[go: up one dir, main page]

CN101735787A - Nano material-based water-based oil field injection agent and preparation method thereof - Google Patents

Nano material-based water-based oil field injection agent and preparation method thereof Download PDF

Info

Publication number
CN101735787A
CN101735787A CN200910200548A CN200910200548A CN101735787A CN 101735787 A CN101735787 A CN 101735787A CN 200910200548 A CN200910200548 A CN 200910200548A CN 200910200548 A CN200910200548 A CN 200910200548A CN 101735787 A CN101735787 A CN 101735787A
Authority
CN
China
Prior art keywords
water
nano
injection
nanomaterials
booster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910200548A
Other languages
Chinese (zh)
Inventor
施利毅
张剑平
曹绍梅
狄勤丰
顾春元
刘善善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN200910200548A priority Critical patent/CN101735787A/en
Publication of CN101735787A publication Critical patent/CN101735787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Colloid Chemistry (AREA)

Abstract

本发明涉及一种基于纳米材料的水基油田增注剂及其制备方法。该增注剂由20~60wt%柴油、30~70wt%表面活性剂、1~10wt%纳米材料和1~20wt%助剂四种组分组成,纳米材料为经过表面改性的纳米二氧化硅、纳米氧化钛、纳米氧化镁、纳米氧化铝中的一种或几种。其制备方法是:按配比首先称量柴油,再加入纳米材料,在乳化机中乳化分散,然后加入表面活性剂和助剂,在室温或水浴下机械搅拌分散,即得到纳米水基增注剂原液。该增注剂能够与水以任意比例混合得到均相乳化分散液。采用特定工艺将该乳化分散液注入到油田后,可显著降低注水压力,提高注水量,提高产油效率,达到节能增注的目的。

The invention relates to a nanomaterial-based water-based oilfield injection booster and a preparation method thereof. The injection booster is composed of four components: 20-60wt% diesel oil, 30-70wt% surfactant, 1-10wt% nanomaterial and 1-20wt% additive, and the nanomaterial is surface-modified nano-silica , nano-titanium oxide, nano-magnesium oxide, nano-alumina or one or more of them. The preparation method is as follows: firstly weigh diesel oil according to the proportion, then add nano materials, emulsify and disperse in an emulsifier, then add surfactants and additives, mechanically stir and disperse at room temperature or in a water bath to obtain nano water-based injection booster stock solution. The injection booster can be mixed with water in any proportion to obtain a homogeneous emulsified dispersion. After the emulsified dispersion liquid is injected into the oil field by a specific process, the water injection pressure can be significantly reduced, the water injection volume can be increased, the oil production efficiency can be improved, and the purpose of energy saving and injection increase can be achieved.

Description

一种基于纳米材料的水基油田增注剂及其制备方法 A water-based oilfield injection booster based on nanomaterials and its preparation method

技术领域technical field

本发明涉及油田开采技术领域,尤其适用于低渗透油田二次和三次采油的一种基于纳米材料的水基油田增注剂及其制备方法。The invention relates to the technical field of oilfield exploitation, in particular to a nanomaterial-based water-based oilfield booster injection agent suitable for secondary and tertiary oil recovery in low-permeability oilfields and a preparation method thereof.

背景技术Background technique

利用纳米技术来改善地层孔道的阻力特性,可以实现降低注水压力、提高注水量的目的,这是一种新兴的、尚处于机理探索阶段的物理法提高采收率技术,主要适合低渗透油田的二次和三次开采。2000年,中石化从俄罗斯引进了纳米二氧化硅增注技术,在胜利油田和中原油田等进行了12口井的现场试验和应用,取得了成功。试验结果统计,压力最大降幅达9MPa,日注水量提高达100m3,降压增注效果显著。部分采取酸化等常规措施效果差的“老大难”井通过纳米减阻增注措施后产生了显著的降压增注效果,有效期从不到1个月延长到6个月以上。Using nanotechnology to improve the resistance characteristics of formation pores can achieve the purpose of reducing water injection pressure and increasing water injection volume. This is a new technology that is still in the stage of mechanism exploration, and is mainly suitable for low-permeability oilfields. Secondary and tertiary mining. In 2000, Sinopec introduced nano-silica enhanced injection technology from Russia, conducted field tests and applications in 12 wells in Shengli Oilfield and Zhongyuan Oilfield, and achieved success. According to statistics of the test results, the maximum drop in pressure reaches 9MPa, and the daily water injection volume increases up to 100m 3 . Some "old and difficult" wells with poor effect of conventional measures such as acidification have achieved a significant effect of reducing pressure and increasing injection through nano-drag reduction and increasing injection measures, and the validity period has been extended from less than 1 month to more than 6 months.

纳米降压增注技术就是将疏水性纳米粉体均匀分散于特定的分散介质中,注入目的层,关井24h后,开井注水。疏水性纳米颗粒是经表面改性的纳米氧化物材料,其疏水性极强,一般尺度在10~100nm。至今,纳米氧化物降压增注技术的机理还没有得到明确认识,并引起了一定范围内的争论。作为纳米材料携带者的分散介质多选用柴油等油溶性溶剂,降压增注效果得到认可,但成本较高。本发明提出的是一种价格低廉、性能稳定、增注效果显著的纳米水基油田增注剂及其制备方法,必将会推动纳米降压增注技术的进一步研究与发展。The nano decompression and enhanced injection technology is to uniformly disperse the hydrophobic nano powder in a specific dispersion medium, inject it into the target layer, shut down the well for 24 hours, and start the well for water injection. Hydrophobic nanoparticles are surface-modified nano-oxide materials with extremely strong hydrophobicity, and the general size is 10-100nm. So far, the mechanism of nano-oxide depressurization and increased injection technology has not been clearly understood, and has caused controversy within a certain range. Oil-soluble solvents such as diesel oil are often used as the dispersion medium of nanomaterial carriers, and the effect of reducing pressure and increasing injection is recognized, but the cost is high. The present invention proposes a nanometer water-based oilfield booster injection agent with low price, stable performance and remarkable booster injection effect and a preparation method thereof, which will definitely promote the further research and development of the nanoscale depressurization booster injection technology.

目前一些低渗透油藏面临着严重的高压欠注难题,据不完全统计,目前国内中石油与中石化两大石油公司大约有4.5万余口注水井,年欠注量超过1750余万方。本发明旨在利用纳米材料的特殊性能,对低渗透油藏的液流通道进行物理改性,形成具有特殊纳米特性的滑移通道,使液流阻力有效下降,实现降压增注目的。该项技术的研究不论是经济效益还是社会效益都将十分显著,同时也是纳米技术与石油工程技术的一个成功结合,意义重大。At present, some low-permeability reservoirs are facing serious problems of under-injection under high pressure. According to incomplete statistics, the two major domestic oil companies, PetroChina and Sinopec, currently have more than 45,000 water injection wells, with an annual under-injection volume of more than 17.5 million cubic meters. The invention aims to use the special properties of nanometer materials to physically modify the liquid flow channels of low-permeability oil reservoirs to form slip channels with special nanometer characteristics, so as to effectively reduce the liquid flow resistance and achieve the purpose of reducing pressure and increasing injection. The research of this technology will be very significant in terms of economic and social benefits, and it is also a successful combination of nanotechnology and petroleum engineering technology, which is of great significance.

发明内容Contents of the invention

本发明的目的是提供一种基于纳米材料的水基油田增注剂及其制备方法,该增注剂能够分散在水中形成均相乳化分散液。采用特定工艺将该乳化分散液注入到油田后,可显著降低注水压力,提高注水量,提高产油效率,达到节能增油的目的。The object of the present invention is to provide a water-based oilfield injection booster based on nanomaterials and a preparation method thereof. The injection booster can be dispersed in water to form a homogeneous emulsified dispersion. After the emulsified dispersion liquid is injected into the oil field by a specific process, the water injection pressure can be significantly reduced, the water injection volume can be increased, the oil production efficiency can be improved, and the purpose of saving energy and increasing oil can be achieved.

本发明采用的技术方案是:该应用于低渗透油田采油的纳米水基增注剂,其特征在于:该增注剂包括柴油、表面活性剂、纳米材料和助剂四种组分。The technical solution adopted in the present invention is: the nanometer water-based injection booster for oil recovery in low-permeability oilfields, characterized in that the booster includes four components: diesel oil, surfactants, nanometer materials and additives.

各组分含量按重量百分比如下:柴油占总量的20wt%~60wt%,表面活性剂占总量的30wt%~70wt%,纳米材料占总量的1wt%~10wt%,助剂占总量的1wt%~20wt%,四种组分之和为100wt%。The content of each component is as follows by weight percentage: diesel oil accounts for 20wt% to 60wt% of the total amount, surfactant accounts for 30wt% to 70wt% of the total amount, nanomaterials account for 1wt% to 10wt% of the total amount, and additives account for the total amount 1wt%~20wt% of the four components, the sum of the four components is 100wt%.

该增注剂中所用的纳米材料为经过表面改性的纳米二氧化硅、氧化钛、氧化镁、氧化铝中的一种或几种,平均粒径≤100nm,活化度大于95%。纳米材料表面改性剂为脂肪酸、脂肪酸钠盐、硅烷偶联剂、甲基硅油中的一种。The nanometer material used in the injection agent is one or several kinds of surface-modified nano silicon dioxide, titanium oxide, magnesium oxide and aluminum oxide, with an average particle diameter of ≤100nm and an activation degree of more than 95%. The nanomaterial surface modifier is one of fatty acid, fatty acid sodium salt, silane coupling agent and methyl silicone oil.

该增注剂中所用的表面活性剂为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂中的一种或几种。阴离子表面活性剂是指烷基磺酸盐阴离子表面活性剂;阳离子表面活性剂为叔胺盐、季铵盐类阳离子表面活性剂中的一种;非离子表面活性剂为Span类、Tween类、OP类、NP类非离子型表面活性剂中的一种或几种。The surfactant used in the injection agent is one or more of anionic surfactants, cationic surfactants, and nonionic surfactants. Anionic surfactants refer to alkylsulfonate anionic surfactants; cationic surfactants are one of tertiary amine salts and quaternary ammonium salt cationic surfactants; nonionic surfactants are Span, Tween, One or more of OP and NP nonionic surfactants.

该增注剂中所用的助剂为乙醇、乙二醇、丙三醇、甲苯、丁醚中的一种。The additive used in the injection booster is one of ethanol, ethylene glycol, glycerol, toluene and butyl ether.

一种用于基于纳米材料的水基油田增注剂的制备方法,其特征在于该方法具有以下工艺过程:按上述基于纳米材料的水基油田增注剂的配比,首先称量柴油,再加入纳米材料,乳化机转速3000~8000rpm,乳化分散2~5min,然后按配比加入表面活性剂和助剂,室温或水浴40~80℃下,机械搅拌分散10~30min,即得到纳米水基增注剂原液。A preparation method for a water-based oilfield injection enhancer based on nanomaterials, characterized in that the method has the following process: according to the above-mentioned ratio of nanomaterial-based water-based oilfield injection increasers, first weigh the diesel oil, and then Add nano-materials, emulsify machine speed 3000-8000rpm, emulsify and disperse for 2-5 minutes, then add surfactants and additives according to the ratio, and mechanically stir and disperse for 10-30 minutes at room temperature or in a water bath at 40-80°C to obtain nano-water-based additives. Injection stock solution.

本发明所具有的有益效果是:本发明涉及到一种适用于低渗透油田采油的纳米水基增注剂及其制备方法,该增注剂乳化能力极强,能够与水以任意比例相混合,形成均相乳化分散液,该分散液在室温下能够长时间稳定存在。该纳米水基分散液具有一定的耐酸碱能力,可通过对配方的调整,控制其稳定时间和破乳时间,以配合不同的岩层状态达到最佳的使用效果。本发明利用纳米材料的特殊性能,对低渗透油田的液流通道进行物理改性,形成具有特殊纳米特性的滑移通道,使液流阻力有效下降,实现降压增注目的。该纳米水基增注剂经过室内试验评价和现场试验评价,能够有效降低注水压力、提高注水量,达到降压增注、提高产能的目的。该项技术的研究不论是经济效益还是社会效益都将十分显著,同时也是纳米技术与石油工程技术的一个成功结合,意义重大。The beneficial effects of the present invention are: the present invention relates to a nanometer water-based injection booster suitable for oil recovery in low-permeability oilfields and its preparation method. The booster has a strong emulsifying ability and can be mixed with water in any proportion , forming a homogeneous emulsified dispersion that can exist stably for a long time at room temperature. The nano water-based dispersion has a certain acid and alkali resistance, and its stability time and demulsification time can be controlled by adjusting the formula, so as to achieve the best use effect in accordance with different rock formation states. The invention utilizes the special properties of nanometer materials to physically modify the liquid flow channels in low-permeability oilfields to form slip channels with special nanometer characteristics, so that the liquid flow resistance can be effectively reduced, and the purpose of reducing pressure and increasing injection can be realized. The nano water-based injection booster has been evaluated by laboratory tests and field tests, and can effectively reduce water injection pressure, increase water injection volume, and achieve the purpose of reducing pressure, increasing injection, and increasing production capacity. The research of this technology will be very significant in terms of economic and social benefits, and it is also a successful combination of nanotechnology and petroleum engineering technology, which is of great significance.

附图说明Description of drawings

图1为实施例1所述的改性纳米二氧化硅的TEM电镜照片。Fig. 1 is the TEM photomicrograph of the modified nano silicon dioxide described in Example 1.

图2为实施例2所述的改性纳米二氧化硅的TEM电镜照片。Fig. 2 is the TEM photomicrograph of the modified nano silicon dioxide described in Example 2.

图3为实施例4所述的改性纳米氧化钛的TEM电镜照片Fig. 3 is the TEM photomicrograph of the modified nano titanium oxide described in embodiment 4

图4为纳米材料吸附岩心片4的接触角照片。FIG. 4 is a photo of the contact angle of the core piece 4 adsorbed by nanomaterials.

图5为未经过和经过纳米材料吸附处理岩心片的SEM照片。Figure 5 is the SEM photographs of the core slices without and after nanomaterial adsorption treatment.

具体实施方式Detailed ways

下面通过实施例对本发明进行进一步说明,但本发明的保护范围并不受限于这些实施例。The present invention will be further described below through examples, but the protection scope of the present invention is not limited to these examples.

实施例1Example 1

纳米水基增注剂原液的配制:称取占总量40wt%的柴油,加入2wt%的γ-(甲基丙烯酰氧)丙基三甲氧基硅烷改性的纳米二氧化硅,平均粒径约为20nm,活化度≥99%,乳化机7000rpm乳化分散2min,再加入其它表面活性剂和助剂,OP-10占15wt%、Span80占25wt%、十二烷基磺酸钠占10wt%、乙醇占8wt%,水浴40℃,机械搅拌10min,即得到纳米水基增注剂原液。Preparation of nanometer water-based injection booster stock solution: Weigh 40wt% of the total amount of diesel oil, add 2wt% of γ-(methacryloyloxy)propyl trimethoxysilane modified nano-silica, the average particle size About 20nm, activation degree ≥ 99%, emulsification machine 7000rpm emulsification dispersion 2min, then add other surfactants and additives, OP-10 accounted for 15wt%, Span80 accounted for 25wt%, sodium dodecylsulfonate accounted for 10wt%, Ethanol accounted for 8wt%, water bath at 40°C, and mechanically stirred for 10 minutes to obtain the original solution of nanometer water-based injection enhancer.

纳米水基分散液的配制:量取1L自来水,分别加入10wt%、15wt%、20wt%的上述增注剂原液,搅拌混合均匀,即得到纳米水基分散液。Preparation of nanometer water-based dispersion: measure 1L of tap water, add 10wt%, 15wt%, 20wt% of the above-mentioned injection booster stock solution, stir and mix evenly, and obtain nanometer water-based dispersion.

γ-(甲基丙烯酰氧)丙基三甲氧基硅烷改性的纳米二氧化硅的TEM电镜照片如图1所示。The TEM photomicrograph of nano-silica modified by γ-(methacryloyloxy)propyltrimethoxysilane is shown in Fig. 1 .

实施例2Example 2

纳米水基增注剂原液的配制:称取占总量40wt%的柴油,加入2wt%的油酸改性的纳米二氧化硅,平均粒径约为30nm,活化度≥99.5%,乳化机7000rpm乳化分散2min,再加入其它表面活性剂和助剂,石油磺酸钠占15wt%、油酸占20wt%、十六烷基三甲基氯化铵占10wt%、乙醇占13wt%,水浴60℃,机械搅拌10min,即得到纳米水基增注剂原液。Preparation of nano-water-based injection booster stock solution: Weigh 40wt% of the total amount of diesel oil, add 2wt% oleic acid-modified nano-silica, the average particle size is about 30nm, the activation degree is ≥99.5%, and the emulsifier is 7000rpm Emulsify and disperse for 2 minutes, then add other surfactants and additives, sodium petroleum sulfonate accounted for 15wt%, oleic acid accounted for 20wt%, cetyltrimethylammonium chloride accounted for 10wt%, ethanol accounted for 13wt%, water bath 60 ℃ , and mechanically stirred for 10 minutes to obtain the original solution of nanometer water-based injection enhancer.

纳米水基分散液的配制同实施例1。The preparation of the nano water-based dispersion is the same as in Example 1.

油酸改性的纳米二氧化硅的TEM电镜照片如图2所示。The TEM photomicrograph of oleic acid-modified nano-silica is shown in Figure 2.

实施例3Example 3

纳米水基增注剂原液的配制:称取占总量35wt%的柴油,加入2wt%的二甲基硅油改性的纳米二氧化硅,平均粒径约为50nm,活化度≥98%,乳化机4000rpm乳化分散5min,再加入其它表面活性剂和助剂,十二烷基苯磺酸钠占15wt%、油酸占15wt%、NP-10占13wt%、乙二醇占20wt%,室温下机械搅拌20min,即得到纳米水基增注剂原液。Preparation of nano-water-based injection booster stock solution: Weigh 35wt% of the total diesel oil, add 2wt% simethicone modified nano-silica, the average particle size is about 50nm, the activation degree is ≥ 98%, emulsified Machine 4000rpm emulsification dispersion 5min, then add other surfactants and additives, sodium dodecylbenzenesulfonate accounted for 15wt%, oleic acid accounted for 15wt%, NP-10 accounted for 13wt%, ethylene glycol accounted for 20wt%, at room temperature Stir mechanically for 20 minutes to obtain the original solution of nanometer water-based injection enhancer.

纳米水基分散液的配制同实施例1。The preparation of the nano water-based dispersion is the same as in Example 1.

实施例4Example 4

纳米水基增注剂原液的配制:称取占总量35wt%的柴油,加入5wt%的γ-(甲基丙烯酰氧)丙基三甲氧基硅烷改性的纳米氧化钛,平均粒径约为30nm,活化度≥99.5%,乳化机4000rpm乳化分散5min,再加入其它表面活性剂和助剂,石油磺酸钠占15wt%、油酸占20wt%、三乙醇胺占10wt%、乙二醇占15wt%、水浴60℃,机械搅拌20min,即得到纳米水基增注剂原液。Preparation of nanometer water-based injection booster stock solution: Weigh 35wt% diesel oil, add 5wt% γ-(methacryloyloxy)propyltrimethoxysilane modified nano-titanium oxide, the average particle size is about 30nm, activation degree ≥ 99.5%, emulsification and dispersion at 4000rpm for 5min, then add other surfactants and additives, sodium petroleum sulfonate accounted for 15wt%, oleic acid accounted for 20wt%, triethanolamine accounted for 10wt%, ethylene glycol accounted for 15wt%, water bath at 60°C, and mechanically stirred for 20 minutes to obtain the original solution of nanometer water-based injection enhancer.

纳米水基分散液的配制同实施例1。The preparation of the nano water-based dispersion is the same as in Example 1.

γ-(甲基丙烯酰氧)丙基三甲氧基硅烷改性的纳米氧化钛的TEM电镜照片如图3所示。The TEM photomicrograph of nano-titanium oxide modified by γ-(methacryloyloxy)propyltrimethoxysilane is shown in FIG. 3 .

实施例5Example 5

纳米水基增注剂原液的配制:称取占总量40wt%的柴油,加入5wt%的油酸改性的纳米氧化镁,平均粒径约为80nm,活化度≥98%,乳化机6000rpm乳化分散3min,再加入其它表面活性剂和助剂,十二烷基苯磺酸钠占15wt%、OP-10占15wt%、Span85占10wt%、丁醚占15wt%,室温下机械搅拌30min,即得到纳米水基增注剂原液。Preparation of nano water-based injection booster stock solution: Weigh 40wt% of the total amount of diesel oil, add 5wt% oleic acid-modified nano-magnesium oxide, the average particle size is about 80nm, the activation degree is ≥ 98%, and the emulsifier is emulsified at 6000rpm Disperse for 3 minutes, then add other surfactants and additives, sodium dodecylbenzenesulfonate accounted for 15wt%, OP-10 accounted for 15wt%, Span85 accounted for 10wt%, butyl ether accounted for 15wt%, mechanically stirred at room temperature for 30min, that is Obtain the original solution of nanometer water-based injection enhancer.

纳米水基分散液的配制同实施例1。The preparation of the nano water-based dispersion is the same as in Example 1.

实施例6Example 6

纳米水基增注剂原液的配制:称取占总量35wt%的柴油,加入2.5wt%的二甲基硅油改性的纳米二氧化硅和2.5wt%的γ-(甲基丙烯酰氧)丙基三甲氧基硅烷改性的纳米氧化钛,平均粒径约为40nm,活化度≥98%,乳化机6000rpm乳化分散5min,再加入其它表面活性剂和助剂,石油磺酸钠占10wt%、OP-10占15wt%、Tween60占15wt%、丁醚占20wt%,水浴40℃,机械搅拌30min,即得到纳米水基增注剂原液。Preparation of nanometer water-based injection booster stock solution: Weigh 35wt% diesel oil, add 2.5wt% simethicone modified nano silicon dioxide and 2.5wt% gamma-(methacryloxy) Propyltrimethoxysilane-modified nano-titanium oxide, the average particle size is about 40nm, the degree of activation is ≥98%, the emulsifier is 6000rpm to emulsify and disperse for 5min, and then add other surfactants and additives, sodium petroleum sulfonate accounts for 10wt% , OP-10 accounted for 15wt%, Tween60 accounted for 15wt%, butyl ether accounted for 20wt%, water bath 40 ℃, mechanical stirring for 30min, that is to obtain the original solution of nano water-based injection enhancer.

纳米水基分散液的配制同实施例1。The preparation of the nano water-based dispersion is the same as in Example 1.

实施例7Example 7

纳米水基增注剂原液的配制:称取占总量40wt%的柴油,加入1wt%的γ-(甲基丙烯酰氧)丙基三甲氧基硅烷改性的纳米二氧化硅和1wt%的油酸改性的纳米氧化镁,平均粒径约为60nm,活化度≥98%,乳化机7000rpm乳化分散2min,再加入其它表面活性剂和助剂,OP-10占15wt%、Span80占25wt%、十二烷基磺酸钠占10wt%、乙醇占8wt%,水浴40℃,机械搅拌10min,即得到纳米水基增注剂原液。Preparation of nanometer water-based injection booster stock solution: Weigh 40wt% diesel oil, add 1wt% γ-(methacryloyloxy)propyltrimethoxysilane modified nano silicon dioxide and 1wt% Oleic acid modified nano-magnesium oxide, the average particle size is about 60nm, the activation degree is ≥98%, the emulsifier is 7000rpm to emulsify and disperse for 2min, and then add other surfactants and additives, OP-10 accounts for 15wt%, Span80 accounts for 25wt% 10wt% of sodium dodecylsulfonate, 8wt% of ethanol, in a water bath at 40°C, and mechanically stirred for 10min to obtain the stock solution of nanometer water-based injection enhancer.

纳米水基分散液的配制同实施例1。The preparation of the nano water-based dispersion is the same as in Example 1.

实施例8Example 8

纳米水基增注剂原液的配制:称取占总量40wt%的柴油,加入3wt%的γ-(甲基丙烯酰氧)丙基三甲氧基硅烷改性的纳米氧化钛和2wt%的二甲基硅油改性的纳米氧化铝,,平均粒径约为70nm,活化度≥98%,乳化机6000rpm乳化分散3min,再加入其它表面活性剂和助剂,十二烷基苯磺酸钠占15wt%、OP-10占15wt%、Span85占10wt%、丁醚占15wt%,室温下机械搅拌30min,即得到纳米水基增注剂原液。Preparation of nanometer water-based injection booster stock solution: Weigh 40wt% diesel oil, add 3wt% γ-(methacryloyloxy) propyl trimethoxysilane modified nano-titanium oxide and 2wt% di Nano-alumina modified by methyl silicone oil, the average particle size is about 70nm, the activation degree is ≥98%, the emulsifier is emulsified and dispersed at 6000rpm for 3min, and then other surfactants and additives are added, sodium dodecylbenzenesulfonate accounts for 15wt%, OP-10 15wt%, Span85 10wt%, butyl ether 15wt%, and mechanically stirred at room temperature for 30 minutes to obtain the nano water-based injection enhancer stock solution.

纳米水基分散液的配制同实施例1。The preparation of the nano water-based dispersion is the same as in Example 1.

增注效果实验室评价:Injection effect laboratory evaluation:

油田岩心对纳米水基增注剂的吸附试验:配制2g/L的纳米水基分散液,将不同地区的天然岩心切取薄片,浸在水基分散液中,60℃,48h。采用水滴吸附法测试纳米材料吸附岩心片的接触角,结果如表1所示。经过纳米水基分散液处理的岩心片的水滴接触角均大于90°,最大接触角可达140°以上,如图4为岩心片4的接触角示意图,表现出强疏水性。Adsorption test of nanometer water-based injection agent on oil field core: prepare 2g/L nanometer water-based dispersion, cut thin slices from natural cores in different regions, immerse in water-based dispersion, 60°C, 48h. The water drop adsorption method was used to test the contact angle of nanomaterials adsorbed core pieces, and the results are shown in Table 1. The water droplet contact angles of the core slices treated with nano-water-based dispersions are all greater than 90°, and the maximum contact angle can reach more than 140°. Figure 4 is a schematic diagram of the contact angle of the core slice 4, showing strong hydrophobicity.

表1 岩心片的接触角比较Table 1 Comparison of contact angles of core slices

  编号 serial number   岩心1Core 1   岩心2Core 2   岩心3Core 3   岩心4Core 4   岩心5Core 5   岩心6Core 6   接触角/°Contact angle/°   126.1126.1   90.590.5   111.8111.8   141.3141.3   104.5104.5   134.3134.3

纳米水基增注剂的实验室流动试验:首先配制2g/L的纳米水基分散液,在设定的温度压力下,在岩心流动实验仪上测定岩心经过纳米水基分散液处理前后的水相渗透率。由表2数据可知,经过纳米水基分散液处理前后岩心水相渗透率比值(K/K)均大于1,说明经过纳米水基分散液处理后水相渗透率均有不同程度的提高,处理效果是明显的。图5为未经过和经过纳米材料吸附处理的岩心片的SEM照片。Laboratory flow test of nano water-based injection agent: first prepare 2g/L nano water-based dispersion liquid, under the set temperature and pressure, measure the water content of the core before and after the treatment of nano water-based dispersion liquid on the core flow tester. phase permeability. From the data in Table 2, it can be seen that the ratio of water phase permeability ( after K/ before K) of the core before and after treatment with nano-water-based dispersion is greater than 1, indicating that the water-phase permeability has been improved to varying degrees after treatment with nano-water-based dispersion. , the processing effect is obvious. Figure 5 is the SEM photographs of the core slices without and after nanomaterial adsorption treatment.

表2 纳米水基分散液处理前后岩心渗透率的比较Table 2 Comparison of core permeability before and after nano water-based dispersion treatment

Claims (5)

1.一种基于纳米材料的水基油田增注剂,其特征在于该增注剂包括柴油、表面活性剂、纳米材料和助剂四种组分,其中,柴油占总量的20wt%~60wt%,表面活性剂占总量的30wt%~70wt%,纳米材料占总量的1wt%~10wt%,助剂占总量的1wt%~20wt%,四种组分之和为100wt%。1. A water-based oilfield booster injection based on nanomaterials, characterized in that the booster comprises diesel oil, surfactants, nanomaterials and additives, wherein diesel oil accounts for 20wt% to 60wt of the total amount %, surfactants account for 30wt% to 70wt% of the total, nanomaterials account for 1wt% to 10wt% of the total, additives account for 1wt% to 20wt% of the total, and the sum of the four components is 100wt%. 2.按权利要求1所述的基于纳米材料的水基油田增注剂,其特征在于所述的纳米材料为经过表面改性的纳米二氧化硅、纳米氧化钛、纳米氧化镁、纳米氧化铝中的一种或几种,平均粒径≤100nm,活化度≥95%;所述的纳米材料表面改性剂为脂肪酸、脂肪酸钠盐、硅烷偶联剂、甲基硅油中的一种。2. The water-based oilfield injection booster based on nanomaterials according to claim 1, characterized in that said nanomaterials are surface-modified nano-silicon dioxide, nano-titanium oxide, nano-magnesia, nano-alumina One or more of them, the average particle size is less than or equal to 100nm, and the degree of activation is more than or equal to 95%. The nanomaterial surface modifier is one of fatty acid, fatty acid sodium salt, silane coupling agent, and methyl silicone oil. 3.按权利要求1所述的基于纳米材料的水基油田增注剂,其特征在于所述的表面活性剂为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂中的一种或几种;所述的阴离子表面活性剂为烷基磺酸盐阴离子表面活性剂,阳离子表面活性剂为叔胺盐、季铵盐类阳离子表面活性剂中的一种,非离子表面活性剂为Span类、Tween类、OP类、NP类非离子型表面活性剂中的一种或几种。3. The water-based oilfield injection booster based on nanomaterials according to claim 1, characterized in that said surfactant is one of anionic surfactant, cationic surfactant, nonionic surfactant or Several kinds; The anionic surfactant is an alkylsulfonate anionic surfactant, the cationic surfactant is a kind of tertiary amine salt, quaternary ammonium salt cationic surfactant, and the nonionic surfactant is Span One or more of class, Tween class, OP class, NP class nonionic surfactants. 4.按权利要求1所述的基于纳米材料的水基油田增注剂,其特征在于所述的助剂为乙醇、乙二醇、丙三醇、甲苯、丁醚中的一种。4. The water-based oilfield injection booster based on nanomaterials according to claim 1, characterized in that said auxiliary agent is one of ethanol, ethylene glycol, glycerol, toluene, and butyl ether. 5.一种用于权利要求1所述的基于纳米材料的水基油田增注剂的制备方法,其特征在于该方法具有以下工艺过程:按权利要求1的基于纳米材料的水基油田增注剂的配比,首先称量柴油,再加入纳米材料,乳化机转速3000~8000rpm,乳化分散2~5min,然后按配比加入表面活性剂和助剂,室温或水浴40~80℃下,机械搅拌分散10~30min,即得到纳米水基增注剂原液。5. A preparation method for the water-based oilfield injection booster based on nanomaterials as claimed in claim 1, characterized in that the method has the following process: by the nanomaterial-based water-based oilfield injection enhancement of claim 1 The ratio of the agent, first weigh the diesel oil, then add the nanomaterials, the emulsifier speed is 3000-8000rpm, emulsify and disperse for 2-5min, then add the surfactant and additives according to the ratio, at room temperature or in a water bath at 40-80°C, mechanically stir After dispersing for 10 to 30 minutes, the original solution of nanometer water-based injection enhancer is obtained.
CN200910200548A 2009-12-22 2009-12-22 Nano material-based water-based oil field injection agent and preparation method thereof Pending CN101735787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910200548A CN101735787A (en) 2009-12-22 2009-12-22 Nano material-based water-based oil field injection agent and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910200548A CN101735787A (en) 2009-12-22 2009-12-22 Nano material-based water-based oil field injection agent and preparation method thereof

Publications (1)

Publication Number Publication Date
CN101735787A true CN101735787A (en) 2010-06-16

Family

ID=42459826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910200548A Pending CN101735787A (en) 2009-12-22 2009-12-22 Nano material-based water-based oil field injection agent and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101735787A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268980A (en) * 2011-06-22 2011-12-07 上海大学 Method for reducing resistance to water flow of rock microporous channel by using double action mechanism
CN102329608A (en) * 2011-07-25 2012-01-25 天津科技大学 Microemulsion for improving core wettability
CN102464976A (en) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 Oil displacement composition and preparation method thereof
CN102464977A (en) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 Oil displacement method for improving recovery ratio of high-temperature high-salt oil reservoir
CN102743987A (en) * 2012-07-31 2012-10-24 林益煌 Manufacturing method of nano high-efficiency fuel oil
CN102796499A (en) * 2012-08-16 2012-11-28 大庆百晟石油科技有限公司 Novel profile control solution
CN102838981A (en) * 2012-09-06 2012-12-26 陕西省石油化工研究设计院 Nanometer drag reducer for sandstone surface pretreatment and preparation method of nanometer drag reducer
CN103160272A (en) * 2011-12-15 2013-06-19 中国石油天然气股份有限公司 Water-based carrying fluid of polysilicon nano material for oilfield injection enhancement
CN103160265A (en) * 2013-03-18 2013-06-19 中国石油天然气股份有限公司 Preparation method of surface-modified nano silicon dioxide colloid
CN103256032A (en) * 2013-05-31 2013-08-21 中国地质大学(北京) Method for enhancing water injecting capacity of hypotonic oil field by utilizing nano-powder material
CN103301763A (en) * 2013-06-28 2013-09-18 中国地质大学(武汉) Method for dispersing nano calcium carbonate powder material in aqueous solution
CN103725273A (en) * 2013-12-11 2014-04-16 中国石油集团川庆钻探工程有限公司 Oil-base drilling fluid without surfactant as emulsifier
CN103881685A (en) * 2014-03-25 2014-06-25 中国石油大学(华东) Application of nano material self-priming in improving slick water fracturing liquid in shale oil and gas production increment through nano material self-priming
WO2014206004A1 (en) * 2013-06-26 2014-12-31 工合聚能(天津)石油精化科技发展有限公司 High-temperature resistant nano composite mining additive for mining heavy oil and super heavy oil and preparation process thereof
CN104341799A (en) * 2014-09-23 2015-02-11 中国石油大学(华东) Fluorine-containing acrylic ester polymer-modified nano silicon dioxide scrubbing oil system, and preparation method and application thereof
CN104650841A (en) * 2013-11-22 2015-05-27 中国石油天然气股份有限公司 Anion and cation compound surfactant oil displacement agent
CN104830300A (en) * 2015-04-30 2015-08-12 河南大学 Small-particle size nanometer polysilicon emulsion and preparation method thereof
CN105567199A (en) * 2014-10-15 2016-05-11 中国石油化工股份有限公司 Hydrophobic nano silica emulsified water plugging agent and preparation method and application thereof
CN105670586A (en) * 2016-03-04 2016-06-15 中国石油大学(华东) Flushing fluid for low-water-content oil wells
CN105907385A (en) * 2016-05-16 2016-08-31 中国石油化工股份有限公司 Water injection well acidification pretreatment agent and preparation method thereof
CN106609134A (en) * 2016-03-29 2017-05-03 陕西创源石油科技有限公司 Nano treatment liquid for increasing yield and injection of oil-water wells
CN106634924A (en) * 2016-12-21 2017-05-10 中国石油大学(华东) Nanometer fluid for compact oil reservoir imbibition oil discharging and preparation method thereof
CN106634923A (en) * 2016-09-27 2017-05-10 中国石油大学(华东) Surface-modified nano-silica and nano fluid for crude oil recovery
CN106995692A (en) * 2016-01-26 2017-08-01 中国石油化工股份有限公司 Clean self-diverting acid liquid system
CN106995691A (en) * 2016-01-26 2017-08-01 中国石油化工股份有限公司 Clean the preparation method of self-diverting acid liquid system
CN106995684A (en) * 2016-01-26 2017-08-01 中国石油化工股份有限公司 Applications to nanostructures
CN105733543B (en) * 2016-04-21 2018-08-31 中国石油大学(华东) A kind of Xie Shui for low aqueous well locks agent
CN109082058A (en) * 2018-06-22 2018-12-25 宁夏宝塔化工中心实验室(有限公司) A kind of preparation method of heatproof polyacrylamide
CN109111905A (en) * 2018-07-17 2019-01-01 中国石油大学(北京) Biology base nano-fluid and its application in low Permeability reservoir for improving recovery factor
US20190078015A1 (en) * 2017-09-13 2019-03-14 Nissan Chemical America Corporation Crude oil recovery chemical fluids
WO2019054414A1 (en) * 2017-09-13 2019-03-21 日産化学株式会社 Chemical for crude oil recovery
US10377942B2 (en) 2017-04-06 2019-08-13 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
CN111019621A (en) * 2019-12-11 2020-04-17 中国海洋石油集团有限公司 Blocking remover and preparation method thereof
US10801310B2 (en) 2017-09-26 2020-10-13 Nissan Chemcial America Corporation Using gases and hydrocarbon recovery fluids containing nanoparticles to enhance hydrocarbon recovery
US10870794B2 (en) 2017-11-03 2020-12-22 Nissan Chemical America Corporation Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery
US10934478B2 (en) 2018-11-02 2021-03-02 Nissan Chemical America Corporation Enhanced oil recovery using treatment fluids comprising colloidal silica with a proppant
CN114456788A (en) * 2020-10-22 2022-05-10 中国石油化工股份有限公司 Super-amphiphobic composition and preparation method and application thereof
CN115124983A (en) * 2021-03-29 2022-09-30 中国石油天然气股份有限公司 Water-based cleaning agent and preparation method and application thereof
WO2023080168A1 (en) * 2021-11-04 2023-05-11 日産化学株式会社 Chemical liquid for recovering crude oil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1394918A (en) * 2001-07-06 2003-02-05 韩巍 Nano Water dispersion medium composition, its preparation method and application
CN1536032A (en) * 2003-04-07 2004-10-13 章浩龙 Nano silicon dioxide emulsion, its preparation method and application
CN1544335A (en) * 2003-11-14 2004-11-10 中山大学 A kind of dispersion method of nano titanium dioxide powder
CN1699500A (en) * 2005-06-21 2005-11-23 山东大学 A particle-stabilized emulsion system, its preparation method and its application as a drilling fluid lubricant
CN101074601A (en) * 2007-06-26 2007-11-21 上海大学 Method for decreasing rock microporous flow resistance
CN101108324A (en) * 2007-08-13 2008-01-23 江南大学 An emulsifier for ultrastable emulsions capable of causing cyclic phase transitions
CN101565609A (en) * 2009-06-08 2009-10-28 辽河石油勘探局 Superfine powder high-temperature sand consolidation agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1394918A (en) * 2001-07-06 2003-02-05 韩巍 Nano Water dispersion medium composition, its preparation method and application
CN1536032A (en) * 2003-04-07 2004-10-13 章浩龙 Nano silicon dioxide emulsion, its preparation method and application
CN1544335A (en) * 2003-11-14 2004-11-10 中山大学 A kind of dispersion method of nano titanium dioxide powder
CN1699500A (en) * 2005-06-21 2005-11-23 山东大学 A particle-stabilized emulsion system, its preparation method and its application as a drilling fluid lubricant
CN101074601A (en) * 2007-06-26 2007-11-21 上海大学 Method for decreasing rock microporous flow resistance
CN101108324A (en) * 2007-08-13 2008-01-23 江南大学 An emulsifier for ultrastable emulsions capable of causing cyclic phase transitions
CN101565609A (en) * 2009-06-08 2009-10-28 辽河石油勘探局 Superfine powder high-temperature sand consolidation agent

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
曹智等: "低渗透油田增注用SiO_2纳米微粒的制备和表征", 《化学研究》 *
杨永超等: "濮城油田沙三中6-10油藏活性纳米粉体降压增注技术研究", 《海洋石油》 *
肖喜庆等: "活性水中改性纳米SiO2的制备及分散性研究", 《特种油气藏》 *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102464977B (en) * 2010-11-17 2014-03-26 中国石油化工股份有限公司 Oil-displacing method for improving recovery ratio of high-temperature high-salt oil pool
CN102464976A (en) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 Oil displacement composition and preparation method thereof
CN102464977A (en) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 Oil displacement method for improving recovery ratio of high-temperature high-salt oil reservoir
CN102268980A (en) * 2011-06-22 2011-12-07 上海大学 Method for reducing resistance to water flow of rock microporous channel by using double action mechanism
CN102329608A (en) * 2011-07-25 2012-01-25 天津科技大学 Microemulsion for improving core wettability
CN102329608B (en) * 2011-07-25 2013-10-23 天津科技大学 A Microemulsion for Improving Rock Core Wetting Performance
CN103160272A (en) * 2011-12-15 2013-06-19 中国石油天然气股份有限公司 Water-based carrying fluid of polysilicon nano material for oilfield injection enhancement
CN102743987A (en) * 2012-07-31 2012-10-24 林益煌 Manufacturing method of nano high-efficiency fuel oil
CN102796499A (en) * 2012-08-16 2012-11-28 大庆百晟石油科技有限公司 Novel profile control solution
CN102838981A (en) * 2012-09-06 2012-12-26 陕西省石油化工研究设计院 Nanometer drag reducer for sandstone surface pretreatment and preparation method of nanometer drag reducer
CN103160265A (en) * 2013-03-18 2013-06-19 中国石油天然气股份有限公司 Preparation method of surface-modified nano silicon dioxide colloid
CN103256032A (en) * 2013-05-31 2013-08-21 中国地质大学(北京) Method for enhancing water injecting capacity of hypotonic oil field by utilizing nano-powder material
WO2014206004A1 (en) * 2013-06-26 2014-12-31 工合聚能(天津)石油精化科技发展有限公司 High-temperature resistant nano composite mining additive for mining heavy oil and super heavy oil and preparation process thereof
US9562185B2 (en) 2013-06-26 2017-02-07 Gungho Charge (Tianjin) Refined Petroleum Technology Development Co., Ltd High-temperature resistant nano composite mining additive for mining heavy oil and super heavy oil and preparation process thereof
CN103301763A (en) * 2013-06-28 2013-09-18 中国地质大学(武汉) Method for dispersing nano calcium carbonate powder material in aqueous solution
CN104650841A (en) * 2013-11-22 2015-05-27 中国石油天然气股份有限公司 Anion and cation compound surfactant oil displacement agent
CN104650841B (en) * 2013-11-22 2018-10-16 中国石油天然气股份有限公司 Anion and cation compound surfactant oil displacement agent
CN103725273A (en) * 2013-12-11 2014-04-16 中国石油集团川庆钻探工程有限公司 Oil-base drilling fluid without surfactant as emulsifier
CN103881685A (en) * 2014-03-25 2014-06-25 中国石油大学(华东) Application of nano material self-priming in improving slick water fracturing liquid in shale oil and gas production increment through nano material self-priming
CN104341799A (en) * 2014-09-23 2015-02-11 中国石油大学(华东) Fluorine-containing acrylic ester polymer-modified nano silicon dioxide scrubbing oil system, and preparation method and application thereof
CN104341799B (en) * 2014-09-23 2016-01-13 中国石油大学(华东) Fluorine-containing acrylate polymer modified nano-silica washing oil system and its preparation method and application
CN105567199A (en) * 2014-10-15 2016-05-11 中国石油化工股份有限公司 Hydrophobic nano silica emulsified water plugging agent and preparation method and application thereof
CN104830300A (en) * 2015-04-30 2015-08-12 河南大学 Small-particle size nanometer polysilicon emulsion and preparation method thereof
CN106995691A (en) * 2016-01-26 2017-08-01 中国石油化工股份有限公司 Clean the preparation method of self-diverting acid liquid system
CN106995692A (en) * 2016-01-26 2017-08-01 中国石油化工股份有限公司 Clean self-diverting acid liquid system
CN106995684A (en) * 2016-01-26 2017-08-01 中国石油化工股份有限公司 Applications to nanostructures
CN105670586B (en) * 2016-03-04 2018-08-17 中国石油大学(华东) A kind of flushing fluid for low aqueous well
CN105670586A (en) * 2016-03-04 2016-06-15 中国石油大学(华东) Flushing fluid for low-water-content oil wells
CN106609134A (en) * 2016-03-29 2017-05-03 陕西创源石油科技有限公司 Nano treatment liquid for increasing yield and injection of oil-water wells
CN105733543B (en) * 2016-04-21 2018-08-31 中国石油大学(华东) A kind of Xie Shui for low aqueous well locks agent
CN105907385A (en) * 2016-05-16 2016-08-31 中国石油化工股份有限公司 Water injection well acidification pretreatment agent and preparation method thereof
CN106634923B (en) * 2016-09-27 2019-06-07 中国石油大学(华东) The nano silica and oil recovering nano-fluid of surface modification
CN106634923A (en) * 2016-09-27 2017-05-10 中国石油大学(华东) Surface-modified nano-silica and nano fluid for crude oil recovery
CN106634924A (en) * 2016-12-21 2017-05-10 中国石油大学(华东) Nanometer fluid for compact oil reservoir imbibition oil discharging and preparation method thereof
US10557078B2 (en) 2017-04-06 2020-02-11 Nissan Chemical America Corporation Brine resistant silica sol
US10975289B2 (en) 2017-04-06 2021-04-13 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
US10377942B2 (en) 2017-04-06 2019-08-13 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
US11401454B2 (en) 2017-04-06 2022-08-02 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
US20190078016A1 (en) * 2017-09-13 2019-03-14 Nissan Chemical America Corporation Crude oil recovery chemical fluid
WO2019054414A1 (en) * 2017-09-13 2019-03-21 日産化学株式会社 Chemical for crude oil recovery
AU2018333735B2 (en) * 2017-09-13 2023-01-19 Nissan Chemical Corporation Crude oil recovery chemical fluid
US10563117B2 (en) * 2017-09-13 2020-02-18 Nissan Chemical America Corporation Crude oil recovery chemical fluids
US10570331B2 (en) * 2017-09-13 2020-02-25 Nissan Chemical America Corporation Crude oil recovery chemical fluid
US20190078015A1 (en) * 2017-09-13 2019-03-14 Nissan Chemical America Corporation Crude oil recovery chemical fluids
CN111094505A (en) * 2017-09-13 2020-05-01 日产化学株式会社 Liquid medicine for crude oil recovery
US10801310B2 (en) 2017-09-26 2020-10-13 Nissan Chemcial America Corporation Using gases and hydrocarbon recovery fluids containing nanoparticles to enhance hydrocarbon recovery
US11180692B2 (en) 2017-11-03 2021-11-23 Nissan Chemical America Corporation Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery
US10870794B2 (en) 2017-11-03 2020-12-22 Nissan Chemical America Corporation Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery
US11274244B2 (en) 2017-11-03 2022-03-15 Nissan Chemical America Corporation Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery
CN109082058A (en) * 2018-06-22 2018-12-25 宁夏宝塔化工中心实验室(有限公司) A kind of preparation method of heatproof polyacrylamide
CN109111905B (en) * 2018-07-17 2021-01-08 中国石油大学(北京) Bio-based nanofluid and application thereof in improving recovery ratio of low-permeability oil reservoir
CN109111905A (en) * 2018-07-17 2019-01-01 中国石油大学(北京) Biology base nano-fluid and its application in low Permeability reservoir for improving recovery factor
US10934478B2 (en) 2018-11-02 2021-03-02 Nissan Chemical America Corporation Enhanced oil recovery using treatment fluids comprising colloidal silica with a proppant
CN111019621A (en) * 2019-12-11 2020-04-17 中国海洋石油集团有限公司 Blocking remover and preparation method thereof
CN114456788A (en) * 2020-10-22 2022-05-10 中国石油化工股份有限公司 Super-amphiphobic composition and preparation method and application thereof
CN115124983A (en) * 2021-03-29 2022-09-30 中国石油天然气股份有限公司 Water-based cleaning agent and preparation method and application thereof
CN115124983B (en) * 2021-03-29 2023-11-28 中国石油天然气股份有限公司 Water-based cleaning agent and preparation method and application thereof
WO2023080168A1 (en) * 2021-11-04 2023-05-11 日産化学株式会社 Chemical liquid for recovering crude oil

Similar Documents

Publication Publication Date Title
CN101735787A (en) Nano material-based water-based oil field injection agent and preparation method thereof
CN110173244B (en) In-situ emulsification and viscosity-increasing system with controllable viscosity and its application in water flooding reservoirs
CN113717709B (en) Nano fluid imbibition agent and preparation method and application thereof
Zhang et al. Carboxylized graphene oxide nanosheet for shale plugging at high temperature
CN111394080B (en) A kind of heavy oil viscosity reducer and using method thereof
CN109401742B (en) A temperature-resistant and salt-resistant foam control and flooding system prepared from formation water with high salinity
CN106752673B (en) Hexagonal boron nitride epoxy composite anticorrosive paint, preparation method and application
WO2022047904A1 (en) Nano active agent system, and preparation method therefor and application thereof
WO2019011045A1 (en) Water-based viscosity reducer for emulsifying super heavy oils and preparation method therefor
CN110452677B (en) A method for preparing drag reducer based on modified MoS2
CN102127414A (en) Microemulsion-type fracture acidizing cleanup additive, and preparation method and application thereof
CN112226221A (en) A kind of nano-silica oil-displacing agent and its preparation method and application
CN112110442A (en) Modified graphene oxide and preparation method and application thereof
CN102329600A (en) Nanoparticle sealing channeling water shutoff agent for oil wells
CN104531119A (en) Method for preparing supported metallic catalyst based on Fe3O4
CN110669489B (en) Low-power depolymerization emulsification viscosity reducer for cold production of thick oil and preparation method thereof
Jia et al. Investigation for the novel use of a typical deep eutectic solvent as a potential shale inhibitor
CN105037903A (en) Wax-bearing crude oil rheological aid
CN103789075A (en) High-concentration composite nano TiO2/ZnO lubricating additive and its preparation method
Sowunmi et al. Polyelectrolyte–nanocomposite for enhanced oil recovery: influence of nanoparticle on rheology, oil recovery and formation damage
CN116083066B (en) Composite flooding composition of two-dimensional nano particles and preparation method of two-dimensional nano particles
CN103301763B (en) Method for dispersing nano calcium carbonate powder material in aqueous solution
CN102010620B (en) Method for preparing high-concentration nano aluminum hydroxide aqueous dispersion and prepared product
CN110760297B (en) Preparation method of magnetic nanoparticles for stabilizing emulsion
CN101851443B (en) Low-carbon environment-friendly high-performance exterior wall latex paint

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100616