[go: up one dir, main page]

CN101710619A - Electrode plate for lithium ion battery and manufacturing method thereof - Google Patents

Electrode plate for lithium ion battery and manufacturing method thereof Download PDF

Info

Publication number
CN101710619A
CN101710619A CN200910191894A CN200910191894A CN101710619A CN 101710619 A CN101710619 A CN 101710619A CN 200910191894 A CN200910191894 A CN 200910191894A CN 200910191894 A CN200910191894 A CN 200910191894A CN 101710619 A CN101710619 A CN 101710619A
Authority
CN
China
Prior art keywords
conductive agent
active material
binding agent
perhaps
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910191894A
Other languages
Chinese (zh)
Inventor
李新禄
杜坤
黄佳木
张育新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN200910191894A priority Critical patent/CN101710619A/en
Publication of CN101710619A publication Critical patent/CN101710619A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种锂离子电池的电极极片及其制作方法,具体涉及以多层石墨烯作为导电剂的锂离子电池电极极片及其制作方法。本发明的电极极片由正极或负极活性物质、导电剂和粘结剂组成;本发明的方法是用正极或负极活性物质、导电剂、粘结剂为原料,经搅拌分散后制得电极浆料,再经涂敷、干燥、压片而制成。本发明采用的导电剂具有分散性强、导电率高和填充效果好等优点,本发明方法简单,生产成本低,便于推广应用。本发明方法能够显著提高电极材料的电导率、电化学容量和倍率充放电能力,故本发明可广泛应用于制备锂离子电池的电极极片。An electrode pole piece of a lithium ion battery and a manufacturing method thereof, in particular to a lithium ion battery electrode pole piece using multilayer graphene as a conductive agent and a production method thereof. The electrode sheet of the present invention is composed of positive or negative active material, conductive agent and binder; the method of the present invention is to use positive or negative active material, conductive agent and binder as raw materials, and obtain electrode slurry after stirring and dispersing material, and then made by coating, drying, and tableting. The conductive agent adopted in the invention has the advantages of strong dispersibility, high conductivity, good filling effect, etc. The method of the invention is simple, the production cost is low, and it is convenient for popularization and application. The method of the invention can significantly improve the electrical conductivity, electrochemical capacity and rate charge-discharge capability of the electrode material, so the invention can be widely used in the preparation of electrode pole pieces of lithium-ion batteries.

Description

一种锂离子电池的电极极片及其制作方法 A kind of electrode pole sheet of lithium ion battery and manufacturing method thereof

技术领域technical field

本发明属于炭素材料和化学电源技术领域,具体涉及以多层石墨烯为导电剂的锂离子电池电极极片及其制作方法。The invention belongs to the technical field of carbon materials and chemical power sources, and in particular relates to lithium-ion battery electrode pole pieces using multilayer graphene as a conductive agent and a manufacturing method thereof.

背景技术Background technique

锂离子电池作为目前高比能量的一种新型绿色二次电池,在移动电话、笔记本电脑、摄像机等市场中均占据主角地位,已经成为小型民用电子产品的主要电源。随着高功率的锂离子电池组的研究开发,锂离子电池的应用向着电动汽车、宇航卫星、军事通讯、航空航海等领域迅速拓展。As a new type of green secondary battery with high specific energy, lithium-ion battery occupies a leading position in the market of mobile phones, notebook computers, cameras, etc., and has become the main power source of small civilian electronic products. With the research and development of high-power lithium-ion battery packs, the application of lithium-ion batteries is rapidly expanding to fields such as electric vehicles, space satellites, military communications, and aviation and navigation.

事实上,锂离子电池正极材料的导电性很差,其电导率在10-4-10-9S/cm之间。为增强正极材料的导电性,在正极的制作过程中需要掺加5-20wt.%的导电碳黑,目前国内外很多研究者将碳纳米管或碳纳米纤维用作锂离子电池的导电剂,现有锂离子电池电极材料及其制备方法,如2007年12月12日公开的公开号为CN 10108701 7A的“高功率大容量锂离子电池正极极片及其制作方法”专利,公开的正极极片的组成为正极材料、导电剂、粘结剂和集流体,其中正极材料、粘结剂和导电剂的重量百分数分别为75-95%,2-15%,1-15%,其正极材料为磷酸铁锂,或经改性后的磷酸铁锂,或者磷酸铁锂和钴酸锂或锰酸锂的混合物。其导电剂为碳纳米管、碳纤维、乙炔黑、超导碳黑、导电石墨中的一种或两种或两种以上混合物。其正极极片的制备方法步骤是:1、分散:将碳纳米管和碳纤维加入到去离子水或有机分散剂中进行超声分散,将粘结剂加入到溶剂进行搅拌分散;2、制备正极浆料;3、制作正极极片。该专利的主要缺点是:需要对碳纳米管和碳纤维进行专门的分散,利用超声分散和搅拌的方式很难保证碳纳米管的分散均匀性,而碳纳米管的分散均匀性直接会影响到锂离子电池的电化学容量,该发明方法步骤较多,导电剂的分散效果难以控制,不适于工业化生产。但是,多层石墨烯作为锂离子电池导电剂的研究目前在国内外的期刊和专利资料上尚未见到报导。In fact, the conductivity of the positive electrode material of lithium ion battery is very poor, and its conductivity is between 10 -4 -10 -9 S/cm. In order to enhance the conductivity of the positive electrode material, 5-20wt.% conductive carbon black needs to be added in the positive electrode production process. At present, many researchers at home and abroad use carbon nanotubes or carbon nanofibers as conductive agents for lithium-ion batteries. Existing lithium-ion battery electrode materials and preparation methods thereof, such as the patent "High-power and large-capacity lithium-ion battery positive electrode sheet and its manufacturing method" patent published on December 12, 2007 with the publication number CN 10108701 7A, the disclosed positive electrode The sheet is composed of positive electrode material, conductive agent, binder and current collector, wherein the weight percentages of positive electrode material, binder and conductive agent are respectively 75-95%, 2-15%, 1-15%, and the positive electrode material It is lithium iron phosphate, or modified lithium iron phosphate, or a mixture of lithium iron phosphate and lithium cobaltate or lithium manganate. The conductive agent is one or a mixture of two or more of carbon nanotubes, carbon fibers, acetylene black, superconducting carbon black, and conductive graphite. The steps of the preparation method of the positive electrode sheet are: 1. Dispersion: adding carbon nanotubes and carbon fibers to deionized water or an organic dispersant for ultrasonic dispersion, adding the binder to a solvent for stirring and dispersing; 2. Preparing the positive electrode slurry 3. Make the positive pole piece. The main disadvantages of this patent are: special dispersion of carbon nanotubes and carbon fibers is required, and it is difficult to ensure the uniformity of dispersion of carbon nanotubes by means of ultrasonic dispersion and stirring, and the uniformity of dispersion of carbon nanotubes will directly affect lithium For the electrochemical capacity of the ion battery, the method of the invention has many steps, and the dispersion effect of the conductive agent is difficult to control, so it is not suitable for industrialized production. However, the research on multilayer graphene as a conductive agent for lithium-ion batteries has not yet been reported in domestic and foreign journals and patent materials.

发明内容Contents of the invention

本发明的目的在于克服现有锂离子电池电极及其制作方法的不足之处,提供一种锂离子电池的电极极片及其制作方法,改变了导电剂与电极活性物质的导电接触方式,提高了电极活性材料的电化学容量,并且具有生产成本低、导电性强、填充效果好等优点。The object of the present invention is to overcome the deficiencies of the existing lithium ion battery electrodes and their manufacturing methods, provide a lithium ion battery electrode pole piece and its manufacturing method, change the conductive contact mode between the conductive agent and the electrode active material, improve The electrochemical capacity of the electrode active material is improved, and it has the advantages of low production cost, strong conductivity, and good filling effect.

实现本发明目的的技术方案是:一种锂离子电池的电极极片的组成及其质量百分数如下:The technical scheme that realizes the object of the present invention is: a kind of composition and mass percent thereof of the electrode pole piece of lithium-ion battery are as follows:

正极或负极活性物质                        (75~98)%Positive or negative active material (75~98)%

导电剂                                    (1~15)%Conductive agent (1~15)%

粘结剂                                    (1~10)%Binder (1~10)%

其中:所述正极活性物质为层状型化合物(其化学式为LiNi1-x-yCoxMyO2,式中的M为Al、Mg、Mn或Cr,0≤x≤1,0≤y≤1,且x+y≤1),或者尖晶石型化合物(其化学式为LiMn2O4),或者橄榄石型化合物(其化学式为LiFePO4),或者上述化合物经过晶格掺杂或表面碳包覆处理后的化合物;Wherein: the positive electrode active material is a layered compound (its chemical formula is LiNi 1-xy Co x M y O 2 , where M is Al, Mg, Mn or Cr, 0≤x≤1, 0≤y≤ 1, and x+y≤1), or a spinel-type compound (its chemical formula is LiMn 2 O 4 ), or an olivine-type compound (its chemical formula is LiFePO 4 ), or the above-mentioned compounds have undergone lattice doping or surface carbon Coated compound;

所述负极活性物质为炭材料、或者过渡金属氧化物。所述炭负极材料为天然石墨,或者人工石墨,或者沥青焦,或者碳纤维,或者无定形碳;所述过渡金属氧化物为LiTi2O4,或者Li4Ti5O12The negative electrode active material is carbon material or transition metal oxide. The carbon negative electrode material is natural graphite, or artificial graphite, or pitch coke, or carbon fiber, or amorphous carbon; the transition metal oxide is LiTi 2 O 4 , or Li 4 Ti 5 O 12 ;

所述导电剂为多层石墨烯、碳纳米管、碳黑中的1-3种,其中1种必须为多层石墨烯。其中多层石墨烯、碳纳米管和碳黑在混合物中的质量百分数分别为(30-100)%、(0-50)%、(0-50)%;The conductive agent is 1-3 of multilayer graphene, carbon nanotubes, and carbon black, one of which must be multilayer graphene. Wherein the mass percentages of multilayer graphene, carbon nanotubes and carbon black in the mixture are (30-100)%, (0-50)%, (0-50)% respectively;

所述粘结剂为聚四氟乙烯(PTFE)、或者聚偏二氟乙烯(PVDF)、或者丁苯乳胶(SBR)。The binder is polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (PVDF), or styrene-butadiene latex (SBR).

所用分散剂为去离子水、或者N-甲基吡咯烷酮。The dispersant used is deionized water or N-methylpyrrolidone.

一种锂离子电池电极极片的制作方法:采用正极或负极活性物质、导电剂、粘结剂为原料,经搅拌分散后制备出电极浆料,再经涂敷、干燥、压片后制得成品。具体步骤如下:A method for manufacturing lithium-ion battery electrode sheets: using positive or negative active materials, conductive agents, and binders as raw materials, stirring and dispersing to prepare electrode slurry, and then coating, drying, and tableting. finished product. Specific steps are as follows:

(1)备料(1) material preparation

按照正极或负极活性物质∶导电剂∶粘结剂的质量配比为(75-98)%∶(1-15)%∶(1-10)%的比例备齐原料。Raw materials are prepared according to the mass ratio of positive or negative active material: conductive agent: binder (75-98)%: (1-15)%: (1-10)%.

其中:正极活性物质为层状型化合物(其化学式为LiNi1-x-yCoxMyO2,式中的M为Al、Mg、Mn或Cr,0≤x≤1,0≤y≤1,且x+y≤1),或者尖晶石型化合物(其化学式为LiMn2O4),或者橄榄石型化合物(其化学式为LiFePO4),或者上述化合物经过晶格掺杂或表面碳包覆处理后的化合物;Among them: the positive electrode active material is a layered compound (its chemical formula is LiNi 1-xy Co x M y O 2 , where M is Al, Mg, Mn or Cr, 0≤x≤1, 0≤y≤1, and x+y≤1), or a spinel-type compound (its chemical formula is LiMn 2 O 4 ), or an olivine-type compound (its chemical formula is LiFePO 4 ), or the above-mentioned compounds are lattice doped or surface carbon coated Treated compounds;

负极活性物质为炭材料、或者过渡金属氧化物。所述炭负极材料为天然石墨,或者人工石墨,或者沥青焦,或者碳纤维,或者无定形碳;所述过渡金属氧化物为LiTi2O4,或者Li4Ti5O12The negative electrode active material is carbon material or transition metal oxide. The carbon negative electrode material is natural graphite, or artificial graphite, or pitch coke, or carbon fiber, or amorphous carbon; the transition metal oxide is LiTi 2 O 4 , or Li 4 Ti 5 O 12 ;

导电剂为多层石墨烯、碳纳米管、碳黑中的1-3种,其中1种必须为多层石墨烯。其中多层石墨烯、碳纳米管和碳黑在混合物中的质量百分数分别为30-100%、0-50%、0-50%;The conductive agent is 1-3 of multilayer graphene, carbon nanotubes, and carbon black, one of which must be multilayer graphene. Wherein the mass percentages of multilayer graphene, carbon nanotubes and carbon black in the mixture are 30-100%, 0-50%, and 0-50% respectively;

粘结剂为聚四氟乙烯(PTFE)、或者聚偏二氟乙烯(PVDF)、或者丁苯乳胶(SBR)。The binder is polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (PVDF), or styrene-butadiene latex (SBR).

(2)制备电极浆料(2) Preparation of electrode slurry

第(1)步完成后,按照第(1)步的导电剂质量(g)∶分散剂体积(ml)的比为1∶10-30的比例,将导电剂加入到分散剂中,持续搅拌直至导电剂完全分散,再将粘结剂加入到所得的悬浊液中,持续搅拌直至粘结剂完全溶解,然后将第(1)步备料的正极或者负极活性物质加入其混合溶液中,再添加分散剂,并且持续搅拌均匀,制成粘度为4000-12000Pa.s的正极或负极电极浆料;After step (1) is completed, add the conductive agent to the dispersant according to the ratio of the conductive agent mass (g) in the step (1): the volume of the dispersant (ml) is 1:10-30, and continue to stir Until the conductive agent is completely dispersed, then add the binder into the resulting suspension, continue to stir until the binder is completely dissolved, then add the positive electrode or negative active material prepared in step (1) into the mixed solution, and then Add a dispersant and keep stirring evenly to make a positive or negative electrode slurry with a viscosity of 4000-12000Pa.s;

其中:分散剂为去离子水,或者N-甲基吡咯烷酮;Wherein: the dispersant is deionized water, or N-methylpyrrolidone;

(3)涂敷、干燥、压片(3) Coating, drying, tableting

第(2)步完成后,将第(2)步制得的正极电极浆料涂敷在铝箔上,或者将所制得的负极电极浆料涂敷在铜箔上,涂敷厚度均为80-200μm,然后在100-150℃下真空干燥4-10小时,最后在辊压机或平压机中压制得到厚度为60-120μm的正极或负极电极极片。After the (2) step is completed, the positive electrode slurry prepared in the (2) step is coated on the aluminum foil, or the prepared negative electrode slurry is coated on the copper foil, and the coating thickness is 80 -200 μm, then vacuum-dried at 100-150° C. for 4-10 hours, and finally pressed in a roller press or flat press to obtain a positive or negative electrode sheet with a thickness of 60-120 μm.

本发明采用上述技术方案后,主要有以下效果:After the present invention adopts above-mentioned technical scheme, mainly have following effect:

(1)本发明的导电剂采用多层石墨烯、或者多层石墨烯与碳纳米管、碳黑的混合物,具有分散性强、导电率高、填充效果好等优点,从根本上改变了导电剂与电极活性物质之间的导电接触界面,能够显著提高锂离子电池电极材料的电导率、电化学容量和倍率充放电能力;(1) The conductive agent of the present invention adopts multilayer graphene, or a mixture of multilayer graphene, carbon nanotubes, and carbon black, which has the advantages of strong dispersibility, high electrical conductivity, and good filling effect, and fundamentally changes the electrical conductivity. The conductive contact interface between the agent and the electrode active material can significantly improve the conductivity, electrochemical capacity and rate charge and discharge capacity of the lithium ion battery electrode material;

(2)本发明工艺简单,操作方便,生产成本低,便于工业化生产。(2) The present invention has simple process, convenient operation, low production cost, and is convenient for industrialized production.

本发明可广泛应用于制作锂离子电池的正、负电极极片。The invention can be widely used in making positive and negative electrode pole pieces of lithium ion batteries.

附图说明Description of drawings

图1为本实施例6的负极极片的循环容量曲线图。FIG. 1 is a curve diagram of the cycle capacity of the negative electrode sheet of Example 6. FIG.

图中:曲线a为天然石墨和碳黑复合物的循环容量曲线;曲线b为天然石墨和多层石墨烯复合物的循环容量曲线。In the figure: curve a is the cycle capacity curve of natural graphite and carbon black composite; curve b is the cycle capacity curve of natural graphite and multilayer graphene composite.

图2为本实施例6的负极极片的扫描电镜图片。FIG. 2 is a scanning electron microscope picture of the negative electrode sheet of Example 6. FIG.

图中:1多层石墨烯,2石墨。In the picture: 1 multi-layer graphene, 2 graphite.

具体实施方式Detailed ways

下面结合具体实施方式,进一步说明本发明。The present invention will be further described below in combination with specific embodiments.

实施例1Example 1

一种锂离子电池电极极片的组分及其质量百分数为:A kind of component and the mass percent thereof of lithium-ion battery electrode pole piece are:

正极活性物质    90wt.%Positive active material 90wt.%

导电剂          5wt%Conductive agent 5wt%

粘结剂          5wt%Binder 5wt%

其中:正极活性物质为层状型锂钴氧化物,即化学式为LiCoO2;导电剂为多层石墨烯;粘结剂为聚四氟乙烯(PTFE)。Wherein: the positive electrode active material is layered lithium cobalt oxide, that is, the chemical formula is LiCoO 2 ; the conductive agent is multi-layer graphene; the binder is polytetrafluoroethylene (PTFE).

一种锂离子电池电极极片制作方法的具体步骤如下:The concrete steps of a kind of lithium-ion battery electrode pole sheet manufacturing method are as follows:

(1)备料(1) material preparation

按照正极活性物质∶导电剂∶粘结剂的质量配比为90∶5∶5的比例备齐原料,其中:其中:正极活性物质为层状化合物,其化学式为LiCoO2;导电剂为多层石墨烯;粘结剂为聚四氟乙烯;Prepare the raw materials according to the ratio of positive electrode active material: conductive agent: the mass ratio of binder is 90:5:5, wherein: wherein: the positive electrode active material is a layered compound, and its chemical formula is LiCoO 2 ; the conductive agent is a multilayer Graphene; binder is polytetrafluoroethylene;

(2)制备电极浆料(2) Preparation of electrode slurry

第(1)步完成后,先按照第(1)步导电剂的质量(g)∶分散剂的体积(ml)的比为1∶20的比例,将导电剂加入到分散剂中,持续搅拌直至导电剂完全分散,再将粘结剂加入其中,再持续搅拌直至粘结剂完全溶解,然后将第(1)步备料的正极活性物质(即LiCoO2)加入其混合溶液中,添加分散剂并且持续搅拌均匀,制成粘度为6000Pa.s的正极电极浆料;After step (1) is completed, add the conductive agent to the dispersant according to the ratio of the mass (g) of the conductive agent in step (1): the volume (ml) of the dispersant is 1:20, and continue to stir Add the binder until the conductive agent is completely dispersed, and then continue to stir until the binder is completely dissolved, then add the positive electrode active material (ie LiCoO 2 ) prepared in step (1) into the mixed solution, add the dispersant And continue to stir evenly to make a positive electrode slurry with a viscosity of 6000Pa.s;

其中:分散剂为N-甲基吡咯烷酮。Wherein: the dispersant is N-methylpyrrolidone.

(3)涂敷、干燥、压片(3) Coating, drying, tableting

第(2)步完成后,将第(2)步所制得的正极电极浆料涂敷在铝箔上,涂敷厚度在120μm,在120℃下真空干燥6小时后,在辊压机中压制得到厚度为100μm的正极电极片。After step (2) is completed, apply the positive electrode slurry prepared in step (2) on the aluminum foil with a coating thickness of 120 μm, dry it in vacuum at 120°C for 6 hours, and then press it in a roller press A positive electrode sheet having a thickness of 100 μm was obtained.

实施例2Example 2

一种锂离子电池电极极片的组分及其质量百分数为:A kind of component and the mass percent thereof of lithium-ion battery electrode pole piece are:

正极活性物质    75wt.%Positive active material 75wt.%

导电剂          15wt%Conductive agent 15wt%

粘结剂          10wt%Binder 10wt%

其中:正极活性物质为橄榄石型磷酸铁锂氧化物,其化学式为LiFePO4;导电剂为多层石墨烯;粘结剂为聚四氟乙烯。Wherein: the positive electrode active material is olivine-type lithium iron phosphate oxide, and its chemical formula is LiFePO 4 ; the conductive agent is multi-layer graphene; the binder is polytetrafluoroethylene.

一种锂离子电池电极极片制作方法的具体步骤,同实施例1,其中:A kind of specific steps of the method for making electrode pole piece of lithium ion battery, the same as embodiment 1, wherein:

第(1)步中,正极活性物质∶导电剂∶粘结剂的质量配比为75∶15∶10;In step (1), the mass ratio of positive electrode active material: conductive agent: binder is 75:15:10;

其中:正极活性物质为橄榄石型磷酸铁锂氧化物,其化学式为LiFePO4;导电剂为多层石墨烯;粘结剂为聚四氟乙烯;Among them: the positive electrode active material is olivine-type lithium iron phosphate oxide, and its chemical formula is LiFePO 4 ; the conductive agent is multi-layer graphene; the binder is polytetrafluoroethylene;

第(2)步中,导电剂的质量(g)∶分散剂体积(ml)的比为1∶20,正极电极浆料的粘度调制为7000Pa.s;In the (2) step, the mass (g) of the conductive agent: the ratio of the dispersant volume (ml) is 1: 20, and the viscosity modulation of the positive electrode slurry is 7000Pa.s;

实施例3Example 3

一种锂离子电池电极极片的组分及其质量百分数为:A kind of component and the mass percent thereof of lithium-ion battery electrode pole piece are:

正极活性物质    98wt.%Positive electrode active material 98wt.%

导电剂          1wt%Conductive agent 1wt%

粘结剂          1wt%Binder 1wt%

其中:正极活性物质为尖晶石型锂锰氧化物,即化学式为LiMn2O4;导电剂为多层石墨烯和碳黑的混和物,两者的质量比为1∶1;粘结剂为聚四氟乙烯(PTFE)。Among them: the positive electrode active material is spinel lithium manganese oxide, that is, the chemical formula is LiMn 2 O 4 ; the conductive agent is a mixture of multilayer graphene and carbon black, and the mass ratio of the two is 1:1; the binder It is polytetrafluoroethylene (PTFE).

一种锂离子电池电极极片制作方法的具体步骤,同实施例1,其中:A kind of specific steps of the method for making electrode pole piece of lithium ion battery, the same as embodiment 1, wherein:

第(1)步中,正极活性物质∶导电剂∶粘结剂的质量配比为98∶1∶1,其中:正极活性物质为尖晶石型锂锰氧化物,其化学式为LiMn2O4;导电剂为多层石墨烯和碳黑的混和物,两者的质量比为1∶1;粘结剂为聚四氟乙烯;In step (1), the mass ratio of positive electrode active material: conductive agent: binder is 98:1:1, wherein: the positive electrode active material is spinel lithium manganese oxide, and its chemical formula is LiMn 2 O 4 ; The conductive agent is a mixture of multilayer graphene and carbon black, and the mass ratio of the two is 1:1; the binder is polytetrafluoroethylene;

第(2)步中,导电剂的质量(g)与分散剂体积(ml)的比为1∶15,正极电极浆料的粘度调制为12000Pa.s;In step (2), the ratio of the mass (g) of the conductive agent to the volume (ml) of the dispersant is 1:15, and the viscosity of the positive electrode slurry is adjusted to be 12000Pa.s;

第(3)步中,正极电极浆料的涂敷厚度为80μm,干燥条件为150℃下真空干燥4小时,在平压机中压制得到厚度为60μm的正极电极片。In step (3), the coating thickness of the positive electrode slurry was 80 μm, the drying condition was vacuum drying at 150° C. for 4 hours, and the positive electrode sheet was pressed in a flat press to obtain a positive electrode sheet with a thickness of 60 μm.

实施例4Example 4

一种锂离子电池电极极片的组分及其质量百分数为:A kind of component and the mass percent thereof of lithium-ion battery electrode pole piece are:

正极活性物质    85wt.%Positive electrode active material 85wt.%

导电剂          8wt%Conductive agent 8wt%

粘结剂          7wt%Binder 7wt%

其中:正极活性物质为层状型锂镍钴锰氧化物,即化学式为LiNi1/3Co1/3Mn1/3O2;导电剂为多层石墨烯和碳纳米管的混和物,两者的质量比为1∶1;粘结剂为聚偏二氟乙烯(PVDF)。Among them: the positive electrode active material is layered lithium nickel cobalt manganese oxide, that is, the chemical formula is LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; the conductive agent is a mixture of multilayer graphene and carbon nanotubes. The mass ratio of those is 1:1; the binder is polyvinylidene fluoride (PVDF).

一种锂离子电池电极极片制作方法的具体步骤同实施例1,其中:The concrete steps of a kind of lithium-ion battery electrode pole sheet manufacturing method are the same as embodiment 1, wherein:

第(1)步中,正极活性物质∶导电剂∶粘结剂的质量配比为85∶8∶7,其中:正极活性物质为层状型锂镍钴锰氧化物,其化学式为LiNi1/3Co1/3Mn1/3O2导电剂为多层石墨烯和碳纳米管的混和物,两者的质量比为1∶1;粘结剂为聚偏二氟乙烯;In the first step (1), the mass ratio of positive electrode active material: conductive agent: binder is 85:8:7, wherein: the positive electrode active material is layered lithium nickel cobalt manganese oxide, and its chemical formula is LiNi 1/ 3 Co 1/3 Mn 1/3 O 2 The conductive agent is a mixture of multilayer graphene and carbon nanotubes, the mass ratio of the two is 1:1; the binder is polyvinylidene fluoride;

第(2)步中,导电剂的质量(g)∶分散剂体积(ml)的比为1∶10,正极电极浆料的粘度调制为5000Pa.s;In the (2) step, the mass (g) of the conductive agent: the ratio of the dispersant volume (ml) is 1: 10, and the viscosity modulation of the positive electrode slurry is 5000Pa.s;

第(3)步中,正极电极浆料的涂敷厚度为150μm,干燥条件为100℃下真空干燥10小时,正极电极片的厚度为120μm。In step (3), the coating thickness of the positive electrode slurry is 150 μm, the drying condition is vacuum drying at 100° C. for 10 hours, and the thickness of the positive electrode sheet is 120 μm.

实施例5Example 5

一种锂离子电池电极极片的组分及其质量百分数为:A kind of component and the mass percent thereof of lithium-ion battery electrode pole piece are:

正极活性物质    98wt.%Positive electrode active material 98wt.%

导电剂          1wt%Conductive agent 1wt%

粘结剂          1wt%Binder 1wt%

其中:正极活性物质为锂镍钴铝氧化物,其化学式为LiNi0.7Co0.2Al0.1O2;导电剂为多层石墨烯、碳纳米管和碳黑的混和物,三者的质量比为3∶3∶4;粘结剂为聚偏二氟乙烯。Among them: the positive electrode active material is lithium nickel cobalt aluminum oxide, its chemical formula is LiNi 0.7 Co 0.2 Al 0.1 O 2 ; the conductive agent is a mixture of multilayer graphene, carbon nanotubes and carbon black, and the mass ratio of the three is 3 : 3: 4; the binder is polyvinylidene fluoride.

一种锂离子电池电极极片制作方法的具体步骤,同实施例1,其中:A kind of specific steps of the method for making electrode pole piece of lithium ion battery, the same as embodiment 1, wherein:

第(1)步中,正极活性物质∶导电剂∶粘结剂的质量配比为86∶6∶8,其中:正极活性物质为锂镍钴铝氧化物,其化学式为LiNi0.7Co0.2Al0.1O2;导电剂为多层石墨烯、碳纳米管和碳黑的混和物,三者的质量比为3∶3∶4;粘结剂为聚偏二氟乙烯;In step (1), the mass ratio of positive electrode active material: conductive agent: binder is 86:6:8, wherein: the positive electrode active material is lithium nickel cobalt aluminum oxide, and its chemical formula is LiNi 0.7 Co 0.2 Al 0.1 O 2 ; the conductive agent is a mixture of multilayer graphene, carbon nanotubes and carbon black, and the mass ratio of the three is 3:3:4; the binder is polyvinylidene fluoride;

第(2)步中,导电剂的质量(g)与分散剂体积(ml)比为1∶30,正极电极浆料的粘度调制为4000Pa.s;In step (2), the ratio of the mass (g) of the conductive agent to the volume (ml) of the dispersant is 1:30, and the viscosity of the positive electrode slurry is adjusted to 4000Pa.s;

第(3)步中,正极电极浆料的涂敷厚度为200μm,干燥条件为150℃下真空干燥10小时,在平压机中压制得到厚度为120μm的正极电极片。In step (3), the coating thickness of the positive electrode slurry is 200 μm, the drying condition is vacuum drying at 150° C. for 10 hours, and pressing in a flat press to obtain a positive electrode sheet with a thickness of 120 μm.

实施例6Example 6

一种锂离子电池电极极片的组分及其质量百分数为:A kind of component and the mass percent thereof of lithium-ion battery electrode pole piece are:

负极活性物质    85wt.%Negative active material 85wt.%

导电剂          7wt.%Conductive agent 7wt.%

粘结剂          8wt%Binder 8wt%

其中:负极活性物质为天然石墨,导电剂为多层石墨烯,粘结剂为丁苯乳胶。Wherein: the negative electrode active material is natural graphite, the conductive agent is multilayer graphene, and the binder is styrene-butadiene latex.

一种锂离子电池电极极片制作方法的具体步骤,同实施例1,其中:A kind of specific steps of the method for making electrode pole piece of lithium ion battery, the same as embodiment 1, wherein:

第(1)步中,负极活性物质∶导电剂∶粘结剂的质量配比为85∶7∶8,其中:负极活性物质为天然石墨,导电剂为多层石墨烯,粘结剂为丁苯乳胶;In the (1) step, the mass ratio of negative electrode active material: conductive agent: binder is 85:7:8, wherein: the negative electrode active material is natural graphite, the conductive agent is multilayer graphene, and the binder is butylene Benzene latex;

第(2)步中,导电剂质量(g)与分散剂体积(ml)的比为1∶15,分散剂为去离子水,负极电极浆料的粘度调制为8000Pa.sIn step (2), the ratio of the conductive agent mass (g) to the dispersant volume (ml) is 1:15, the dispersant is deionized water, and the viscosity of the negative electrode slurry is adjusted to 8000Pa.s

实施例7Example 7

一种锂离子电池电极极片的组分及其质量百分数为:A kind of component and the mass percent thereof of lithium-ion battery electrode pole piece are:

炭负极材料    98wt.%Carbon anode material 98wt.%

导电剂        1wt%Conductive agent 1wt%

粘结剂        1wt%Binder 1wt%

其中:负极活性物质为人工石墨,即石墨化中间相碳微球,导电剂为多层石墨烯,粘结剂为丁苯乳胶。Wherein: the negative electrode active material is artificial graphite, that is, graphitized mesophase carbon microspheres, the conductive agent is multi-layer graphene, and the binder is styrene-butadiene latex.

一种锂离子电池电极极片制作方法的具体步骤,同实施例1,其中:A kind of specific steps of the method for making electrode pole piece of lithium ion battery, the same as embodiment 1, wherein:

第(1)步中,负极活性物质∶导电剂∶粘结剂的质量配比为90∶5∶5,其中:负极活性物质为人工石墨,即石墨化中间相碳微球,导电剂为多层石墨烯,粘结剂为丁苯乳胶;In the (1) step, the mass ratio of negative electrode active material: conductive agent: binder is 90:5:5, wherein: the negative electrode active material is artificial graphite, i.e. graphitized mesophase carbon microspheres, and the conductive agent is polycarbonate Layer graphene, the binder is styrene-butadiene latex;

第(2)步中,导电剂的质量(g)与分散剂体积(ml)的比为1∶20,负极电极浆料的粘度为9000Pa.s;In the (2) step, the ratio of the mass (g) of the conductive agent to the volume (ml) of the dispersant is 1:20, and the viscosity of the negative electrode slurry is 9000Pa.s;

实施例8Example 8

一种锂离子电池电极极片的组分及其质量百分数为:A kind of component and the mass percent thereof of lithium-ion battery electrode pole piece are:

负极材料      75wt.%Anode material 75wt.%

导电剂        15wt%Conductive agent 15wt%

粘结剂        10wt%Binder 10wt%

其中:负极材料为过渡金属氧化物LiTi2O4,导电剂为多层石墨烯、碳纳米管和碳黑的混和物,三者的质量比为1∶1∶1,粘结剂为聚四氟乙烯(PTFE)。Among them: the negative electrode material is transition metal oxide LiTi 2 O 4 , the conductive agent is a mixture of multilayer graphene, carbon nanotubes and carbon black, the mass ratio of the three is 1:1:1, and the binder is polytetrafluoroethylene Vinyl fluoride (PTFE).

一种锂离子电池电极极片制作方法的具体步骤,同实施例1,其中:A kind of specific steps of the method for making electrode pole piece of lithium ion battery, the same as embodiment 1, wherein:

第(1)步中,负极活性物质∶导电剂∶粘结剂的质量配比为75∶15∶10,其中:负极材料为过渡金属氧化物LiTi2O4,导电剂为多层石墨烯、碳纳米管和碳黑的混和物,三者的质量比为1∶1∶1,粘结剂为聚四氟乙烯;In step (1), the mass ratio of negative electrode active material: conductive agent: binder is 75:15:10, wherein: the negative electrode material is transition metal oxide LiTi 2 O 4 , and the conductive agent is multi-layer graphene, A mixture of carbon nanotubes and carbon black, the mass ratio of the three is 1:1:1, and the binder is polytetrafluoroethylene;

试验结果test results

对实施例6制备出的负极极片进行电化学性能的测试,测试条件为锂片对电极,以1mol/LLiPF6溶于体积比为1∶1的乙烯碳酸脂/二乙基碳酸脂(ethyl carbonate/diethyl carbonate,EC/DEC)为电解液,隔膜为Celgard 2400,室温20℃,截止电压为0.0-2.0V,其测试结果如图1所示。The negative pole sheet that embodiment 6 prepares is carried out the test of electrochemical performance, and test condition is that lithium sheet counter electrode, with 1mol/LLiPF soluble in volume ratio is 1: 1 ethylene carbonate/diethyl carbonate (ethyl Carbonate/diethyl carbonate, EC/DEC) is the electrolyte, the diaphragm is Celgard 2400, the room temperature is 20°C, and the cut-off voltage is 0.0-2.0V. The test results are shown in Figure 1.

从上述试验结果可知,多层石墨烯与天然石墨复合的负极在充放电倍率为0.1C的条件下循环容量达到363mAh/g;采用传统的碳黑作为导电剂,天然石墨的循环容量为344mAh/g;经试验证实采用本发明方法制备出的新型导电剂能够增强锂离子电池的电化学容量和快速充放电性能。From the above test results, it can be known that the negative electrode composited by multi-layer graphene and natural graphite has a cycle capacity of 363mAh/g under the condition of a charge-discharge rate of 0.1C; using traditional carbon black as a conductive agent, the cycle capacity of natural graphite is 344mAh/g. g; It is confirmed by experiments that the novel conductive agent prepared by the method of the present invention can enhance the electrochemical capacity and fast charge and discharge performance of lithium-ion batteries.

Claims (10)

1. the electrode plates of a lithium ion battery is characterized in that its component and mass percent thereof are:
Negative or positive electrode active material (75~98) wt.%
Conductive agent (1~15) wt.%
Binding agent (1~10) wt%
Wherein: described positive active material is the layered-type compound, and promptly chemical formula is LiNi 1-x-yCo xM yO 2, the M in the formula is Al, Mg, Mn or Cr, 0≤x≤1,0≤y≤1, and x+y≤1, and perhaps spinel-type compound, promptly chemical formula is LiMn 2O 4, olivine compounds, promptly chemical formula is LiFePO 4, or the compound after above-claimed cpd process impurity or the surface carbon coating processing;
Described negative electrode active material is raw material of wood-charcoal material or transition metal oxide; Wherein: described carbon cathode material is a native graphite, perhaps electrographite, perhaps pitch coke, perhaps carbon fiber, perhaps amorphous carbon; Described transition metal oxide is LiTi 2O 4, perhaps Li 4Ti 5O 12
Described conductive agent is multi-layer graphene or carbon nano-tube or carbon black or two or three mixture wherein, but wherein a kind of multi-layer graphene that is necessary for, wherein multi-layer graphene, carbon nano-tube and the carbon black mass percent in the hybrid conductive agent is respectively 10-100wt%, 0-50wt%, 0-50wt%;
Described binding agent is polytetrafluoroethylene or polyvinylidene fluoride or butadiene-styrene latex.
2. a kind of lithium ion cell electrode pole piece according to claim 1 is characterized in that its component and mass percent thereof are:
Positive active material 90wt.%
Conductive agent 5wt%
Binding agent 5wt%
Wherein: positive active material is the layered-type lithium and cobalt oxides, and promptly chemical formula is LiCoO 2Conductive agent is a multi-layer graphene; Binding agent is a polytetrafluoroethylene.
3. a kind of lithium ion cell electrode pole piece according to claim 1 is characterized in that its component and mass percent thereof are:
Positive active material 75wt.%
Conductive agent 15wt%
Binding agent 10wt%
Wherein: positive active material is an olivine-type LiFePO4 oxide, and its chemical formula is LiFePO 4Conductive agent is the mixture of multi-layer graphene and carbon black, and both mass ratioes are 1: 1; Binding agent is a polyvinylidene fluoride.
4. a kind of lithium ion cell electrode pole piece according to claim 1 is characterized in that its component and mass percent thereof are:
Positive active material 98wt.%
Conductive agent 1wt%
Binding agent 1wt%
Wherein: positive active material is a spinel lithium manganese oxide, and promptly chemical formula is LiMn 2O 4Conductive agent is a multi-layer graphene; Binding agent is a polytetrafluoroethylene.
5. a kind of lithium ion cell electrode pole piece according to claim 1 is characterized in that its component and mass percent thereof are:
Negative electrode active material 85wt.%
Conductive agent 7wt.%
Binding agent 8wt%
Wherein: carbon anode active material is a native graphite, and conductive agent is a multi-layer graphene, and binding agent is a butadiene-styrene latex.
6. a kind of lithium ion cell electrode pole piece according to claim 1 is characterized in that its component and mass percent thereof are:
Negative electrode active material 98wt.%
Conductive agent 1wt%
Binding agent 1wt%
Wherein: carbon anode active material is an electrographite, i.e. graphitization carbonaceous mesophase spherules, and conductive agent is a multi-layer graphene, binding agent is a butadiene-styrene latex.
7. a kind of lithium ion battery negative conductive agent material according to claim 1 is characterized in that its component and mass percent thereof are:
Negative electrode active material 75wt.%
Conductive agent 15wt%
Binding agent 10wt%
Wherein: negative electrode active material is transition metal oxide LiTi 2O 4, conductive agent is the mixture of multi-layer graphene, carbon nano-tube and carbon black, and three's mass ratio is 1: 1: 1, and binding agent is a polytetrafluoroethylene.
8. the manufacture method of a lithium ion cell electrode pole piece is characterized in that concrete method step is as follows:
(1) gets the raw materials ready
According to the negative or positive electrode active material: conductive agent: the quality proportioning of binding agent is (75-98) %: (1-15) %: (1-10) ratio of % is got all the raw material ready;
Wherein: positive active material is the layered-type compound, and its chemical formula is LiNi 1-x-yCo xM yO 2, the M in the formula is Al, Mg, Mn or Cr, 0≤x≤1,0≤y≤1, and x+y≤1, and perhaps spinel-type compound, its chemical formula is LiMn 2O 4, perhaps olivine compounds, its chemical formula is LiFePO 4, perhaps above-claimed cpd process impurity or surface carbon coat the compound after handling;
Negative electrode active material is raw material of wood-charcoal material or transition metal oxide, and wherein: described carbon cathode material is a native graphite, perhaps electrographite, perhaps pitch coke, perhaps carbon fiber, perhaps amorphous carbon; Described transition metal oxide is LiTi 2O 4, perhaps Li 4Ti 5O 12
Conductive agent is two or three mixture in multi-layer graphene, carbon nano-tube, the carbon black, wherein a kind of multi-layer graphene that is necessary for.Wherein multi-layer graphene, carbon nano-tube and the carbon black mass percent in mixture is respectively 30-100%, 0-50%, 0-50%;
Binding agent is polytetrafluoroethylene or polyvinylidene fluoride or butadiene-styrene latex;
(2) preparation electrode slurry
(1) step finish after, quality according to (1) conductive agent that goes on foot: the volume ratio of dispersant is 1: the ratio of 10-30, conductive agent is joined in the dispersant, continue to stir and disperse fully until conductive agent, again binding agent is joined in the suspension-turbid liquid of gained, continue to stir and dissolve fully until binding agent, then positive pole or negative electrode active material are added in its mixed solution, add dispersant again, and continue to stir, making viscosity is the negative or positive electrode electrode slurry of 4000-12000Pa.s;
Wherein: dispersant is a deionized water, perhaps the N-methyl pyrrolidone;
(3) coating, dry, compressing tablet
(2) step finish after, with (2) the anode electrode slurry coating that makes of step on aluminium foil, perhaps with prepared negative electrode slurry coating on Copper Foil, applied thickness is 80-200 μ m, at 100-150 ℃ of following vacuumize 4-10 hour, the last compacting in roll squeezer or spreader bar obtained the negative or positive electrode electrode plates that thickness is 60-120 μ m then.
9. according to the electrode plates manufacture method of the described a kind of lithium ion battery of claim 8, it is characterized in that:
In (1) step, positive active material: conductive agent: the quality proportioning of binding agent is 90: 5: 5, and wherein: positive active material is LiCoO 2, conductive agent is a multi-layer graphene, binding agent is a polytetrafluoroethylene;
In (2) step, the quality of conductive agent: the volume ratio of dispersant is 1: 20, and dispersant is the N-methyl pyrrolidone, makes year to be the anode electrode slurry of 6000Pa.s;
In (3) step, on aluminium foil, applied thickness is at 120 μ m with the anode electrode slurry coating that makes, and 120 ℃ of following vacuumizes 6 hours, compacting obtained the positive electrical pole piece that thickness is 100 μ m in roll squeezer.
10. according to the electrode plates manufacture method of the described a kind of lithium ion battery of claim 8, it is characterized in that:
In (1) step, negative electrode active material: conductive agent: the quality proportioning of binding agent is 85: 7: 8, and wherein: negative electrode active material is a native graphite, and conductive agent is a multi-layer graphene, and binding agent is a butadiene-styrene latex;
(2) step in, the quality of conductive agent (g): with volume (ml) ratio of dispersant be 1: 15, dispersant is a deionized water, the viscosity of cathode size is 8000Pa.s;
In (3) step, on Copper Foil, applied thickness is 120 μ m with the negative electrode slurry coating, and 120 ℃ of following vacuumizes 6 hours, compacting obtained the negative electricity pole piece that thickness is 100 μ m in roll squeezer.
CN200910191894A 2009-12-14 2009-12-14 Electrode plate for lithium ion battery and manufacturing method thereof Pending CN101710619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910191894A CN101710619A (en) 2009-12-14 2009-12-14 Electrode plate for lithium ion battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910191894A CN101710619A (en) 2009-12-14 2009-12-14 Electrode plate for lithium ion battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN101710619A true CN101710619A (en) 2010-05-19

Family

ID=42403391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910191894A Pending CN101710619A (en) 2009-12-14 2009-12-14 Electrode plate for lithium ion battery and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN101710619A (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906661A (en) * 2010-08-11 2010-12-08 河北工业大学 Ordered layered self-assembled nanostructure lithium iron phosphate polycrystalline powder and preparation method thereof
CN102136576A (en) * 2011-01-28 2011-07-27 中航锂电(洛阳)有限公司 Conductive agent used for lithium iron phosphate battery and preparation method thereof
CN102142296A (en) * 2010-05-28 2011-08-03 南京理工大学 Preparation method of graphene-supported nano Co(OH)2 composite material
CN102185129A (en) * 2011-01-28 2011-09-14 厦门钨业股份有限公司 Lithium iron phosphate lithium ion battery and machining method thereof
CN102244264A (en) * 2011-05-19 2011-11-16 江苏乐能电池股份有限公司 Graphine composite electric conduction agent for iron phosphate lithium battery and preparation method thereof
CN102255081A (en) * 2010-11-04 2011-11-23 耿世达 Pole piece material of lithium ion battery positive electrode and negative electrode, and processing method thereof
CN102339994A (en) * 2010-07-23 2012-02-01 中国科学院宁波材料技术与工程研究所 Transition metal oxide/graphene nanocomposite electrode material for lithium battery and preparation method thereof
WO2012031401A1 (en) * 2010-09-10 2012-03-15 海洋王照明科技股份有限公司 Lithium salt-graphene-containing composite material and preparation method thereof
CN102412065A (en) * 2010-09-20 2012-04-11 海洋王照明科技股份有限公司 Preparation method of supercapacitor based on graphene-carbon nanotube composite material
CN102468515A (en) * 2010-11-05 2012-05-23 海洋王照明科技股份有限公司 Lithium ion battery and preparation method thereof
CN102544502A (en) * 2010-12-09 2012-07-04 中国科学院宁波材料技术与工程研究所 Anode and cathode conductive additive for secondary lithium battery, method for preparing conductive additive, and method for preparing secondary lithium battery
CN102593524A (en) * 2012-03-01 2012-07-18 广州市云通磁电有限公司 Manufacturing method of orthohexagonal lithium ion battery cell
CN102694201A (en) * 2012-06-04 2012-09-26 东莞新能源科技有限公司 Lithium ion battery
CN102779985A (en) * 2011-05-12 2012-11-14 北京化工大学 Graphene modified carbon cathode material and its preparation method
WO2012151880A1 (en) * 2011-05-12 2012-11-15 中国科学院宁波材料技术与工程研究所 Electrode pole piece of graphene coating modified lithium secondary battery and method for manufacturing same
CN102800852A (en) * 2012-08-28 2012-11-28 湖南德天新能源科技有限公司 Preparation method of negative electrode material of power lithium-ion battery
CN102938325A (en) * 2011-08-15 2013-02-20 海洋王照明科技股份有限公司 Hybrid capacitor and preparation method thereof
CN102938322A (en) * 2011-08-15 2013-02-20 海洋王照明科技股份有限公司 Super-capacitance battery and preparation method thereof
CN103000862A (en) * 2011-09-09 2013-03-27 株式会社半导体能源研究所 Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
CN103035922A (en) * 2011-10-07 2013-04-10 株式会社半导体能源研究所 Power storage device
CN103109398A (en) * 2010-07-29 2013-05-15 诺基亚公司 Graphene-TiO2 electrode
US20130143099A1 (en) * 2011-12-02 2013-06-06 Golden Crown New Energy (Hk) Limited Lithium ion battery
CN103165859A (en) * 2011-12-16 2013-06-19 株式会社半导体能源研究所 Method for forming positive electrode for lithium-ion secondary battery
CN103178239A (en) * 2011-12-26 2013-06-26 株式会社半导体能源研究所 Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery
CN103198935A (en) * 2013-04-18 2013-07-10 山东大学 Preparation method of graphene sheet modified spinel type lithium manganate or alpha type manganese dioxide electrode
CN103208645A (en) * 2012-12-31 2013-07-17 深圳宏泰电池科技有限公司 Nano-power battery composed of lithium manganate and graphene and preparation method thereof
CN103367714A (en) * 2013-07-09 2013-10-23 宁德新能源科技有限公司 Graphite cathode pole piece for lithium ion battery and manufacture method thereof
CN103413917A (en) * 2013-08-19 2013-11-27 济宁利特纳米技术有限责任公司 Preparation method of graphene-containing lithium manganate positive pole piece
CN103500822A (en) * 2013-10-10 2014-01-08 暴宁钟 Preparation method of carbon-modified nano Li4Ti5O12-porous graphene composite electrode material
CN103579624A (en) * 2013-10-17 2014-02-12 东莞市凯金新能源科技有限公司 Modified graphite crucible waste negative electrode material for lithium battery, and preparation method and application of modified graphite crucible waste negative electrode material
CN103730661A (en) * 2014-01-28 2014-04-16 常州大学 Anode material CuS@rGO of lithium ion battery and preparation method of anode material CuS@rGO
CN103840164A (en) * 2012-11-23 2014-06-04 中国科学院金属研究所 Method for using carbon nano conductive agent in lithium ion battery aqueous slurry
CN103840162A (en) * 2013-12-19 2014-06-04 东莞市凯金新能源科技有限公司 Preparation method for modified lithium battery negative electrode material, and lithium battery negative electrode sheet
CN103966907A (en) * 2014-04-02 2014-08-06 上海大学 Nano cellulose based flexible conductive paper and preparation method thereof
CN104078651A (en) * 2013-03-28 2014-10-01 株式会社半导体能源研究所 Method for manufacturing electrode for storage battery
CN104362346A (en) * 2014-10-14 2015-02-18 东莞新能源科技有限公司 Lithium ion battery
CN104529452A (en) * 2014-12-16 2015-04-22 湖南大学 Graphene oxide baked-type electric contact material and preparation method thereof
CN104600265A (en) * 2015-01-06 2015-05-06 中国科学院化学研究所 High-performance carbon-sulfur composite anode material and preparation method thereof
CN104600246A (en) * 2013-10-30 2015-05-06 上海悦达墨特瑞新材料科技有限公司 Lithium ion battery electrode based on graphene and preparation method thereof
CN104953169A (en) * 2015-05-29 2015-09-30 湖北力莱科技有限公司 Lithium ion low-temperature battery
CN105244506A (en) * 2015-10-15 2016-01-13 青岛领军节能与新材料研究院 Lithium-ion battery material and lithium-ion battery structure and preparation method of lithium-ion battery material
WO2016005590A1 (en) * 2014-07-10 2016-01-14 Repsol, S.A. Cathode for lithium batteries
CN105390774A (en) * 2011-01-11 2016-03-09 巴特尔纪念研究院 graphene-based battery electrodes having continuous flow paths
CN105405678A (en) * 2015-12-21 2016-03-16 山东精工电子科技有限公司 Preparation method of graphene-containing supercapacitor slurry
CN105406070A (en) * 2015-12-18 2016-03-16 山东精工电子科技有限公司 Preparation method of lithium ion battery positive pole size
CN105651723A (en) * 2015-12-30 2016-06-08 哈尔滨工业大学 In-situ transmission infrared electrolytic cell for gas detection of lithium ion battery and experimental method of electrolytic cell
CN105680049A (en) * 2011-06-03 2016-06-15 株式会社半导体能源研究所 Method of manufacturing electrode
CN105789553A (en) * 2014-12-25 2016-07-20 北京有色金属研究总院 Positive electrode of lithium ion battery
CN106207092A (en) * 2016-09-20 2016-12-07 广东国光电子有限公司 A kind of combined anode slice of lithium ion battery of conductive agent and preparation method thereof
CN106328989A (en) * 2016-11-07 2017-01-11 上海碳源汇谷新材料科技有限公司 Application of metal phosphate to negative electrode material of lithium-ion battery
CN106784843A (en) * 2016-12-28 2017-05-31 中天储能科技有限公司 It is a kind of more than 300wh/kg high-energy-densities, the preparation method of high security battery
CN106784846A (en) * 2017-01-13 2017-05-31 湖南高远电池有限公司 A kind of high multiplying power lithium ion battery positive pole and its preparation method and application
CN107579250A (en) * 2017-08-28 2018-01-12 中国石油大学(北京) A kind of composite carbon material conductive agent
CN107634202A (en) * 2017-09-11 2018-01-26 福建师范大学 The method that intercalated graphite alkene improves ternary electrode performance
CN107634203A (en) * 2017-09-11 2018-01-26 福建师范大学 High dispersive graphene improves the method that ternary material prepares aluminium foil base anode pole piece
CN107644977A (en) * 2016-07-22 2018-01-30 清华大学 The preparation method of lithium ion cell electrode
CN107887594A (en) * 2017-12-04 2018-04-06 中国科学院青岛生物能源与过程研究所 A kind of compound lithium-rich manganese-based anode material and preparation method for lithium ion battery
CN108183223A (en) * 2017-12-29 2018-06-19 青岛昊鑫新能源科技有限公司 A kind of electrocondution slurry of carbon nanotube, graphene and conductive black compounding and preparation method thereof
CN108199004A (en) * 2017-12-25 2018-06-22 深圳市山木新能源科技股份有限公司 The manufacturing method and electrode slice of electrode slice
CN108417837A (en) * 2018-02-12 2018-08-17 吴艳飞 A kind of aqueous polyimide adhesive of Anode of lithium cell material and preparation method
CN108470887A (en) * 2018-02-28 2018-08-31 北京国能电池科技股份有限公司 Negative material and preparation method thereof and lithium ion battery
CN108511692A (en) * 2017-12-21 2018-09-07 中国石油大学(北京) A kind of lithium ion cell electrode and preparation method thereof
CN108511752A (en) * 2017-02-24 2018-09-07 宁德新能源科技有限公司 Modified graphite cathode material and preparation method thereof and secondary cell
US10270097B2 (en) 2011-08-31 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
CN109698338A (en) * 2018-12-26 2019-04-30 湖北锂诺新能源科技有限公司 A kind of powerful graphene-based LiFePO4 pole piece of low cost and preparation method
CN109728258A (en) * 2017-10-30 2019-05-07 北京万源工业有限公司 A kind of dispersing technology of lithium iron phosphate positive material
CN110707266A (en) * 2019-09-23 2020-01-17 河北金力新能源科技股份有限公司 PVDF (polyvinylidene fluoride) mixed coating slurry, preparation method thereof and diaphragm
CN112614984A (en) * 2020-12-25 2021-04-06 湖州凯金新能源科技有限公司 Graphite negative electrode material of low-magnetism substance for lithium battery and preparation method thereof
CN114514197A (en) * 2019-10-07 2022-05-17 伊梅科技 Graphite composition and use in battery technology
US11462738B2 (en) * 2016-12-28 2022-10-04 Zeon Corporation Slurry composition including lithium titanium oxide and nitrile butadiene rubber and method of producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142296A (en) * 2010-05-28 2011-08-03 南京理工大学 Preparation method of graphene-supported nano Co(OH)2 composite material
CN102142296B (en) * 2010-05-28 2012-07-04 南京理工大学 Preparation method of graphene-supported nano Co(OH)2 composite material
CN102339994A (en) * 2010-07-23 2012-02-01 中国科学院宁波材料技术与工程研究所 Transition metal oxide/graphene nanocomposite electrode material for lithium battery and preparation method thereof
CN103109398A (en) * 2010-07-29 2013-05-15 诺基亚公司 Graphene-TiO2 electrode
CN103109398B (en) * 2010-07-29 2016-02-03 诺基亚技术有限公司 Graphene-titanium dioxide electrodes
US9761380B2 (en) 2010-07-29 2017-09-12 Nokia Technologies Oy Apparatus and associated methods
CN101906661A (en) * 2010-08-11 2010-12-08 河北工业大学 Ordered layered self-assembled nanostructure lithium iron phosphate polycrystalline powder and preparation method thereof
CN101906661B (en) * 2010-08-11 2012-08-29 河北工业大学 Ordered layered self-assembled nanostructured lithium iron phosphate polycrystalline powder and preparation method thereof
JP2013542903A (en) * 2010-09-10 2013-11-28 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Lithium-containing salt-graphene composite material and preparation method thereof
WO2012031401A1 (en) * 2010-09-10 2012-03-15 海洋王照明科技股份有限公司 Lithium salt-graphene-containing composite material and preparation method thereof
CN102412065A (en) * 2010-09-20 2012-04-11 海洋王照明科技股份有限公司 Preparation method of supercapacitor based on graphene-carbon nanotube composite material
CN102255081A (en) * 2010-11-04 2011-11-23 耿世达 Pole piece material of lithium ion battery positive electrode and negative electrode, and processing method thereof
CN102255081B (en) * 2010-11-04 2014-05-07 耿世达 Pole piece material of lithium ion battery positive electrode and negative electrode, and processing method thereof
CN102468515A (en) * 2010-11-05 2012-05-23 海洋王照明科技股份有限公司 Lithium ion battery and preparation method thereof
CN102468515B (en) * 2010-11-05 2014-05-07 海洋王照明科技股份有限公司 Lithium ion battery and preparation method thereof
CN102544502A (en) * 2010-12-09 2012-07-04 中国科学院宁波材料技术与工程研究所 Anode and cathode conductive additive for secondary lithium battery, method for preparing conductive additive, and method for preparing secondary lithium battery
CN102544502B (en) * 2010-12-09 2015-07-01 中国科学院宁波材料技术与工程研究所 Anode and cathode conductive additive for secondary lithium battery, method for preparing conductive additive, and method for preparing secondary lithium battery
CN105390774A (en) * 2011-01-11 2016-03-09 巴特尔纪念研究院 graphene-based battery electrodes having continuous flow paths
CN102136576B (en) * 2011-01-28 2013-05-01 中航锂电(洛阳)有限公司 Conductive agent used for lithium iron phosphate battery and preparation method thereof
CN102185129B (en) * 2011-01-28 2013-12-11 厦门钨业股份有限公司 Lithium iron phosphate lithium ion battery and machining method thereof
CN102185129A (en) * 2011-01-28 2011-09-14 厦门钨业股份有限公司 Lithium iron phosphate lithium ion battery and machining method thereof
CN102136576A (en) * 2011-01-28 2011-07-27 中航锂电(洛阳)有限公司 Conductive agent used for lithium iron phosphate battery and preparation method thereof
WO2012151880A1 (en) * 2011-05-12 2012-11-15 中国科学院宁波材料技术与工程研究所 Electrode pole piece of graphene coating modified lithium secondary battery and method for manufacturing same
US10038182B2 (en) 2011-05-12 2018-07-31 Ningbo Institute Of Material Technology And Engineering, Chinese Academy Of Sciences Graphene coating modified electrode plate for lithium secondary battery and method for producing the same
CN102779985A (en) * 2011-05-12 2012-11-14 北京化工大学 Graphene modified carbon cathode material and its preparation method
CN102244264A (en) * 2011-05-19 2011-11-16 江苏乐能电池股份有限公司 Graphine composite electric conduction agent for iron phosphate lithium battery and preparation method thereof
CN105680049A (en) * 2011-06-03 2016-06-15 株式会社半导体能源研究所 Method of manufacturing electrode
US10243214B2 (en) 2011-06-03 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electrode
CN102938322A (en) * 2011-08-15 2013-02-20 海洋王照明科技股份有限公司 Super-capacitance battery and preparation method thereof
CN102938325A (en) * 2011-08-15 2013-02-20 海洋王照明科技股份有限公司 Hybrid capacitor and preparation method thereof
US11799084B2 (en) 2011-08-31 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Method for making LiFePO4 by hydrothermal method
US11283075B2 (en) 2011-08-31 2022-03-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US10270097B2 (en) 2011-08-31 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
TWI557978B (en) * 2011-09-09 2016-11-11 半導體能源研究所股份有限公司 Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
CN106571459A (en) * 2011-09-09 2017-04-19 株式会社半导体能源研究所 Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9935313B2 (en) 2011-09-09 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
CN103000862B (en) * 2011-09-09 2016-12-21 株式会社半导体能源研究所 Positive electrode for lithium secondary battery, its manufacture method and lithium secondary battery
TWI617072B (en) * 2011-09-09 2018-03-01 半導體能源研究所股份有限公司 Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
CN106571459B (en) * 2011-09-09 2019-06-28 株式会社半导体能源研究所 Positive electrode for lithium secondary battery, its manufacturing method and lithium secondary battery
CN103000862A (en) * 2011-09-09 2013-03-27 株式会社半导体能源研究所 Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9556536B2 (en) 2011-09-09 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
TWI583042B (en) * 2011-09-09 2017-05-11 半導體能源研究所股份有限公司 Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9252419B2 (en) 2011-09-09 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9601764B2 (en) 2011-10-07 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Power storage device
CN103035922B (en) * 2011-10-07 2019-02-19 株式会社半导体能源研究所 Electrical storage device
CN103035922A (en) * 2011-10-07 2013-04-10 株式会社半导体能源研究所 Power storage device
US20130143099A1 (en) * 2011-12-02 2013-06-06 Golden Crown New Energy (Hk) Limited Lithium ion battery
CN103165859B (en) * 2011-12-16 2017-04-12 株式会社半导体能源研究所 Method for forming positive electrode for lithium-ion secondary battery
JP2021153069A (en) * 2011-12-16 2021-09-30 株式会社半導体エネルギー研究所 Lithium ion secondary battery
CN107068967A (en) * 2011-12-16 2017-08-18 株式会社半导体能源研究所 The manufacture method of lithium ion secondary battery anode
US9373834B2 (en) 2011-12-16 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Method for forming positive electrode for lithium-ion secondary battery
CN103165859A (en) * 2011-12-16 2013-06-19 株式会社半导体能源研究所 Method for forming positive electrode for lithium-ion secondary battery
US11962013B2 (en) 2011-12-26 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery
CN103178239B (en) * 2011-12-26 2018-02-23 株式会社半导体能源研究所 The manufacture method of anode of secondary cell and anode of secondary cell
CN103178239A (en) * 2011-12-26 2013-06-26 株式会社半导体能源研究所 Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery
US10938035B2 (en) 2011-12-26 2021-03-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electrode for secondary battery
CN102593524A (en) * 2012-03-01 2012-07-18 广州市云通磁电有限公司 Manufacturing method of orthohexagonal lithium ion battery cell
CN102694201A (en) * 2012-06-04 2012-09-26 东莞新能源科技有限公司 Lithium ion battery
CN102800852B (en) * 2012-08-28 2014-05-14 湖南德天新能源科技有限公司 Preparation method of negative electrode material of power lithium-ion battery
CN102800852A (en) * 2012-08-28 2012-11-28 湖南德天新能源科技有限公司 Preparation method of negative electrode material of power lithium-ion battery
CN103840164A (en) * 2012-11-23 2014-06-04 中国科学院金属研究所 Method for using carbon nano conductive agent in lithium ion battery aqueous slurry
CN103208645B (en) * 2012-12-31 2015-04-08 深圳宏泰电池科技有限公司 Nano-power battery composed of lithium manganate and graphene and preparation method thereof
CN103208645A (en) * 2012-12-31 2013-07-17 深圳宏泰电池科技有限公司 Nano-power battery composed of lithium manganate and graphene and preparation method thereof
CN104078651B (en) * 2013-03-28 2018-01-02 株式会社半导体能源研究所 The manufacture method of battery electrode
US10347905B2 (en) 2013-03-28 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for storage battery
CN104078651A (en) * 2013-03-28 2014-10-01 株式会社半导体能源研究所 Method for manufacturing electrode for storage battery
CN103198935A (en) * 2013-04-18 2013-07-10 山东大学 Preparation method of graphene sheet modified spinel type lithium manganate or alpha type manganese dioxide electrode
CN103367714A (en) * 2013-07-09 2013-10-23 宁德新能源科技有限公司 Graphite cathode pole piece for lithium ion battery and manufacture method thereof
CN103367714B (en) * 2013-07-09 2015-05-13 宁德新能源科技有限公司 Graphite cathode pole piece for lithium ion battery and manufacture method thereof
CN103413917B (en) * 2013-08-19 2015-09-23 济宁利特纳米技术有限责任公司 The preparation method of the lithium manganate cathode pole piece containing Graphene
CN103413917A (en) * 2013-08-19 2013-11-27 济宁利特纳米技术有限责任公司 Preparation method of graphene-containing lithium manganate positive pole piece
CN103500822A (en) * 2013-10-10 2014-01-08 暴宁钟 Preparation method of carbon-modified nano Li4Ti5O12-porous graphene composite electrode material
CN103500822B (en) * 2013-10-10 2015-07-15 暴宁钟 Preparation method of carbon-modified nano Li4Ti5O12-porous graphene composite electrode material
CN103579624B (en) * 2013-10-17 2016-03-02 东莞市凯金新能源科技股份有限公司 Modified lithium battery graphite crucible waste material negative material and preparation method thereof and application
CN103579624A (en) * 2013-10-17 2014-02-12 东莞市凯金新能源科技有限公司 Modified graphite crucible waste negative electrode material for lithium battery, and preparation method and application of modified graphite crucible waste negative electrode material
CN104600246A (en) * 2013-10-30 2015-05-06 上海悦达墨特瑞新材料科技有限公司 Lithium ion battery electrode based on graphene and preparation method thereof
CN103840162A (en) * 2013-12-19 2014-06-04 东莞市凯金新能源科技有限公司 Preparation method for modified lithium battery negative electrode material, and lithium battery negative electrode sheet
CN103730661B (en) * 2014-01-28 2016-06-29 常州大学 A kind of lithium ion battery anode material CuSrGO and preparation method thereof
CN103730661A (en) * 2014-01-28 2014-04-16 常州大学 Anode material CuS@rGO of lithium ion battery and preparation method of anode material CuS@rGO
CN103966907A (en) * 2014-04-02 2014-08-06 上海大学 Nano cellulose based flexible conductive paper and preparation method thereof
CN106537665A (en) * 2014-07-10 2017-03-22 雷普索尔有限公司 Cathode for lithium batteries
WO2016005590A1 (en) * 2014-07-10 2016-01-14 Repsol, S.A. Cathode for lithium batteries
CN104362346A (en) * 2014-10-14 2015-02-18 东莞新能源科技有限公司 Lithium ion battery
CN104529452A (en) * 2014-12-16 2015-04-22 湖南大学 Graphene oxide baked-type electric contact material and preparation method thereof
CN105789553A (en) * 2014-12-25 2016-07-20 北京有色金属研究总院 Positive electrode of lithium ion battery
CN104600265A (en) * 2015-01-06 2015-05-06 中国科学院化学研究所 High-performance carbon-sulfur composite anode material and preparation method thereof
CN104953169A (en) * 2015-05-29 2015-09-30 湖北力莱科技有限公司 Lithium ion low-temperature battery
CN105244506A (en) * 2015-10-15 2016-01-13 青岛领军节能与新材料研究院 Lithium-ion battery material and lithium-ion battery structure and preparation method of lithium-ion battery material
CN105406070A (en) * 2015-12-18 2016-03-16 山东精工电子科技有限公司 Preparation method of lithium ion battery positive pole size
CN105405678A (en) * 2015-12-21 2016-03-16 山东精工电子科技有限公司 Preparation method of graphene-containing supercapacitor slurry
CN105405678B (en) * 2015-12-21 2018-03-30 山东精工电子科技有限公司 A kind of method for preparing super capacitor slurry containing graphene
CN105651723A (en) * 2015-12-30 2016-06-08 哈尔滨工业大学 In-situ transmission infrared electrolytic cell for gas detection of lithium ion battery and experimental method of electrolytic cell
CN107644977B (en) * 2016-07-22 2020-09-25 清华大学 Preparation method of lithium ion battery electrode
CN107644977A (en) * 2016-07-22 2018-01-30 清华大学 The preparation method of lithium ion cell electrode
CN106207092A (en) * 2016-09-20 2016-12-07 广东国光电子有限公司 A kind of combined anode slice of lithium ion battery of conductive agent and preparation method thereof
CN106328989A (en) * 2016-11-07 2017-01-11 上海碳源汇谷新材料科技有限公司 Application of metal phosphate to negative electrode material of lithium-ion battery
CN106784843A (en) * 2016-12-28 2017-05-31 中天储能科技有限公司 It is a kind of more than 300wh/kg high-energy-densities, the preparation method of high security battery
US11462738B2 (en) * 2016-12-28 2022-10-04 Zeon Corporation Slurry composition including lithium titanium oxide and nitrile butadiene rubber and method of producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN106784846A (en) * 2017-01-13 2017-05-31 湖南高远电池有限公司 A kind of high multiplying power lithium ion battery positive pole and its preparation method and application
CN108511752A (en) * 2017-02-24 2018-09-07 宁德新能源科技有限公司 Modified graphite cathode material and preparation method thereof and secondary cell
CN108511752B (en) * 2017-02-24 2021-11-09 宁德新能源科技有限公司 Modified graphite negative electrode material, preparation method thereof and secondary battery
CN107579250A (en) * 2017-08-28 2018-01-12 中国石油大学(北京) A kind of composite carbon material conductive agent
CN107579250B (en) * 2017-08-28 2020-10-20 中国石油大学(北京) Composite carbon material conductive agent
CN107634202A (en) * 2017-09-11 2018-01-26 福建师范大学 The method that intercalated graphite alkene improves ternary electrode performance
CN107634203A (en) * 2017-09-11 2018-01-26 福建师范大学 High dispersive graphene improves the method that ternary material prepares aluminium foil base anode pole piece
CN107634203B (en) * 2017-09-11 2020-09-01 福建师范大学 A method for the preparation of aluminum foil-based positive electrode pieces by improving ternary materials with highly dispersed graphene
CN107634202B (en) * 2017-09-11 2020-09-22 福建师范大学 Method for improving performance of ternary electrode by using intercalated graphene
CN109728258A (en) * 2017-10-30 2019-05-07 北京万源工业有限公司 A kind of dispersing technology of lithium iron phosphate positive material
CN109728258B (en) * 2017-10-30 2020-12-11 北京万源工业有限公司 Dispersing process of lithium iron phosphate cathode material
CN107887594A (en) * 2017-12-04 2018-04-06 中国科学院青岛生物能源与过程研究所 A kind of compound lithium-rich manganese-based anode material and preparation method for lithium ion battery
CN108511692A (en) * 2017-12-21 2018-09-07 中国石油大学(北京) A kind of lithium ion cell electrode and preparation method thereof
CN108199004A (en) * 2017-12-25 2018-06-22 深圳市山木新能源科技股份有限公司 The manufacturing method and electrode slice of electrode slice
CN108183223B (en) * 2017-12-29 2020-08-04 青岛昊鑫新能源科技有限公司 Conductive slurry compounded by carbon nano tube, graphene and conductive carbon black and preparation method thereof
CN108183223A (en) * 2017-12-29 2018-06-19 青岛昊鑫新能源科技有限公司 A kind of electrocondution slurry of carbon nanotube, graphene and conductive black compounding and preparation method thereof
CN108417837A (en) * 2018-02-12 2018-08-17 吴艳飞 A kind of aqueous polyimide adhesive of Anode of lithium cell material and preparation method
CN108470887A (en) * 2018-02-28 2018-08-31 北京国能电池科技股份有限公司 Negative material and preparation method thereof and lithium ion battery
CN108470887B (en) * 2018-02-28 2021-02-05 北京国能电池科技股份有限公司 Negative electrode material, preparation method thereof and lithium ion battery
CN109698338A (en) * 2018-12-26 2019-04-30 湖北锂诺新能源科技有限公司 A kind of powerful graphene-based LiFePO4 pole piece of low cost and preparation method
CN110707266A (en) * 2019-09-23 2020-01-17 河北金力新能源科技股份有限公司 PVDF (polyvinylidene fluoride) mixed coating slurry, preparation method thereof and diaphragm
CN114514197A (en) * 2019-10-07 2022-05-17 伊梅科技 Graphite composition and use in battery technology
CN112614984B (en) * 2020-12-25 2022-11-11 湖州凯金新能源科技有限公司 Graphite negative electrode material of low-magnetism substance for lithium battery and preparation method thereof
CN112614984A (en) * 2020-12-25 2021-04-06 湖州凯金新能源科技有限公司 Graphite negative electrode material of low-magnetism substance for lithium battery and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101710619A (en) Electrode plate for lithium ion battery and manufacturing method thereof
CN108232318A (en) A kind of production method of all solid state power lithium-ion battery
CN105679983A (en) Modified diaphragm and preparation method and application therefor
CN104659366A (en) A kind of preparation method of power lithium ion battery negative electrode material
CN107834061A (en) A kind of method of modifying for improving lithium-rich manganese base material chemical property
CN102163720A (en) Lithium sulfide-porpous carbon compound positive material for lithium ion battery and preparation method thereof
CN101527353A (en) Lithium ion battery anode composite material and manufacturing method thereof
CN112117435B (en) All-solid-state lithium battery positive plate, preparation method thereof and all-solid-state lithium battery
CN108269964A (en) A kind of composite solid electrode and preparation method thereof
CN104617294B (en) Nanosheet-assembled Na3V2(PO4)3/C graded micro-flower electrode material and its preparation method and application
CN102290577A (en) A negative electrode of a lithium ion battery
CN111211273A (en) In situ growth of iron nitride nanoparticles on reduced graphene oxide as modified separator material for lithium-sulfur batteries and preparation method thereof
CN110137568A (en) A kind of composite solid electrolyte, preparation method and all-solid-state battery system
CN102800858A (en) Preparation method and purpose for iron oxide-based anode material for lithium ion battery
CN106784651A (en) Connection nano-material and its preparation method and application in carbon-encapsulated iron potassium manganate
CN102376980A (en) Cell with carbon-free lithium iron phosphate as anode and manufacturing method thereof
CN114744287A (en) A kind of preparation method of sulfide solid state electrolyte and its application
CN105390683A (en) Sulfur-based negative electrode material of lithium ion batteries and application thereof
CN117559013A (en) Lithium supplementing agent composite material and preparation method and application thereof
CN116589975A (en) Composite adhesive and preparation method and application thereof
CN102456866A (en) A kind of organic radical polymer electrode and its preparation and application
CN110224107A (en) A kind of solid state battery electrode and preparation method thereof and a kind of solid state battery
CN102332582B (en) Preparation method for novel lithium vanadium phosphate/bamboo charcoal composite cathode material
CN111554914A (en) A kind of lithium iron phosphate-sodium vanadium phosphate-carbon composite material and its preparation method and application
CN110311110A (en) Graphene-based flexible lithium ion battery negative electrode material and testing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100519