CN101747135B - Method for producing low-carbon alkene by catalytic pyrolysis of biomass - Google Patents
Method for producing low-carbon alkene by catalytic pyrolysis of biomass Download PDFInfo
- Publication number
- CN101747135B CN101747135B CN2008102276646A CN200810227664A CN101747135B CN 101747135 B CN101747135 B CN 101747135B CN 2008102276646 A CN2008102276646 A CN 2008102276646A CN 200810227664 A CN200810227664 A CN 200810227664A CN 101747135 B CN101747135 B CN 101747135B
- Authority
- CN
- China
- Prior art keywords
- weight
- pore volume
- biomass
- hole
- zeolite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002028 Biomass Substances 0.000 title claims abstract description 28
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 28
- 238000007233 catalytic pyrolysis Methods 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- 239000010457 zeolite Substances 0.000 claims abstract description 67
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 62
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000003054 catalyst Substances 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000002994 raw material Substances 0.000 claims abstract description 36
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 239000000047 product Substances 0.000 claims abstract description 29
- 239000003921 oil Substances 0.000 claims abstract description 28
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 15
- 150000003624 transition metals Chemical class 0.000 claims abstract description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 14
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 14
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000003085 diluting agent Substances 0.000 claims abstract description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 11
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims abstract description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 10
- 239000011574 phosphorus Substances 0.000 claims abstract description 10
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 8
- 239000011148 porous material Substances 0.000 claims description 35
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 27
- 239000002808 molecular sieve Substances 0.000 claims description 26
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 19
- 238000010009 beating Methods 0.000 claims description 18
- 239000004411 aluminium Substances 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 13
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 13
- -1 alkali metal salt Chemical class 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 10
- 150000002632 lipids Chemical class 0.000 claims description 9
- 239000000295 fuel oil Substances 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 8
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 claims description 7
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 7
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 150000004671 saturated fatty acids Chemical class 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 235000021281 monounsaturated fatty acids Nutrition 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 239000004519 grease Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 238000004438 BET method Methods 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 3
- 239000004327 boric acid Substances 0.000 claims description 3
- 229910001648 diaspore Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 150000004645 aluminates Chemical class 0.000 claims description 2
- 229910001680 bayerite Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910001679 gibbsite Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 230000008929 regeneration Effects 0.000 claims description 2
- 238000011069 regeneration method Methods 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims 2
- 229910052727 yttrium Inorganic materials 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 239000005977 Ethylene Substances 0.000 abstract description 3
- 239000012263 liquid product Substances 0.000 abstract 1
- 230000001172 regenerating effect Effects 0.000 abstract 1
- 230000009466 transformation Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 17
- 235000019198 oils Nutrition 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 241000196324 Embryophyta Species 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 12
- 239000002002 slurry Substances 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 230000032683 aging Effects 0.000 description 9
- 238000004523 catalytic cracking Methods 0.000 description 9
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 8
- 229910052621 halloysite Inorganic materials 0.000 description 8
- 238000011068 loading method Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 229910001415 sodium ion Inorganic materials 0.000 description 6
- 239000005995 Aluminium silicate Substances 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 235000012211 aluminium silicate Nutrition 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000004927 clay Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 239000010775 animal oil Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 238000001694 spray drying Methods 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- 239000008158 vegetable oil Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 239000010813 municipal solid waste Substances 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 208000006558 Dental Calculus Diseases 0.000 description 2
- 102000004895 Lipoproteins Human genes 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- WUUHFRRPHJEEKV-UHFFFAOYSA-N tripotassium borate Chemical compound [K+].[K+].[K+].[O-]B([O-])[O-] WUUHFRRPHJEEKV-UHFFFAOYSA-N 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241000837181 Andina Species 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 159000000013 aluminium salts Chemical class 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 150000003818 basic metals Chemical class 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
A method for producing low-carbon alkene by catalytic pyrolysis of biomass comprises: contacting biomass raw material or raw material containing biomass and hydrocarbon oil with catalyst containing five-membered ring high-silicon zeolite in a lifting pipe or fluidized bed reactor, and then reacting under catalytic pyrolysis condition; separating reaction product and unborn catalyst; separating the product after the reaction product is fed in a subsequent separating system so as to obtain liquid product and gas product containing ethylene and propylene, returning the unborn catalyst in the reactor for cycle use after stripping and regenerating, wherein the five-membered ring high-silicon zeolite contains phosphorus and transition metal, and the catalytic pyrolysis conditions are as follows: the reaction temperature is 550-700 DEG C, the weight ratio of catalyst to raw material oil is 6-40, diluent gas is added in the reaction process, and the weight ratio of diluent gas to raw materialis 0.1-1: 1. The method is used for producing low-carbon alkene by transformation of biomass raw material, and has relatively higher low-carbon alkene yield.
Description
Technical field
The present invention relates to a kind of method of utilizing of biomass material, relate to a kind of method of utilizing the biomass material producing low-carbon alkene by catalytic pyrolysis furtherly.
Background technology
Ethene more than 95%, propylene are produced the low-carbon alkene technology by naphtha steam cracking and heavy-oil catalytic and are provided in the market.Heavy-oil catalytic thermal cracking is produced the low-carbon alkene technology, utilizes heavy oil to produce low-carbon alkenes such as ethene, propylene, and it is low to have energy consumption, ingredient requirement is low, and product profile adjustment flexible characteristic is because the gradual change of crude oil day is heavy, change is bad, this technology comes into one's own day by day, has vast potential for future development.
Along with becoming gradually, petroleum heavily becomes the day by day exhausted of bad and petroleum resources, the substitute of processing oil has caused extensive concern, and for example WO2004016572, WO2005016856 and CN02152480.7 provide and add for example method of organic oxygen-containing compounds production alkene such as methyl alcohol, ethanol, dme, diethyl ether or its mixture of low-carbon alcohol, ether compound in the hydrocarbon oil catalytic cracking raw material.And as a kind of reproducible resource, the processing and utilization of biomass examples such as vegetable and animals oils and rubbish oil is paid close attention in recent years widely.
CN200610112924.6 discloses a kind of method processing animal and vegetable oil and rubbish oil that utilizes catalytic cracking, in the hope of producing the production technology of light-end products and ethene and propylene.This technology has been used the HZSM-5/Al of different component content respectively mainly according to the difference of production purpose
2O
3/ kaolin, Y/AlAl
2O
3/ kaolin or USY/Al
2O
3Three kinds of catalyzer of/kaolin, and on the circulating fluid bed catalysis cracking unit of being formed by riser reactor-revivifier processing treatment animal and vegetable oil or rubbish oil, thereby produce or on purpose voluminous gasoline and diesel oil, propylene and liquefied gas.
CN200610089354.3 discloses and has a kind ofly utilized animal grease or/and the method for Vegetable oil lipoprotein alkene processed, be raw material with Vegetable oil lipoprotein and/or animal grease, press raw material: the weight ratio of solid acid catalyst=1:1-28, under 400-700 ℃, carry out catalytic pyrolysis, preparation ethene, propylene and butylene, acidic molecular sieve in the described catalyzer: kaolin or illiteracy holder soil: silicon oxide or aluminum oxide=5-60%:10-90%:5-30%; Molecular sieve wherein is Y zeolite, ZSM-5 molecular sieve, beta molecular sieve, sapo molecular sieve analog or mordenite.Concrete catalyst for application is not provided among the embodiment of this application.
Summary of the invention
The technical problem to be solved in the present invention provides the method that a kind of biomass material is produced low-carbon alkene, and this method utilizes biomass material production low-carbon alkene to have higher productivity of low carbon olefin hydrocarbon.
The invention provides a kind of method of biomass material producing low-carbon alkene by catalytic pyrolysis, comprise biomass material or contain biomass in riser tube or fluidized-bed reactor, contacting with the catalyzer that contains the five-ring supersiliceous zeolite with the raw material of hydrocarbon ils, under the condition of catalytic pyrolysis, react; Reaction product isolated and reclaimable catalyst; Reaction product is sent into subsequent separation system and is carried out product separation, obtains product liquid and the gaseous product that contains ethene, propylene, and reclaimable catalyst Returning reactor after stripping, regeneration recycles; Wherein said five-ring supersiliceous zeolite contains phosphorus and transition metal, described catalytic pyrolysis condition is: temperature of reaction 550-700 ℃, the weight ratio of catalyzer and oil fuel is 6-40, feeds diluent gas in the reaction process, and the weight ratio of diluent gas and raw material is 0.1-1:1.
The present invention utilizes biomass material to produce the method for low-carbon alkene, uses phosphorous and pentasil zeolites transition metal, processing biological raw material under the condition of catalytic pyrolysis, and the productive rate of ethene is higher, has higher olefins yield than existing methods.For example, using the macroporous catalyst that contains 10 weight %ZRP zeolites, 10 weight %REHY zeolites, is raw material with the long residuum of 10 weight % and the oleic acid of 90 weight %, at 640 ℃ of temperature of reaction, agent-oil ratio 20, air speed 10h
-1, water injection rate (accounting for raw material) 50 weight % react, and the productive rate of low-carbon alkene is 43.04 weight %, and ethylene yield is 10.25 weight %, and productivity of propylene is 20.54 weight %, the butylene productive rate is 12.26 weight %; And use contains the catalyzer of 10%HZSM-5 zeolite, 10 weight %REHY zeolites, react according to the method described above, the productive rate of low-carbon alkene is 38.64 weight %, and yield of ethene is 9 weight %, propene yield is 18.76 weight %, and the butylene productive rate is 10.88 weight %.
Embodiment
In the catalytic cracking method provided by the present invention, the anhydrous chemical expression of the five-ring supersiliceous zeolite of described phosphorous and transition metal is counted (0-0.3) Na with the quality of oxide compound
2O (0.3-5) Al
2O
3(1-10) P
2O
5(0.7-20) M
xO
y(70-98) SiO
2, wherein element M is selected from one or more among RE, Fe, Co, Ni, Cu, Zn, Mo and the Mn, and RE is rare earth element, and x represents the atomicity of M, and y represents the atomicity of O.The anhydrous chemical expression of the five-ring supersiliceous zeolite of described phosphorous and transition metal is preferably (0-0.2) Na in the quality of oxide compound
2O (0.9-5) Al
2O
3(1.5-7) P
2O
5(1.4-15) M
xO
y(82-92) SiO
2, x represents the atomicity of M, and y represents the atomicity of O, and M is a kind of among RE, Fe, Co or the Ni.Described five-ring supersiliceous zeolite is for example: ZSM-5, ZSM-8, ZSM-11 are preferably the ZSM-5 zeolite.Described five-ring supersiliceous zeolite phosphorous and transition metal can be according to disclosed method preparation among the Chinese patent CN 1465527A.X is the valency of oxygen in other words, and y is the valency of M.
In the catalytic cracking method provided by the present invention, described catalyzer also can contain the molecular sieve of other type, for example one or more in y-type zeolite, the β zeolite; Described y-type zeolite is preferably one or more in the HY zeolite of the overstable gamma zeolite, HY zeolite of the y-type zeolite, overstable gamma zeolite of phosphorous and/or rare earth, phosphorous and/or rare earth, phosphorous and/or rare earth, more preferably one or more among super steady Y, REY or the REHY.
In the catalytic cracking method provided by the invention, described catalyzer is preferably macroporous catalyst; Described macroporous catalyst comprises the five-ring supersiliceous zeolite of phosphorous and transition metal and comprises the carrier of aluminum oxide, the pore volume that is no more than the hole of 100nm with the aperture is benchmark, the pore volume in the hole of described macroporous catalyst 6-20nm accounts for 20-80%, the pore volume that preferred described macroporous catalyst has the hole of following pore distribution:<2nm accounts for 5-70%, the pore volume in the hole of 2-4nm accounts for 5-70%, the pore volume in the hole of 4-6nm accounts for 0-10%, the pore volume in the hole of 6-20nm accounts for 20-80%, and the pore volume in the hole of 20-100nm accounts for 0-40%; In the described macroporous catalyst<and the pore volume in the hole of 2nm preferably accounts for 5-60%, and the pore volume in the hole of 2-4nm preferably accounts for 10-60%, more preferably accounts for 15-50%, and the pore volume in the hole of 6-20nm preferably accounts for 25-70%, more preferably 30-60%; The pore volume in the hole of 6-10nm accounts for 10-50% in the described catalyzer, preferably accounts for 15-40%.The hole of preferred 6-20nm is 0.5-8 with the ratio of the pore volume in the hole of 2-4nm, more preferably 0.5~4.Described macroporous catalyst is 0.19ml/g-0.4ml/g with the pore volume that nitrogen loading capacity method (BET method) records, and is preferably 0.196ml/g-0.26ml/g.Nitrogen loading capacity method is measured the pore volume of catalyzer and is published the RIPP151-90 analytical procedure in " petrochemical complex analytical procedure " (RIPP experimental technique) that Yang Cuiding etc. write referring to Science Press 1990.Use macroporous catalyst can further improve the productive rate of low-carbon alkene, and have lower heavy oil productive rate.Alumina source self-alumina in the described carrier and in the precursor one or more thereof, the content of preferred described aluminum oxide is 5-80 weight %.Aluminum oxide and precursor thereof be aluminium colloidal sol, phosphorus aluminium colloidal sol, contain aluminium salt (for example vitriol of various aluminates, aluminium, nitrate, halogenide), gama-alumina, η-aluminum oxide, θ-aluminum oxide, χ-aluminum oxide, have structure of similar to thin diaspore hydrated aluminum oxide, have a diaspore structure hydrated aluminum oxide, have the hydrated aluminum oxide of gibbsite structure and have in the hydrated aluminum oxide of bayerite structure one or more, excellent is pseudo-boehmite, or one or more the mixture in other precursor of pseudo-boehmite and aluminum oxide and aluminum oxide.
The carrier of described macroporous catalyst comprises aluminum oxide, also can comprise one or more of clay, the non-aluminium element oxide compound of IIIA and INA family.Described non-aluminium element oxide source is from one or more of the oxide compound of described non-aluminium element or oxide compound precursor.For example, silicon oxide and precursor thereof can be selected from one or more in silicon sol, water glass, silicate, silicon-aluminum sol, silica-alumina gel and the various silicoorganic compound, are preferably water glass and/or silicon sol.Weight with carrier is benchmark, and the content of carrier medium clay soil and described non-aluminum oxide is no more than 95 weight %, and the content of preferably clay is no more than 60 weight %.In the method for preparing catalyst provided by the invention, described clay is to be customarily used in the clay of cracking catalyst one or more, for example one or more in kaolin, halloysite, polynite, diatomite, halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite, the wilkinite.
Preferably also contain the metal component that is derived from II A, I B, II B, IVB family metal halide in the carrier of described macroporous catalyst, weight with carrier is benchmark, content in the described metal component of oxide compound is no more than 15 weight %, be preferably 0.1 weight %-12 weight %, more preferably 0.1 weight %-6 weight %.Described metal component is one or more in IV B and the II A family metal more preferably, further are preferably Ti and/or Mg.Contain described metal component in the carrier, the wear resisting property of catalyzer improves.
Described macroporous catalyst preferably contains the carrier of 60 weight %-95 weight %, the molecular sieve of 5 weight %-40 weight %; Contain the pentasil zeolites of the phosphorous and transition metal of 25 weight %-100 weight %, the y-type zeolite of 0-75 weight %, the β zeolite of 0-20 weight % in the described molecular sieve; The alumina content that is derived from aluminum oxide and/or aluminum oxide precursor in the described carrier is 5 weight %-100 weight %, and the content of other carrier component is no more than 95 weight %.
In the production low-carbon alkene method provided by the invention, the preparation method of described macroporous catalyst comprises the carrier of salic and/or its precursor, expanding agent and molecular sieve mixing, making beating, spray-dired step, wherein said expanding agent is selected from one or more in boric acid, an alkali metal salt, weight with carrier is benchmark, the weight ratio of described expanding agent and carrier is 0.1:100-15:100, is preferably 0.1:100-10:100.Described an alkali metal salt is preferably one or more in the soluble salt of basic metal K, Na or Li, for example one or more in borate, phosphoric acid salt, vitriol, nitrate, carbonate or the hydrochloride.Described carrier is mixed making beating with molecular sieve, know for those skilled in the art are described, the preparation slurries of carrier and molecular sieve can being pulled an oar respectively, and then two kinds of slurries are mixed; Also can in the preparation process of carrier, earlier the part carrier be mixed and making beating, introduce molecular sieve then, introduce other carrier and making beating again; Or introduce in the molecular sieve pulp carrier and making beating.Described expanding agent is introduced in the slurries before spraying drying.Preferred described expanding agent is introduced in the slurries of salic carrier.After described expanding agent was introduced, making beating disperseed expanding agent in slurries, preferred making beating at least 5 minutes, more preferably 10-90 minute.After introducing expanding agent, also aging to the slurries that contain expanding agent, described wearing out carried out under static state, and aging temperature is preferably 50-80 ℃, and digestion time is 0.5-3 hour.
When macroporous catalyst of the present invention also contains II A, I B, II B, IVB family metal, also comprise the step of introducing II A, I B, II B, IVB family metal halide in the pulping process of its preparation.Described metal halide is preferably after introducing expanding agent, introduce before the spraying drying.
Among the macroporous catalyst preparation method of the present invention, described spraying drying is prior art, does not have particular requirement, and for example spray-dired exhaust temperature is 100 ℃-300 ℃.Described preparation method also can comprise roasting, washing and dry step.The method of described roasting, drying and washing is prior art, does not have particular requirement, and for example maturing temperature is 300 ℃-700 ℃, and dry temperature is 100 ℃-300 ℃; Be no more than 0.5 weight % with deionized water wash sodium oxide content to the catalyzer.
In the catalytic cracking method provided by the invention, described biomass are preferably one or more in the organic oxygen-containing compound that the long-chain carbon number is 10-24, described organic oxygen-containing compound is one or more in the compound of saturated, single unsaturated, polyunsaturated fatty acid and lipid acid, the compound of described lipid acid is carboxylic acid, ester and grease and class ester cpds, for example high-grade lipid acid, high-grade aliphatic ester, animal oil, vegetables oil, animal wax, vegetable wax, phosphoric acid ester; Saturated fatty acid content is 30-90% in the preferred described organic oxygen-containing compound (biomass), and monounsaturated fatty acids content is 2-60%, and polyunsaturated fatty acid is 8-68%.When saturated fatty acid content is high in the biomass material, be conducive to improve the productive rate of ethene in the product.
In the catalytic cracking method provided by the present invention, when use contains the raw material of biomass and hydrocarbon ils, be benchmark with the weight of raw material, the content of described hydrocarbon ils is no more than 99.9 weight %, the content of preferred described hydrocarbon ils is no more than 50 weight %, and more preferably the content of described hydrocarbon ils is 20-50 weight %.When the ratio of hydrocarbon ils in the raw material and biomass was 1:4-1:1, cracking stock had the relay effect, was conducive to improve the productive rate of low-carbon alkene, especially the productive rate of ethene.Described hydrocarbon ils is preferably heavy oil.Described heavy oil is long residuum, vacuum residuum, vacuum gas oil, propane deasphalting oil for example.
In the catalytic cracking method provided by the invention, biomass are contacted with cracking catalyst react, temperature of reaction is preferably 600-650 ℃; The time of reaction is preferably 0.5-10 second, and more preferably 1-5 second, agent-oil ratio is preferably 10-30; The weight ratio of diluent gas and raw material is preferably 0.2-0.6:1; The preferred 1.5-4 of reaction pressure * 10
5Handkerchief.For reducing the oil gas dividing potential drop, in reaction process, inject diluent gas, the weight ratio of diluent gas and raw material is 0.1-1:1, is preferably 0.2-0.6:1; Described diluent gas is water vapor or catalytic cracked dry gas.
Riser tube of the present invention, fluidized-bed reactor, reaction product isolated and reclaimable catalyst and product separation are well known to those skilled in the art, and the present invention does not have particular requirement.
The inventive method can be used for producing low-carbon alkene by biomass material.
Embodiment 1
Preparation of Catalyst: 20Kg decationized Y sieve water and 20.1Kg pseudo-boehmite (Shandong Aluminum Plant's Industrial products, solid content 63 weight %) are mixed, making beating, regulating its pH value with hydrochloric acid is 3; 72.6Kg decationized Y sieve water and 28.4Kg halloysite (Suzhou china clay company Industrial products, solid content 72.3 weight %) are mixed, pulled an oar 5 minutes, add potassium borate 2.0Kg (analytical pure) then, pulled an oar 15 minutes; Above-mentioned two kinds of slurries are mixed, stir, left standstill aging 1.5 hours at 65 ℃, keeping the pH value when aging is 2-4 (regulating with hydrochloric acid), cools the temperature to 55 ℃ then, and (the Qilu Petrochemical catalyst plant is produced, Al to add 13.0Kg aluminium colloidal sol
2O
3Content is 21.7 weight %), stirred 40 minutes, add molecular sieve pulp 33.0Kg and (wherein contain REHY zeolite 0.5kg, ZRP zeolite 11.0Kg; RE in the REHY zeolite
2O
3Content 8 weight %, silica alumina ratio is 7; Described ZRP zeolite by the ZSM-5 zeolite through phosphorus and transition metal modified obtaining, its silica alumina ratio (SiO
2/ Al
2O
3) be 40, phosphorus pentoxide content accounts for 3% of molecular sieve gross weight, Na
2O content is 0.1 weight %, RE
2O
3Content is 3 weight %, is catalyzer Shandong branch office of China Petrochemical Industry and produces), add TiCl again
42Kg stirs, spraying drying then, and the flush away Na ion that dissociates, drying obtains catalyst A.Catalyst pores distributes and sees Table 1, and the rerum natura of catalyzer sees Table 2.
Raw material: lard, saturated fatty acid content are 60 weight %, and monounsaturated fatty acids content is 30%, and polyunsaturated fatty acid is 10%.
Reaction evaluating: react 640 ℃ of temperature of reaction at the small fixed flowing bed device.Catalyst sample is in advance through 800 ℃, 100% steam-treated 17 hours, loading amount 180 grams, agent-oil ratio 20, air speed 10h
-1, water injection rate (accounting for raw material) 50 weight %.Evaluation result sees Table 4.
Embodiment 2
Preparation of Catalyst: 20Kg decationized Y sieve water and 18.2Kg pseudo-boehmite (Shandong Aluminum Plant's Industrial products, solid content 63 weight %) are mixed making beating, and regulating its pH value with hydrochloric acid is 3; 72.6Kg decationized Y sieve water and 32.1Kg halloysite (Suzhou china clay company Industrial products, solid content 72.3 weight %) are mixed, pulled an oar 5 minutes, add vitriolate of tartar (technical grade, content 98 weight %) 5Kg then, pulled an oar 15 minutes.Above-mentioned two kinds of slurries are mixed, stir, left standstill aging 1.5 hours at 65 ℃, keeping the pH value is 3-4, cools the temperature to 55 ℃ again, adds 14Kg aluminium colloidal sol (Qilu Petrochemical catalyst plant product, Al
2O
3Content is 21.7 weight %), stirred 40 minutes, add molecular sieve pulp 25.0Kg and (contain REHY zeolite 2.5kg, ZRP zeolite 6.5Kg, 2.5 kilograms in β zeolite, the REHY zeolite is with embodiment 1, the ZRP zeolite be the ZSM-5 zeolite through phosphorus and transition metal modified obtaining, its silica alumina ratio (SiO
2/ Al
2O
3) be 80, phosphorus content accounts for 4% of molecular sieve gross weight, Na
2O content is 0.1 weight %, 4 weight %RE
2O
3), add TiCl again
45Kg stirs, and spray drying forming, the flush away Na ion that dissociates is drying to obtain catalyst sample B.Catalyst pores distribution transitivity sees Table 1, table 2.
Raw material: 50% grand celebration long residuum+50% lard (with embodiment 1 lard)
Reaction: carry out reaction evaluating at the small fixed flowing bed device, 640 ℃ of temperature of reaction.Catalyst sample is in advance through 800 ℃, 100% steam-treated 17 hours, loading amount 180 grams, agent-oil ratio 20, air speed 10h
-1, water injection rate (accounting for raw material) 50%.Evaluation result sees Table 4.
Embodiment 3
Preparation of Catalyst: 20Kg decationized Y sieve water and 11.9Kg pseudo-boehmite (Shandong Aluminum Plant's Industrial products, solid content 63 weight %) are mixed making beating.72.6Kg decationized Y sieve water and 38.7Kg halloysite (Suzhou china clay company Industrial products, solid content 72.3 weight %) are mixed, pulled an oar 5 minutes, add 15.0Kg water glass (Qilu Petrochemical catalyst plant product, SiO then
2Content is 19.9 weight %), pulled an oar 15 minutes, with hydrochloric acid its pH value is transferred to 3.5 then, add vitriolate of tartar 3Kg, pulled an oar 15 minutes.Above-mentioned two kinds of slurries are mixed, stir, left standstill under 60-70 ℃ of temperature aging 1.5 hours, keeping the pH value is 2-4, cools the temperature to 55 ℃ then, adds 13.5Kg aluminium colloidal sol (Qilu Petrochemical catalyst plant product, Al
2O
3Content is 21.7 weight %), stirred 40 minutes, add molecular sieve pulp 32.1Kg (wherein contain REHY zeolite 0.5Kg, ZRP zeolite 8.5Kg, β zeolite 0.5Kg, ZRP zeolite be the ZSM-5 zeolite through phosphorus and transition metal modified obtaining, its silica alumina ratio (SiO
2/ Al
2O
3) be 40, phosphorus content accounts for 3% of molecular sieve gross weight, Na
2O content is 0.1 weight %, 3 weight %RE
2O
3)), add TiCl again
45Kg stirs, and spray drying forming, the flush away Na ion that dissociates is drying to obtain catalyst sample C.Catalyst pores distribution transitivity sees Table 1, table 2.
Raw material: 75 weight % grand celebration long residuums+25 weight % plam oils (saturated fatty acid content is 50 weight %, and monounsaturated fatty acids content is 33 weight %, and polyunsaturated fatty acid is 17 weight %).
Reaction: carry out reaction evaluating at the small fixed flowing bed device, 640 ℃ of temperature of reaction.Catalyst sample is in advance through 800 ℃, 100% steam-treated 17 hours, and loading amount 180 grams, agent weight of oil are than 20, air speed 10h
-1, water injection rate (accounting for raw material) 50%.Evaluation result sees Table 4.
Embodiment 4
Preparation of Catalyst: 20Kg decationized Y sieve water and 11.9Kg pseudo-boehmite (Shandong Aluminum Plant's Industrial products, solid content 63 weight %) are mixed, and making beating transfers to 2.8 with hydrochloric acid with its pH value.72.6Kg decationized Y sieve water and 38.7Kg halloysite (Suzhou china clay company Industrial products, solid content 72.3 weight %) are mixed, and pulling an oar adds boric acid 1.75Kg (analytical pure) continuation making beating 15 minutes after 5 minutes.Above-mentioned two kinds of slurries are mixed, stir, left standstill aging 1.5 hours at 65 ℃, keeping the pH value is 2-4, cools the temperature to 60 ℃ then, adds 13.5Kg aluminium colloidal sol (Qilu Petrochemical catalyst plant product, Al
2O
3Content is 21.7 weight %), stirred 40 minutes, add molecular sieve pulp 32.1Kg (wherein contain REHY zeolite 5.0kg, ZRP zeolite 5.0Kg, REHY zeolite and ZRP zeolite are with embodiment 1), making beating adds TiCl again
40.5Kg, stirring, spray drying forming, the flush away Na ion that dissociates is drying to obtain catalyst sample D.Catalyst pores distribution transitivity sees Table 1, table 2.
Raw material: 10% grand celebration long residuum+90% oleic acid (cis-9-18 (carbon) olefin(e) acid).
Processing condition: carry out reaction evaluating at the small fixed flowing bed device, 640 ℃ of temperature of reaction.Catalyst sample is in advance through 800 ℃, 100% steam-treated 17 hours, loading amount 180 grams, agent-oil ratio 20, air speed 10h
-1, water injection rate (accounting for raw material) 50%.Evaluation result sees Table 5.
Embodiment 5
Catalyzer: 20Kg decationized Y sieve water and 11.9Kg pseudo-boehmite (Shandong Aluminum Plant's Industrial products, solid content 63 weight %) are mixed, and making beating transfers to 3 with hydrochloric acid with its pH value.72.6Kg decationized Y sieve water and 38.7Kg halloysite (Suzhou china clay company Industrial products, solid content 72.3 weight %) are mixed making beating.Above-mentioned two kinds of slurries are mixed, stir, left standstill aging 1.5 hours at 65 ℃, keeping the pH value is 2-4, cools the temperature to 60 ℃ then, adds 13.5Kg aluminium colloidal sol (Qilu Petrochemical catalyst plant product, Al
2O
3Content is 21.7 weight %), stirred 40 minutes, add molecular sieve pulp 32.1Kg (wherein containing REHY zeolite 5.0kg, ZRP zeolite 5.0Kg, with the zeolite of embodiment 1), making beating, spray drying forming, the flush away Na ion that dissociates is drying to obtain catalyst sample E.Catalyst pores distribution transitivity sees Table 1, table 2.
Raw material is raw materials used identical with embodiment 4.
Processing condition: carry out reaction evaluating at the small fixed flowing bed device, 640 ℃ of temperature of reaction.Catalyst sample is in advance through 800 ℃, 100% steam-treated 17 hours, loading amount 180 grams, agent-oil ratio 20, air speed 10h
-1, water injection rate (accounting for raw material) 50%.Evaluation result sees Table 5.
Comparative Examples 1
Catalyzer: be the catalyst B of embodiment 2.
Raw material: 100% grand celebration long residuum.
Processing condition: react 640 ℃ of temperature of reaction at the small fixed flowing bed device.Catalyst sample is in advance through 800 ℃, 100% steam-treated 17 hours, loading amount 180 grams, agent-oil ratio 20, air speed 10h
-1, water injection rate (accounting for raw material) 50%.Evaluation result sees Table 4.
Comparative Examples 2
Method according to embodiment 5 prepares catalyzer, and different is to use the HZSM-5 of equivalent to replace the ZRP molecular sieve, obtains catalyzer DB2.
Method according to embodiment 5 is that catalyzer carries out catalytic cracking reaction with DB2, and it the results are shown in Table 5.
Comparative Examples 3
Method according to embodiment 5 prepares catalyzer, and different is with 10Kg HZSM-5 replacement 5Kg Y zeolite and 5Kg ZRP zeolite wherein, gets catalyzer DB3, and the condition according to embodiment 3 is that catalyzer reacts with DB3 then, the results are shown in Table 4.
Table 1
Table 2
Embodiment | 1 | 2 | 3 | 4 | 5 |
Catalyzer | A | B | C | D | E |
AI,% | 1.1 | 1.3 | 1.9 | 1.6 | 2.0 |
V BET,ml/g | 0.218 | 0.281 | 0.247 | 0.240 | 0.189 |
Table 3
Stock oil | The grand celebration long residuum |
Density (20 ℃), g/cm 3Carbon residue, m% hydrogen richness, m% sulphur content, m% metal content, ppm Fe Ni V Na | 0.89384.6 12.89 0.13 4.9 4.3 0.2 5.2 |
[0058]Table 4
Table 5
Embodiment 6
Method according to embodiment 2 prepares catalyzer, and difference is that (silica alumina ratio 31 contains P for ZSP zeolite with equivalent
2O
56 weight % contain Fe
2O
32 weight %) replacement ZRP zeolite wherein obtains catalyzer F.With the mixture material that contains 25 weight % grand celebration long residuums and 75% peanut oil then according to the reaction conditions of embodiment 2, under 600 ℃, catalyzer F is carried out reaction evaluating, its ethylene yield is 10.98 weight %, and productivity of propylene is 22.67 weight %, and fourth hydrocarbon productive rate is 11.34 weight %.
Embodiment 7
Method according to embodiment 4 prepares catalyzer, and different is, 7.5Kg is phosphorous with comprising for molecular sieve pulp wherein, (silica alumina ratio is 60, P to the ZSM-5 zeolite of rare earth and nickel
2O
5Content 3 weight %, RE
2O
3Content 3.5 weight %, nickel oxide content 5 weight %), the molecular sieve pulp of 10KgDASY0.0 zeolite (catalyzer Shandong branch office of China Petrochemical Industry product) replaces, kaolinic add-on is 28.3Kg, obtains catalyzer G.
Reaction conditions according to embodiment 2, (saturated fatty acid content is 40 weight % with 35 weight % grand celebration long residuums and 65 weight % mixing animal oil, monounsaturated fatty acids content is 20 weight %, polyunsaturated fatty acid is 40 weight %) mixing oil formed is raw material, carry out reaction evaluating at the small fixed flowing bed device, productivity of low carbon olefin hydrocarbon is 49.21 weight %.
Embodiment 8
20Kg decationized Y sieve water and 9.9Kg pseudo-boehmite (Shandong Aluminum Plant's Industrial products, solid content 63m%) are mixed, making beating, regulating its pH value with hydrochloric acid is 3; 72.6Kg decationized Y sieve water and 38.7Kg halloysite (Suzhou china clay company Industrial products, solid content 72.3 weight %) are mixed, pulled an oar 5 minutes, add potassium borate 4.01Kg (analytical pure) then, pulled an oar 15 minutes; Above-mentioned two kinds of slurries are mixed, stir, left standstill aging 1.5 hours at 65 ℃, keeping the pH value is 2-4 (regulating with hydrochloric acid), cools the temperature to 55 ℃ then, and (the Qilu Petrochemical catalyst plant is produced, Al to add 13.5Kg aluminium colloidal sol
2O
3Content is 21.7 weight %), stirred 40 minutes, adding molecular sieve pulp 18.7Kg (wherein contain REHY zeolite 1.0kg, ZRP zeolite 5.2Kg, used zeolite is with embodiment 1), add TiCl again
44Kg stirs, spraying drying then, and the flush away Na ion that dissociates, drying obtains catalyzer F.Its pore distribution sees Table 1.The mixing oil of forming with 50 weight % butter and 50 weight % Trisun Oil R 80s is raw material, reacts at 620 ℃ according to the condition of embodiment 2, and its productivity of low carbon olefin hydrocarbon is 43.5 weight %.
Claims (15)
1. the method for a producing low-carbon alkene by catalytic pyrolysis of biomass, comprise biomass material or contain biomass in riser tube or fluidized-bed reactor, contacting with the catalyzer that contains the five-ring supersiliceous zeolite with the raw material of hydrocarbon ils, under the condition of catalytic pyrolysis, react; Reaction product isolated and reclaimable catalyst; Reaction product is sent into subsequent separation system and is carried out product separation, obtains product liquid and the gaseous product that contains ethene, propylene, and reclaimable catalyst Returning reactor after stripping, regeneration recycles; Wherein said five-ring supersiliceous zeolite contains phosphorus and transition metal, described catalytic pyrolysis condition is: temperature of reaction 550-700 ℃, reaction times 0.5-10 second, the weight ratio of catalyzer and stock oil is 6-40, feed diluent gas in the reaction process, the weight ratio of diluent gas and raw material is 0.1-1: 1, and the anhydrous chemical expression of the five-ring supersiliceous zeolite of described phosphorous and transition metal is counted (0-0.3) Na with the quality of oxide compound
2O (0.3-5) Al
2O
3(1-10) P
2O
5(0.7-20) M
xO
y(70-98) SiO
2, wherein element M is selected from one or more among RE, Fe, Co, Ni, Cu, Zn, Mo and the Mn, and RE is rare earth element, and x represents the atomicity of M, and y represents the atomicity of O; Described biomass are one or more in the compound of lipid acid and lipid acid, described low-carbon alkene comprises ethene and propylene, the compound of described lipid acid is ester, grease and class ester cpds, saturated fatty acid content is 30-90% in the compound of described lipid acid, monounsaturated fatty acids content is 2-60%, and polyunsaturated fatty acid is 8-68%.
2. method according to claim 1 is characterized in that, the anhydrous chemical expression of the five-ring supersiliceous zeolite of described phosphorous and transition metal is counted (0-0.2) Na with the quality of oxide compound
2O (0.9-5) Al
2O
3(1.5-7) P
2O
5(1.4-15) M
xO
y(82-92) SiO
2
3. method according to claim 1 and 2, it is characterized in that, described catalyzer also contains the carrier that comprises aluminum oxide, the pore volume that is no more than the hole of 100nm with the aperture is benchmark, the pore volume that described catalyzer has the hole of following pore distribution:<2nm accounts for 5-70%, and the pore volume in the hole of 2-4nm accounts for 5-70%, and the pore volume in the hole of 4-6nm accounts for 0-10%, the pore volume in the hole of 6-20nm accounts for 20-80%, and the pore volume in the hole of 20-100nm accounts for 0-40%.
4. method according to claim 3 is characterized in that, described catalyzer is prepared by the method that comprises the steps: carrier, zeolite and the expanding agent that will comprise aluminum oxide and/or aluminum oxide precursor mix, making beating, spraying drying; Described expanding agent is selected from one or more in boric acid, an alkali metal salt, is benchmark with the weight of carrier, and the weight ratio of described expanding agent and carrier is 0.1: 100-15: 100.
5. method according to claim 3 is characterized in that, the hole of 6-20nm is 0.5 with the ratio of the pore volume in the hole of 2-4nm in the described catalyzer: 1-8: 1.
6. method according to claim 3 is characterized in that, the pore volume in the hole of 6-20nm accounts for 30-60% in the described catalyzer.
7. method according to claim 3 is characterized in that, the pore volume in the hole of 6-10nm accounts for 10-50% in the described catalyzer.
8. method according to claim 3 is characterized in that, the pore volume in the hole of 2-4nm accounts for 10-60% in the described catalyzer, and the pore volume in the hole of<2nm accounts for 5-60%.
9. method according to claim 3 is characterized in that, the pore volume that described catalyzer records with the BET method is 0.19ml/g-0.4ml/g.
10. method according to claim 3 is characterized in that, the pore volume that described catalyzer records with the BET method is 0.19ml/g-0.26ml/g.
11. method according to claim 3, it is characterized in that, described carrier comprise pseudo-boehmite or pseudo-boehmite and be selected from aluminium colloidal sol, phosphorus aluminium colloidal sol, contain aluminate, have a diaspore structure hydrated aluminum oxide, have the hydrated aluminum oxide of gibbsite structure and have one or more mixture in the hydrated aluminum oxide of bayerite structure.
12. method according to claim 3, it is characterized in that, described catalyzer contains the carrier of 60 weight %-95 weight %, the molecular sieve of 5 weight %-40 weight %, contain five-ring supersiliceous zeolite, 0-75 weight %Y type zeolite, the 0-20 weight % β zeolite of the phosphorous and transition metal of 25 weight %-100 weight % in the described molecular sieve, the content of aluminum oxide is 5-100 weight % in the carrier.
13. method according to claim 1 is characterized in that, described biomass are one or more in the compound of the lipid acid of 10-24 and lipid acid for the long-chain carbon number.
14. method according to claim 1 is characterized in that, contains biomass and heavy oil in the described raw material, the weight of described heavy oil is 20-50 weight %.
15. method according to claim 1 is characterized in that, described temperature of reaction is 600-650 ℃, and the reaction times is 1-5 second, and agent-oil ratio is 10-30; The weight ratio of diluent gas and raw material is 0.2-0.6: 1; Reaction pressure is 1.5-4 * 10
5Handkerchief.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102276646A CN101747135B (en) | 2008-11-28 | 2008-11-28 | Method for producing low-carbon alkene by catalytic pyrolysis of biomass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102276646A CN101747135B (en) | 2008-11-28 | 2008-11-28 | Method for producing low-carbon alkene by catalytic pyrolysis of biomass |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101747135A CN101747135A (en) | 2010-06-23 |
CN101747135B true CN101747135B (en) | 2013-09-04 |
Family
ID=42474830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102276646A Active CN101747135B (en) | 2008-11-28 | 2008-11-28 | Method for producing low-carbon alkene by catalytic pyrolysis of biomass |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101747135B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8057641B2 (en) * | 2010-07-19 | 2011-11-15 | Kior Inc. | Method and apparatus for pyrolysis of a biomass |
CN102453501B (en) * | 2010-10-26 | 2014-01-15 | 中国石油化工股份有限公司 | A kind of hydrocarbon oil conversion method |
CN102453502B (en) * | 2010-10-26 | 2014-01-15 | 中国石油化工股份有限公司 | hydrocarbon oil conversion process |
US8921628B2 (en) * | 2011-03-10 | 2014-12-30 | Kior, Inc. | Refractory mixed-metal oxides and spinel compositions for thermo-catalytic conversion of biomass |
CN102220167B (en) * | 2011-05-11 | 2013-12-25 | 华北电力大学 | Combination process and device for biomass oil modification and C4 hydrocarbon catalytic pyrolysis |
CN103896706B (en) * | 2012-12-25 | 2016-01-06 | 中国科学院大连化学物理研究所 | A kind of method utilizing Dextrose production propylene |
CN103143384B (en) * | 2013-03-06 | 2014-12-31 | 中国石油大学(华东) | Catalyst for catalytic cracking of heavy oil |
CN110002934A (en) * | 2019-04-15 | 2019-07-12 | 广西大学 | A method of low-carbon alkene is prepared by oleic acid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1077768B1 (en) * | 1999-03-02 | 2004-09-01 | W.R. Grace & Co.-Conn. | High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith |
WO2007005075A1 (en) * | 2005-06-29 | 2007-01-11 | W.R.Grace & Co. - Conn. | Pentasil catalyst for light olefins in fluidized catalytic units |
CN101092318A (en) * | 2006-06-21 | 2007-12-26 | 中国科学院大连化学物理研究所 | Method for producing olefin by using vegetable fat and animal fat |
CN101113364A (en) * | 2006-09-13 | 2008-01-30 | 中国石油大学(华东) | Method for processing animal and vegetable oils to produce light oil products and ethylene and propylene by catalytic cracking |
-
2008
- 2008-11-28 CN CN2008102276646A patent/CN101747135B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1077768B1 (en) * | 1999-03-02 | 2004-09-01 | W.R. Grace & Co.-Conn. | High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith |
WO2007005075A1 (en) * | 2005-06-29 | 2007-01-11 | W.R.Grace & Co. - Conn. | Pentasil catalyst for light olefins in fluidized catalytic units |
CN101092318A (en) * | 2006-06-21 | 2007-12-26 | 中国科学院大连化学物理研究所 | Method for producing olefin by using vegetable fat and animal fat |
CN101113364A (en) * | 2006-09-13 | 2008-01-30 | 中国石油大学(华东) | Method for processing animal and vegetable oils to produce light oil products and ethylene and propylene by catalytic cracking |
Also Published As
Publication number | Publication date |
---|---|
CN101747135A (en) | 2010-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101747135B (en) | Method for producing low-carbon alkene by catalytic pyrolysis of biomass | |
RU2418842C2 (en) | Procedure for catalytic conversion of hydrocarbons | |
CN101332433B (en) | Catalytic cracking catalyst, preparation method and use thereof | |
EP2075068B1 (en) | A catalyst for converting hydrocarbons | |
KR101347189B1 (en) | Fluidized bed catalyst for catalytic pyrolyzing | |
CN100569371C (en) | A kind of catalytic cracking catalyst | |
CN102531821A (en) | Method for catalyzing catalytic cracking reaction of methanol coupled with naphtha using modified ZSM-5 molecular sieve based catalyst | |
CN107282099B (en) | Catalytic cracking auxiliary agent for producing high-yield isomeric low-carbon olefin, and preparation method and application thereof | |
CN102190551A (en) | Method of preparing propylene by oxygen-containing compounds | |
CN107185586B (en) | Catalytic cracking auxiliary agent for increasing propylene and isoamylene production, and preparation method and application thereof | |
CN101747134B (en) | Method for producing low-carbon alkene by catalytically cracking biomass | |
CN102430422B (en) | Catalytic cracking catalyst for producing low-carbon olefin and application thereof | |
CN101822998A (en) | Heavy oil cracking catalyst and preparation method thereof | |
CN102746082B (en) | Production method of ethylene and propylene | |
CN1307098C (en) | Method for preparing rare-earth ultrastable Y-type zeolite | |
CN114762836B (en) | Preparation method and preparation system of catalytic cracking catalyst of phosphorus-containing modified MFI structure molecular sieve | |
CN102816590B (en) | Method for producing low-carbon olefin through petroleum hydrocarbon oil catalytic cracking | |
CN101348408B (en) | Naphtha catalytic cracking method for preparing ethylene and propylene | |
CN112473731B (en) | Catalytic cracking catalyst containing Y and BEA structure molecular sieves, and preparation method and application method thereof | |
AU2021294135A1 (en) | Catalytic cracking promoter, preparation method therefor, and application thereof | |
CN1566267A (en) | Catalytic pyrolysis process for producing petroleum hydrocarbon of ethylene and propylene | |
CN107971012A (en) | It is a kind of to produce low-carbon alkene and the catalytic cracking method of light aromatic hydrocarbons | |
CN111760588A (en) | Yield-increasing propylene catalytic cracking auxiliary agent | |
CN102863308B (en) | Method for preparing olefin by catalyzing and cracking naphtha | |
CN1978411B (en) | A combined process for preparing small molecule olefins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |