒸发源、空心阴极电弧蒸发源中的任何一种。In the above preparation method, the evaporation/sputtering source in step (2) can be any one of magnetron sputtering target, cathodic arc evaporation source, and hollow cathode arc evaporation source.

在上述制备方法中,步骤(2)的蒸发/溅射源靶材为Ti、Cr、Zr、W、Nb的任何一种金属。In the above preparation method, the evaporation/sputtering source target in step (2) is any metal of Ti, Cr, Zr, W, Nb.

在上述制备方法中,按照权利要求1所述的多元掺杂DLC膜制备方法,其特征在于:步骤(2)所述的过渡层包括Ti/TiN/TiCN/TiC、Cr/CrN/CrCN/CrC、Zr/ZrN/ZrCN/ZrC、W/WC、Nb/NbN/NbC等梯度过渡层。In the above preparation method, according to the multi-component doped DLC film preparation method according to claim 1, it is characterized in that: the transition layer described in step (2) comprises Ti/TiN/TiCN/TiC, Cr/CrN/CrCN/CrC , Zr/ZrN/ZrCN/ZrC, W/WC, Nb/NbN/NbC and other gradient transition layers.

在上述制备方法中,步骤(3)的离子源可采用阳极层离子源、卡夫曼离子源、霍尔离子源、射频感应耦合离子源、电子回旋共振离子源中的任何一种离子源。In the above preparation method, the ion source in step (3) can be any ion source in the anode layer ion source, Kafman ion source, Hall ion source, radio frequency inductively coupled ion source, electron cyclotron resonance ion source.

在上述制备方法中,步骤(3)除了向离子源中通入甲烷、乙炔、苯、乙醇、丙酮等任何一种含碳气体外,还同时通入包括硅烷、硼烷、磷烷、四氟化碳等含非碳元素气体源任何一种气体。In the above-mentioned preparation method, in step (3), in addition to passing any carbon-containing gas such as methane, acetylene, benzene, ethanol, acetone, etc. Any gas containing non-carbon elements such as carbon dioxide.

在上述制备方法中,步骤(3)通过控制通入离子源的含非碳元素气体源与含碳气体的流量比调整DLC膜的非金属元素掺入量。In the above preparation method, the step (3) adjusts the doping amount of the non-metal element in the DLC film by controlling the flow ratio of the non-carbon element-containing gas source and the carbon-containing gas fed into the ion source.

在上述制备方法中,步骤(3)离子束的离子能量为50eV~1000eV。In the above preparation method, the ion energy of the ion beam in step (3) is 50eV-1000eV.

在上述制备方法中,步骤(3)的磁控溅射源可采用直流磁控溅射、中频磁控溅射、射频磁控溅射中的任何一种磁控溅射方式。In the above preparation method, the magnetron sputtering source in step (3) can adopt any magnetron sputtering method among DC magnetron sputtering, intermediate frequency magnetron sputtering and radio frequency magnetron sputtering.

在上述制备方法中,步骤(3)所述的磁控溅射源靶材为W、Cr、Ti、Nb、Mo、Zr、Ag、Cu、Co等金属元素的任何一种。In the above preparation method, the magnetron sputtering source target described in step (3) is any one of metal elements such as W, Cr, Ti, Nb, Mo, Zr, Ag, Cu, Co, etc.

在上述制备方法中,步骤(3)通过控制磁控溅射靶的功率调整DLC膜的金属元素掺入量。In the above preparation method, step (3) adjusts the doping amount of metal elements in the DLC film by controlling the power of the magnetron sputtering target.

本发明专利的优点是充分发挥离子束辅助沉积结合、多元混合气体的离子束沉积、磁控溅射的优势,在离子束辅助沉积梯度制备的梯度过渡层基础上合成同时掺杂金属元素和非金属元素的多元掺杂DLC膜,实现金属元素与非金属元素的优势互补,显著改善DLC膜的综合性能;通过改变通入离子源的气体种类及流量、溅射靶材料和靶功率等因素调控掺杂元素种类和含量,获得高性能的多元掺杂DLC膜。The advantage of the patent of the present invention is to give full play to the advantages of ion beam assisted deposition combination, ion beam deposition of multi-component mixed gas, and magnetron sputtering, and synthesize simultaneously doped metal elements and non- The multi-element doped DLC film realizes the complementary advantages of metal elements and non-metal elements, and significantly improves the comprehensive performance of the DLC film; by changing the gas type and flow rate of the ion source, sputtering target material and target power and other factors to control The type and content of doping elements are used to obtain a high-performance multi-component doped DLC film.

实施方式:Implementation method:

下面结合具体实施例对本发明专利作进一步详细描述,但不作为对本发明专利的限定。The patent of the present invention will be described in further detail below in conjunction with specific examples, but not as a limitation to the patent of the present invention.

实施例1Example 1

首先利用超声波清洗技术去除GCr15轴承表面油脂污染层;然后利用阳极层离子源辅助直流磁控溅射沉积Cr/CrN/CrCN/CrC梯度过渡层,磁控溅射靶材料为Cr,通入阳极层离子源的气体包括氩气、氮气、乙炔,通过逐渐改变氩气、氮气、乙炔的流量实现过渡层的梯度过渡,离子能量为-100~-800eV;最后利用离子束沉积+磁控溅射技术在Cr/CrN/CrCN/CrC梯度过渡层上合成同时掺杂Cr、Si、F的DLC膜,离子源采用阳极层离子源,通入阳极层离子源的气体包括氩气、乙炔、硅烷和四氟化碳,磁控溅射源采用直流磁控溅射方式,靶材为Cr;通过改变氩气、乙炔、硅烷和四氟化碳的流量、铬溅射靶的溅射功率控制多元掺杂DLC膜的Cr、Si、F含量。First, use ultrasonic cleaning technology to remove the grease contamination layer on the surface of GCr15 bearings; then use the anode layer ion source to assist DC magnetron sputtering to deposit a gradient transition layer of Cr/CrN/CrCN/CrC, and the target material of magnetron sputtering is Cr, which is passed into the anode layer The gas of the ion source includes argon, nitrogen, and acetylene. The gradient transition of the transition layer is realized by gradually changing the flow of argon, nitrogen, and acetylene. The ion energy is -100~-800eV; finally, ion beam deposition + magnetron sputtering technology is used A DLC film doped with Cr, Si, and F is synthesized on the Cr/CrN/CrCN/CrC gradient transition layer. The ion source adopts the anode layer ion source, and the gas passed into the anode layer ion source includes argon, acetylene, silane and four. Carbon fluoride, the magnetron sputtering source adopts the DC magnetron sputtering method, and the target material is Cr; the multi-element doping is controlled by changing the flow rate of argon, acetylene, silane and carbon tetrafluoride, and the sputtering power of the chromium sputtering target Cr, Si, F content of DLC film.

实施例2Example 2

首先利用超声波清洗技术去除发动机柱塞表面的油脂污染层;然后利用阳极层离子源辅助直流磁控溅射沉积Cr/CrN/CrCN/CrC梯度过渡层,磁控溅射靶材料为Cr,通入阳极层离子源的气体包括氩气、氮气、苯,通过逐渐改变氩气、氮气、苯的流量实现过渡层的梯度过渡,离子能量为-100~-800eV;最后利用离子束沉积+磁控溅射技术在Cr/CrN/CrCN/CrC梯度过渡层上合成同时掺杂Cr、F、N的DLC膜,离子源采用阳极层离子源,通入阳极层离子源的气体包括氩气、苯、四氟化碳、氮气,磁控溅射采用直流磁控溅射方式,靶材为Cr;通过改变氩气、乙炔、四氟化碳、氮气的流量、铬溅射靶的溅射功率控制多元掺杂DLC膜的Cr、F、N含量。First, use ultrasonic cleaning technology to remove the grease contamination layer on the surface of the engine plunger; then use the anode layer ion source to assist DC magnetron sputtering to deposit a gradient transition layer of Cr/CrN/CrCN/CrC, the target material of the magnetron sputtering is Cr, and the The gas of the ion source of the anode layer includes argon, nitrogen, and benzene, and the gradient transition of the transition layer is realized by gradually changing the flow rate of argon, nitrogen, and benzene, and the ion energy is -100~-800eV; finally, ion beam deposition + magnetron sputtering is used Synthesize a DLC film doped with Cr, F, and N simultaneously on the Cr/CrN/CrCN/CrC gradient transition layer by means of radiation technology. Carbon fluoride, nitrogen, and magnetron sputtering adopt DC magnetron sputtering, and the target material is Cr; by changing the flow rate of argon, acetylene, carbon tetrafluoride, nitrogen, and the sputtering power of the chromium sputtering target, the multi-element doping The content of Cr, F, and N in the dopant DLC film.

实施例3Example 3

首先利用超声波清洗技术去除高速钢刀具表面油脂污染层;然后利用阳极层离子源辅助阴极电弧沉积制备Ti/TiN/TiCN/TiC梯度过渡层,阴极电弧靶材料为Ti,通入阳极层离子源的气体包括氩气、氮气、甲烷,通过逐渐改变氩气、氮气、甲烷的流量实现过渡层的梯度过渡,离子能量为-100~-800eV;最后利用离子束沉积+磁控溅射技术在Ti/TiN/TiCN/TiC梯度过渡层上合成同时掺杂Ti、Si、F、SiO2的DLC膜,离子源采用阳极层离子源,通入阳极层离子源的气体包括氢气、甲烷、硅烷、四氟化碳、水蒸气,磁控溅射采用直流磁控溅射方式,靶材为Ti;通过改变氢气、甲烷、硅烷、四氟化碳、水蒸气的流量、钛溅射靶的溅射功率控制多元掺杂DLC膜的Ti、Si、F、SiO2含量。First, use ultrasonic cleaning technology to remove the grease contamination layer on the surface of high-speed steel tools; then use the anode layer ion source to assist cathodic arc deposition to prepare a Ti/TiN/TiCN/TiC gradient transition layer. Gases include argon, nitrogen, and methane. The gradient transition of the transition layer is achieved by gradually changing the flow of argon, nitrogen, and methane. The ion energy is -100~-800eV; A DLC film doped with Ti, Si, F, and SiO 2 is synthesized on the TiN/TiCN/TiC gradient transition layer. The ion source adopts the anode layer ion source, and the gas flowing into the anode layer ion source includes hydrogen, methane, silane, and tetrafluoroethylene. Carbon dioxide, water vapor, magnetron sputtering adopts DC magnetron sputtering method, the target material is Ti; by changing the flow rate of hydrogen, methane, silane, carbon tetrafluoride, water vapor, and the sputtering power of titanium sputtering target Ti, Si, F, SiO 2 content of multi-component doped DLC film.

Claims (8)

1. the preparation method of a multi-element doping quasi-diamond (DLC) film, it is characterized in that: in the process of the synthetic DLC film of ion beam depositing, except in ion source, feeding any carbonaceous gass such as methane, acetylene, benzene, ethanol, acetone, also feed simultaneously and comprise that silane, borine, phosphine, tetrafluoro-methane etc. contain any gas of non-carbon gas source, and opening metal sputtering source doped metallic elements, synthetic multi-element doping DLC film said method comprising the steps of:
(1) at first utilize ultrasonic cleaning technology to remove the matrix surface pollution layer;
(2) utilize ion beam assisted deposition to prepare gradient transitional lay then;
(3) on gradient transitional lay, utilize ion beam depositing+magnetron sputtering to synthesize multi-element doping DLC film at last.
2. according to the described multi-element doping DLC of claim 1 membrane preparation method, it is characterized in that: the ion source of step (2) can adopt any ion source in anode layer ion source, the graceful ion source of Kraft, hall ion source, radio-frequency induction coupling ion source, the electron cyclotron resonace ion source; The ionic fluid that ion source produces consist of argon ion, argon/nitrogen hybrid ionic, argon/carbon hybrid ionic or argon/nitrogen/carbon hybrid ionic, the ratio of different ions is controlled as required; The ion energy of ionic fluid is 50eV~500eV.
3, according to the described multi-element doping DLC of claim 1 membrane preparation method, it is characterized in that: the evaporation/sputtering source of step (2) can adopt any in magnetron sputtering target, cathodic arc evaporation source, the hollow cathode arc evaporation source; Evaporation/sputtering source target is any metal of Ti, Cr, Zr, W, Nb.
4. according to the described multi-element doping DLC of claim 1 membrane preparation method, it is characterized in that: the described transition layer of step (2) comprises Ti/TiN/TiCN/TiC, Cr/CrN/CrCN/CrC, Zr/ZrN/ZrCN/ZrC, W/WC, Nb/NbN/NbC constant gradient transition layer.
5. according to the described multi-element doping DLC of claim 1 membrane preparation method, it is characterized in that: the ion source of step (3) can adopt any ion source in anode layer ion source, the graceful ion source of Kraft, hall ion source, radio-frequency induction coupling ion source, the electron cyclotron resonace ion source.
6. according to the described multi-element doping DLC of claim 1 membrane preparation method, it is characterized in that: step (3) is except feeding any carbonaceous gass such as methane, acetylene, benzene, ethanol, acetone in ion source, also feeding comprises that silane, borine, phosphine, tetrafluoro-methane etc. contain any gas of non-carbon gas source simultaneously; Feed the non-metallic element incorporation that the ionogenic throughput ratio that contains non-carbon gas source and carbonaceous gas is adjusted the DLC film by control.
7. according to the described multi-element doping DLC of claim 1 membrane preparation method, it is characterized in that: the ion energy of step (2) ionic fluid is 50eV~1000eV.
8. according to the described multi-element doping DLC of claim 1 membrane preparation method, it is characterized in that: the controlled sputtering source of step (3) can adopt any magnetron sputtering mode in magnetically controlled DC sputtering, medium frequency magnetron sputtering, the rf magnetron sputtering.
9. according to the described multi-element doping DLC of claim 1 membrane preparation method, it is characterized in that: the described controlled sputtering source target of step (3) is any of metallic elements such as W, Cr, Ti, Nb, Mo, Zr, Ag, Cu, Co; Adjust the metallic element incorporation of DLC film by the power of control magnetron sputtering target.
CN200910217545A 2009-12-31 2009-12-31 Method for preparing high-performance doped diamond-like film Pending CN101748381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910217545A CN101748381A (en) 2009-12-31 2009-12-31 Method for preparing high-performance doped diamond-like film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910217545A CN101748381A (en) 2009-12-31 2009-12-31 Method for preparing high-performance doped diamond-like film

Publications (1)

Publication Number Publication Date
CN101748381A true CN101748381A (en) 2010-06-23

Family

ID=42475988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910217545A Pending CN101748381A (en) 2009-12-31 2009-12-31 Method for preparing high-performance doped diamond-like film

Country Status (1)

Country Link
CN (1) CN101748381A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337497A (en) * 2010-07-22 2012-02-01 中国科学院兰州化学物理研究所 Method for preparing multi-element doped carbon-based nano composite film integrating functions of antiwear and lubrication
CN102703859A (en) * 2012-06-15 2012-10-03 上海大学 Preparation method for gradient transitional layer between amorphous carbon-based film and metallic matrix
CN102744930A (en) * 2012-06-26 2012-10-24 中国科学院宁波材料技术与工程研究所 Tough lubricating composite film on surface of air conditioning compressor part and its preparation method
CN102817008A (en) * 2012-08-01 2012-12-12 南京航空航天大学 Preparation method of Ag-Ti-codoped diamond like carbon (DLC) film
CN103215545A (en) * 2013-04-23 2013-07-24 李固加 A preparation process for injection molding machine screw with ceramic phase nanocrystalline composite coating
CN103920185A (en) * 2014-04-25 2014-07-16 湛江师范学院 Mo metal doped composite diamond-like coating titanium alloy artificial bone joint and manufacturing method thereof
CN104294230A (en) * 2014-10-09 2015-01-21 中国科学院宁波材料技术与工程研究所 High-hardness and low-stress multi-element composite diamond-like coating and preparation method thereof
CN104498874A (en) * 2014-12-10 2015-04-08 上海大学 Low-atmosphere sensitivity doped amorphous carbon-based thin film and preparation method thereof
CN105060236A (en) * 2015-08-28 2015-11-18 深圳力策科技有限公司 Diamond-like carbon micro cantilever beam and manufacturing method thereof
CN106435518A (en) * 2016-10-21 2017-02-22 中南大学 High-specific-surface-area boron-doped diamond electrode and preparation method and application thereof
CN106544631A (en) * 2016-10-25 2017-03-29 中国科学院宁波材料技术与工程研究所 A kind of chromium carbide multi-gradient composite coating of matrix surface and preparation method thereof
CN106868504A (en) * 2017-01-04 2017-06-20 兰州空间技术物理研究所 A kind of multi-layer wear-resistant and anti-friction film on the surface of diesel engine parts and its preparation method
CN107267941A (en) * 2017-06-13 2017-10-20 广东省新材料研究所 A kind of hydrogeneous preparation method for mixing aluminium DLC film
CN107275440A (en) * 2017-06-12 2017-10-20 上海大学 A kind of method of nuclear detector tellurium-zinc-cadmium wafer surface passivation
CN108039478A (en) * 2017-12-23 2018-05-15 湖南工业大学 A kind of method that graphene/silicon carbon composite is prepared using micro crystal graphite as carbon source
CN108054341A (en) * 2017-12-22 2018-05-18 湖南工业大学 A kind of preparation method of graphene/silicon carbon composite
CN108063236A (en) * 2017-12-23 2018-05-22 林荣铨 A kind of method that graphene/silicon carbon composite is prepared using crystalline flake graphite as carbon source
CN108063235A (en) * 2017-12-23 2018-05-22 林荣铨 A kind of method that graphene/silicon carbon composite prepares lithium ion battery
CN108291299A (en) * 2015-11-27 2018-07-17 塞梅孔公司 With diamond layer and hard material layer coated body
CN108359954A (en) * 2018-04-16 2018-08-03 中国科学院宁波材料技术与工程研究所 Carbon-base film and preparation method thereof
CN108531905A (en) * 2018-01-18 2018-09-14 合肥永信信息产业股份有限公司 A kind of high-performance diamond-like composite coating and preparation method thereof
CN108565404A (en) * 2017-12-23 2018-09-21 林荣铨 It is a kind of to prepare application of the graphene/silicon carbon composite in lithium ion battery by carbon source of micro crystal graphite
CN109023243A (en) * 2018-09-18 2018-12-18 岭南师范学院 Superpower tough, carbon-based cutter coat of low friction of one kind and preparation method thereof
CN109136843A (en) * 2018-09-21 2019-01-04 广东省新材料研究所 A kind of non-hydrogen diamond membrane and the preparation method and application thereof
CN109487226A (en) * 2018-12-13 2019-03-19 北京金轮坤天特种机械有限公司 A kind of titanium alloy protective coating and preparation method thereof
CN110241386A (en) * 2018-03-09 2019-09-17 深圳先进技术研究院 A boron-doped diamond electrode and its preparation method and application
CN110492019A (en) * 2019-08-14 2019-11-22 云谷(固安)科技有限公司 A kind of display panel
CN111223901A (en) * 2019-11-29 2020-06-02 云谷(固安)科技有限公司 Display panel and preparation method thereof
CN113913735A (en) * 2021-09-07 2022-01-11 广州今泰科技股份有限公司 Vanadium/yttrium co-doped DLC coating and preparation method thereof
CN114836715A (en) * 2022-03-21 2022-08-02 华南理工大学 Metal surface Cr/CrN/CrCN/Cr-DLC multilayer composite self-lubricating film and preparation method thereof
US12102041B2 (en) 2022-08-30 2024-10-01 Calmer Holding Company, Llc Methods and systems for threshing/separating grains and legumes utilizing concaves

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337497A (en) * 2010-07-22 2012-02-01 中国科学院兰州化学物理研究所 Method for preparing multi-element doped carbon-based nano composite film integrating functions of antiwear and lubrication
CN102703859A (en) * 2012-06-15 2012-10-03 上海大学 Preparation method for gradient transitional layer between amorphous carbon-based film and metallic matrix
CN102744930B (en) * 2012-06-26 2015-08-19 中国科学院宁波材料技术与工程研究所 Tough lubrication laminated film of compressor of air conditioner component surface and preparation method thereof
CN102744930A (en) * 2012-06-26 2012-10-24 中国科学院宁波材料技术与工程研究所 Tough lubricating composite film on surface of air conditioning compressor part and its preparation method
CN102817008A (en) * 2012-08-01 2012-12-12 南京航空航天大学 Preparation method of Ag-Ti-codoped diamond like carbon (DLC) film
CN102817008B (en) * 2012-08-01 2014-07-02 南京航空航天大学 Preparation method of Ag-Ti-codoped diamond like carbon (DLC) film
CN103215545A (en) * 2013-04-23 2013-07-24 李固加 A preparation process for injection molding machine screw with ceramic phase nanocrystalline composite coating
CN103920185A (en) * 2014-04-25 2014-07-16 湛江师范学院 Mo metal doped composite diamond-like coating titanium alloy artificial bone joint and manufacturing method thereof
CN104294230A (en) * 2014-10-09 2015-01-21 中国科学院宁波材料技术与工程研究所 High-hardness and low-stress multi-element composite diamond-like coating and preparation method thereof
CN104498874A (en) * 2014-12-10 2015-04-08 上海大学 Low-atmosphere sensitivity doped amorphous carbon-based thin film and preparation method thereof
CN105060236A (en) * 2015-08-28 2015-11-18 深圳力策科技有限公司 Diamond-like carbon micro cantilever beam and manufacturing method thereof
CN108291299B (en) * 2015-11-27 2021-09-17 塞梅孔公司 Coating a body with a diamond layer and a hard material layer
CN108291299A (en) * 2015-11-27 2018-07-17 塞梅孔公司 With diamond layer and hard material layer coated body
CN106435518B (en) * 2016-10-21 2018-07-17 中南大学 A kind of high-specific surface area boron-doped diamond electrode and its preparation method and application
CN106435518A (en) * 2016-10-21 2017-02-22 中南大学 High-specific-surface-area boron-doped diamond electrode and preparation method and application thereof
CN106544631B (en) * 2016-10-25 2020-02-04 中国科学院宁波材料技术与工程研究所 Chromium carbide multilayer gradient composite coating on surface of substrate and preparation method thereof
CN106544631A (en) * 2016-10-25 2017-03-29 中国科学院宁波材料技术与工程研究所 A kind of chromium carbide multi-gradient composite coating of matrix surface and preparation method thereof
CN106868504B (en) * 2017-01-04 2019-02-19 兰州空间技术物理研究所 Multilayer wear-resistant antifriction film on surface of diesel engine part and preparation method thereof
CN106868504A (en) * 2017-01-04 2017-06-20 兰州空间技术物理研究所 A kind of multi-layer wear-resistant and anti-friction film on the surface of diesel engine parts and its preparation method
CN107275440A (en) * 2017-06-12 2017-10-20 上海大学 A kind of method of nuclear detector tellurium-zinc-cadmium wafer surface passivation
CN107267941A (en) * 2017-06-13 2017-10-20 广东省新材料研究所 A kind of hydrogeneous preparation method for mixing aluminium DLC film
CN108054341A (en) * 2017-12-22 2018-05-18 湖南工业大学 A kind of preparation method of graphene/silicon carbon composite
CN108063236A (en) * 2017-12-23 2018-05-22 林荣铨 A kind of method that graphene/silicon carbon composite is prepared using crystalline flake graphite as carbon source
CN108565404A (en) * 2017-12-23 2018-09-21 林荣铨 It is a kind of to prepare application of the graphene/silicon carbon composite in lithium ion battery by carbon source of micro crystal graphite
CN108063235A (en) * 2017-12-23 2018-05-22 林荣铨 A kind of method that graphene/silicon carbon composite prepares lithium ion battery
CN108039478A (en) * 2017-12-23 2018-05-15 湖南工业大学 A kind of method that graphene/silicon carbon composite is prepared using micro crystal graphite as carbon source
CN108531905A (en) * 2018-01-18 2018-09-14 合肥永信信息产业股份有限公司 A kind of high-performance diamond-like composite coating and preparation method thereof
CN110241386B (en) * 2018-03-09 2024-02-09 深圳先进技术研究院 Boron-doped diamond electrode and preparation method and application thereof
CN110241386A (en) * 2018-03-09 2019-09-17 深圳先进技术研究院 A boron-doped diamond electrode and its preparation method and application
CN108359954A (en) * 2018-04-16 2018-08-03 中国科学院宁波材料技术与工程研究所 Carbon-base film and preparation method thereof
CN109023243A (en) * 2018-09-18 2018-12-18 岭南师范学院 Superpower tough, carbon-based cutter coat of low friction of one kind and preparation method thereof
CN109136843A (en) * 2018-09-21 2019-01-04 广东省新材料研究所 A kind of non-hydrogen diamond membrane and the preparation method and application thereof
CN109487226B (en) * 2018-12-13 2020-10-30 北京金轮坤天特种机械有限公司 A kind of titanium alloy protective coating and preparation method thereof
CN109487226A (en) * 2018-12-13 2019-03-19 北京金轮坤天特种机械有限公司 A kind of titanium alloy protective coating and preparation method thereof
CN110492019A (en) * 2019-08-14 2019-11-22 云谷(固安)科技有限公司 A kind of display panel
CN111223901A (en) * 2019-11-29 2020-06-02 云谷(固安)科技有限公司 Display panel and preparation method thereof
CN113913735A (en) * 2021-09-07 2022-01-11 广州今泰科技股份有限公司 Vanadium/yttrium co-doped DLC coating and preparation method thereof
CN114836715A (en) * 2022-03-21 2022-08-02 华南理工大学 Metal surface Cr/CrN/CrCN/Cr-DLC multilayer composite self-lubricating film and preparation method thereof
US12102041B2 (en) 2022-08-30 2024-10-01 Calmer Holding Company, Llc Methods and systems for threshing/separating grains and legumes utilizing concaves
US12219901B2 (en) 2022-08-30 2025-02-11 Calmer Holding Company, Llc Combine with threshing chamber defined by distinct sequences of concaves
US12349632B2 (en) 2022-08-30 2025-07-08 Calmer Holding Company, Llc Threshing and separation method to separate grains from material other than grain via threshing and separating apparatuses

Similar Documents

Publication Publication Date Title
CN101748381A (en) Method for preparing high-performance doped diamond-like film
CN101787512A (en) Method for preparing multi-metal element doped diamond film
CN101787518A (en) Multi-ion-beam sputter-deposition technology for doping with diamond-like carbon (DLC) coating
CN101787521B (en) A kind of preparation method of metal sulfide diamond-like composite film
CN103160781B (en) Manufacture method of multilayer gradient nano-composite diamond film of surface of die steel
CN101787520A (en) Tungsten-titanium co-doped diamond coating material and preparation technique thereof
CN207313693U (en) Composite thick film based on DLC film
CN101712215B (en) TiCN series nanometer gradient compound multi-layer coating and method for preparing same
CN111500982B (en) Tetrahedral amorphous carbon composite coating and preparation method thereof
CN107022761A (en) Composite thick film and its film plating process based on DLC film
CN101081557A (en) Metallic carbide/adamantine (MeC/DLC) nanometer multi-layer film material and method for preparing the same
US20160138171A1 (en) Method for manufacturing corrosion resistant and conductive nano carbon coating layer and fuel cell bipolar plate thereby using stainless steel substrate
CN106244986B (en) Diamond-like carbon film of functionally gradient and preparation method thereof and product
CN101701332B (en) Method for preparing compound diamond-like carbon coating by using medium-frequency magnetic-control glow discharge method
CN101444985A (en) Amorphous carbon coating and preparation method and application thereof
CN108220916B (en) Preparation method of GNCD-cBN nanocomposite multi-layer coating tool with toughening mechanism
CN101457359B (en) A preparation method of Ti-Si-N nanocrystalline-amorphous composite superhard coating
CN105200392B (en) The method that carbide surface prepares diamond coatings
CN106119783B (en) Diamond-like carbon film of functionally gradient and preparation method thereof and product
CN102864411B (en) CN-MCN superhard self-lubricating nano-composite coating and preparation method thereof
CN104029435B (en) A kind of NbN/WS with high rigidity and low-friction coefficient 2laminated coating and preparation method thereof
CN108330459A (en) A kind of application of symmetrical magnetron sputtering technique and its diamond-like coating
CN106521493A (en) Diamond-like carbon film of gradient structure and preparation method thereof
CN105296949A (en) Nano-structure coating with ultra-high hardness and manufacturing method thereof
CN101469402A (en) Preparation of fullerene-like carbon film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100623