[go: up one dir, main page]

CN101726769A - Long laminated sub-wave reflection-reducing structure and preparation method thereof - Google Patents

Long laminated sub-wave reflection-reducing structure and preparation method thereof Download PDF

Info

Publication number
CN101726769A
CN101726769A CN200910264905A CN200910264905A CN101726769A CN 101726769 A CN101726769 A CN 101726769A CN 200910264905 A CN200910264905 A CN 200910264905A CN 200910264905 A CN200910264905 A CN 200910264905A CN 101726769 A CN101726769 A CN 101726769A
Authority
CN
China
Prior art keywords
wavelength
sub
reflection
refractive index
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910264905A
Other languages
Chinese (zh)
Other versions
CN101726769B (en
Inventor
张瑞英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN2009102649059A priority Critical patent/CN101726769B/en
Publication of CN101726769A publication Critical patent/CN101726769A/en
Application granted granted Critical
Publication of CN101726769B publication Critical patent/CN101726769B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明揭示了一种叠层亚波长减反结构,包括在需要减反的高折射率材料自身表面通过蚀刻形成的亚波长图形,以及在前述亚波长图形表面经沉积生长的介质层,二者共同构成该叠层亚波长结构,其结构图形根据所用材料的折射率分布和所要减反的入射光波长和角度范围计算得到。本发明亚波长减反结构应用于高折射率表面的有源光电器件,能确实有效实现宽谱广角透射效果。较之于现有技术,本发明能有效钝化亚波长减反结构,减少非辐射复合中心,抑制非辐射复合损失,有效增加相应光电器件性能;并且,鉴于空气、介质材料和衬底材料折射率依次变化,故而采用叠层亚波长减反结构还能减弱制备难度,或在相同制备情况下获得更好的减反性能。

Figure 200910264905

The present invention discloses a laminated sub-wavelength anti-reflection structure, including a sub-wavelength pattern formed by etching on the surface of a high-refractive index material that requires anti-reflection, and a dielectric layer deposited and grown on the surface of the aforementioned sub-wavelength pattern. Together constitute the laminated sub-wavelength structure, and its structural pattern is calculated according to the refractive index distribution of the materials used and the wavelength and angle range of the incident light to be anti-reflection. The sub-wavelength anti-reflection structure of the present invention is applied to active optoelectronic devices on the surface of high refractive index, and can truly and effectively realize the wide-spectrum wide-angle transmission effect. Compared with the prior art, the present invention can effectively passivate the sub-wavelength anti-reflection structure, reduce non-radiative recombination centers, suppress non-radiative recombination loss, and effectively increase the performance of corresponding optoelectronic devices; and, in view of the refraction of air, dielectric materials and substrate materials The rate changes sequentially, so the use of a laminated sub-wavelength anti-reflection structure can also reduce the difficulty of preparation, or obtain better anti-reflection performance under the same preparation conditions.

Figure 200910264905

Description

叠层亚波长减反结构及其制备方法 Laminated sub-wavelength anti-reflection structure and preparation method thereof

技术领域technical field

本发明涉及一种纳米结构,尤其涉及一种适用于太阳能电池系统、光显示面发射器件等需要宽谱广角进出光的亚波长减反结构及其制备方法,属于微纳光子学领域。The invention relates to a nanostructure, in particular to a sub-wavelength anti-reflection structure suitable for solar cell systems, light display surface emitting devices, etc. that require wide-spectrum and wide-angle light in and out, and a preparation method thereof, belonging to the field of micro-nano photonics.

背景技术Background technique

不同折射率物质之间的界面反射率是影响接收光、发出光以及传输光器件和设备性能的重要参数,极低的界面反射率是光显示、宽谱光源、太阳电池、透镜等领域追求的重要指标。通常,采用蒸镀光学减反膜来降低光学界面反射。为了尽量在广角宽谱范围内降低界面反射率,通常需设计蒸镀多层的光学膜,而且光学膜材料不尽唯一。复杂的膜系结构不仅使得镀膜本身工艺要求提高,成功率降低;在使用过程中不可避免地也要经受温度、湿度变化甚至机械冲击,由多层不同材料的光学膜蒸镀的光学界面,由于不同材料之间的热膨胀系数、湿度系数以及弹性模量的不同,不可避免地会造成膜层材料折射率、厚度的变化,甚至恶劣地导致部分光学膜脱落,任何一种变化,都会导致基于相干原理的光学膜透过率的下降甚至于彻底破坏,从而极大地影响相应器件和设备的性能。The interface reflectivity between substances with different refractive index is an important parameter that affects the performance of receiving light, emitting light, and transmitting optical devices and equipment. Extremely low interface reflectivity is the pursuit of light display, broadband light source, solar cells, lenses and other fields. Important indicators. Usually, vapor-deposited optical anti-reflection film is used to reduce optical interface reflection. In order to reduce the interface reflectance as far as possible in a wide-angle and wide-spectrum range, it is usually necessary to design an optical film with multiple layers of vapor deposition, and the optical film material is not unique. The complex film structure not only increases the process requirements of the coating itself, but also reduces the success rate; it is also inevitably subjected to temperature, humidity changes and even mechanical shocks during use. The difference in thermal expansion coefficient, humidity coefficient and elastic modulus between different materials will inevitably cause changes in the refractive index and thickness of the film layer material, and even cause part of the optical film to fall off badly. Any kind of change will lead to coherence-based The decrease or even complete destruction of the optical film transmittance of the principle will greatly affect the performance of the corresponding devices and equipment.

亚波长光栅结构是周期小于入射光波长的表面浮雕光栅结构(如图1a和图1b所示),两种介质和相应亚波长光栅结构的折射率分别为n1、n2、n3,光栅周期为Λ,光栅矢量 G = 2 π Λ , 入射光的入射角和光波在真空中的波矢量分别为θ1和k,发生零级衍射的条件可表示如下:The subwavelength grating structure is a surface relief grating structure whose period is smaller than the wavelength of the incident light (as shown in Figure 1a and Figure 1b). The refractive indices of the two media and the corresponding subwavelength grating structure are n 1 , n 2 , and n 3 , respectively. The period is Λ, the grating vector G = 2 π Λ , The incident angle of the incident light and the wave vector of the light wave in vacuum are θ 1 and k respectively, and the conditions for the occurrence of zero-order diffraction can be expressed as follows:

|n1ksinθ1+mG|>nik,i=1,2,3and    m=±1,±2,±3,......(1),|n 1 ksinθ 1 +mG|>n i k, i=1, 2, 3and m=±1,±2,±3,...(1),

由该式可知,特定波长的入射光发生零级衍射的条件不仅依赖于入射光的入射角,而且取决于材料的折射率和光栅的周期。当光栅的周期足够小时,光栅矢量值足够大,使得上述不等式不再依赖于入射光的波矢和入射角的大小,也就是说,在宽光谱和大角度范围内都可以获得零级衍射,即可获得极高的增透效果,成为广角宽谱范围内减小界面反射率的极有效方式。It can be seen from this formula that the conditions for zero-order diffraction of incident light of a specific wavelength depend not only on the incident angle of the incident light, but also on the refractive index of the material and the period of the grating. When the period of the grating is small enough, the vector value of the grating is large enough, so that the above inequality no longer depends on the wave vector of the incident light and the size of the incident angle, that is, the zero-order diffraction can be obtained in a wide spectrum and a large angle range, A very high anti-reflection effect can be obtained, and it becomes an extremely effective way to reduce the interface reflectivity in a wide-angle and wide-spectrum range.

但是在制作方面,真正利用亚波长结构实现广角宽谱范围内的减反效果还有限制。一方面,如果直接采用界面材料蚀刻的办法,按照亚波长零级衍射原理,无疑可以在广角和宽谱范围内获得极低的反射率,但是蚀刻后的表面会产生很多缺陷,特别是对于纳米结构,比表面积增加,表面缺陷所带来的非辐射复合,这些非辐射复合中心的存在对于由此构成的光电器件、特别是有源光电器件造成极大地损失,成为该种结构能否真正作为光学界面、提高相应器件性能的致命因素。另一种亚波长结构是在原有材料表面生长渐变折射率的亚波长纳米结构,采用此种方法无疑不会造成表面的非辐射复合,带来额外的光电损失。但是对于高折射率的基底材料(比如Si、GaAs、InP等半导体材料),几乎不可能找到折射率与其相匹配的介质膜材料,因此,在高折射率材料和介质材料之间的界面无疑依然存在较大的反射损耗,成为利用该种方法实现极低反射率的物理限制。However, in terms of production, there are still limitations in using sub-wavelength structures to achieve anti-reflection effects in a wide-angle and wide-spectrum range. On the one hand, if the method of interface material etching is directly used, according to the principle of subwavelength zero-order diffraction, it is undoubtedly possible to obtain extremely low reflectivity in a wide-angle and wide-spectrum range, but the etched surface will produce many defects, especially for nanometer structure, the specific surface area increases, and the non-radiative recombination brought about by surface defects. The existence of these non-radiative recombination centers will cause great losses to the optoelectronic devices, especially active optoelectronic devices. Optical interface, the fatal factor to improve the performance of corresponding devices. Another subwavelength structure is to grow subwavelength nanostructures with graded refractive index on the surface of the original material. This method will undoubtedly not cause non-radiative recombination of the surface and bring additional photoelectric loss. However, for substrate materials with a high refractive index (such as Si, GaAs, InP and other semiconductor materials), it is almost impossible to find a dielectric film material with a matching refractive index. Therefore, the interface between the high refractive index material and the dielectric material is undoubtedly still There is a large reflection loss, which becomes a physical limitation to achieve extremely low reflectivity with this method.

发明内容Contents of the invention

本发明的目的在于提出一种新型的亚波长减反结构及其制备方法,以解决现有亚波长结构在提高器件整体性能方面的限制。在宽光谱和大角度范围内降低界面反射损耗的同时,不增加表面的非辐射复合损耗,降低亚波长结构的制备难度。The purpose of the present invention is to propose a novel sub-wavelength anti-reflection structure and a preparation method thereof, so as to solve the limitation of the existing sub-wavelength structure in improving the overall performance of the device. While reducing the interface reflection loss in a wide spectrum and a large angle range, it does not increase the non-radiative recombination loss of the surface, and reduces the difficulty of preparing sub-wavelength structures.

实现本发明第一个目的的技术解决方案是:The technical solution that realizes first object of the present invention is:

叠层亚波长减反结构,其结构图形根据所用材料的折射率分布和所要减反的入射光波长和角度范围计算得到,其特征在于:所述叠层亚波长减反结构包括两部分:其中一部分是在需要减反的高折射率材料自身表面通过蚀刻形成的亚波长图形;另一部分是在前述亚波长图形表面经沉积生长的介质层,二者整合构成叠层亚波长减反结构。The laminated sub-wavelength anti-reflection structure, whose structural pattern is calculated according to the refractive index distribution of the material used and the wavelength and angle range of the incident light to be anti-reflected, is characterized in that: the laminated sub-wavelength anti-reflection structure includes two parts: One part is the sub-wavelength pattern formed by etching on the surface of the high-refractive index material that needs anti-reflection; the other part is the dielectric layer deposited and grown on the surface of the aforementioned sub-wavelength pattern, and the two are integrated to form a laminated sub-wavelength anti-reflection structure.

进一步地,所述介质层为均匀的单层介质膜、多层介质膜,或渐变折射率的介质膜,又或者渐变折射率的介质纳米结构,其介质层的材料根据所需减反的材料的折射率来确定。Further, the dielectric layer is a uniform single-layer dielectric film, a multi-layer dielectric film, or a dielectric film with a graded refractive index, or a dielectric nanostructure with a graded refractive index, and the material of the dielectric layer depends on the required anti-reflection material to determine the refractive index.

进一步地,所述亚波长图形为可构成折射率渐变的图形。Further, the sub-wavelength pattern is a pattern that can constitute a graded refractive index.

本发明另一个目的,将通过以下技术方案来实现:Another object of the present invention will be achieved through the following technical solutions:

叠层亚波长减反结构的制备方法,其特征步骤包括:A method for preparing a laminated subwavelength antireflection structure, the characteristic steps of which include:

I、根据所要减反的入射光波长和角度范围计算设计叠层亚波长结构,包括所需减反的高折射率材料上蚀刻的亚波长图形及沉积形成的介质层亚波长图形;I. Calculate and design the laminated sub-wavelength structure according to the wavelength and angle range of the incident light to be anti-reflection, including the sub-wavelength pattern etched on the high refractive index material for anti-reflection and the sub-wavelength pattern of the dielectric layer formed by deposition;

II、在所需减反的高折射率材料上形成亚波长结构图形掩膜,并通过蚀刻在衬底上形成具有对应深宽比的亚波长图形;II. Forming a sub-wavelength structural pattern mask on the required anti-reflection high-refractive index material, and forming a sub-wavelength pattern with a corresponding aspect ratio on the substrate by etching;

III、去除掩膜并洗净该具有亚波长图形的高折射率衬底材料;III, removing the mask and cleaning the high refractive index substrate material with sub-wavelength patterns;

IV、在衬底亚波长图形上顺势生长介质层,所述介质膜材料和形状结构按照步骤I模拟计算得到。IV. Growing a dielectric layer on the subwavelength pattern of the substrate, and the material and shape of the dielectric film are calculated according to step I.

进一步地,前述的叠层亚波长减反结构的制备方法,步骤II中所述衬底材料为折射率n高于自然界介质材料的最高折射率,如TiO2的折射率2.6;且步骤II中所述形成图形掩膜的方法包括电子束曝光、相干光刻及自组装,且其中的蚀刻方法包括反应离子刻蚀、感应耦合等离子体刻蚀、电子回旋共振刻蚀以及湿法刻蚀。Further, in the aforementioned method for preparing a laminated subwavelength antireflection structure, the substrate material in step II has a refractive index n higher than the highest refractive index of the natural medium material, such as the refractive index of TiO 2.6 ; and in step II The method for forming the pattern mask includes electron beam exposure, coherent photolithography and self-assembly, and the etching method includes reactive ion etching, inductively coupled plasma etching, electron cyclotron resonance etching and wet etching.

进一步地,前述的亚波长减反结构的制备方法,步骤IV中所述介质膜覆盖的方式包括磁控溅射、脉冲激光沉积、热蒸发、电子束蒸发、原子层沉积,以及等离子体化学气相沉积。Further, in the aforementioned method for preparing the subwavelength antireflection structure, the method of covering the dielectric film in step IV includes magnetron sputtering, pulsed laser deposition, thermal evaporation, electron beam evaporation, atomic layer deposition, and plasma chemical vapor phase deposition.

本发明亚波长减反结构及其制备方法的实质性特点和显著的优点主要体现在:The substantive features and remarkable advantages of the subwavelength antireflection structure and its preparation method of the present invention are mainly reflected in:

采用叠层形式的亚波长减反结构代替原有的单层亚波长结构,一方面上面的介质层部分可以有效钝化基于蚀刻形成的亚波长减反结构,大幅减少非辐射复合中心,抑制非辐射复合损失,使得该亚波长减反结构可以真正成为有源光电器件的界面,有效增加相应光电器件性能;另一方面,鉴于空气、介质材料和衬底材料折射率依次变化,采用叠层亚波长减反结构还可以减弱制备难度,或者在相同制备情况下获得更好的减反性能。The sub-wavelength anti-reflection structure in the form of a laminate is used to replace the original single-layer sub-wavelength structure. Radiation recombination loss makes the sub-wavelength anti-reflection structure truly become the interface of active optoelectronic devices, effectively increasing the performance of corresponding optoelectronic devices; The wavelength antireflection structure can also reduce the difficulty of preparation, or obtain better antireflection performance under the same preparation conditions.

附图说明Description of drawings

图1为高折射率所需减反效果的材料上经蚀刻获得的叠层亚波长结构第一部分示意图,其中图1a为金字塔形结构,图1b为楔形结构;Figure 1 is a schematic diagram of the first part of the laminated sub-wavelength structure obtained by etching on a material with a high refractive index that requires an anti-reflection effect, wherein Figure 1a is a pyramid-shaped structure, and Figure 1b is a wedge-shaped structure;

图2为本发明在光学界面材料的亚波长减反结构上进一步通过生长介质材料制备的叠层亚波长减反结构,其中Fig. 2 is a laminated subwavelength antireflection structure further prepared by growing dielectric materials on the subwavelength antireflection structure of the optical interface material in the present invention, wherein

图2为完整的叠层亚波长减反结构示意图;包括:(2a)第一部分蚀刻形成金字塔型,第二部分为沉积均匀的介质膜,依然形成金字塔型;(2b)第一部分为蚀刻形成楔形结构,第二部分均匀沉积介质膜,依旧形成楔形结构;(2c)第一部分为蚀刻形成楔形结构,第二部分均匀沉积介质膜,最终形成金字塔型的叠层亚波长结构;(2d)第一部分为蚀刻形成的楔形结构,第二部分为沉积较厚的渐变折射率的介质膜,形成金字塔型的叠层亚波长减反结构Figure 2 is a schematic diagram of a complete laminated subwavelength anti-reflection structure; including: (2a) the first part is etched to form a pyramid, and the second part is to deposit a uniform dielectric film, still forming a pyramid; (2b) the first part is etched to form a wedge structure, the second part uniformly deposits the dielectric film, still forming a wedge-shaped structure; (2c) the first part is etching to form a wedge-shaped structure, the second part uniformly deposits the dielectric film, and finally forms a pyramid-shaped laminated sub-wavelength structure; (2d) the first part For the wedge-shaped structure formed by etching, the second part is to deposit a thicker dielectric film with a graded refractive index to form a pyramid-shaped laminated sub-wavelength anti-reflection structure

图3为不同折射率介质对亚波长减反结构反射率性能的影响示意图;Fig. 3 is a schematic diagram of the influence of different refractive index media on the reflectivity performance of the subwavelength anti-reflection structure;

图4a为介质折射率n=1.63的叠层亚波长结构在不同入射角度下的反射率变化示意图;Figure 4a is a schematic diagram of the change in reflectivity of a laminated sub-wavelength structure with a medium refractive index n=1.63 under different incident angles;

图4b为介质折射率n=1的叠层亚波长结构在不同入射角度下的反射率变化示意图。Fig. 4b is a schematic diagram of the change of the reflectivity of the laminated sub-wavelength structure with the medium refractive index n=1 under different incident angles.

具体实施方式Detailed ways

为突破现有亚波长结构在提高器件整体性能方面的限制,本发明揭示了一种叠层亚波长减反结构,该亚波长减反结构的形状根据所要减反的入射光波长和角度范围计算得到,其特征在于:所述叠层亚波长减反结构包括两部分:第一部分是在需要减反的高折射率材料自身表面通过蚀刻形成亚波长图形;第二部分是在第一部分亚波长图形表面经再次沉积生长的介质层,二者整合构成叠层亚波长减反结构。In order to break through the limitations of the existing subwavelength structure in improving the overall performance of the device, the present invention discloses a laminated subwavelength antireflection structure. The shape of the subwavelength antireflection structure is calculated according to the wavelength and angle range of the incident light to be antireflection Obtained, characterized in that: the laminated sub-wavelength anti-reflection structure includes two parts: the first part is to form a sub-wavelength pattern by etching on the surface of the high refractive index material that needs anti-reflection; the second part is the sub-wavelength pattern in the first part The dielectric layer grown on the surface is re-deposited, and the two are integrated to form a laminated sub-wavelength anti-reflection structure.

该亚波长减反结构可以通过以下技术方案来制备:The sub-wavelength anti-reflection structure can be prepared through the following technical solutions:

首先选择需要亚波长减反结构的衬底材料,该材料是指需要宽谱广角范围出入射光的界面材料,特别是指折射率高于一般自然介质的界面材料(n≥2.6)。Firstly, select the substrate material that needs sub-wavelength anti-reflection structure. This material refers to the interface material that needs a wide spectrum and wide angle range of incident light, especially the interface material whose refractive index is higher than that of ordinary natural media (n≥2.6).

然后根据所要减反的入射光波长和角度范围计算设计相应的亚波长结构,包括衬底上蚀刻的亚波长减反结构及所要生长的亚波长减反介质层;Then calculate and design the corresponding sub-wavelength structure according to the wavelength and angle range of the incident light to be anti-reflection, including the sub-wavelength anti-reflection structure etched on the substrate and the sub-wavelength anti-reflection dielectric layer to be grown;

继而采用适当的方法在衬底材料上形成亚波长结构图形掩膜,并在该图形掩膜下,通过蚀刻方法在原有衬底上形成具有一定深宽比的亚波长结构;Then adopt an appropriate method to form a subwavelength structure pattern mask on the substrate material, and form a subwavelength structure with a certain aspect ratio on the original substrate by etching under the pattern mask;

接着对完成蚀刻后表面具有亚波长结构的衬底材料进行再次刻蚀,以去除衬底上的掩膜材料,并用水或有机溶剂清洗干净衬底;Then, etch the substrate material with sub-wavelength structure on the surface after etching to remove the mask material on the substrate, and clean the substrate with water or organic solvent;

最后利用沉积或其它方式在该亚波长结构的图形衬底上制备相应的亚波长结构介质层,完成叠层结构的亚波长减反结构。Finally, a corresponding sub-wavelength structure dielectric layer is prepared on the sub-wavelength structure pattern substrate by deposition or other methods, and the sub-wavelength anti-reflection structure of the laminated structure is completed.

以上制备方法各步骤可选方案及需要注意之处包括:The options for each step of the above preparation method and points to be noted include:

1、所选介质膜的折射率介于衬底材料和空气之间,图3给出利用严格耦合波分析方法模拟的,相同几何结构、但不同折射率介质对叠层亚波长减反结构反射率性能的影响示意图。可见,对于高折射率的光学界面材料,增加介质层的折射率,可以有效的在宽光谱范围内降低界面反射率。特别是对于色散关系陡峭的高折射率区,效果更加明显。1. The refractive index of the selected dielectric film is between the substrate material and air. Figure 3 shows the reflection of the laminated sub-wavelength anti-reflection structure with the same geometric structure but different refractive index media simulated by the rigorous coupled wave analysis method Schematic diagram of the impact on rate performance. It can be seen that for optical interface materials with high refractive index, increasing the refractive index of the dielectric layer can effectively reduce the interface reflectance in a wide spectral range. Especially for the high refractive index region with steep dispersion relation, the effect is more obvious.

2、在进行亚波长结构设计时,还需要结合考虑高折射率材料、所要沉积的介质膜材料和空气等综合因素;2. When designing subwavelength structures, it is also necessary to consider comprehensive factors such as high refractive index materials, dielectric film materials to be deposited, and air;

3、其中亚波长结构掩膜的形成,可以通过电子束曝光、相干光刻或各种自组装方式来实现;3. The formation of the sub-wavelength structure mask can be realized by electron beam exposure, coherent lithography or various self-assembly methods;

4、其中所述的刻蚀制法,无论是在衬底上形成亚波长结构,还是去除掩膜,根据掩膜材料的不同,都可以采用湿法刻蚀或干法刻蚀这些常规的技术手段来实现,只要满足在高折射率材料上形成亚波长结构后能完全彻底去除掩膜材料的同时不伤及亚波长结构的高折射率材料为准;4. In the etching method described therein, whether it is to form a sub-wavelength structure on the substrate or remove the mask, depending on the mask material, conventional techniques such as wet etching or dry etching can be used To achieve this, as long as the mask material can be completely and completely removed after the sub-wavelength structure is formed on the high-refractive index material, the high-refractive index material that does not damage the sub-wavelength structure shall prevail;

5、关于所述的介质层,根据设计需要可以是介质膜,也可以是介质纳米柱或纳米管,只要能很好地钝化衬底亚波长纳米结构,同时保证其折射率满足亚波长设计过程中所用的折射率即可。其制备方式根据实际需要可以是磁控溅射、脉冲激光沉积、热蒸发、电子束蒸发、原子层沉积、等离子体化学气相沉积等多种设备以及其他纳米柱、纳米管的生长制备方式。5. Regarding the dielectric layer, it can be a dielectric film, or a dielectric nanocolumn or nanotube according to the design requirements, as long as it can passivate the subwavelength nanostructure of the substrate well, and at the same time ensure that its refractive index meets the subwavelength design The refractive index used in the process is sufficient. According to actual needs, its preparation method can be various equipment such as magnetron sputtering, pulsed laser deposition, thermal evaporation, electron beam evaporation, atomic layer deposition, plasma chemical vapor deposition, and other growth preparation methods of nanocolumns and nanotubes.

如图2a至图2b所示的叠层亚波长减反结构,其中图2a所示的叠层亚波长减反结构包括:高折射率衬底材料经蚀刻形成的金字塔形的亚波长减反结构和该结构上均匀沉积的介质膜;图2b所示的叠层亚波长减反结构包括:高折射率衬底材料经蚀刻形成的楔形的亚波长减反结构和该结构上均匀沉积的介质膜,依旧形成楔形的叠层亚波长结构;图2c所示的叠层亚波长减反结构包括:高折射率衬底材料经蚀刻形成的楔形的亚波长减反结构和该结构上沉积较厚的介质膜,最终形成金字塔形的叠层亚波长减反结构;图2d所示的叠层亚波长减反结构包括:高折射率衬底材料经蚀刻形成的楔形的亚波长减反结构和沉积较厚的渐变折射率的介质膜,最终形成金字塔形的叠层亚波长减反结构The stacked sub-wavelength anti-reflection structure shown in Figure 2a to Figure 2b, wherein the stacked sub-wavelength anti-reflection structure shown in Figure 2a includes: a pyramid-shaped sub-wavelength anti-reflection structure formed by etching a high refractive index substrate material and a uniformly deposited dielectric film on the structure; the stacked subwavelength antireflection structure shown in Figure 2b includes: a wedge-shaped subwavelength antireflective structure formed by etching a high refractive index substrate material and a uniformly deposited dielectric film on the structure , still forming a wedge-shaped stacked subwavelength anti-reflection structure; the stacked sub-wavelength anti-reflection structure shown in Figure 2c includes: a wedge-shaped sub-wavelength anti-reflection structure formed by etching a high-refractive index substrate material and a thicker layer deposited on the structure The dielectric film finally forms a pyramid-shaped stacked subwavelength anti-reflection structure; the stacked sub-wavelength anti-reflection structure shown in Figure 2d includes: a wedge-shaped sub-wavelength anti-reflection structure formed by etching a high-refractive index substrate material and deposited Thick graded-index dielectric film finally forms a pyramid-shaped laminated subwavelength anti-reflection structure

再如图4a和图4b所示的反射率变化曲线可见,对具有相同几何结构的亚波长结构而言,较高折射率的叠层亚波长结构可在广角和宽谱范围内获得更低的反射率。对于图4a和4b,其亚波长减反结构的几何形状都是六角密排的圆锥形,其中圆锥底直径为100nm,圆锥排列周期为200nm,圆锥高度为500nm,当介质层为空气时,相当于只是单层的亚波长减反结构;其在广角和宽谱范围内的反射率曲线如图4b所示;当介质层的折射率为n=1.63,其在广角和宽谱范围内的反射率曲线如图4a所示。可以看出,在相同的制备条件下,叠层亚波长减反结构确实能够更有效地在广角和宽谱范围内降低界面反射率。It can be seen from the change curves of reflectivity shown in Fig. 4a and Fig. 4b that for subwavelength structures with the same geometric structure, the stacked subwavelength structure with higher refractive index can obtain lower reflectance in wide angle and wide spectrum range. Reflectivity. For Figures 4a and 4b, the geometry of the sub-wavelength anti-reflection structure is a hexagonal close-packed conical shape, wherein the diameter of the cone base is 100nm, the cone arrangement period is 200nm, and the cone height is 500nm. When the dielectric layer is air, it is quite Because it is only a single-layer sub-wavelength anti-reflection structure; its reflectivity curve in wide-angle and wide-spectrum range is as shown in Figure 4b; when the refractive index of the medium layer is n=1.63, its reflection in wide-angle and wide-spectrum range The rate curve is shown in Figure 4a. It can be seen that under the same preparation conditions, the laminated subwavelength anti-reflection structure can indeed reduce the interface reflectance more effectively in a wide-angle and wide-spectrum range.

本发明亚波长减反结构及其制法的优势在于,一方面能有效钝化亚波长减反结构,减少非辐射复合中心,抑制非辐射复合损失,有效增加相应光电器件性能;另一方面鉴于空气、介质材料和衬底材料折射率依次变化,故而采用叠层亚波长减反结构无疑将减弱制备难度,或者在相同制备情况下获得更好的减反性能。The sub-wavelength anti-reflection structure and its manufacturing method of the present invention have the advantages of effectively passivating the sub-wavelength anti-reflection structure, reducing non-radiative recombination centers, suppressing non-radiative recombination losses, and effectively increasing the performance of corresponding optoelectronic devices; The refractive index of air, dielectric material, and substrate material changes sequentially, so the use of a laminated subwavelength anti-reflection structure will undoubtedly reduce the difficulty of preparation, or obtain better anti-reflection performance under the same preparation conditions.

Claims (6)

1.叠层亚波长减反结构,其结构图形根据所用材料的折射率分布和所要减反的入射光波长和角度范围计算得到,其特征在于:所述叠层亚波长减反结构包括两部分:其中一部分是在需要减反的高折射率材料自身表面通过蚀刻形成的亚波长图形;另一部分是在前述亚波长图形表面经沉积生长的介质层,二者整合构成叠层亚波长减反结构。1. The laminated sub-wavelength anti-reflection structure, whose structural pattern is calculated according to the refractive index distribution of the material used and the wavelength and angle range of the incident light to be anti-reflected, is characterized in that: the laminated sub-wavelength anti-reflection structure includes two parts : Part of it is a sub-wavelength pattern formed by etching on the surface of the high-refractive index material that needs anti-reflection; the other part is a dielectric layer deposited and grown on the surface of the aforementioned sub-wavelength pattern, and the two are integrated to form a laminated sub-wavelength anti-reflection structure . 2.根据权利要求1所述的叠层亚波长减反结构,其特征在于:所述介质层为均匀的单层介质膜、多层介质膜,或渐变折射率的介质膜,又或介质材料纳米结构,其介质层的材料根据所需减反的材料的折射率来确定。2. The laminated sub-wavelength anti-reflection structure according to claim 1, wherein the dielectric layer is a uniform single-layer dielectric film, a multi-layer dielectric film, or a dielectric film with a graded refractive index, or a dielectric material In the nanostructure, the material of the medium layer is determined according to the refractive index of the antireflection material required. 3.根据权利要求1所述的叠层亚波长减反结构,其特征在于:所述亚波长图形为可构成折射率渐变的图形。3. The laminated sub-wavelength anti-reflection structure according to claim 1, wherein the sub-wavelength pattern is a pattern capable of forming a gradient of refractive index. 4.权利要求1所述叠层亚波长减反结构的制备方法,其特征步骤包括:4. The preparation method of the laminated sub-wavelength anti-reflection structure according to claim 1, wherein the characteristic steps include: I、根据所要减反的入射光波长和角度范围计算设计叠层亚波长结构,包括所需减反的高折射率材料上蚀刻的亚波长图形及沉积形成的介质层亚波长图形;I. Calculate and design the laminated sub-wavelength structure according to the wavelength and angle range of the incident light to be anti-reflection, including the sub-wavelength pattern etched on the high refractive index material for anti-reflection and the sub-wavelength pattern of the dielectric layer formed by deposition; II、在所需减反的高折射率材料上形成亚波长结构图形掩膜,并通过蚀刻在衬底上形成具有对应深宽比的亚波长图形;II. Forming a sub-wavelength structural pattern mask on the required anti-reflection high-refractive index material, and forming a sub-wavelength pattern with a corresponding aspect ratio on the substrate by etching; III、去除掩膜并洗净该具有亚波长图形的高折射率衬底材料;III, removing the mask and cleaning the high refractive index substrate material with sub-wavelength patterns; IV、在衬底亚波长图形上顺势生长介质层,所述介质膜材料和形状结构按照步骤I模拟计算得到。IV. Growing a dielectric layer on the subwavelength pattern of the substrate, and the material and shape of the dielectric film are calculated according to step I. 5.根据权利要求4所述的叠层亚波长减反结构的制备方法,其特征在于:步骤II中所述形成图形掩膜的方法包括电子束曝光、相干光刻及自组装,且其中的蚀刻方法包括反应离子刻蚀、感应耦合等离子体刻蚀、电子回旋共振刻蚀以及湿法刻蚀。5. The method for preparing a laminated sub-wavelength antireflection structure according to claim 4, wherein the method for forming a graphic mask described in step II includes electron beam exposure, coherent lithography and self-assembly, and wherein Etching methods include reactive ion etching, inductively coupled plasma etching, electron cyclotron resonance etching, and wet etching. 6.根据权利要求4所述的叠层亚波长减反结构的制备方法,其特征在于:步骤IV中所述介质膜生长的方式包括磁控溅射、脉冲激光沉积、热蒸发、电子束蒸发、原子层沉积,以及等离子体化学气相沉积和自组装。6. The method for preparing a laminated sub-wavelength anti-reflection structure according to claim 4, wherein the method for growing the dielectric film in step IV includes magnetron sputtering, pulsed laser deposition, thermal evaporation, and electron beam evaporation , atomic layer deposition, and plasma chemical vapor deposition and self-assembly.
CN2009102649059A 2009-12-16 2009-12-16 Long laminated sub-wave reflection-reducing structure and preparation method thereof Expired - Fee Related CN101726769B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102649059A CN101726769B (en) 2009-12-16 2009-12-16 Long laminated sub-wave reflection-reducing structure and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102649059A CN101726769B (en) 2009-12-16 2009-12-16 Long laminated sub-wave reflection-reducing structure and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101726769A true CN101726769A (en) 2010-06-09
CN101726769B CN101726769B (en) 2011-11-16

Family

ID=42447913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102649059A Expired - Fee Related CN101726769B (en) 2009-12-16 2009-12-16 Long laminated sub-wave reflection-reducing structure and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101726769B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569444A (en) * 2012-02-10 2012-07-11 中国科学院半导体研究所 Solar cell structure with wide spectrum high absorption and manufacturing method thereof
CN102681066A (en) * 2012-05-23 2012-09-19 天津大学 High-efficient wide-angle coupling grating
CN103353626A (en) * 2013-06-13 2013-10-16 北京大学深圳研究生院 Three-dimensional optical grating antireflection structure and antireflection component
CN104049287A (en) * 2014-07-03 2014-09-17 中国科学院光电技术研究所 Sub-wavelength anti-reflection structure device and preparation method thereof
CN108710164A (en) * 2018-05-25 2018-10-26 中国科学院上海光学精密机械研究所 Ultra-wideband anti-reflection micro-structure and preparation method thereof
WO2021079077A1 (en) * 2019-10-24 2021-04-29 Hydromecanique Et Frottement Optical device
CN113163092A (en) * 2021-04-30 2021-07-23 维沃移动通信(杭州)有限公司 Photosensitive chip and camera module
CN114388711A (en) * 2022-01-27 2022-04-22 武汉华星光电半导体显示技术有限公司 Display module and mobile terminal
RU2796501C1 (en) * 2021-12-30 2023-05-24 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) METHOD FOR ANTIREFLECTION OF ENDS OF ACTIVE Cr:ZnS WAVEGUIDES BASED ON SURFACE MICROSTRUCTURING

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569444A (en) * 2012-02-10 2012-07-11 中国科学院半导体研究所 Solar cell structure with wide spectrum high absorption and manufacturing method thereof
CN102681066A (en) * 2012-05-23 2012-09-19 天津大学 High-efficient wide-angle coupling grating
CN103353626A (en) * 2013-06-13 2013-10-16 北京大学深圳研究生院 Three-dimensional optical grating antireflection structure and antireflection component
CN103353626B (en) * 2013-06-13 2016-04-20 北京大学深圳研究生院 Three dimensional grating anti-reflection structure and components and parts
CN104049287A (en) * 2014-07-03 2014-09-17 中国科学院光电技术研究所 Sub-wavelength anti-reflection structure device and preparation method thereof
CN108710164B (en) * 2018-05-25 2019-08-13 中国科学院上海光学精密机械研究所 Ultra-wideband anti-reflection micro-structure and preparation method thereof
CN108710164A (en) * 2018-05-25 2018-10-26 中国科学院上海光学精密机械研究所 Ultra-wideband anti-reflection micro-structure and preparation method thereof
WO2021079077A1 (en) * 2019-10-24 2021-04-29 Hydromecanique Et Frottement Optical device
FR3102574A1 (en) * 2019-10-24 2021-04-30 Hydromecanique Et Frottement Optical device suitable for the transmission / reflection of electromagnetic radiation
FR3102565A1 (en) * 2019-10-24 2021-04-30 H.E.F. Optical device with surface texturing
CN113163092A (en) * 2021-04-30 2021-07-23 维沃移动通信(杭州)有限公司 Photosensitive chip and camera module
RU2796501C1 (en) * 2021-12-30 2023-05-24 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) METHOD FOR ANTIREFLECTION OF ENDS OF ACTIVE Cr:ZnS WAVEGUIDES BASED ON SURFACE MICROSTRUCTURING
CN114388711A (en) * 2022-01-27 2022-04-22 武汉华星光电半导体显示技术有限公司 Display module and mobile terminal

Also Published As

Publication number Publication date
CN101726769B (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CN101726769B (en) Long laminated sub-wave reflection-reducing structure and preparation method thereof
Moayedfar et al. Various types of anti-reflective coatings (ARCS) based on the layer composition and surface topography: a review
Yu et al. Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff
Sanchez-Sobrado et al. Colloidal-lithographed TiO 2 photonic nanostructures for solar cell light trapping
KR101390401B1 (en) Fabricating method of antireflection gratings pattern
CN104656170B (en) Broadband light full absorber and preparation method thereof
US20100259823A1 (en) Nanostructured anti-reflection coatings and associated methods and devices
CN103197368B (en) A kind of sandwich structure wire grid broadband polarizer and preparation method thereof
CN107121715B (en) A kind of super surface perfect absorbeperfect absorber and preparation method thereof based on coupling Michaelis resonance
KR101081499B1 (en) Fabricating method of antireflection nano structure
KR20120012555A (en) Gradually varying refractive index of the silicon multilayer anti-reflective film, a method of manufacturing the same and a solar cell having the same and a method of manufacturing the same
CN101592777A (en) Fabrication method of full-spectrum wide-angle concentrator based on nanostructure
WO2024055713A1 (en) Superlens design method, superlens and processing technique
CN103132084B (en) The preparation method of a kind of high refractive index semiconductor surface anti-reflection passivation composite structure
Leem et al. Antireflective properties of AZO subwavelength gratings patterned by holographic lithography
CN115903099A (en) An array-type anti-reflection and anti-reflection nanostructure based on electron beam lithography
KR101449515B1 (en) Method for manufacturing anti reflectance layer using nano texture of dielectric materials
CN118355297A (en) Anti-reflective structuring of optical elements including metasurfaces
WO2017193125A1 (en) High absorption photovoltaic material and methods of making the same
Sood et al. Nano Moth-eye Structures Fabricated using Ultra-thin Photoresist and Combined Dry and Wet Etches
Kim et al. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles
CN111599877B (en) A kind of all-dielectric metasurface light trapping structure for solar cells and preparation method thereof
CN105304764B (en) A kind of inverted structure method for manufacturing solar battery
Hu et al. Effect of radio frequency power on nano-metal induced self-masking subwavelength structures mechanism
TW201328965A (en) Method of fabricating anti-reflective layer and anti-reflective layer fabricated by the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111116

Termination date: 20171216