[go: up one dir, main page]

CN101718427B - Control system of main steam pressure of large boiler - Google Patents

Control system of main steam pressure of large boiler Download PDF

Info

Publication number
CN101718427B
CN101718427B CN2009102496265A CN200910249626A CN101718427B CN 101718427 B CN101718427 B CN 101718427B CN 2009102496265 A CN2009102496265 A CN 2009102496265A CN 200910249626 A CN200910249626 A CN 200910249626A CN 101718427 B CN101718427 B CN 101718427B
Authority
CN
China
Prior art keywords
module
input terminal
terminal
boiler
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009102496265A
Other languages
Chinese (zh)
Other versions
CN101718427A (en
Inventor
张丽香
张缠保
段秋刚
倪子俊
冯爱香
高飞
杜艳生
杨虹
马小军
刘艳文
郝丽花
陈祖斌
温武
贾峰生
张屹峰
索思远
张志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd
Original Assignee
Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd filed Critical Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd
Priority to CN2009102496265A priority Critical patent/CN101718427B/en
Publication of CN101718427A publication Critical patent/CN101718427A/en
Application granted granted Critical
Publication of CN101718427B publication Critical patent/CN101718427B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种大型锅炉主蒸汽压力的控制系统,属电站锅炉的电路的自动控制系统,解决了大型锅炉的主蒸汽压力的动态跟踪和稳定控制的技术问题。包括PID模块、锅炉机组、A/D装换器、D/A转换器和锅炉的主蒸汽压力传感器,采用集散控制系统中的函数模块、微分模块、乘法模块、高值监视模块、低植监视模块和模拟量切换模块塔建成三维实时在线优化器,介入锅炉已有的PID闭环控制系统中,构成一个独立的动态跟踪和稳定控制的闭环控制系统,解决了对大型锅炉的主蒸汽压力的动态跟踪和稳定控制的技术问题,可提高锅炉的热经济性指标并达到节能减排的目的。

Figure 200910249626

The invention discloses a control system for the main steam pressure of a large boiler, which belongs to the automatic control system of a power station boiler circuit, and solves the technical problem of dynamic tracking and stable control of the main steam pressure of a large boiler. Including PID module, boiler unit, A/D changer, D/A converter and main steam pressure sensor of the boiler, using the function module, differential module, multiplication module, high value monitoring module and low plant monitoring in the distributed control system Module and analog switching module tower built a three-dimensional real-time online optimizer, intervening in the existing PID closed-loop control system of the boiler, forming an independent closed-loop control system of dynamic tracking and stable control, which solves the dynamic problem of the main steam pressure of large boilers The technical problem of tracking and stable control can improve the thermal economic index of the boiler and achieve the purpose of energy saving and emission reduction.

Figure 200910249626

Description

一种大型锅炉主蒸汽压力的控制系统 A Control System of Main Steam Pressure of Large Boiler

技术领域technical field

本发明涉及一种自动控制系统,特别涉及一种大型电站锅炉的PID自动控制系统。The invention relates to an automatic control system, in particular to a PID automatic control system of a large-scale utility boiler.

背景技术Background technique

现有的大型电站锅炉主蒸汽压力的控制基本采用固定参数的PID自动控制系统来完成。随着锅炉负荷的变化和其他干扰因素的影响,大型锅炉的主蒸汽压力动态特性具有很大差异,由于固定参数的PID自动控制系统不能适应被控对象动态特性的大范围变化,造成大型锅炉主蒸汽压力的控制性能下降,甚至达不到控制指标的要求,从而直接影响锅炉的稳定及经济运行。The control of the main steam pressure of the existing large-scale power plant boiler is basically completed by the PID automatic control system with fixed parameters. With the change of boiler load and the influence of other disturbance factors, the dynamic characteristics of the main steam pressure of large boilers are very different. Since the PID automatic control system with fixed parameters cannot adapt to the large-scale changes in the dynamic characteristics of the controlled object, resulting in large boiler main The control performance of the steam pressure decreases, and even fails to meet the requirements of the control index, which directly affects the stable and economical operation of the boiler.

发明内容Contents of the invention

本发明提供的一种大型锅炉主蒸汽压力的控制系统可以根据主蒸汽压力动态特性的变化,及时调整PID参数,解决了对大型锅炉的主蒸汽压力的动态跟综和稳定控制的技术问题。The control system of the main steam pressure of a large boiler provided by the invention can adjust the PID parameters in time according to the change of the dynamic characteristics of the main steam pressure, and solves the technical problem of dynamic follow-up and stable control of the main steam pressure of the large boiler.

本发明是通过以下方案解决以上问题的:The present invention solves the above problems through the following solutions:

一种大型锅炉主蒸汽压力的控制系统,包括PID模块、锅炉机组、A/D转换器、D/A转换器和锅炉的主蒸汽压力传感器,所述锅炉机组发电功率指令P0接入A/D转换器的输入端i1,所述锅炉的主蒸汽压力传感器的输出端与所述的A/D转换器的输入端i2相连,所述的A/D转换器的输出端o2与减法模块的负输入端连接在一起,所述的A/D转换器的输出端o1与第一函数模块f0(x)的输入端连接在一起,第一函数模块f0(x)的输出端与所述的减法模块的正输入端连接在一起,在所述的减法模块的输出端得到了主蒸汽压力pT与其设定值p0之间的偏差E,该偏差E分别与高值监视器8的输入端和低值监视器9的输入端连接在一起,高值监视器8的输出端分别与第一模拟量开关模块1的控制端s和第三模拟量开关模块3的控制端s连接在一起,低值监视器9的输出端分别与第二模拟量开关模块2的控制端s和第四模拟量开关模块4的控制端s连接在一起;主蒸汽压力pT与其设定值p0之间的偏差E同时还经过一微分模块得到偏差E的变化速度Ec,该偏差E的变化速度Ec分别输入到第十函数模块f22(x)的输入端、第九函数模块f23(x)的输入端、第八函数模块f24(x)的输入端、第七函数模块f12(x)的输入端、第六函数模块f13(x)的输入端、第五函数模块f14(x)的输入端,第六函数模块f13(x)的输出端与第一模拟量开关模块1的输入端i1相连接,第七函数模块f12(x)的输出端与第一模拟量开关模块1的输入端i2相连接,第一模拟量开关模块1的输出端o与第二模拟量开关模块2的输入端i2相连接,第五函数模块f14(x)的输出端与第二模拟量开关模块2的输入端i1相连接,经模数转换后的锅炉负荷指令P0分别连接到第二函数模块f11(x)的输入端、第三函数模块f21(x)的输入端、第四函数模块f31(x)的输入端,第二函数模块f11(x)的输出端与第一乘法模块的一输入端连接在一起,第二模拟量开关模块2的输出端与第一乘法模块5的另一输入端连接在一起,第一乘法模块5的输出端与锅炉自动控制系统中的PID模块的比例带调节参数δ的输入端连接在一起;第九函数模块f23(x)的输出端与第三模拟量开关模块3的输入端i1相连接,第十函数模块f22(x)的输入端与第三模拟量开关模块3的输入端i2相连接,第三模拟量开关模块3的输出端o与第四模拟量开关模块4的输入端i2相连接,第八函数模块f24(x)的输出端与第四模拟量开关模块4输入端i1连接在一起,第四模拟量开关模块4输出端与第二乘法模块6的一个输入端连接在一起,第二乘法模块6的另一个输入端与第三函数模块f21(x)的输出端连接在一起,第二乘法模块6的输出端与锅炉自动控制系统中的PID模块的积分时间调节参数Ti的输入端连接在一起;第四模拟量开关模块4输出端同时与第十一函数模块f32(x)的输入端连接在一起,第十一函数模块f32(x)的输出端与第三乘法模块7的输入端连接在一起,第三乘法模块7的另一输入端与第四函数模块f31(x)的输出端连接在一起,第三乘法模块7的输出端与锅炉自动控制系统中的PID模块的微分时间调节参数Td的输入端连接在一起。A control system for the main steam pressure of a large-scale boiler, including a PID module, a boiler unit, an A/D converter, a D/A converter, and a main steam pressure sensor of the boiler. The power generation command P 0 of the boiler unit is connected to the A/ The input terminal i 1 of the D converter, the output terminal of the main steam pressure sensor of the boiler is connected with the input terminal i 2 of the A/D converter, and the output terminal o 2 of the A/D converter is connected with The negative input terminals of the subtraction module are connected together, the output terminal o1 of the A/D converter is connected together with the input terminal of the first function module f 0 (x), and the first function module f 0 (x) The output end is connected with the positive input end of the subtraction module, and the deviation E between the main steam pressure p T and its set value p 0 is obtained at the output end of the subtraction module, and the deviation E is respectively related to the high The input end of the value monitor 8 and the input end of the low value monitor 9 are connected together, and the output end of the high value monitor 8 is respectively connected with the control terminal s of the first analog switch module 1 and the third analog switch module 3 The control terminals s are connected together, and the output terminals of the low value monitor 9 are respectively connected with the control terminal s of the second analog switch module 2 and the control terminal s of the fourth analog switch module 4; the main steam pressure p T is connected with The deviation E between the set values p 0 also passes through a differential module to obtain the change speed E c of the deviation E, which is respectively input to the input terminal of the tenth function module f 22 (x), the first The input end of the ninth function module f 23 (x), the input end of the eighth function module f 24 (x), the input end of the seventh function module f 12 (x), the input end of the sixth function module f 13 (x) , the input terminal of the fifth function module f 14 (x), the output terminal of the sixth function module f 13 (x) is connected to the input terminal i 1 of the first analog switch module 1, and the seventh function module f 12 (x ) is connected to the input terminal i2 of the first analog switch module 1, the output terminal o of the first analog switch module 1 is connected to the input terminal i2 of the second analog switch module 2 , and the fifth function The output terminal of the module f 14 (x) is connected to the input terminal i 1 of the second analog switch module 2, and the boiler load command P 0 after analog-to-digital conversion is respectively connected to the input of the second function module f 11 (x) terminal, the input terminal of the third function module f 21 (x), the input terminal of the fourth function module f 31 (x), the output terminal of the second function module f 11 (x) is connected to an input terminal of the first multiplication module Together, the output end of the second analog switch module 2 is connected with the other input end of the first multiplication module 5, and the output end of the first multiplication module 5 is connected with the proportional band adjustment parameter of the PID module in the boiler automatic control system The input terminals of δ are connected together; the output terminal of the ninth function module f 23 (x) is connected with the input terminal i 1 of the third analog switch module 3, and the input terminal of the tenth function module f 22 (x) is connected with the input terminal of the third analog switch module 3 Three analog switches The input terminal i2 of module 3 is connected, the output terminal o of the third analog quantity switch module 3 is connected with the input terminal i2 of the fourth analog quantity switch module 4, and the output terminal of the eighth function module f24 (x) is connected with The input terminal i1 of the fourth analog switch module 4 is connected together, the output terminal of the fourth analog switch module 4 is connected with an input terminal of the second multiplication module 6, and the other input terminal of the second multiplication module 6 is connected with the first input terminal of the second multiplication module 6. The output terminals of the three function modules f 21 (x) are connected together, and the output terminals of the second multiplication module 6 are connected together with the input terminals of the integral time adjustment parameter T i of the PID module in the boiler automatic control system; the fourth analog quantity The output terminal of the switch module 4 is connected together with the input terminal of the eleventh function module f 32 (x), and the output terminal of the eleventh function module f 32 (x) is connected together with the input terminal of the third multiplication module 7, The other input end of the third multiplication module 7 is connected with the output end of the fourth function module f 31 (x), and the output end of the third multiplication module 7 is connected with the differential time adjustment parameter T of the PID module in the boiler automatic control system The inputs of d are connected together.

第一乘法模块5的输出端与锅炉自动控制系统中的PID模块的比例带调节参数δ的输入端之间连接有乘法模块,第二乘法模块6的输出端与锅炉自动控制系统中的PID模块的积分时间调节参数Ti的输入端之间连接有乘法模块,第三乘法模块7的输出端与锅炉自动控制系统中的PID模块的微分时间调节参数Td的输入端之间连接有乘法模块。这些乘法模块分别与原固定参数PID调节模块的比例带的固定值δ0、积分时间的固定值Ti0;微分时间的固定值Td0相乘。A multiplication module is connected between the output terminal of the first multiplication module 5 and the input terminal of the proportional band adjustment parameter δ of the PID module in the boiler automatic control system, and the output terminal of the second multiplication module 6 is connected with the PID module in the boiler automatic control system A multiplication module is connected between the input terminals of the integral time adjustment parameter T i , and a multiplication module is connected between the output end of the third multiplication module 7 and the input end of the differential time adjustment parameter T d of the PID module in the boiler automatic control system . These multiplication modules are respectively multiplied with the fixed value δ 0 of the proportional band of the original fixed parameter PID adjustment module, the fixed value T i0 of the integral time, and the fixed value T d0 of the differential time.

本发明解决了对大型锅炉的主蒸汽压力的动态跟综和稳定控制的技术问题,可提高锅炉的热经济性指标并达到节能减排的目的。The invention solves the technical problem of dynamic follow-up and stable control of the main steam pressure of a large boiler, can improve the thermal economy index of the boiler and achieve the purpose of energy saving and emission reduction.

附图说明:Description of drawings:

图1是本发明电路结构示意图Fig. 1 is a schematic diagram of the circuit structure of the present invention

图2是三维实时在线优化器电路结构示意图Figure 2 is a schematic diagram of the circuit structure of a three-dimensional real-time online optimizer

图3是三维实时在线优化器中所用模块的特性及参数一览表Figure 3 is a list of the characteristics and parameters of the modules used in the 3D real-time online optimizer

具体实施方式Detailed ways

首先将第一到第十一的函数模块按照图3所示的列表进行函数模块特性设定。Firstly, set the function module characteristics of the first to eleventh function modules according to the list shown in FIG. 3 .

一种大型锅炉主蒸汽压力的控制系统,包括PID模块、锅炉机组、A/D转换器、D/A转换器和锅炉的主蒸汽压力传感器,所述锅炉机组发电功率指令P0接入A/D转换器的输入端i1,所述锅炉的主蒸汽压力传感器的模拟输出端与所述的A/D转换器的输入端i2相连,所述的A/D转换器的输出端o2与减法模块的负输入端连接在一起,所述的A/D转换器的输出端o1与第一函数模块f0(x)的输入端连接在一起,第一函数模块f0(x)的输出端与所述的减法模块的正输入端连接在一起,在所述的减法模块的输出端得到了主蒸汽压力pT与其设定值p0之间的偏差E,该偏差E分别与高值监视器8的输入端和低值监视器9的输入端连接在一起,高值监视器8的输出端分别与第一模拟量开关模块1的控制端s和第三模拟量开关模块3的控制端s连接在一起,低值监视器9的输出端分别与第二模拟量开关模块2的控制端s和第四模拟量开关模块4的控制端s连接在一起;主蒸汽压力pT与其设定值p0之间的偏差E同时还经过一微分模块得到偏差E的变化速度Ec,该偏差E的变化速度Ec分别输入到第十函数模块f22(x)的输入端、第九函数模块f23(x)的输入端、f24(x)函数模块的输入端、第七函数模块f12(x)的输入端;第六函数模块f13(x)的输入端、第五函数模块f14(x)的输入端,第六函数模块f13(x)的输出端与第一模拟量开关模块1的输入端i1相连接,第七函数模块f12(x)的输出端与第一模拟量开关模块1的输入端i2相连接,第一模拟量开关模块1的输出端o与第二模拟量开关模块2的输入端i2相连接,第五函数模块f14(x)的输出端与第二模拟量开关模块2的输入端i1相连接,经模数转换后的锅炉机组发电功率指令P0分别输入到第二函数模块f11(x)的输入端、第三函数模块f21(x)的输入端、第四函数模块f31(x)的输入端,第二函数模块f11(x)的输出端与第一乘法模块5的一输入端连接在一起,第二模拟量开关模块2的输出端与第一乘法模块5的另一输入端连接在一起,第一乘法模块5的输出端与锅炉自动控制系统中的PID模块的比例带调节参数δ的输入端连接在一起;第九函数模块f23(x)的输出端与第三模拟量开关模块3的输入端i1相连接,第十函数模块f22(x)的输入端与第三模拟量开关模块3的输入端i2相连接,第三模拟量开关模块3的输出端o与第四模拟量开关模块4的输入端i2相连接,第八函数模块f24(x)的输出端与第四模拟量开关模块4输入端i1连接在一起,第四模拟量开关模块4输出端与第二乘法模块6的一个输入端连接在一起,第二乘法模块6的另一个输入端与第三函数模块f21(x)的输出端连接在一起,第二乘法模块6的输出端与锅炉自动控制系统中的PID模块的积分时间调节参数Ti的输入端连接在一起;第四模拟量开关模块4输出端同时与第十一函数模块f32(x)的输入端连接在一起,第十一函数模块f32(x)的输出端与第三乘法模块7的输入端连接在一起,第三乘法模块7的另一输入端与第四函数模块f31(x)的输出端连接在一起,第三乘法模块7的输出端与锅炉自动控制系统中的PID模块的微分时间调节参数Td的输入端连接在一起。A control system for the main steam pressure of a large-scale boiler, including a PID module, a boiler unit, an A/D converter, a D/A converter, and a main steam pressure sensor of the boiler. The power generation command P 0 of the boiler unit is connected to the A/ The input terminal i 1 of the D converter, the analog output terminal of the main steam pressure sensor of the boiler is connected with the input terminal i 2 of the A/D converter, and the output terminal o 2 of the A/D converter It is connected together with the negative input terminal of the subtraction module, and the output terminal o1 of the A/D converter is connected together with the input terminal of the first function module f 0 (x), and the first function module f 0 (x) The output end of the subtraction module is connected together with the positive input end of the subtraction module, and the deviation E between the main steam pressure p T and its set value p 0 is obtained at the output end of the subtraction module, and the deviation E is respectively related to The input end of the high-value monitor 8 and the input end of the low-value monitor 9 are connected together, and the output end of the high-value monitor 8 is respectively connected with the control terminal s of the first analog switch module 1 and the third analog switch module 3 The control terminals s of the low value monitor 9 are connected together with the control terminal s of the second analog switch module 2 and the control terminal s of the fourth analog switch module 4 respectively; the main steam pressure p T The deviation E between its set value p 0 also passes through a differential module to obtain the change speed Ec of the deviation E, which is respectively input to the input terminals of the tenth function module f 22 (x) , The input terminal of the ninth function module f 23 (x), the input terminal of the f 24 (x) function module, the input terminal of the seventh function module f 12 (x); the input terminal of the sixth function module f 13 (x), The input terminal of the fifth function module f 14 (x), the output terminal of the sixth function module f 13 (x) is connected to the input terminal i 1 of the first analog switch module 1, and the seventh function module f 12 (x) The output terminal of the first analog quantity switch module 1 is connected to the input terminal i2 , the output terminal o of the first analog quantity switch module 1 is connected to the input terminal i2 of the second analog quantity switch module 2 , and the fifth function module The output end of f 14 (x) is connected to the input end i 1 of the second analog switch module 2, and the power command P 0 of the boiler unit after analog-to-digital conversion is respectively input to the second function module f 11 (x) Input end, the input end of the third function module f 21 (x), the input end of the fourth function module f 31 (x), the output end of the second function module f 11 (x) and an input of the first multiplication module 5 The terminals are connected together, the output terminal of the second analog switch module 2 is connected with the other input terminal of the first multiplication module 5, the output terminal of the first multiplication module 5 is connected with the proportional band of the PID module in the boiler automatic control system The input terminals of the adjustment parameter δ are connected together; the output terminal of the ninth function module f 23 (x) is connected with the input terminal i 1 of the third analog switch module 3, and the input terminal of the tenth function module f 22 (x) with the third The input terminal i2 of the analog switch module 3 is connected, the output terminal o of the third analog switch module 3 is connected with the input terminal i2 of the fourth analog switch module 4, and the eighth function module f24 (x) The output terminal is connected together with the input terminal i1 of the fourth analog switch module 4, the output terminal of the fourth analog switch module 4 is connected together with an input terminal of the second multiplication module 6, and the other input terminal of the second multiplication module 6 terminal is connected together with the output terminal of the third function module f 21 (x), and the output terminal of the second multiplication module 6 is connected together with the input terminal of the integral time adjustment parameter T i of the PID module in the boiler automatic control system; The output terminals of the four analog switch modules 4 are simultaneously connected to the input terminals of the eleventh function module f 32 (x), and the output terminals of the eleventh function module f 32 (x) are connected to the input terminals of the third multiplication module 7 Together, the other input end of the third multiplication module 7 is connected with the output end of the fourth function module f 31 (x), and the output end of the third multiplication module 7 is connected with the differential time of the PID module in the boiler automatic control system The inputs of the adjustment parameter T d are connected together.

第一乘法模块5的输出端与锅炉自动控制系统中的PID模块的比例带调节参数δ的输入端之间连接有乘法模块,第二乘法模块6的输出端与锅炉自动控制系统中的PID模块的积分时间调节参数Ti的输入端之间连接有乘法模块,第三乘法模块7的输出端与锅炉自动控制系统中的PID模块的微分时间调节参数Td的输入端之间连接有乘法模块。这些乘法模块分别与原固定参数PID调节模块的比例带的固定值δ0、积分时间的固定值Ti0;微分时间的固定值Td0相乘。A multiplication module is connected between the output terminal of the first multiplication module 5 and the input terminal of the proportional band adjustment parameter δ of the PID module in the boiler automatic control system, and the output terminal of the second multiplication module 6 is connected with the PID module in the boiler automatic control system A multiplication module is connected between the input terminals of the integral time adjustment parameter T i , and a multiplication module is connected between the output end of the third multiplication module 7 and the input end of the differential time adjustment parameter T d of the PID module in the boiler automatic control system . These multiplication modules are respectively multiplied with the fixed value δ 0 of the proportional band of the original fixed parameter PID adjustment module, the fixed value T i0 of the integral time, and the fixed value T d0 of the differential time.

Claims (2)

1.一种大型锅炉主蒸汽压力的控制系统,包括PID模块、锅炉机组、A/D转换器、D/A转换器和锅炉的主蒸汽压力传感器,其特征在于:所述锅炉机组的发电功率指令P0接入A/D转换器的输入端i1,所述锅炉的主蒸汽压力传感器的模拟输出端与所述的A/D转换器的输入端i2相连,所述的A/D转换器的输出端o2与减法模块的负输入端连接在一起,所述的A/D转换器的输出端o1与第一函数模块f0(x)的输入端连接在一起,第一函数模块f0(x)的输出端与所述的减法模块的正输入端连接在一起,在所述的减法模块的输出端得到了主蒸汽压力pT与主蒸汽压力设定值p0之间的偏差E,该偏差E分别与高值监视器(8)的输入端和低值监视器(9)的输入端连接在一起,高值监视器(8)的输出端分别与第一模拟量开关模块(1)的控制端s和第三模拟量开关模块(3)的控制端s连接在一起,低值监视器(9)的输出端分别与第二模拟量开关模块(2)的控制端s和第四模拟量开关模块(4)的控制端s连接在一起;主蒸汽压力pT与其设定值p0之间的偏差E同时还经过一微分模块得到偏差E的变化速度Ec,该偏差E的变化速度Ec分别输入到第十函数模块f22(x)的输入端、第九函数模块f23(x)的输入端、第八函数模块f24(x)的输入端、第七函数模块f12(x)的输入端、第六函数模块f13(x)的输入端、第五函数模块f14(x)的输入端,第六函数模块f13(x)的输出端与第一模拟量开关模块(1)的输入端i1相连接,第七函数模块f12(x)的输出端与第一模拟量开关模块(1)的输入端i2相连接,第一模拟量开关模块(1)的输出端o与第二模拟量开关模块(2)的输入端i2相连接,第五函数模块f14(x)的输出端与第二模拟量开关模块(2)的输入端i1相连接,经模数转换后的锅炉机组发电功率指令P0分别输入到第二函数模块f11(x)的输入端、第三函数模块f21(x)的输入端、第四函数模块f31(x)的输入端,第二函数模块f11(x)的输出端与第一乘法模块(5)的一输入端连接在一起,第二模拟量开关模块(2)的输出端与第一乘法模块(5)的另一输入端连接在一起,第一乘法模块(5)的输出端与锅炉自动控制系统中的PID模块的比例带调节参数δ的输入端连接在一起;第九函数模块f23(x)的输出端与第三模拟量开关模块(3)的输入端i1相连接,第十函数模块f22(x)的输出端与第三模拟量开关模块(3)的输入端i2相连接,第三模拟量开关模块(3)的输出端o与第四模拟量开关模块(4)的输入端i1相连接,第八函数模块f24(x)的输出端与第四模拟量开关模块(4)输入端i2连接在一起,第四模拟量开关模块(4)输出端与第二乘法模块(6)的一个输入端连接在一起,第二乘法模块(6)的另一个输入端与第三函数模块f21(x)的输出端连接在一起,第二乘法模块(6)的输出端与锅炉自动控制系统中的PID模块的积分时间调节参数Ti的输入端连接在一起;第四模拟量开关模块(4)输出端同时与第十一函数模块f32(x)的输入端连接在一起,第十一函数模块f32(x)的输出端与第三乘法模块(7)的输入端连接在一起,第三乘法模块(7)的另一输入端与第四函数模块f31(x)的输出端连接在一起,第三乘法模块(7)的输出端与锅炉自动控制系统中的PID模块的微分时间调节参数Td的输入端连接在一起。1. A control system for large-scale boiler main steam pressure, comprising a main steam pressure sensor of a PID module, boiler unit, A/D converter, D/A converter and boiler, characterized in that: the generating power of said boiler unit The instruction P 0 is connected to the input terminal i 1 of the A/D converter, the analog output terminal of the main steam pressure sensor of the boiler is connected to the input terminal i 2 of the A/D converter, and the A/D The output terminal o2 of the converter is connected together with the negative input terminal of the subtraction module, the output terminal o1 of the A/D converter is connected together with the input terminal of the first function module f0 (x), and the first The output terminal of the function module f 0 (x) is connected with the positive input terminal of the subtraction module, and the difference between the main steam pressure p T and the main steam pressure set value p 0 is obtained at the output terminal of the subtraction module. The deviation E between, this deviation E is connected together with the input terminal of the high value monitor (8) and the input terminal of the low value monitor (9) respectively, the output terminal of the high value monitor (8) is respectively connected with the first simulation The control terminal s of the quantity switch module (1) and the control terminal s of the third analog quantity switch module (3) are connected together, and the output terminal of the low value monitor (9) is respectively connected with the second analog quantity switch module (2) The control terminal s and the control terminal s of the fourth analog switch module (4) are connected together; the deviation E between the main steam pressure p T and its set value p 0 is also passed through a differential module to obtain the change speed E of the deviation E c , the change speed E c of the deviation E is respectively input to the input terminal of the tenth function module f 22 (x), the input terminal of the ninth function module f 23 (x), and the input terminal of the eighth function module f 24 (x) terminal, the input terminal of the seventh function module f 12 (x), the input terminal of the sixth function module f 13 (x), the input terminal of the fifth function module f 14 (x), the sixth function module f 13 (x) The output terminal of the first analog quantity switch module (1) is connected to the input terminal i1 , and the output terminal of the seventh function module f12 (x) is connected to the input terminal i2 of the first analog quantity switch module (1) , the output terminal o of the first analog switch module (1) is connected to the input terminal i2 of the second analog switch module (2), and the output terminal of the fifth function module f 14 (x) is connected to the second analog switch module The input terminal i1 of the module (2) is connected to each other, and the power generation command P 0 of the boiler unit after the analog-to-digital conversion is respectively input to the input terminal of the second function module f 11 (x), and the third function module f 21 (x) The input end of the fourth function module f 31 (x), the output end of the second function module f 11 (x) is connected with an input end of the first multiplication module (5), and the second analog switch The output end of the module (2) is connected together with the other input end of the first multiplication module (5), and the output end of the first multiplication module (5) is connected with the proportional band adjustment parameter δ of the PID module in the boiler automatic control system. The input terminals are connected together; the ninth function module f 23 ( The output terminal of x) is connected to the input terminal i1 of the third analog switch module (3), and the output terminal of the tenth function module f22 (x) is connected to the input terminal i2 of the third analog switch module (3). The output terminal o of the third analog switch module (3) is connected with the input terminal i 1 of the fourth analog switch module (4), and the output terminal of the eighth function module f 24 (x) is connected with the fourth analog The input terminals i to 2 of the quantity switch module (4) are connected together, the output terminal of the fourth analog quantity switch module (4) is connected together with an input terminal of the second multiplication module (6), and the other of the second multiplication module (6) One input terminal is connected with the output terminal of the third function module f 21 (x), and the output terminal of the second multiplication module (6) is connected with the input terminal of the integral time adjustment parameter T i of the PID module in the boiler automatic control system together; the output terminal of the fourth analog switch module (4) is connected together with the input terminal of the eleventh function module f 32 (x) at the same time, and the output terminal of the eleventh function module f 32 (x) is connected with the third multiplication The input terminals of the module (7) are connected together, the other input terminal of the third multiplication module (7) is connected together with the output terminal of the fourth function module f 31 (x), and the output terminal of the third multiplication module (7) It is connected with the input end of the differential time adjustment parameter T d of the PID module in the boiler automatic control system. 2.根据权利要求1所述的大型锅炉主蒸汽压力的控制系统,其特征在于:第一乘法模块(5)的输出端与锅炉自动控制系统中的PID模块的比例带调节参数δ的输入端之间连接有乘法模块,第二乘法模块(6)的输出端与锅炉自动控制系统中的PID模块的积分时间调节参数Ti的输入端之间连接有乘法模块,第三乘法模块(7)的输出端与锅炉自动控制系统中的PID模块的微分时间调节参数Td的输入端之间连接有乘法模块。2. the control system of large boiler main steam pressure according to claim 1 is characterized in that: the input end of the output end of the first multiplication module (5) and the proportional band adjustment parameter δ of the PID module in the boiler automatic control system A multiplication module is connected between them, and a multiplication module is connected between the output terminal of the second multiplication module (6) and the input end of the integral time adjustment parameter T i of the PID module in the boiler automatic control system, and the third multiplication module (7) A multiplication module is connected between the output terminal of the boiler automatic control system and the input terminal of the differential time adjustment parameter T d of the PID module in the boiler automatic control system.
CN2009102496265A 2009-12-09 2009-12-09 Control system of main steam pressure of large boiler Active CN101718427B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102496265A CN101718427B (en) 2009-12-09 2009-12-09 Control system of main steam pressure of large boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102496265A CN101718427B (en) 2009-12-09 2009-12-09 Control system of main steam pressure of large boiler

Publications (2)

Publication Number Publication Date
CN101718427A CN101718427A (en) 2010-06-02
CN101718427B true CN101718427B (en) 2011-05-04

Family

ID=42433036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102496265A Active CN101718427B (en) 2009-12-09 2009-12-09 Control system of main steam pressure of large boiler

Country Status (1)

Country Link
CN (1) CN101718427B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588939A (en) * 2012-03-06 2012-07-18 山西省电力公司电力科学研究院 Main boiler control system for large thermal power generating unit
CN102607053A (en) * 2012-02-29 2012-07-25 东南大学 Intermittent control method for eliminating static deviation of main steam pressure of fossil fuel fired power unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563598B (en) * 2012-01-31 2013-12-11 山东电力研究院 Control optimizing method for master controller of supercritical unit boilers
CN103148347B (en) * 2013-03-18 2015-07-15 福建省文松彩印有限公司 Automatic steam pressure regulation system for using steamer platform
CN103791482B (en) * 2014-01-22 2015-06-03 国家电网公司 Thermal power generating unit hearth pressure segmentation control method
CN104296120A (en) * 2014-10-09 2015-01-21 阳城国际发电有限责任公司 Hearth pressure control method and hearth pressure control system
CN105805722A (en) * 2014-12-30 2016-07-27 华润电力(菏泽)有限公司 Boiler pressure monitoring method and system
CN106855714B (en) * 2015-12-09 2019-03-08 上海华林工业气体有限公司 A kind of device and method limiting PID controller output pulsation
CN111520700B (en) * 2020-04-03 2021-11-23 中国大唐集团科学技术研究院有限公司西北电力试验研究院 Differential calculation method based on real-time correction of boiler main steam pressure regulation deviation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607053A (en) * 2012-02-29 2012-07-25 东南大学 Intermittent control method for eliminating static deviation of main steam pressure of fossil fuel fired power unit
CN102607053B (en) * 2012-02-29 2014-07-09 东南大学 Intermittent control method for eliminating static deviation of main steam pressure of fossil fuel fired power unit
CN102588939A (en) * 2012-03-06 2012-07-18 山西省电力公司电力科学研究院 Main boiler control system for large thermal power generating unit

Also Published As

Publication number Publication date
CN101718427A (en) 2010-06-02

Similar Documents

Publication Publication Date Title
CN101718427B (en) Control system of main steam pressure of large boiler
CN103713613B (en) Method for achieving optimizing control of load of thermal power generating unit in PROPR mode
CN203224772U (en) Primary frequency modulation control system for 660MW supercritical units
CN104810851B (en) Load regulation speed dynamic regulating method and device under AGC mode of thermal power generating unit
CN103779862B (en) Monoblock machine is with the primary frequency modulation regulating system under stove mode and method
CN112688307B (en) AC/DC hybrid micro-grid controller and control method
CN102200272B (en) Main steam temperature control system for large boiler
CN104868773B (en) Single-phase grid-connected inverter control device based on Lyapunov function of states
CN105680473A (en) Physical fusion modeling method for general electromechanical transient information of photovoltaic power generation system
CN202132926U (en) A Control System of Main Steam Temperature of Large Boiler
CN102588011B (en) Steam engine main control system of large fossil power unit
CN107528349B (en) Thermal power generation unit gearshift adjustment control method and system based on new energy load
CN106681424B (en) A kind of solar energy power generating MPPT control systems and control method
CN104319771B (en) A kind of micro-capacitance sensor frequency H based on Mixed Sensitivity∞Control method
CN201582785U (en) Control system of large boiler main steam pressure
CN204668967U (en) A kind of wind energy turbine set participates in the control device of power grid"black-start"
CN103473618A (en) System and method for predicting short-term wind power of wind power plant
CN103453519A (en) Configuration design method of switching control system
CN204068247U (en) A Flexible DC Transmission Control System Based on ADRC Controller
CN105576712B (en) A kind of active power of wind power field On-Line Control Method based on adaptive pole configuration
CN204741287U (en) A device for dynamic adjustment of load regulation rate under AGC mode of thermal power unit
CN203223901U (en) Furnace Pressure Control System of a Large Boiler
CN105162176A (en) Wind farm output power control system
CN205068052U (en) Solar -energy photovoltaic power generation device
CN115912515A (en) Load power real-time control method considering voltage out-of-limit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ELECTRIC POWER SCIENCE INST., SHANXI PROV. POWER C

Effective date: 20120920

Owner name: STATE ELECTRIC NET CROP.

Free format text: FORMER OWNER: ELECTRIC POWER SCIENCE INST., SHANXI PROV. POWER CO.

Effective date: 20120920

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 030001 TAIYUAN, SHAANXI PROVINCE TO: 100031 DONGCHENG, BEIJING

TR01 Transfer of patent right

Effective date of registration: 20120920

Address after: 100031 West Chang'an Avenue, Beijing, No. 86

Patentee after: State Grid Corporation of China

Patentee after: Electric Power Research Institute of Shanxi Electric Power Company

Address before: 030001 Qingnian Road, Shanxi, No. 6,

Patentee before: Electric Power Research Institute of Shanxi Electric Power Company