CN101719497B - New type integrated circuit for resisting full-scale irradiation of NMOS component - Google Patents
New type integrated circuit for resisting full-scale irradiation of NMOS component Download PDFInfo
- Publication number
- CN101719497B CN101719497B CN200910238271XA CN200910238271A CN101719497B CN 101719497 B CN101719497 B CN 101719497B CN 200910238271X A CN200910238271X A CN 200910238271XA CN 200910238271 A CN200910238271 A CN 200910238271A CN 101719497 B CN101719497 B CN 101719497B
- Authority
- CN
- China
- Prior art keywords
- integrated circuit
- total dose
- nmos
- trench
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 239000010703 silicon Substances 0.000 claims abstract description 17
- 230000005855 radiation Effects 0.000 claims abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 32
- 238000002955 isolation Methods 0.000 claims description 28
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 235000012239 silicon dioxide Nutrition 0.000 claims description 16
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 15
- 238000000034 method Methods 0.000 description 16
- 238000000151 deposition Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- UOACKFBJUYNSLK-XRKIENNPSA-N Estradiol Cypionate Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H](C4=CC=C(O)C=C4CC3)CC[C@@]21C)C(=O)CCC1CCCC1 UOACKFBJUYNSLK-XRKIENNPSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000005510 radiation hardening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Element Separation (AREA)
Abstract
本发明公开了一种抗NMOS器件总剂量辐照的集成电路,属于电子技术领域。本发明抗NMOS器件总剂量辐照的集成电路包括NMOS器件,也可包括PMOS器件,所述器件之间通过衬底上的沟槽隔离,沟槽中填充有沟槽填充材料,其特征在于,在和所述NMOS器件相邻的沟槽中,所述沟槽填充材料中嵌入一牺牲材料层,所述牺牲材料是掺杂了第三主族元素的硅。本发明可用于航天、军事、核电和高能物理等与总剂量辐照相关的行业。
The invention discloses an integrated circuit capable of resisting total dose irradiation of NMOS devices, which belongs to the field of electronic technology. The anti-NMOS device total dose radiation integrated circuit of the present invention includes NMOS devices, and may also include PMOS devices, and the devices are separated by trenches on the substrate, and the trenches are filled with trench-filling materials, which are characterized in that, In a trench adjacent to the NMOS device, a sacrificial material layer is embedded in the trench filling material, and the sacrificial material is silicon doped with elements of the third main group. The invention can be used in industries related to total dose irradiation, such as aerospace, military affairs, nuclear power and high energy physics.
Description
技术领域 technical field
本发明涉及集成电路,尤其涉及一种抗NMOS器件总剂量辐照的集成电路,属于电子技术领域。The invention relates to an integrated circuit, in particular to an integrated circuit capable of resisting total dose irradiation of NMOS devices, and belongs to the field of electronic technology.
背景技术 Background technique
集成电路技术正越来越广泛的被应用于航天、军事、核电和高能物理等与总剂量辐照相关的行业中。而且随着集成电路集成度的不断提高,半导体器件的尺寸日益减小,浅槽隔离技术正以其优良的器件隔离性能成为集成电路中器件之间电学隔离的主流技术。但是由于总剂量辐照粒子对于器件中二氧化硅氧化层的损伤,会在浅槽隔离结构的氧化层内产生大量的固定正电荷。在NMOS器件中,这些大量固定正电荷的存在会引起浅槽隔离氧化层附近的衬底反型,并在一定的源漏偏压下形成寄生管漏电,漏电量的大小跟这些正电荷距离硅衬底的距离以及这些正电荷浓度大小有关,即浅槽隔离结构材料在总剂量辐照后正电性越强,距离硅衬底越近,漏电就越大。在器件主管开启之前,主管处于关态,但是这时的寄生管已经导通,形成较大的关态泄漏电流。这种关态泄漏电流会大大增加集成电路的功耗,并对集成电路的可靠性产生较大的负面影响,成为现阶段亟待解决的一个总剂量辐照可靠性问题。Integrated circuit technology is being more and more widely used in industries related to total dose radiation, such as aerospace, military, nuclear power and high-energy physics. Moreover, with the continuous improvement of the integration level of integrated circuits, the size of semiconductor devices is decreasing day by day. Shallow trench isolation technology is becoming the mainstream technology for electrical isolation between devices in integrated circuits due to its excellent device isolation performance. However, due to the damage of the silicon dioxide oxide layer in the device by the total dose of irradiated particles, a large amount of fixed positive charges will be generated in the oxide layer of the shallow trench isolation structure. In NMOS devices, the existence of a large number of fixed positive charges will cause the substrate inversion near the shallow trench isolation oxide layer, and form a parasitic tube leakage under a certain source-drain bias. The distance from the substrate is related to the concentration of these positive charges, that is, the stronger the positive charge of the shallow trench isolation structure material after total dose irradiation, the closer it is to the silicon substrate, and the greater the leakage. Before the device supervisor is turned on, the supervisor is in the off state, but at this time the parasitic tube has been turned on, resulting in a large off-state leakage current. This off-state leakage current will greatly increase the power consumption of the integrated circuit, and have a greater negative impact on the reliability of the integrated circuit, which has become a total dose radiation reliability issue that needs to be solved urgently at this stage.
因此,如果能够在不改变浅槽隔离技术的主流制备工艺的前提下提出一种可以减少总剂量辐照后浅槽隔离材料的正电性,并增大正电荷与硅衬底之间的距离,以达到抑制这些正电性,从而减少NMOS器件总剂量辐照后CMOS集成电路和器件关态泄漏电流的隔离技术,将会对整个集成电路的抗辐照加固具有重大的意义。Therefore, if it is possible to propose a method that can reduce the positive charge of the shallow trench isolation material after total dose irradiation and increase the distance between the positive charge and the silicon substrate without changing the mainstream preparation process of the shallow trench isolation technology, In order to suppress these positive charges, thereby reducing the total dose of NMOS devices after irradiation, the isolation technology of CMOS integrated circuits and device off-state leakage currents will be of great significance to the radiation resistance of the entire integrated circuit.
发明内容 Contents of the invention
本发明的目的是提供一种可以减少NMOS器件总剂量辐照后关态泄漏电流的抗总剂量辐照的集成电路。The object of the present invention is to provide an anti-total dose irradiation integrated circuit which can reduce the off-state leakage current of NMOS devices after total dose irradiation.
本发明在现有的CMOS集成电路浅槽隔离技术(shallow-trench isolation:STI)基础上,针对二氧化硅中的正电荷能在硅材料中感应产生负电荷的特性,在常规浅槽隔离结构中增加一层牺牲材料层,将浅槽隔离结构中的二氧化硅里面的大量固定正电荷的电场限制在这一层牺牲材料层上,以减弱对体硅衬底的反型作用,从而减少总剂量辐照后寄生晶体管电流,达到降低NMOS器件总剂量辐照后关态泄漏电流的目的。The present invention is based on the existing shallow-trench isolation technology (shallow-trench isolation: STI) for CMOS integrated circuits, aiming at the characteristic that positive charges in silicon dioxide can induce negative charges in silicon materials, in conventional shallow-trench isolation structures A layer of sacrificial material is added in the shallow trench isolation structure, and the electric field of a large number of fixed positive charges in the silicon dioxide in the shallow trench isolation structure is limited to this layer of sacrificial material layer, so as to weaken the inversion effect on the bulk silicon substrate, thereby reducing The parasitic transistor current after total dose irradiation achieves the purpose of reducing the off-state leakage current of NMOS devices after total dose irradiation.
具体来说,为了达到上述技术目的,本发明采用如下技术方案:Specifically, in order to achieve the above technical purpose, the present invention adopts the following technical solutions:
一种抗NMOS器件总剂量辐照的集成电路,所述集成电路包括NMOS器件,也可包括PMOS器件,所述器件之间通过衬底上的沟槽隔离,沟槽中填充有沟槽填充材料,其特征在于,在和所述NMOS器件相邻的沟槽中,所述沟槽填充材料中嵌入一牺牲材料层,所述牺牲材料是掺杂了第三主族元素的硅。也就是说,在每个NMOS器件两侧的两个沟槽中,均设置该牺牲材料层,和该NMOS器件和NMOS器件还是PMOS器件相邻无关,如图1b所示。An integrated circuit capable of resisting total dose radiation of NMOS devices, the integrated circuit includes NMOS devices, and may also include PMOS devices, the devices are separated by trenches on a substrate, and the trenches are filled with trench filling materials , characterized in that, in a trench adjacent to the NMOS device, a sacrificial material layer is embedded in the trench filling material, and the sacrificial material is silicon doped with elements of the third main group. That is to say, the sacrificial material layer is provided in the two trenches on both sides of each NMOS device, regardless of whether the NMOS device is adjacent to the NMOS device or the PMOS device, as shown in FIG. 1 b .
所述牺牲材料层夹入所述沟槽填充材料被分隔的两个部分之间,其第一部分(下部)位于衬底和所述牺牲材料层之间,第二部分(上部)则被所述牺牲材料层三面围合。上述三层结构一般通过各层依次淀积得到,即,依次淀积所述第一部分,所述牺牲材料和所述第二部分。因此,所述第一部分和所述牺牲材料层的截面形状和所述沟槽的外形一致(相应),即,由于所述沟槽的截面一般呈倒梯形(上底边比下底边长的梯形),因此,所述第一部分和所述牺牲材料层的截面均呈U形。The layer of sacrificial material is sandwiched between two parts of the trench fill material separated, a first part (lower part) of which is located between the substrate and the layer of sacrificial material and a second part (upper part) is covered by the The sacrificial material layer is enclosed on three sides. The above-mentioned three-layer structure is generally obtained by depositing each layer in sequence, that is, depositing the first part, the sacrificial material and the second part in sequence. Therefore, the cross-sectional shape of the first part and the sacrificial material layer is consistent (corresponding) to the profile of the trench, that is, because the cross-section of the trench is generally an inverted trapezoid (the upper base is longer than the lower base) Trapezoid), therefore, the cross sections of the first part and the sacrificial material layer are both U-shaped.
所述第三主族元素包括硼、铝、镓、铟和铊中的一种或多种。所述牺牲层材料的掺杂浓度在5×1016到1×1018/cm3的范围内;厚度优选在10纳米和80纳米的范围内。The third main group element includes one or more of boron, aluminum, gallium, indium and thallium. The doping concentration of the sacrificial layer material is in the range of 5×10 16 to 1×10 18 /cm 3 ; the thickness is preferably in the range of 10 nanometers and 80 nanometers.
所述沟槽填充材料可以是常规使用的二氧化硅,所述衬底材料可以是常规使用的硅。The trench filling material may be conventionally used silicon dioxide, and the substrate material may be conventionally used silicon.
图1a,b分别显示了常规浅槽隔离技术和本发明在沟槽与衬底之间的界面结构。图2显示了常规浅槽隔离工艺结构和本发明抗总剂量辐照工艺结构经过总剂量辐照后在衬底中产生反型载流子浓度的对比。Figures 1a and b respectively show the interface structure between the trench and the substrate in the conventional shallow trench isolation technology and the present invention. Fig. 2 shows the comparison of the inversion carrier concentration produced in the substrate after the total dose irradiation of the conventional shallow trench isolation process structure and the anti-total dose irradiation process structure of the present invention.
从图1和图2中可以看出,在常规的浅槽隔离工艺结构中,由于沟槽填充材料的存在,总剂量辐照在沟槽内产生的大量固定正电荷会在硅衬底中感生镜像出大量的反型载流子,即大量的电子,这些电子在源漏加有偏压的情况下能够导通,导致在NMOS晶体管在关态的时候就存在较大的泄漏电流。本发明的抗总剂量辐照工艺结构针对二氧化硅中正电荷能在硅材料中感应产生负电荷的特性,在常规浅槽隔离结构中增加一层硅材料牺牲层,将浅槽隔离结构中的二氧化硅里面的大量固定正电荷的电场限制在这一层牺牲层上面,二氧化硅中正电荷在硅材料牺牲层中产生的大量固定负电荷的存在大大减弱了浅槽隔离结构中二氧化硅对体硅衬底的反型作用,并增大了浅槽隔离结构中大量固定正电荷与衬底之间的距离,而与衬底相接的一薄层二氧化硅材料(即上述第一部分)因为很薄(比如10纳米至20纳米),里面产生的固定正电荷的量非常少,对衬底的影响可以忽略。这一结构设计可以起到抑制甚至抵消沟槽填充材料内固定正电荷对硅衬底中载流子的镜像感生作用,抑制硅衬底的载流子反型,使得寄生晶体管的导通载流子大幅度减少甚至降低为零,从而大幅度降低NMOS器件的关态泄漏电流,使集成电路的抗辐照性能得到较大幅度的提升。It can be seen from Figure 1 and Figure 2 that in the conventional shallow trench isolation process structure, due to the existence of trench filling materials, a large amount of fixed positive charges generated in the trench by total dose irradiation will be induced in the silicon substrate. A large number of reverse carriers, that is, a large number of electrons, are mirrored by the bio-image, and these electrons can be turned on when the source and drain are biased, resulting in a large leakage current when the NMOS transistor is in the off state. The anti-total dose irradiation process structure of the present invention aims at the characteristics that positive charges in silicon dioxide can induce negative charges in silicon materials, and a sacrificial layer of silicon material is added to the conventional shallow trench isolation structure, and the shallow trench isolation structure The electric field of a large number of fixed positive charges in silicon dioxide is limited on this layer of sacrificial layer, and the existence of a large number of fixed negative charges generated by positive charges in silicon dioxide in the sacrificial layer of silicon material greatly weakens the resistance of silicon dioxide in the shallow trench isolation structure. The inverse effect on the bulk silicon substrate, and increases the distance between a large number of fixed positive charges in the shallow trench isolation structure and the substrate, and a thin layer of silicon dioxide material that is in contact with the substrate (ie the first part above) ) Because it is very thin (for example, 10 nanometers to 20 nanometers), the amount of fixed positive charges generated inside is very small, and the impact on the substrate can be ignored. This structural design can suppress or even counteract the image induction effect of fixed positive charges in the trench filling material on the carriers in the silicon substrate, suppress the carrier inversion of the silicon substrate, and make the conduction of the parasitic transistor. The flow rate is greatly reduced or even reduced to zero, thereby greatly reducing the off-state leakage current of the NMOS device, and greatly improving the radiation resistance performance of the integrated circuit.
除此之外,本发明的抗总剂量辐照工艺结构的另一特点是所采用的P型掺杂的硅工艺材料具有与传统的CMOS工艺完全兼容的特点,并保留了传统的浅槽隔离工艺结构在集成电路隔离方面具有的所有技术优势,制造工艺步骤非常简单。In addition, another feature of the anti-total dose irradiation process structure of the present invention is that the P-type doped silicon process material used is fully compatible with the traditional CMOS process, and retains the traditional shallow trench isolation The process structure has all the technical advantages in the isolation of integrated circuits, and the manufacturing process steps are very simple.
和现有技术相比,本发明所提出的能大幅度降低集成电路NMOS器件总剂量辐照后关态泄漏电流的隔离技术,可以大大增强集成电路的抗总剂量辐照性能,对于减少总剂量辐照下集成电路的功耗和增强集成电路的可靠性具有重大意义,在集成电路抗总剂量辐照加固技术应用中,有着明显的优势和广泛的应用前景。Compared with the prior art, the isolation technology proposed by the present invention can greatly reduce the off-state leakage current after the total dose of the integrated circuit NMOS device is irradiated, and can greatly enhance the anti-total dose radiation performance of the integrated circuit, which is helpful for reducing the total dose The power consumption of integrated circuits under irradiation and the enhancement of reliability of integrated circuits are of great significance. In the application of integrated circuit anti-total dose radiation hardening technology, it has obvious advantages and broad application prospects.
附图说明 Description of drawings
图1显示常规浅槽隔离技术和本发明集成电路在沟槽与衬底之间的界面结构差异,图1a表示常规技术,图1b表示本发明技术;Fig. 1 shows the interface structure difference between the conventional shallow trench isolation technology and the integrated circuit of the present invention between the trench and the substrate, Fig. 1a represents the conventional technology, and Fig. 1b represents the technology of the present invention;
图2显示了常规浅槽隔离工艺结构和本发明抗总剂量辐照工艺结构经过总剂量辐照后在衬底中产生反型载流子浓度的对比;Fig. 2 shows the comparison of the inversion carrier concentration in the substrate after the conventional shallow trench isolation process structure and the anti-total dose irradiation process structure of the present invention are subjected to total dose irradiation;
图3-8显示实施例制备集成电路的各个步骤。Figures 3-8 show various steps in the fabrication of integrated circuits in the embodiment.
具体实施方式 Detailed ways
下面通过一个具体的制备实施例结合附图对本发明作进一步描述。The present invention will be further described below through a specific preparation example in conjunction with the accompanying drawings.
本实施例制备根据本发明的抗NMOS器件总剂量辐照的集成电路,主要包括如下步骤:In this embodiment, the integrated circuit prepared according to the total dose irradiation of NMOS devices according to the present invention mainly includes the following steps:
1)二氧化硅和氮化硅的形成。如图3所示,在硅衬底1上热氧化生长一层厚度大约为100埃米至200埃米的二氧化硅作为氮化硅与硅衬底之间的应力缓冲层2,然后再用低压化学气相淀积(LPCVD)方法淀积一层1000埃米至1500埃米氮化硅,作为阻挡层3。1) Formation of silicon dioxide and silicon nitride. As shown in Figure 3, a layer of silicon dioxide with a thickness of about 100 angstroms to 200 angstroms is grown by thermal oxidation on the
2)沟壑光刻和刻蚀。如图4所示,在用光刻版光刻定义出所示图形后,用反应离子刻蚀(RIE)方法在MOS器件之间刻蚀梯形沟槽4,刻蚀气体可以是C12,HBr,和O2等,槽宽约为100至250纳米,槽深约为300纳米至500纳米,梯形槽的正梯形边的倾斜角度约为75°~89°。2) Trench lithography and etching. As shown in Figure 4, after the pattern shown is defined by photolithography, reactive ion etching (RIE) is used to etch
3)第一次淀积二氧化硅材料。如图5所示,用高密度等离子体CVD(HDPCVD)方法淀积第一个二氧化硅层5至步骤2所刻蚀的沟槽4中。刻蚀与淀积的比例即所谓的Etch/Depo比例,通常保持在0.14~0.33之间。淀积的厚度大约为10纳米至20纳米。3) Deposit silicon dioxide material for the first time. As shown in FIG. 5 , a first
4)淀积牺牲层材料。如图6所示,用高密度等离子体CVD(HDPCVD)的方法淀积牺牲层材料P型硅层6至步骤2所刻蚀的沟槽4中,该P型硅层用硼、铝、镓、铟或铊等第三主族元素掺杂,掺杂浓度在5×1016-1×1018/cm3范围内。刻蚀与淀积的比例即所谓的Etch/Depo比例,通常保持在0.14~0.33之间。淀积的厚度大约为10纳米至80纳米。4) Deposit the sacrificial layer material. As shown in Figure 6, use the high-density plasma CVD (HDPCVD) method to deposit the p-type silicon layer 6 of the sacrificial layer material in the
5)第二次淀积二氧化硅材料。如图7所示,用高密度等离子体CVD(HDPCVD)方法淀积第二个二氧化硅层7至步骤2所刻蚀的沟槽4中。刻蚀与淀积的比例即所谓的Etch/Depo比例,通常保持在0.14~0.33之间。5) Deposit silicon dioxide material for the second time. As shown in FIG. 7 , a second
6)去除阻挡层3以上淀积的所有材料以及应力缓冲层。如图8所示,用化学机械抛光(CMP),浓磷酸煮,漂洗等方法去除各种淀积材料和应力缓冲层材料,得到最终的隔离结构。6) All materials deposited above the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910238271XA CN101719497B (en) | 2009-11-24 | 2009-11-24 | New type integrated circuit for resisting full-scale irradiation of NMOS component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910238271XA CN101719497B (en) | 2009-11-24 | 2009-11-24 | New type integrated circuit for resisting full-scale irradiation of NMOS component |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101719497A CN101719497A (en) | 2010-06-02 |
CN101719497B true CN101719497B (en) | 2012-01-18 |
Family
ID=42434042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910238271XA Expired - Fee Related CN101719497B (en) | 2009-11-24 | 2009-11-24 | New type integrated circuit for resisting full-scale irradiation of NMOS component |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101719497B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103066106A (en) * | 2012-12-31 | 2013-04-24 | 上海集成电路研发中心有限公司 | Transistor isolation structure and manufacture method thereof |
CN109449208B (en) * | 2018-10-30 | 2021-06-04 | 中国电子科技集团公司第五十四研究所 | Anti-irradiation multi-gate device and preparation method thereof |
CN113270423B (en) * | 2021-05-08 | 2023-06-23 | 电子科技大学 | A kind of anti-radiation SOI device and manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6355555B1 (en) * | 2000-01-28 | 2002-03-12 | Advanced Micro Devices, Inc. | Method of fabricating copper-based semiconductor devices using a sacrificial dielectric layer |
CN101471291A (en) * | 2007-12-24 | 2009-07-01 | 东部高科股份有限公司 | Semiconductor device and method for manufacturing the device |
-
2009
- 2009-11-24 CN CN200910238271XA patent/CN101719497B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6355555B1 (en) * | 2000-01-28 | 2002-03-12 | Advanced Micro Devices, Inc. | Method of fabricating copper-based semiconductor devices using a sacrificial dielectric layer |
CN101471291A (en) * | 2007-12-24 | 2009-07-01 | 东部高科股份有限公司 | Semiconductor device and method for manufacturing the device |
Also Published As
Publication number | Publication date |
---|---|
CN101719497A (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8643108B2 (en) | Buffered finFET device | |
CN102903736B (en) | Diode and manufacturing method thereof | |
CN101707210A (en) | Anti-radiation field effect transistor, CMOS integrated circuit and preparation thereof | |
CN101777499B (en) | A method for preparing tunneling field-effect transistors based on planar process self-alignment | |
WO2014026497A1 (en) | Anti-radiation complementary metal oxide semiconductor (cmos) device and preparation method thereof | |
CN104752513B (en) | A kind of method of the redundancy doping Flouride-resistani acid phesphatase metal-oxide-semiconductor field effect transistor prepared based on 65nm techniques | |
CN102479738B (en) | Trench isolation structure and forming method thereof | |
CN106257633A (en) | There is the semiconductor structure that junction leakage reduces | |
CN101719497B (en) | New type integrated circuit for resisting full-scale irradiation of NMOS component | |
CN108122779A (en) | A kind of metal gate semiconductor structure and preparation method thereof | |
CN107871706A (en) | Shallow trench isolation structure and fabrication method thereof | |
CN101170074B (en) | A method for improving ultra-deep sub-micro MOSFET radiation-resisting performance | |
CN102983097B (en) | Method for producing metal plug for metal gate | |
CN103022139B (en) | Semiconductor structure with insulating buried layer and preparation method thereof | |
CN101661938B (en) | A New CMOS Integrated Circuit Against Total Dose Irradiation | |
CN105655385B (en) | The manufacturing method of groove-shaped super-junction device | |
US20140054725A1 (en) | Transistor device and fabrication method | |
CN101859782B (en) | Total dose irradiation resistant SOI device and method of manufacturing the same | |
CN103367227B (en) | Semiconductor device manufacturing method | |
CN101752376A (en) | Novel integrated circuit preventing total dose radiation | |
CN1314089C (en) | Method for preparing field effect transistor | |
CN110379705A (en) | The manufacturing method of level 0 interlayer film | |
WO2023108784A1 (en) | Semiconductor device and method for manufacturing same | |
CN101667578B (en) | Novel integrated circuit resisting NMOS element total dose radiation | |
CN101266972A (en) | Method for Improving MOSFET Anti-Single Event Radiation and a MOSFET Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: BEIJING UNIV. Effective date: 20130529 Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING Free format text: FORMER OWNER: BEIJING UNIV. Effective date: 20130529 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 100871 HAIDIAN, BEIJING TO: 100176 DAXING, BEIJING |
|
TR01 | Transfer of patent right |
Effective date of registration: 20130529 Address after: 100176 No. 18, Wenchang Avenue, Beijing economic and Technological Development Zone Patentee after: Semiconductor Manufacturing International (Beijing) Corporation Patentee after: Peking University Address before: 100871 Haidian District the Summer Palace Road,, No. 5, Peking University Patentee before: Peking University |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120118 Termination date: 20191124 |