CN101721709B - Calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres, preparation method and use - Google Patents
Calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres, preparation method and use Download PDFInfo
- Publication number
- CN101721709B CN101721709B CN200910198765XA CN200910198765A CN101721709B CN 101721709 B CN101721709 B CN 101721709B CN 200910198765X A CN200910198765X A CN 200910198765XA CN 200910198765 A CN200910198765 A CN 200910198765A CN 101721709 B CN101721709 B CN 101721709B
- Authority
- CN
- China
- Prior art keywords
- calcium phosphate
- microsphere
- nano
- drug
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
技术领域 technical field
本发明属于纳米材料应用领域,具体涉及磷酸钙和两亲性聚合物复合载药纳米微球、制备方法及在用于制备载体药物。The invention belongs to the application field of nanometer materials, in particular to calcium phosphate and amphiphilic polymer composite drug-carrying nano microspheres, a preparation method and its use in the preparation of carrier drugs.
背景技术 Background technique
药物制剂的给药途径与方法对药物作用至关重要,而提高药物的利用率和疗效以及降低药物的副作用一直是医药领域一项重要的研究课题。纳米载药系统是纳米技术在药物输送、控释方面的主要应用形式,它是指采用适当的药剂学技术和方法将药物与药用辅料制成粒径于1-1000nm范围的胶态粒给药系统,包括纳米粒,纳米球、纳米囊等基本形式。活性组分(药物,生物活性物质等)通过溶解、包裹作用分布于粒子内部或通过吸附作用位于粒子的表面。纳米载体具有高度靶向、药物控制释放、提高难溶解药物溶解率和吸收率的优点,能增加药物在体内的稳定性、提高药物疗效和降低毒副作用。同时可在纳米颗粒表面耦联特异性的靶向分子,如特异性配体、单克隆抗体等,通过靶向分子与细胞表面特异性受体结合,实现基因/药物的三级靶向输送。The route and method of administration of pharmaceutical preparations are crucial to the action of drugs, and improving the utilization and curative effect of drugs and reducing the side effects of drugs has always been an important research topic in the field of medicine. Nano-drug loading system is the main application form of nanotechnology in drug delivery and controlled release. It refers to the use of appropriate pharmaceutical techniques and methods to make drugs and pharmaceutical excipients into colloidal particles with a particle size in the range of 1-1000nm. Drug systems, including basic forms such as nanoparticles, nanospheres, and nanocapsules. Active components (drugs, biologically active substances, etc.) are distributed inside the particles through dissolution and encapsulation, or are located on the surface of the particles through adsorption. Nanocarriers have the advantages of high targeting, controlled drug release, and improved dissolution and absorption rates of insoluble drugs, which can increase the stability of drugs in vivo, improve drug efficacy, and reduce toxic and side effects. At the same time, specific targeting molecules, such as specific ligands, monoclonal antibodies, etc., can be coupled on the surface of nanoparticles, and the tertiary targeted delivery of genes/drugs can be realized by binding the targeting molecules to specific receptors on the cell surface.
聚合物及聚合物胶束系统,主要包括改性双亲性聚合物和嵌段共聚物。由两亲性聚合物在水介质中发生微相分离形成的具有疏水性内核与亲水性外壳的超分子聚集体。该纳米胶束在药学领域中主要作为难溶性药物的增溶载体,避免小分子表面活性剂增溶剂(如吐温、聚氧乙烯蓖麻油)的不良反应,其疏水性的内核还可以保护药物不降解,并控制药物缓慢释放,而亲水性外壳则有助于纳米胶束在血液中的长时间循环及对肿瘤、炎症等组织的靶向性,近年来出现了许多新合成的多功能聚合物胶束系统,其不仅可作为基因投递系统,而且还能实现难溶水药物和基因的共载共治疗。聚合物胶束对难溶于水药物包载的物理方法主要为:直接溶解法、透析法和乳化法。方法的选取主要取决于两亲性共聚物在水中的溶解性。水溶性好则采用直接溶解法,否则采用透析法。药物可通过物理包埋和化学结合等方法载入胶束的内核。Polymers and polymer micelle systems mainly include modified amphiphilic polymers and block copolymers. Supramolecular aggregates with a hydrophobic core and a hydrophilic shell formed by microphase separation of amphiphilic polymers in aqueous media. The nano-micelle is mainly used as a solubilizing carrier for insoluble drugs in the pharmaceutical field, avoiding adverse reactions of small molecule surfactant solubilizers (such as Tween, polyoxyethylene castor oil), and its hydrophobic inner core can also protect drugs. It does not degrade and controls the slow release of drugs, while the hydrophilic shell helps the long-term circulation of nanomicelles in the blood and the targeting of tumors, inflammation and other tissues. In recent years, many newly synthesized multifunctional The polymer micelle system, which can not only be used as a gene delivery system, but also realize the co-loading and co-therapy of insoluble water-soluble drugs and genes. The main physical methods for polymer micelles to entrap insoluble drugs in water are: direct dissolution method, dialysis method and emulsification method. The choice of method mainly depends on the solubility of the amphiphilic copolymer in water. If the water solubility is good, the direct dissolution method is used; otherwise, the dialysis method is used. Drugs can be loaded into the inner core of micelles by methods such as physical embedding and chemical binding.
磷酸钙因具有良好的生物相容性、可降解性、骨传导和骨结合能力及安全无毒的特性而受到广泛的应用。磷酸钙的性能又很大程度上取决于它的形貌、物相、结构和结晶度等因素,而磷酸钙与聚合物的复合可将高聚物的优良特性引入磷酸钙体系当中而制备形貌可控、载药功能强大的纳米微球。Zhang等人以聚乙烯吡咯烷酮(PVP)为封端剂制备了比表面积较高的羟基磷灰石(HAP)纳米棒【Zhang YJ,Lu JJ.Crystal Growth & Design,2008,8(7):2101-2107】;Zhu等人在水/乙二醇体系中,以小分子表面活性剂十二烷基硫酸钠(SDS)为形貌调控剂制备了花状的磷酸氢钙,并将其转变为HAP而使其形貌得到很好的保持【Ma MG,Zhu YJ and Chang J.J.Phys.Chem.B,2006,110:14226-14230】;Mann等以在水溶液中呈纳米笼状态的聚丙烯酸(PAA)为模板,通过生物矿化制备了聚合物/磷酸钙复合纳米胶囊,该材料具有pH响应的特性【Perkin KK,Turner JL,Wooley KL and MannS.Nano Letters,2005,5(7):1457-1461】。Calcium phosphate is widely used because of its good biocompatibility, degradability, bone conduction and bone integration ability, and safety and non-toxic properties. The performance of calcium phosphate depends largely on its morphology, phase, structure, crystallinity and other factors, and the composite of calcium phosphate and polymer can introduce the excellent characteristics of polymer into the calcium phosphate system to prepare the calcium phosphate system. Nano-microspheres with controllable appearance and powerful drug-loading function. Zhang et al. used polyvinylpyrrolidone (PVP) as a capping agent to prepare hydroxyapatite (HAP) nanorods with a higher specific surface area [Zhang YJ, Lu JJ.Crystal Growth & Design, 2008, 8 (7): 2101 -2107]; People such as Zhu prepared the flower-shaped calcium hydrogen phosphate in the water/ethylene glycol system with the small molecule surfactant sodium dodecyl sulfate (SDS) as the morphology regulator, and converted it into HAP keeps its morphology well [Ma MG, Zhu YJ and Chang J.J.Phys.Chem.B, 2006, 110: 14226-14230]; Mann et al. used polyacrylic acid (PAA ) as a template, polymer/calcium phosphate composite nanocapsules were prepared through biomineralization, and the material has the characteristics of pH response [Perkin KK, Turner JL, Wooley KL and MannS.Nano Letters, 2005, 5(7): 1457- 1461].
发明内容 Contents of the invention
本发明旨在提供一种磷酸钙和两亲性聚合物复合载药纳米微球、制备方法及制备载体药物的用途,其中纳米颗粒是由双亲性共聚物与磷酸钙[Ca3(PO4)2]组成的复合物。The present invention aims to provide a calcium phosphate and amphiphilic polymer composite drug-loaded nano-microsphere, a preparation method and the use of preparing carrier medicine, wherein the nano-particle is composed of an amphiphilic copolymer and calcium phosphate [Ca 3 (PO4) 2 ] Composites.
本发明所提供的磷酸钙和两亲性聚合物的复合载药纳米微球,其中纳米微球是由两亲性聚合物与磷酸钙组成的复合物,并包载药物;所述的两亲性聚合物、磷酸钙和所包载药物的重量百分比依次为1%-60%、0.1%-60%和0.1%-50%;所述的磷酸钙和两亲性聚合物复合纳米微球的粒径在1-100000nm之间,其中粒径优选5-5000nm。The composite drug-loaded nano-microspheres of calcium phosphate and amphiphilic polymer provided by the present invention, wherein the nano-microsphere is a complex composed of amphiphilic polymer and calcium phosphate, and contains drugs; the amphiphilic The percentage by weight of non-toxic polymer, calcium phosphate and the contained drug is 1%-60%, 0.1%-60% and 0.1%-50%; the calcium phosphate and amphiphilic polymer composite nano-microsphere The particle size is between 1-100000nm, wherein the particle size is preferably 5-5000nm.
本发明所述的磷酸钙和两亲性聚合物复合载药纳米微球,其特征是所述的由两亲性聚合物与磷酸钙组成的纳米微球的组成和制备方法优选如下:The calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres of the present invention are characterized in that the composition and preparation method of the nano-microspheres composed of amphiphilic polymers and calcium phosphate are preferably as follows:
0~60℃下,将两亲性聚合物加到水中,配制成质量分数为0.1~5%的溶液A;往溶液A中加入可溶性钙盐CaCl2,搅拌形成钙离子浓度为0.005~1M的溶液B;往溶液B中滴加或倒入浓度为0.005~1M的可溶性磷酸盐溶液(NH4)2HPO4,使钙离子和磷酸根离子摩尔比为1∶1~1.67∶1,同时pH值控制在7~12;继续搅拌反应,然后将乳白色反应液离心收集,用去离子水和无水乙醇反复洗涤,真空干燥,得到磷酸钙/两亲性聚合物复合多孔纳米球。Add the amphiphilic polymer to water at 0-60°C to prepare solution A with a mass fraction of 0.1-5%; add soluble calcium salt CaCl 2 to solution A and stir to form a solution with a calcium ion concentration of 0.005-1M Solution B: Add dropwise or pour soluble phosphate solution (NH 4 ) 2 HPO 4 with a concentration of 0.005-1M into solution B, so that the molar ratio of calcium ions and phosphate ions is 1:1-1.67:1, and the pH The value is controlled at 7-12; the stirring reaction is continued, and then the milky white reaction liquid is collected by centrifugation, repeatedly washed with deionized water and absolute ethanol, and vacuum-dried to obtain calcium phosphate/amphiphilic polymer composite porous nanospheres.
本发明的磷酸钙和两亲性聚合物复合载药纳米微球,其特征是磷酸钙和两亲性聚合物复合纳米微球对药物的包载方法不仅包括吸附法和溶剂挥发法,还包括透析法、pH梯度法、复乳法、复凝聚法等,其对药物的包载顺序可在磷酸钙和两亲性聚合物复合纳米微球制备后或纳米微球的制备过程中,如可先制备载药聚合物胶束,然后再与磷酸钙复合制备载药微纳米球。The calcium phosphate and amphiphilic polymer composite drug-carrying nano-microsphere of the present invention is characterized in that the drug-carrying method of calcium phosphate and amphiphilic polymer composite nano-microsphere not only includes adsorption method and solvent volatilization method, but also includes Dialysis method, pH gradient method, double emulsion method, complex coacervation method, etc., the drug loading sequence can be after the preparation of calcium phosphate and amphiphilic polymer composite nanospheres or during the preparation of nanospheres, such as The drug-loaded polymer micelles are prepared first, and then compounded with calcium phosphate to prepare drug-loaded micro-nanospheres.
其中的主要方法优选如下:The main methods are preferably as follows:
(1)纳米微球制备过程中包载药物(1) Encapsulation of drugs during the preparation of nanospheres
其中的优选方法为先配置含有重量百分比为0.1-5%的两亲型聚合物和重量百分比为0.1-5%的药物的溶液A1;或配置含有包载药物的两亲型聚合物纳米微粒,然后配制重量百分比为0.1-5%的载药和重量百分比为0.1-5%的两亲型聚合物纳米微粒溶液A2;再分别往溶液A1或A2中加入可溶性钙盐CaCl2,搅拌0.5-24h,形成钙离子浓度为0.005-1mol/L的溶液B;然后往溶液B中加入浓度为0.005-1mol/L的(NH4)2HPO4溶液,(NH4)2HPO4溶液与溶液B体积比为1/3-3/3,使用氨水调节pH值为7-12,继续搅拌反应0-24h,离心收集,洗涤,干燥得到磷酸钙和两亲性聚合物复合载药纳米微球。Among them, the preferred method is to first configure solution A1 containing 0.1-5% amphiphilic polymer by weight and 0.1-5% drug by weight; or configure amphiphilic polymer nanoparticles containing drugs, Then prepare 0.1-5% drug loading and 0.1-5% amphiphilic polymer nanoparticle solution A2 by weight; then add soluble calcium salt CaCl 2 to solution A1 or A2 respectively, and stir for 0.5-24h , to form a solution B with a calcium ion concentration of 0.005-1mol/L ; The ratio is 1/3-3/3, using ammonia water to adjust the pH value to 7-12, continuing to stir and react for 0-24 hours, collecting by centrifugation, washing, and drying to obtain composite drug-loaded nanospheres of calcium phosphate and amphiphilic polymer.
(2)纳米微球制备以后包载药物(2) Encapsulated drugs after preparation of nano-microspheres
对水溶性药物的包载方法优选为:The preferred method of loading water-soluble drugs is:
在室温下将干燥的磷酸钙和两亲性聚合物复合纳米微球与含有水溶性药物的水溶液混合,所述的磷酸钙和两亲性聚合物复合纳米微球和水溶性药物的重量百分比浓度分别为0.1-99%和0.1-50%,搅拌0.5-24h,离心收集包载药物的磷酸钙和两亲性聚合物复合纳米微球。At room temperature, dry calcium phosphate and amphiphilic polymer composite nanospheres are mixed with an aqueous solution containing water-soluble drugs, and the weight percentage concentration of the calcium phosphate and amphiphilic polymer composite nanospheres and water-soluble drugs is 0.1-99% and 0.1-50% respectively, stirring for 0.5-24h, and centrifuging to collect the drug-encapsulated calcium phosphate and amphiphilic polymer composite nano-microspheres.
对脂溶性药物的包载方法优选为:The preferred method for encapsulating fat-soluble drugs is:
先将脂溶性药物(重量百分比浓度0.1-30%)溶于水和乙醇组成的混合溶剂中,所述的水和乙醇的体积比为1/3-4/3;然后加入干燥的磷酸钙和两亲性共聚物复合多孔纳米微球,所述的磷酸钙和两亲性聚合物复合纳米微球和水溶性药物的重量百分比浓度分别为0.1-99%和0.1-50%,搅拌0.5-24h,离心收集包载药物的磷酸钙和两亲性聚合物复合纳米微球。First, the fat-soluble drug (0.1-30% by weight concentration) is dissolved in a mixed solvent composed of water and ethanol, and the volume ratio of the water and ethanol is 1/3-4/3; then dry calcium phosphate and Amphiphilic copolymer composite porous nano-microspheres, the calcium phosphate, amphiphilic polymer composite nano-microspheres and water-soluble drug have a weight percent concentration of 0.1-99% and 0.1-50% respectively, and are stirred for 0.5-24h , centrifuging to collect the drug-loaded calcium phosphate and amphiphilic polymer composite nanospheres.
其中的溶剂蒸发法优选方案为:Wherein the preferred scheme of solvent evaporation method is:
先将脂溶性药物(重量百分比浓度0.1-30%)溶于氯仿等有机溶剂中得油相,然后将干燥的磷酸钙和两亲性聚合物复合纳米微球溶于水溶液中得水相,最后将水相和油相混合搅拌,所述的磷酸钙和两亲性聚合物复合纳米微球和水溶性药物的重量百分比浓度分别为0.1-99%和0.1-50%,所述的油相有机溶剂和水溶液的体积比为1/3-5/3;挥发溶剂后,离心收集包载药物的磷酸钙和两亲性聚合物复合纳米微球。Dissolve fat-soluble drugs (0.1-30% by weight) in organic solvents such as chloroform to obtain an oil phase, then dissolve dry calcium phosphate and amphiphilic polymer composite nanospheres in an aqueous solution to obtain a water phase, and finally The water phase and the oil phase are mixed and stirred, the weight percent concentrations of the calcium phosphate and amphiphilic polymer composite nanospheres and the water-soluble drug are respectively 0.1-99% and 0.1-50%, and the oil phase is organic The volume ratio of the solvent to the aqueous solution is 1/3-5/3; after the solvent is volatilized, the calcium phosphate and the amphiphilic polymer composite nano-microspheres loaded with drugs are collected by centrifugation.
本发明的磷酸钙和两亲性聚合物复合载药纳米微球,其特征是所用的两亲性聚合物,包括聚酯、聚氨基酸、聚乳酸和磷脂及其共聚物。The calcium phosphate and amphiphilic polymer composite drug-loading nano microsphere of the present invention is characterized in that the used amphiphilic polymer includes polyester, polyamino acid, polylactic acid, phospholipid and copolymers thereof.
其中优选为聚己内酯(PCL)、普朗尼克(PEO-PPO-PEO)、聚氨基酸(PAGA)、聚乙二醇-聚乳酸(PEG-PLA)、聚乙二醇-(聚乳酸-co-聚羟基乙酸)(PEG-PLGA)、聚乙二醇-聚天冬氨酸(PEG-PASP),聚乙二醇-聚谷氨酸(PEG-PGA)、聚乙二醇-多聚赖氨酸(PEG-PLL)、聚乙二醇-聚乙烯亚胺(PEG-PEI)、聚L-乳酸-b-聚乙二醇-b-聚L-乳酸(PLLA-b-PEG-b-PLLA)、聚乳酸-b-聚乙二醇-b-聚乳酸(PLA-b-PEG-b-PLA)、PEG-b-PLGA-b-PLL、PEG-b-PLGA-b-PEI、PEG-普朗尼克、磷脂-PLL或磷脂-PEI等中的任一种,高聚物重均分子量小于100万,优选0.2-20万。Among them, polycaprolactone (PCL), Pluronic (PEO-PPO-PEO), polyamino acid (PAGA), polyethylene glycol-polylactic acid (PEG-PLA), polyethylene glycol-(polylactic acid- co-polyglycolic acid) (PEG-PLGA), polyethylene glycol-polyaspartic acid (PEG-PASP), polyethylene glycol-polyglutamic acid (PEG-PGA), polyethylene glycol-poly Lysine (PEG-PLL), polyethylene glycol-polyethyleneimine (PEG-PEI), poly-L-lactic acid-b-polyethylene glycol-b-poly-L-lactic acid (PLLA-b-PEG-b -PLLA), polylactic acid-b-polyethylene glycol-b-polylactic acid (PLA-b-PEG-b-PLA), PEG-b-PLGA-b-PLL, PEG-b-PLGA-b-PEI, Any one of PEG-Pluronic, phospholipid-PLL or phospholipid-PEI, etc., the weight average molecular weight of the polymer is less than 1 million, preferably 0.2-200,000.
本发明的磷酸钙和两亲性聚合物复合载药纳米微球可通过控制微球的粒径和内部的多孔结构而实现对药物的控制释放。药物经过复合纳米微球的包裹可形成较为封闭的环境,可增强药物对外界因素的稳定性;而且,纳米载药微球还可以增加药物的生物稳定性,使药物在到达作用部位前保持其结构的完整性。The calcium phosphate and amphiphilic polymer composite drug-loaded nano microspheres of the present invention can realize the controlled release of drugs by controlling the particle size and internal porous structure of the microspheres. The package of the drug through the composite nano-microspheres can form a relatively closed environment, which can enhance the stability of the drug to external factors; moreover, the nano-loaded microspheres can also increase the biological stability of the drug, so that the drug can maintain its stability before reaching the site of action. structural integrity.
本发明的磷酸钙和两亲性聚合物复合载药纳米微球,可对磷酸钙和两亲性共聚物复合载药纳米微球进行修饰而使其具有靶向性,所用的修饰制剂包括抗体配体(肿瘤相关抗原标志物)、蛋白和酶(酶类标志物)、激素、肽类、基因和小分子制剂等。The calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres of the present invention can modify the calcium phosphate and amphiphilic copolymer composite drug-loaded nano-microspheres to make them targeted, and the modified preparations used include antibody Ligands (tumor-associated antigen markers), proteins and enzymes (enzyme markers), hormones, peptides, genes and small molecule preparations, etc.
修饰制剂可优选为甲胎蛋白、癌胚抗原、组织多肽抗原、淀粉酶、乳酸脱氢酶、核糖核酸酶、5-核苷酸酶、促肾上腺皮质激素、抗利尿激素、生长激素、转化生长因子、雌激素、孕激素、儿茶酚胺类及其衍生物、ras基因家族及其表达产物、myc基因家族及其表达产物、表皮生长因子受体、RB基因和p53基因、叶酸、三苯氧胺或磁性颗粒。Modified preparations may preferably be alpha-fetoprotein, carcinoembryonic antigen, tissue polypeptide antigen, amylase, lactate dehydrogenase, ribonuclease, 5-nucleotidase, adrenocorticotropic hormone, antidiuretic hormone, growth hormone, transformed growth factor, estrogen, progesterone, catecholamines and their derivatives, ras gene family and its expression products, myc gene family and its expression products, epidermal growth factor receptor, RB gene and p53 gene, folic acid, tamoxifen or magnetic particles.
更优选为整合素、跨膜肽、转铁蛋白、甲胎蛋白、转化生长因子、雌激素、孕激素、表皮生长因子受体、p53基因、叶酸、三苯氧胺、磁性颗粒、罗丹明及量子点。More preferably integrin, transmembrane peptide, transferrin, alpha-fetoprotein, transforming growth factor, estrogen, progesterone, epidermal growth factor receptor, p53 gene, folic acid, tamoxifen, magnetic particles, rhodamine and quantum dots.
本发明的磷酸钙和两亲性聚合物复合载药纳米微球,所述的药物,可为有机药物、水溶性药物、水不溶性药物、基因、探针和诊断试剂。The calcium phosphate and amphiphilic polymer composite drug-carrying nano microspheres of the present invention, the drugs can be organic drugs, water-soluble drugs, water-insoluble drugs, genes, probes and diagnostic reagents.
其中药物优选为紫杉醇、消炎痛、抗叶酸类(如甲氨蝶呤)、抗嘌呤类(如巯嘌呤)、抗嘧啶类(如氟尿嘧啶、替加氟)、核苷酸还原酶抑制药(如羟基脲)、脱氧核糖核苷酸多聚酶抑制药(如环胞苷)、直接影响和破坏DNA结构及其功能的药物(如氮芥、环磷酰胺、氮甲、顺铂、丝裂霉素、喜树碱)、抑制蛋白质合成的药(如阿霉素、L-门冬酰胺酶、柔红霉素、光辉霉素)、影响微管蛋白质组装和纺锤丝形成的药物(长春碱、依托泊苷)、量子点、荧光染料或治疗基因。The drugs are preferably paclitaxel, indomethacin, antifolates (such as methotrexate), antipurines (such as mercaptopurine), antipyrimidines (such as fluorouracil, tegafur), nucleotide reductase inhibitors (such as Hydroxyurea), deoxyribonucleotide polymerase inhibitors (such as cyclocitidine), drugs that directly affect and damage DNA structure and function (such as nitrogen mustard, cyclophosphamide, nitrogen methyl, cisplatin, mitomycin, Camptothecin), drugs that inhibit protein synthesis (such as doxorubicin, L-asparaginase, daunorubicin, daunorubicin), drugs that affect microtubule protein assembly and spindle filament formation (vinblastine, etopol glycosides), quantum dots, fluorescent dyes or therapeutic genes.
更优选为紫杉醇、消炎痛、甲氨蝶呤、巯嘌呤、氟尿嘧啶、替加氟、羟基脲、环胞苷、氮芥、环磷酰胺、氮甲、顺铂、丝裂霉素、喜树碱、阿霉素、L-门冬酰胺酶、柔红霉素、光辉霉素、长春碱、依托泊苷、p53基因。More preferably paclitaxel, indomethacin, methotrexate, mercaptopurine, fluorouracil, tegafur, hydroxyurea, cyclocytidine, nitrogen mustard, cyclophosphamide, azamethanone, cisplatin, mitomycin, camptothecin , doxorubicin, L-asparaginase, daunorubicin, mithromycin, vinblastine, etoposide, p53 gene.
本发明的磷酸钙和两亲性聚合物复合载药纳米微球,其特征是在药物载体方面的应用包括对药物的递送、缓控释、逆转肿瘤细胞的耐药特性及对疾病的诊断和治疗。The calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres of the present invention are characterized in that their applications in drug carriers include delivery of drugs, slow and controlled release, reversal of drug resistance characteristics of tumor cells, and diagnosis and treatment of diseases. treat.
复合载药纳米微球可以改变药物的给药途径,使给药途径和给药方式多样化;如磷酸钙和两亲性聚合物复合纳米微球可保护肽类、蛋白质或反义核酸等药物不被酶解或水解,使药物可以口服,并减少用药剂量和次数。同时,利用复合载药纳米微球的靶向性可在增加局部药物浓度的同时降低药物在全身其他部位的浓度,从而降低了药物的全身性毒性。再者,药物通过纳米化后,绝对吸收量的增加可以使给药剂量减少,同样可以达到降低药物毒副作用的目的;而复合载药纳米微球对药物的缓释作用,也可使血药浓度的波动减小,从而提高药物的安全性和生物利用度。Composite drug-loaded nanospheres can change the route of drug administration and diversify the route and mode of administration; for example, composite nanospheres of calcium phosphate and amphiphilic polymers can protect drugs such as peptides, proteins or antisense nucleic acids. Not being enzymatically or hydrolyzed, the drug can be taken orally, and the dosage and frequency of medication can be reduced. At the same time, the targeting of the composite drug-loaded nanospheres can increase the local drug concentration while reducing the drug concentration in other parts of the body, thereby reducing the systemic toxicity of the drug. Furthermore, after the drug is nanosized, the increase in the absolute absorption can reduce the dosage, and also achieve the purpose of reducing the toxic and side effects of the drug; Concentration fluctuations are reduced, thereby improving drug safety and bioavailability.
本发明的磷酸钙和两亲性聚合物复合载药纳米微球及在药物载体方面的应用,其特征是在疾病的诊断方面是通过载药纳米微球包载或表面修饰抗体配体、蛋白、多肽、短肽、磁性纳米颗粒、量子点或荧光探针等诊断试剂而实现的。The calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres of the present invention and their application in drug carriers are characterized in that in the diagnosis of diseases, the drug-loaded nano-microspheres carry or surface-modify antibody ligands and proteins , peptides, short peptides, magnetic nanoparticles, quantum dots or fluorescent probes and other diagnostic reagents.
本发明的磷酸钙和两亲性聚合物复合载药纳米微球,是不仅可实现对药物的包载,而且可实现对药物和基因的共包载和递送而达到药物和基因的共治疗。The calcium phosphate and amphiphilic polymer composite drug-loading nano-microspheres of the present invention can not only realize the entrapment of drugs, but also realize the co-encapsulation and delivery of drugs and genes to achieve co-therapy of drugs and genes.
与现有的材料相比,本发明的磷酸钙和两亲性聚合物复合载药纳米微球具有如下优点:Compared with existing materials, the calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres of the present invention have the following advantages:
(1)复合载药纳米微球综合了磷酸钙和双亲性共聚物的特性,具有制备简单、药物包载方便、对药物的缓控释能力强、生物相容性好等特点。(1) Composite drug-loaded nano-microspheres combine the characteristics of calcium phosphate and amphiphilic copolymers, and have the characteristics of simple preparation, convenient drug loading, strong slow and controlled release of drugs, and good biocompatibility.
(2)复合载药纳米微球可分别或同时包载水溶性药物或脂溶性药物,克服了双亲性共聚物一般只适合包载脂溶性药物的缺点,扩大了双亲性共聚物的适用范围,同时也扩大了磷酸钙的使用范围。(2) Composite drug-loaded nano-microspheres can carry water-soluble drugs or fat-soluble drugs separately or simultaneously, which overcomes the shortcoming that amphiphilic copolymers are generally only suitable for carrying fat-soluble drugs, and expands the scope of application of amphiphilic copolymers. At the same time, the scope of use of calcium phosphate has also been expanded.
(3)复合载药纳米微球对水溶性药物的包载方法简便,采用吸附法时只需将纳米微球与含药物的溶液混合振荡,可减少对药物活性的损失,有利于保持药物的疗效。(3) The method of loading water-soluble drugs by composite drug-loaded nanospheres is simple. When the adsorption method is used, only the nanospheres and the drug-containing solution are mixed and oscillated, which can reduce the loss of drug activity and help maintain the drug. curative effect.
(4)复合载药纳米微球对水溶性药物或脂溶性药物的包封率和载药率均较高,包封率可达95%以上,因此可降低药物的损失;复合载药纳米微球对药物的缓控释功能强大,其对药物的释放可通过调节纳米微球的粒径、调节微球内部孔径的大小、调节高聚物的分子量等因素进行控制。(4) The encapsulation efficiency and drug loading rate of the composite drug-loaded nano-microspheres for water-soluble drugs or fat-soluble drugs are high, and the encapsulation rate can reach more than 95%, so the loss of drugs can be reduced; the composite drug-loaded nano-microspheres The ball has a powerful function of slow and controlled release of drugs, and its release of drugs can be controlled by adjusting the particle size of the nano-microspheres, adjusting the size of the internal pores of the microspheres, and adjusting the molecular weight of the polymer.
(5)复合载药纳米微球作为药物载体的使用范围广,体现在即可包载不同药物进行疾病的治疗,又可包载或表面修饰诊断试剂进行疾病的诊断,同时也可进行疾病的共诊断和治疗。(5) Composite drug-loaded nano-microspheres have a wide range of applications as drug carriers, which is reflected in the fact that they can carry different drugs for disease treatment, and can carry or surface-modified diagnostic reagents for disease diagnosis. diagnosis and treatment.
(6)复合载药纳米微球可同时作为药物或基因载体使用。(6) The composite drug-loaded nano-microsphere can be used as a drug or gene carrier at the same time.
附图说明Description of drawings
图1.载米托蒽醌的磷酸钙和PEG-PLA复合纳米微球的TEM照片;Fig. 1. TEM photo of calcium phosphate and PEG-PLA composite nanospheres loaded with mitoxantrone;
图2.载米托蒽醌的磷酸钙和PEG-PLA复合纳米微球对米托蒽醌的释放曲线;Figure 2. Calcium phosphate and PEG-PLA composite nanospheres loaded with mitoxantrone release curve of mitoxantrone;
图3.载米托蒽醌磷酸钙和PEG-PLA复合纳米微球在乳腺癌细胞MCF-7与乳腺癌耐药细胞MDR/RES MCF-7内的蓄积;Figure 3. Accumulation of mitoxantrone calcium phosphate and PEG-PLA composite nanospheres in breast cancer cell MCF-7 and breast cancer drug-resistant cell MDR/RES MCF-7;
具体实施方法Specific implementation method
下面给出本发明的实施例,是对本发明的进一步说明,而不是限制本发明的范围。The following examples of the present invention are given to further illustrate the present invention, rather than limit the scope of the present invention.
实施例1:Example 1:
将0.2g聚乙二醇-聚乳酸与羟基乙酸的共聚物(mPEG-b-PLGA)(分子量为10000,mPEG链段分子量为2000,LA/GA=5∶5)加到20ml水中,37℃下搅拌1h,使聚合物溶解,得到溶液A;往A中加入10ml 0.5M的CaCl2溶液,搅拌0.5h,得到溶液B;将10ml 0.3M(NH4)2HPO4水溶液滴加至溶液B,在此过程中反应溶液的pH值用氨水控制在10,温度为37℃;滴加完毕,将反应溶液离心,用去离子水洗涤3次,用无水乙醇洗涤1次,然后在37℃下真空干燥24h,得到磷酸钙/mPEG-b-PLGA复合纳米多孔球。Add 0.2g of polyethylene glycol-polylactic acid and glycolic acid copolymer (mPEG-b-PLGA) (molecular weight is 10000, mPEG segment molecular weight is 2000, LA/GA=5:5) to 20ml of water, 37°C Stir for 1 hour to dissolve the polymer and obtain solution A; add 10ml of 0.5M CaCl2 solution to A and stir for 0.5 hours to obtain solution B; add 10ml of 0.3M (NH4)2HPO4 aqueous solution to solution B dropwise, during The pH value of the reaction solution was controlled at 10 with ammonia water, and the temperature was 37°C; after the dropwise addition, the reaction solution was centrifuged, washed three times with deionized water and once with absolute ethanol, and then vacuum-dried at 37°C for 24h , to obtain calcium phosphate/mPEG-b-PLGA composite nanoporous spheres.
实施例2:Example 2:
采用吸附法对水溶性药物进行包载:Encapsulation of water-soluble drugs by adsorption method:
在室温下取干燥的磷酸钙和聚乙二醇-聚乳酸(PEG-PLA)复合纳米微球100mg与含有水溶性药物米托蒽醌的水溶液15ml(药物含量10mg/ml)混合,搅拌0.5-24h,离心收集包载米托蒽醌的磷酸钙和PEG-PLA复合纳米微球。然后进行磷酸钙和PEG-PLA复合纳米微球对药物包封率、载药率的测定、纳米微球粒径的分析及药物活性的检测。磷酸钙和PEG-PLA复合纳米微球的粒径在200nm左右,其对米托蒽醌的包封率为90%。At room temperature, 100 mg of dry calcium phosphate and polyethylene glycol-polylactic acid (PEG-PLA) composite nanospheres are mixed with 15 ml of aqueous solution containing water-soluble drug mitoxantrone (
实施例3:Example 3:
采用吸附法对脂溶性药物进行包载:Encapsulation of fat-soluble drugs by adsorption method:
将脂溶性药物紫杉醇溶于水和乙醇(体积比1∶1)的混合溶剂中(药物浓度1mg/ml);在室温下取干燥的磷酸钙和聚乙二醇-聚天冬氨酸(PEG-PASP)复合纳米微球100mg与上述含紫杉醇的溶液15ml混合,搅拌0.5-24h,离心收集包载紫杉醇的磷酸钙和PEG-PASP复合纳米微球。然后进行磷酸钙和PEG-PASP复合纳米微球对药物包封率、载药率的测定、纳米微球粒径的分析及药物活性的检测。磷酸钙和PEG-PASP复合纳米微球的粒径在30nm左右,其对紫杉醇的包封率为85%。Dissolve the fat-soluble drug paclitaxel in a mixed solvent of water and ethanol (volume ratio 1:1) (drug concentration 1mg/ml); take dry calcium phosphate and polyethylene glycol-polyaspartic acid (PEG) at room temperature - 100 mg of PASP) composite nanospheres were mixed with 15 ml of the paclitaxel-containing solution, stirred for 0.5-24 hours, and the paclitaxel-encapsulated calcium phosphate and PEG-PASP composite nanospheres were collected by centrifugation. Then, calcium phosphate and PEG-PASP composite nano-microspheres were used to measure drug encapsulation efficiency and drug-loading rate, analyze nano-microsphere particle size and detect drug activity. The particle size of the calcium phosphate and PEG-PASP composite nano microsphere is about 30nm, and the encapsulation efficiency of paclitaxel is 85%.
实施例4:Example 4:
采用溶剂挥发法对脂溶性药物进行包载:Encapsulation of fat-soluble drugs by solvent evaporation method:
先将脂溶性药物消炎痛(质量百分比浓度2%)溶于氯仿25ml中得油相,然后将干燥的磷酸钙/聚乙二醇-多聚赖氨酸(PEG-PLL)复合纳米微球100mg溶于50ml磷酸盐缓冲溶液中得水相,最后将水相和油相混合搅拌,挥发溶剂后,离心收集包载消炎痛的磷酸钙/PEG-PLL复合纳米微球。然后进行磷酸钙/PEG-PLL复合纳米微球对药物包封率、载药率的测定、纳米微球粒径的分析及药物活性的检测。磷酸钙/PEG-PLL复合纳米微球的粒径在30nm左右,其对消炎痛的包封率为90%。First fat-soluble drug indomethacin (mass percentage concentration 2%) is dissolved in 25ml of chloroform to obtain an oily phase, then dry calcium phosphate/polyethylene glycol-polylysine (PEG-PLL) composite nanospheres 100mg Dissolve in 50ml of phosphate buffer solution to obtain the water phase, and finally mix and stir the water phase and the oil phase, evaporate the solvent, and centrifuge to collect the calcium phosphate/PEG-PLL composite nanospheres loaded with indomethacin. Then, calcium phosphate/PEG-PLL composite nano-microspheres were used to measure the drug encapsulation efficiency and drug loading rate, analyze the particle size of the nano-microspheres and detect the drug activity. The particle diameter of the calcium phosphate/PEG-PLL composite nano microsphere is about 30nm, and its encapsulation rate for indomethacin is 90%.
实施例5:Example 5:
在复合纳米微球制备前对药物进行包载:Encapsulation of drugs before the preparation of composite nanospheres:
将脂溶性药物紫杉醇5mg和100mg PEG-PLGA(重均分子量1万)溶于3ml二甲基亚砜中,加入10ml水搅拌混合,然后放入截留分子量为12000的透析袋中透析5-12h,最终配制为质量分数为0.1-5%的载药聚合物胶束溶液A;再往溶液A中加入可溶性钙盐,搅拌0.5-24h,形成钙离子浓度为0.005-1M的溶液B;然后往溶液B中加入浓度为0.005-1M的可溶性磷酸盐溶液,控制pH值为7-12;最后加入可溶性磷酸盐,继续搅拌反应0-24h,离心收集,洗涤,干燥得到磷酸钙/PEG-PLGA复合载药纳米微球。Dissolve 5 mg of fat-soluble drug paclitaxel and 100 mg of PEG-PLGA (weight average molecular weight 10,000) in 3 ml of dimethyl sulfoxide, add 10 ml of water to stir and mix, and then put it into a dialysis bag with a molecular weight cut-off of 12,000 for dialysis for 5-12 hours. The final preparation is a drug-loaded polymer micelle solution A with a mass fraction of 0.1-5%; then add a soluble calcium salt to the solution A and stir for 0.5-24 hours to form a solution B with a calcium ion concentration of 0.005-1M; A soluble phosphate solution with a concentration of 0.005-1M was added to B, and the pH value was controlled to be 7-12; finally, soluble phosphate was added, and the stirring reaction was continued for 0-24h, collected by centrifugation, washed, and dried to obtain calcium phosphate/PEG-PLGA composite carrier Drug Nanospheres.
实施例6:Embodiment 6:
采用pH梯度法对水溶性药物进行包载:Encapsulation of water-soluble drugs by pH gradient method:
吸取适量9g/L氯化钠注射液加入到注射用盐酸米托蒽醌瓶中振摇使盐酸米托蒽醌完全溶解;将溶解好的盐酸米托蒽醌水溶液放在水浴锅(55℃~60℃)中加热10min;吸取2mL事先在水浴中预热后的磷酸钙/聚乙二醇-多聚赖氨酸(PEG-PLL)复合纳米微球悬浊液(50mg/ml)加入到盐酸米托蒽醌溶液中,然后加入碳酸钠溶液,摇匀并在水浴锅(55℃~60℃)中加热;混合溶液在55℃~60℃平衡10min后,充氮搅拌10min,离心收集包载米托蒽醌的磷酸钙/PEG-PLL复合纳米微球。然后进行磷酸钙/PEG-PLL复合纳米微球对药物包封率、载药率的测定、纳米微球粒径的分析及药物活性的检测。磷酸钙/PEG-PLL复合纳米微球的粒径在300nm左右,其对盐酸米托蒽醌的包封率为96%。Draw an appropriate amount of 9g/L sodium chloride injection and add it to the mitoxantrone hydrochloride bottle for injection and shake to completely dissolve the mitoxantrone hydrochloride; put the dissolved mitoxantrone hydrochloride aqueous solution in a water bath (55°C~ 60°C) for 10 min; draw 2 mL of calcium phosphate/polyethylene glycol-polylysine (PEG-PLL) composite nanosphere suspension (50 mg/ml) preheated in a water bath and add it to hydrochloric acid mitoxantrone solution, then add sodium carbonate solution, shake well and heat in a water bath (55°C-60°C); after the mixed solution is equilibrated at 55°C-60°C for 10 minutes, fill it with nitrogen and stir for 10 minutes, then centrifuge to collect and pack Calcium phosphate/PEG-PLL composite nanospheres of mitoxantrone. Then, calcium phosphate/PEG-PLL composite nano-microspheres were used to measure the drug encapsulation efficiency and drug loading rate, analyze the particle size of the nano-microspheres and detect the drug activity. The particle size of the calcium phosphate/PEG-PLL composite nano-microsphere is about 300nm, and its encapsulation efficiency for mitoxantrone hydrochloride is 96%.
实施例7:Embodiment 7:
使用转铁蛋白Tf等修饰剂对磷酸钙/两亲性聚合物复合载药纳米微球进行表面修饰使其具有靶向性:Use modifiers such as transferrin Tf to modify the surface of calcium phosphate/amphiphilic polymer composite drug-loaded nanospheres to make them targeted:
取1ml包载甲氨蝶呤的磷酸钙/聚乙二醇-聚乙烯亚胺(PEG-PEI)复合纳米微球(50mg/ml),加入磷酸盐缓冲溶液(pH=7.4)15ml,与1mg肿瘤靶向制剂转铁蛋白Tf混合,滴加2ml 1-乙基-3(3-二甲基丙基)碳二亚胺盐酸盐(EDC),4℃下反应4h。离心收集经Tf修饰的包载甲氨蝶呤的磷酸钙/PEG-PEI复合纳米微球。转铁蛋白Tf的修饰可增加磷酸钙/PEG-PEI复合载药纳米微球对多数肿瘤细胞的靶向性,增加纳米微球的跨细胞膜能力,并使包载的药物更大限度的发挥作用。Take 1ml of calcium phosphate/polyethylene glycol-polyethyleneimine (PEG-PEI) composite nanospheres (50mg/ml) loaded with methotrexate, add 15ml of phosphate buffer solution (pH=7.4), and 1mg The tumor targeting agent transferrin Tf was mixed, 2ml of 1-ethyl-3(3-dimethylpropyl)carbodiimide hydrochloride (EDC) was added dropwise, and reacted at 4°C for 4h. The Tf-modified calcium phosphate/PEG-PEI composite nanospheres loaded with methotrexate were collected by centrifugation. The modification of transferrin Tf can increase the targeting of calcium phosphate/PEG-PEI composite drug-loaded nanospheres to most tumor cells, increase the ability of the nanospheres to cross the cell membrane, and make the loaded drugs play a greater role .
实施例8:Embodiment 8:
使用转化生长因子等修饰剂对磷酸钙/两亲性聚合物复合载药纳米微球进行表面修饰使其具有靶向性:Using modifiers such as transforming growth factor to modify the surface of calcium phosphate/amphiphilic polymer composite drug-loaded nanospheres to make them targeted:
取1ml包载环胞苷的磷酸钙/聚乙二醇-聚乙烯亚胺(PEG-PEI)复合纳米微球(50mg/ml),加入磷酸盐缓冲溶液(pH=7.4)15ml,与1mg肿瘤靶向制剂转化生长因子混合,滴加2ml 1-乙基-3(3-二甲基丙基)碳二亚胺盐酸盐(EDC),4℃下反应4h。离心收集经转化生长因子修饰的包载甲氨蝶呤的磷酸钙/PEG-PEI复合纳米微球。转化生长因子的修饰可增加磷酸钙/PEG-PEI复合载药纳米微球对多数肿瘤细胞的靶向性,增加纳米微球的跨细胞膜能力,并使包载的药物更大限度的发挥作用。Take 1ml of calcium phosphate/polyethylene glycol-polyethyleneimine (PEG-PEI) composite nanospheres (50mg/ml) loaded with cyclocytidine, add 15ml of phosphate buffer solution (pH=7.4), and mix with 1mg of tumor The targeted preparation was mixed with transforming growth factor, 2ml of 1-ethyl-3(3-dimethylpropyl)carbodiimide hydrochloride (EDC) was added dropwise, and reacted at 4°C for 4h. The calcium phosphate/PEG-PEI composite nanospheres modified by transforming growth factor and loaded with methotrexate were collected by centrifugation. The modification of transforming growth factor can increase the targeting of calcium phosphate/PEG-PEI composite drug-loaded nanospheres to most tumor cells, increase the ability of the nanospheres to cross the cell membrane, and make the loaded drugs play a greater role.
实施例9:Embodiment 9:
制备具有医学诊断和治疗功能的磷酸钙/两亲性聚合物复合载药纳米微球:Preparation of calcium phosphate/amphiphilic polymer composite drug-loaded nanospheres with medical diagnostic and therapeutic functions:
在室温下取干燥的磷酸钙/聚乙二醇-(聚乳酸-co-聚羟基乙酸)-多聚赖氨酸的三嵌段共聚物(PEG-b-PLGA-b-PLL)复合纳米微球100mg与含有水溶性药物阿霉素和磁性纳米颗粒的水溶液15ml(药物含量10mg/ml,磁性纳米颗粒含量1mg/ml)混合,搅拌0.5-24h,离心收集包载阿霉素并具有核磁显像功能的磷酸钙/PEG-b-PLGA-b-PLL复合纳米微球。然后进行磷酸钙/PEG-b-PLGA-b-PLL复合纳米微球的药物包封率、载药率的测定、粒径的分析及药物活性的检测。磷酸钙/PEG-b-PLGA-b-PLL复合纳米微球的粒径在200nm左右,其对阿霉素的包封率为90%。Take the dry calcium phosphate/polyethylene glycol-(polylactic acid-co-polyglycolic acid)-polylysine triblock copolymer (PEG-b-PLGA-b-PLL) composite nanoparticle at room temperature Mix 100mg of balls with 15ml of aqueous solution containing water-soluble drug doxorubicin and magnetic nanoparticles (drug content: 10mg/ml, magnetic nanoparticle content: 1mg/ml), stir for 0.5-24h, centrifuge to collect the loaded doxorubicin and have NMR. Functional calcium phosphate/PEG-b-PLGA-b-PLL composite nanospheres. Then, the calcium phosphate/PEG-b-PLGA-b-PLL composite nanometer microspheres were tested for drug encapsulation efficiency, drug loading rate, particle size analysis and drug activity. The particle size of the calcium phosphate/PEG-b-PLGA-b-PLL composite nano-microsphere is about 200nm, and its encapsulation efficiency for doxorubicin is 90%.
磷酸钙/PEG-b-PLGA-b-PLL复合磁性载药微纳米球不仅具有抗肿瘤药物对肿瘤的治疗功能,而且具有磁性纳米颗粒的核磁显像功能,并可作为MRI诊断试剂。Calcium phosphate/PEG-b-PLGA-b-PLL composite magnetic drug-loaded micro-nanospheres not only have the function of anti-tumor drugs to treat tumors, but also have the function of nuclear magnetic imaging of magnetic nanoparticles, and can be used as MRI diagnostic reagents.
实施例10:Example 10:
在室温下取干燥的磷酸钙/聚乙二醇-(聚乳酸-co-聚羟基乙酸)-多聚赖氨酸的三嵌段共聚物(PEG-b-PLGA-b-PLL)复合纳米微球100mg与含有水溶性药物氟尿嘧啶和水溶性量子点的水溶液15ml(药物含量10mg/ml,量子点含量1mg/ml)混合,搅拌0.5-24h,离心收集包载氟尿嘧啶并具有荧光成像功能的磷酸钙/PEG-b-PLGA-b-PLL复合纳米微球。然后进行磷酸钙/PEG-b-PLGA-b-PLL复合纳米微球的药物包封率、载药率的测定、粒径的分析及药物活性的检测。磷酸钙/PEG-b-PLGA-b-PLL复合纳米微球的粒径在200nm左右,其对氟尿嘧啶的包封率为90%。Take the dry calcium phosphate/polyethylene glycol-(polylactic acid-co-polyglycolic acid)-polylysine triblock copolymer (PEG-b-PLGA-b-PLL) composite nanoparticle at room temperature Mix 100mg of balls with 15ml of aqueous solution containing water-soluble drug fluorouracil and water-soluble quantum dots (drug content 10mg/ml, quantum dot content 1mg/ml), stir for 0.5-24h, and centrifuge to collect fluorouracil-encapsulated calcium phosphate with fluorescence imaging function /PEG-b-PLGA-b-PLL composite nanospheres. Then, the calcium phosphate/PEG-b-PLGA-b-PLL composite nanometer microspheres were tested for drug encapsulation efficiency, drug loading rate, particle size analysis and drug activity. The particle size of the calcium phosphate/PEG-b-PLGA-b-PLL composite nano microsphere is about 200nm, and its encapsulation efficiency for fluorouracil is 90%.
磷酸钙/PEG-b-PLGA-b-PLL复合磁性载药微纳米球不仅具有抗肿瘤药物对肿瘤的治疗功能,而且具有量子点的荧光成像功能。Calcium phosphate/PEG-b-PLGA-b-PLL composite magnetic drug-loaded micro-nanospheres not only have the function of anti-tumor drugs to treat tumors, but also have the function of fluorescence imaging of quantum dots.
实施例11:Example 11:
磷酸钙/两亲性聚合物复合纳米微球作为药物和基因载体的应用。Application of calcium phosphate/amphiphilic polymer composite nanospheres as drug and gene carriers.
所制备的包载米托蒽醌的磷酸钙/PEG-PLA复合纳米微球对耐药的乳腺癌细胞(MCF-7/MIT,BCAP37/MDR)具有逆转耐药的功能。磷酸钙/PEG-PLA复合纳米微球能够增加抗癌药物在肿瘤细胞内的蓄积,见附图3,提高抗癌药物对非耐药与耐药肿瘤细胞的毒性,在一定程度上能够逆转肿瘤细胞的耐药性,可增加细胞膜流动性,提高药物的细胞膜渗透性,并且抑制或减少P-gp蛋白对作用底物的外排,抑制耐药细胞的MDRI、MRP和GST-pmRNA水平及降低P-gp蛋白,ABCG2外排作用所需的ATP水平。磷酸钙/PEG-PLA复合纳米微球可以改变模型药的体内药动学和组织分布参数,能够显著延长模型药在大鼠和小鼠体内的血循环时间,改变体内各脏器的药物分布。The prepared calcium phosphate/PEG-PLA composite nanospheres loaded with mitoxantrone can reverse drug resistance to drug-resistant breast cancer cells (MCF-7/MIT, BCAP37/MDR). Calcium phosphate/PEG-PLA composite nanospheres can increase the accumulation of anticancer drugs in tumor cells, see Figure 3, improve the toxicity of anticancer drugs to non-drug-resistant and drug-resistant tumor cells, and to a certain extent can reverse the tumor The drug resistance of cells can increase the fluidity of cell membrane, improve the permeability of cell membrane of drugs, and inhibit or reduce the efflux of P-gp protein to the substrate, inhibit the level of MDRI, MRP and GST-pmRNA of drug-resistant cells and reduce ATP levels required for efflux of the P-gp protein, ABCG2. Calcium phosphate/PEG-PLA composite nanospheres can change the in vivo pharmacokinetics and tissue distribution parameters of the model drug, significantly prolong the blood circulation time of the model drug in rats and mice, and change the drug distribution in various organs in the body.
本发明公开和揭示的磷酸钙/两亲性聚合物复合载药纳米微球的制备及在药物载体方面的应用,可通过借鉴本文公开内容。尽管本发明的磷酸钙/两亲性聚合物复合载药纳米微球的制备及在药物载体方面的应用已通过较佳实施例进行了描述,但是本领域技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法改动,更具体地说,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。The preparation of the calcium phosphate/amphiphilic polymer composite drug-loaded nano-microspheres disclosed and disclosed in the present invention and its application in drug carriers can be referred to in this disclosure. Although the preparation of the calcium phosphate/amphiphilic polymer composite drug-loaded nano-microspheres of the present invention and the application in drug carriers have been described through preferred embodiments, those skilled in the art can obviously , within the spirit and scope of the method changes described herein, more specifically, all similar substitutions and changes will be obvious to those skilled in the art, and they are all considered to be included in the spirit, scope and content of the present invention .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910198765XA CN101721709B (en) | 2009-11-13 | 2009-11-13 | Calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres, preparation method and use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910198765XA CN101721709B (en) | 2009-11-13 | 2009-11-13 | Calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres, preparation method and use |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101721709A CN101721709A (en) | 2010-06-09 |
CN101721709B true CN101721709B (en) | 2013-01-30 |
Family
ID=42443652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910198765XA Active CN101721709B (en) | 2009-11-13 | 2009-11-13 | Calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres, preparation method and use |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101721709B (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101974152B (en) * | 2010-09-28 | 2012-07-11 | 山东大学 | A kind of lipid-cationic polymer and preparation method thereof |
CN101974229B (en) * | 2010-10-20 | 2012-10-31 | 中国科学院上海硅酸盐研究所 | Polylactic acid-polyethylene glycol/europium-doped calcium phosphate nanocomposite material, its modification and preparation of both |
CN102885783B (en) * | 2012-09-26 | 2014-04-16 | 复旦大学附属金山医院 | Nanometer medicament microspheres |
CN102885785B (en) * | 2012-09-26 | 2014-01-15 | 复旦大学附属金山医院 | Doxorubicin-containing nano drug microspheres and preparation method thereof |
CN103100087B (en) * | 2013-03-04 | 2014-09-10 | 中国科学院上海硅酸盐研究所 | Method for preparing calcium phosphate/organic matter composite nanoparticles |
US10195157B2 (en) * | 2013-08-09 | 2019-02-05 | Kimberly-Clark Worldwide, Inc. | Delivery system for active agents |
CN105311631B (en) * | 2014-07-02 | 2020-06-02 | 北京亦科为生物技术有限公司 | CaP-PLA/PLGA nano-microsphere as well as preparation method and application thereof |
CN105030823B (en) * | 2015-06-19 | 2017-12-26 | 合肥工业大学 | A kind of calcium phosphate nanoparticles for embedding cis-platinum and its preparation method and application |
CN105748439A (en) * | 2016-01-29 | 2016-07-13 | 四川大学 | Ph-responsive nanometer drug delivery system based on dendrimers modified by short-chain alkane and preparation method and application of drug delivery system |
CN106344927A (en) * | 2016-09-27 | 2017-01-25 | 大连理工大学 | Drug-loaded hydroxyapatite modified by folic acid and preparation method thereof |
TWI654993B (en) * | 2016-11-04 | 2019-04-01 | National Health Research Institutes | Use of cationic biodegradable polyceramic microparticles for vaccine delivery |
CN107638572A (en) * | 2017-08-16 | 2018-01-30 | 西安电子科技大学 | A kind of pH response types hypersensitive namo fluorescence probe and preparation method |
CN111407741A (en) * | 2020-03-23 | 2020-07-14 | 太原理工大学 | Anti-cancer drug carrier with redox and pH dual responses and preparation method and application thereof |
CN111973573B (en) * | 2020-08-04 | 2022-10-18 | 中山大学附属第七医院(深圳) | Calcium phosphate nano-particles and preparation method and application thereof |
CN114249909B (en) * | 2020-09-24 | 2024-05-03 | 中国科学院理化技术研究所 | Micro-nano magnetic polymer microsphere with surface topological structure and preparation method thereof |
CN112717143B (en) * | 2021-01-15 | 2022-08-12 | 洛兮医疗科技(杭州)有限公司 | Biodegradable nano-carrier and targeting drug-loading system thereof |
CN113521011A (en) * | 2021-07-31 | 2021-10-22 | 黑龙江八一农垦大学 | A nano gene drug delivery carrier |
SE545583C2 (en) * | 2021-08-08 | 2023-10-31 | Aduro Mat Ab | Controlled drug release material |
CN113908137B (en) * | 2021-10-27 | 2023-04-11 | 高州市人民医院 | Preparation method of hard-core soft-membrane type nano sustained-release drug delivery system for injection |
CN114522249B (en) * | 2022-03-01 | 2023-07-07 | 苏州大学 | A preparation method of manganese-coated calcium phosphate microspheres and its application in drug carriers |
CN115073520A (en) * | 2022-06-15 | 2022-09-20 | 上海科技大学 | Fluorescent molecule, calcium phosphate nanoparticle thereof, and preparation method and application thereof |
-
2009
- 2009-11-13 CN CN200910198765XA patent/CN101721709B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101721709A (en) | 2010-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101721709B (en) | Calcium phosphate and amphiphilic polymer composite drug-loaded nano-microspheres, preparation method and use | |
Dang et al. | Nanoparticle-based drug delivery systems for cancer therapy | |
A Santos et al. | Multifunctional porous silicon for therapeutic drug delivery and imaging | |
CN101652126B (en) | Multistage delivery of active agents | |
Emeje et al. | Nanotechnology in drug delivery | |
Sohail et al. | Nanocarrier-based drug delivery system for cancer therapeutics: a review of the last decade | |
G. Nava-Arzaluz et al. | Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles | |
Marcato et al. | New aspects of nanopharmaceutical delivery systems | |
Narang et al. | Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems | |
EP2464224B1 (en) | Methods for drug delivery comprising unfolding and folding proteins and peptide nanoparticles | |
Jose et al. | Polymeric lipid hybrid nanoparticles: properties and therapeutic applications | |
CN102327230B (en) | A protein nanoparticle encapsulating taxane drugs and its preparation method | |
CN103635182A (en) | Polymeric nanoparticles for drug delivery | |
Madni et al. | Hybrid Nano-carriers for potential drug delivery | |
CN104840977A (en) | Method for preparing magnetic fluorescence composite nano drug carrier | |
Sagadevan et al. | A REVIEW ON ROLE OF NANOSTRUCTURES IN DRUG DELIVERY SYSTEM. | |
Zwain et al. | Albumin nanoparticles—A versatile and a safe platform for drug delivery applications | |
Wang et al. | One-step self-assembling method to prepare dual-functional transferrin nanoparticles for antitumor drug delivery | |
CN117281913A (en) | PDA-based nano-drug carrier coated by erythrocyte membrane and preparation method thereof | |
CN104814934A (en) | Herceptin modified paclitaxel-carried targeting nanoparticle transfer system | |
Fatima et al. | A review of multifunction smart nanoparticle based drug delivery systems | |
Naik | Nano based drug delivery | |
Raka et al. | Hybrid nanoparticles for cancer theranostics: a critical review on design, synthesis, and multifunctional capabilities | |
Sethuraman et al. | Nanodispersions for drug delivery applications: a special focus toward cancer therapeutics | |
Hnawate et al. | Nanoparticle-novel drug delivery system: A Review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |