CN101710540A - 一种多孔炭超级电容器电极材料及其制备方法 - Google Patents
一种多孔炭超级电容器电极材料及其制备方法 Download PDFInfo
- Publication number
- CN101710540A CN101710540A CN200910243306A CN200910243306A CN101710540A CN 101710540 A CN101710540 A CN 101710540A CN 200910243306 A CN200910243306 A CN 200910243306A CN 200910243306 A CN200910243306 A CN 200910243306A CN 101710540 A CN101710540 A CN 101710540A
- Authority
- CN
- China
- Prior art keywords
- electrode material
- porous charcoal
- super capacitor
- fructose
- porous carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000003990 capacitor Substances 0.000 title claims abstract description 10
- 239000003610 charcoal Substances 0.000 title claims abstract 7
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims abstract description 30
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 235000005074 zinc chloride Nutrition 0.000 claims abstract description 15
- 239000011592 zinc chloride Substances 0.000 claims abstract description 15
- 239000005715 Fructose Substances 0.000 claims abstract description 12
- 229930091371 Fructose Natural products 0.000 claims abstract description 12
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims abstract description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052786 argon Inorganic materials 0.000 claims abstract description 8
- 239000008367 deionised water Substances 0.000 claims abstract description 8
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 3
- 239000001307 helium Substances 0.000 claims abstract description 3
- 229910052734 helium Inorganic materials 0.000 claims abstract description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910001961 silver nitrate Inorganic materials 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract 2
- 238000005406 washing Methods 0.000 claims abstract 2
- 238000003763 carbonization Methods 0.000 claims description 10
- 239000003054 catalyst Substances 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 238000003756 stirring Methods 0.000 abstract description 6
- 230000005518 electrochemistry Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 46
- 229910052799 carbon Inorganic materials 0.000 description 43
- 239000011148 porous material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 7
- 230000004913 activation Effects 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 template method Chemical compound 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
一种多孔炭超级电容器电极材料及其制备方法,属于电化学和新能源材料领域。其特征在于:采用氯化锌为模板剂和催化剂、果糖作为前驱体制备,将重量比为50∶1~1∶99的果糖和氯化锌溶于去离子水中,10~300℃油浴搅拌,然后放到烘箱20~200℃保温1~50小时;随后在氩气、氮气或者氦气保护下煅烧,升温速率为1~20℃/分钟,炭化温度为450℃~1200℃,保温0.5~5小时,最后经盐酸和水洗涤至用硝酸银检测无氯离子为止,然后干燥得到多孔炭超级电容器电极材料。该电极材料制备工艺简单、成本低、适宜于工业化生产。
Description
技术领域
本发明属于电化学和新能源材料领域,特别是提供了一种多孔炭电极材料及其制备方法。
背景技术
随着信息化社会的不断扩大和环境及能源危机的出现,能源储存与转换效率问题变得越来越重要。在各种能源转换系统中,超级电容器由于具有充放电速度快、循环寿命长、相对安全、使用温度宽、环境友好和免维护等优良特性而被应用于备用电源、启动电源、脉冲电源、电网平衡等领域。大功率的超级电容器对于电动汽车的启动、加速和上坡行驶具有特别重要的意义;同时也可与镍氢电池、锂离子电池、燃料电池联用,提高混合电源体系的效率和使用寿命,在汽车启动和爬坡时快速提供大电流以获得大功率,在正常行驶时由蓄电池对其充电,大大延长蓄电池的使用寿命,提高电动汽车的实用性;同时具有高功率和高能量的超级电容器器件,可望替代电池的使用。根据储能机理的不同,超级电容器可分为双电层电容器和赝电容器或者氧化还原电容器。双电层电容器靠电极和电解液界面的双电层来存储电荷,其电极材料主要为高比表面积的炭材料。赝电容器靠电极活性物质发生快速可逆的氧化还原反应来存储电荷,对应的电极材料有金属氧化物和导电聚合物。
对双电层电容器而言,电容值正比于电极/电解质的界面,因此电极的性能受到炭材料表面积的限制,通常来说,对于比表面积为1000m2/g的活性炭,其比电容可以达到150F/g[C.Vix-Guterl et al,Carbon 2005,43,1293.]。多孔炭的电化学性能取决于比表面积,还与孔径分布有关。离子筛分效应的存在,使多孔炭存在着最小的有效孔径。J.S.Ye等[J.S.Y等,Electrochem Commun,2005,7(3):249-255.]的研究结果表明,在30%H2SO4电解液中,多孔炭的最小有效孔径为0.8nm。制备多孔炭的方法有很多,模板法、氢氧化钾活化法以及催化法等。催化法通常是在基体材料中添加金属或者金属化合物组分,以增加炭材料内部表面活性点。活化时,金属材料周围的炭原子优先发生氧化作用,生成二氧化炭,在炭材料中形成孔隙。同时包含有金属的纳米颗粒在炭基体中发生迁移,从而使微孔扩充为中孔。几乎所有的金属对炭都有催化活化作用。各种类型的金属催化剂,诸如铁、镍、钴、稀土金属、二氧化钛、硼、硝酸盐以及硼酸盐等都被用于制备多孔炭,其中以过渡金属对制备多孔炭材料效果最优。综述文献[A.-H.Lu and F.Schüth,Adv.Mater.2006,18,1793-1805]报道了多种制备多孔炭的方法。氯化锌催化活化法是一种通过调控浸渍比,制备具有不同孔径分布的多孔炭的有效方法[Khalili N R,Carbon,2000,38(14):1905-1915]。赵家昌[赵家昌等.电池.2008,38:17-20.]等使用氯化锌为活化剂,葡萄糖为炭源,采用化学活化法制备介孔炭材料。结果表明:在高浸渍比下可以制得介孔炭材料,在500℃下活化的活性炭循环性能比较差,但经900℃高温处理后,循环性能得到改善。目前尚无以氯化锌为模板剂和催化剂、果糖为炭源制备超级电容器电极材料的文献报道以及专利。
发明内容
本发明的目的在于提供一种多孔炭超级电容器电极材料及其制备方法,是采用氯化锌为模板剂和催化剂、果糖为前驱体而制备,同时提供一种工艺简单、成本低、适宜于工业化生产的超级电容器电极材料的制备方法。
一种多孔炭超级电容器电极材料及其制备方法,本发明多孔炭超级电容器电极材料的制备方法,工艺步骤如下,合成步骤示意图如图1所示。
将重量比为50∶1~1∶99的果糖和氯化锌溶于去离子水中,10~300℃油浴搅拌,然后放到烘箱20~200℃保温1~50小时。随后在氩气、氮气或者氦气保护下煅烧,升温速率为1~20℃/分钟,炭化温度为450℃~1200℃,保温0.5~5小时,最后经盐酸和水洗涤至用硝酸银检测无氯离子为止,然后干燥得到多孔炭超级电容器电极材料。
多孔炭为粉末状、孔径分布在0.1纳米到2微米范围,比表面积在100m2/g到2000m2/g范围。
多孔炭制备工艺简单、成本低、适宜于工业化生产。以氯化锌为催化剂制备多孔炭的炭化温度低,节省能源;以多孔炭为电极材料制备的多孔炭孔结构和孔分布适合作为超级电容器的电极材料,使该超级电容器电极材料具有较高的能量密度和功率密度。
附图说明
图1 多孔炭合成步骤示意图;
图2 450℃炭化得到的多孔炭的扫描电镜照片;
图3 450℃炭化得到的多孔炭在不同电流密度下的比容量曲线;
图4 450℃炭化得到的多孔炭在1Ag-1电流密度下的循环稳定性;
图5 700℃炭化得到的多孔炭的扫描电镜照片;
图6 700℃炭化得到的多孔炭在不同电流密度下的比容量曲线;
具体实施方式
实施例1:
将9克果糖和34克氯化锌溶于35毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里120℃保温4小时。随后在氩气保护下450℃进行炭化2小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。由此得到的多孔炭的扫描电镜图如图2所示,该多孔炭的粒径为2-30nm。氮气吸附解析测试表明,多孔炭的比表面积为1416m2/g;孔体积0.95cm3/g,具有介孔和微孔两种孔,介孔孔径为2.02nm,微孔孔径为0.44nm。对该电极材料在1M KOH的电解液中的电容测试表明(图3),在0.1Ag-1的电流密度下,测得多孔炭电极的比容量为248Fg-1。在2Ag-1的电流密度下,充放电比电容仍可保持在175Fg-1。多孔炭在1Ag-1电流密度下的循环稳定性如图4所示,循环330次,比电容损失小于6%。
实施例2:
实施例2与实施例1的区别之处为炭化温度不同,其余相同。具体如下:
将9克果糖和56克氯化锌溶于35毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里130℃保温1小时。随后在氩气保护下700℃进行炭化3小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。由此得到的多孔炭的扫描电镜图如图4所示,多孔炭粒度大小均匀,形状规则,粒径为2-30nm。氮气吸附解析测试表明,多孔炭的比表面积为1323m2/g,孔体积2.04cm3/g,具有介孔和微孔两种孔,介孔孔径为3.88nm,微孔孔径为1.2nm。对该电极材料在1M KOH的电解液中的电容测试表明(如图5所示):在电流密度为1Ag-1时,多孔炭的比电容可以达到226F/g,即使在非常高的电流密度(5Ag-1)时,多孔炭的比电容仍然高达90Fg-1。700℃炭化得到的多孔炭在1Ag-1电流密度下的循环稳定性如图6,循环330次后,比电容损失小于9%。
实施例3:
将2克果糖和80克氯化锌溶于60毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里130℃保温5小时。随后在氩气保护下750℃进行炭化2小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。多孔炭粒度大小均匀,形状规则,粒径为7-40nm。在电流密度为1Ag-1时,多孔炭的比电容可以达到210F/g。
实施例4:
将35克果糖和30克氯化锌溶于35毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里130℃保温3小时。随后在氩气保护下800℃进行炭化2小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。多孔炭粒度大小均匀,形状规则,粒径为5-32nm。在电流密度为1A g-1时,多孔炭的比电容可以达到191F/g。
实施例5:
将40克果糖和8克氯化锌溶于30毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里130℃保温3小时。随后在氩气保护下800℃进行炭化2小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。多孔炭形状规则,粒径为5-35nm。在电流密度为1Ag-1时,多孔炭的比电容为98F/g。
Claims (2)
1.一种多孔炭超级电容器电极材料及其制备方法,其特征在于:采用氯化锌为模板剂和催化剂、果糖作为前驱体制备,将重量比为50∶1~1∶99的果糖和氯化锌溶于去离子水中,10~300℃油浴搅拌,然后放到烘箱20~200℃保温1~50小时;随后在氩气、氮气或者氦气保护下煅烧,升温速率为1~20℃/分钟,炭化温度为450℃~1200℃,保温0.5~5小时,最后经盐酸和水洗涤至用硝酸银检测无氯离子为止,然后干燥得到多孔炭超级电容器电极材料。
2.根据权利要求1所述的多孔炭超级电容器电极材料,其特征在于:所述多孔炭为粉末状、孔径分布在0.1纳米到2微米范围,比表面积在100m2/g到2000m2/g范围。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102433069A CN101710540B (zh) | 2009-12-17 | 2009-12-17 | 一种多孔炭超级电容器电极材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102433069A CN101710540B (zh) | 2009-12-17 | 2009-12-17 | 一种多孔炭超级电容器电极材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101710540A true CN101710540A (zh) | 2010-05-19 |
CN101710540B CN101710540B (zh) | 2012-05-23 |
Family
ID=42403320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102433069A Expired - Fee Related CN101710540B (zh) | 2009-12-17 | 2009-12-17 | 一种多孔炭超级电容器电极材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101710540B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102682928A (zh) * | 2012-06-11 | 2012-09-19 | 华东理工大学 | 一种介孔碳纳米片的制备方法及其作为超级电容器电极材料的应用 |
CN105006374A (zh) * | 2015-08-20 | 2015-10-28 | 东南大学 | 盐模板法制备多孔氮碳复合物及其在超级电容器中的应用 |
CN105712313A (zh) * | 2014-12-05 | 2016-06-29 | 中国科学院大连化学物理研究所 | 一种分级多孔碳材料的制备方法 |
CN111599602A (zh) * | 2020-05-11 | 2020-08-28 | 江南大学 | 氮掺杂微介孔碳/过渡金属氧化物复合材料及其制备方法 |
CN112259910A (zh) * | 2020-09-27 | 2021-01-22 | 北京理工大学 | 一种锂金属电池立方孔碳涂层隔膜及其制备方法 |
-
2009
- 2009-12-17 CN CN2009102433069A patent/CN101710540B/zh not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102682928A (zh) * | 2012-06-11 | 2012-09-19 | 华东理工大学 | 一种介孔碳纳米片的制备方法及其作为超级电容器电极材料的应用 |
CN102682928B (zh) * | 2012-06-11 | 2014-03-12 | 华东理工大学 | 一种介孔碳纳米片的制备方法及其作为超级电容器电极材料的应用 |
CN105712313A (zh) * | 2014-12-05 | 2016-06-29 | 中国科学院大连化学物理研究所 | 一种分级多孔碳材料的制备方法 |
CN105006374A (zh) * | 2015-08-20 | 2015-10-28 | 东南大学 | 盐模板法制备多孔氮碳复合物及其在超级电容器中的应用 |
CN111599602A (zh) * | 2020-05-11 | 2020-08-28 | 江南大学 | 氮掺杂微介孔碳/过渡金属氧化物复合材料及其制备方法 |
CN112259910A (zh) * | 2020-09-27 | 2021-01-22 | 北京理工大学 | 一种锂金属电池立方孔碳涂层隔膜及其制备方法 |
CN112259910B (zh) * | 2020-09-27 | 2021-08-17 | 北京理工大学 | 一种锂金属电池立方孔碳涂层隔膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101710540B (zh) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fan et al. | Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor | |
Tang et al. | Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction | |
Li et al. | Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon | |
CN106914265B (zh) | 一种以生物质为碳源凝胶法制备氮掺杂多孔纳米碳材料的方法 | |
JP5481748B2 (ja) | 炭素ナノ構造体、金属内包樹状炭素ナノ構造物の作製方法、及び炭素ナノ構造体の作製方法 | |
Ruan et al. | Biomass-derived carbon materials for high-performance supercapacitor electrodes | |
Li et al. | Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor | |
Lux et al. | Heat-treatment of metal–organic frameworks for green energy applications | |
Lu et al. | Recent progress in Co3O4‐based nanomaterials for supercapacitors | |
CN101281821B (zh) | 纳米丝状二氧化锰负载炭气凝胶及其制备方法与应用 | |
Fu et al. | Coal-derived N, O co-doped mesoporous carbon as electrode material for high performance aqueous electric-double layer capacitors and zinc-ion hybrid supercapacitors | |
Liu et al. | Preparation and electrochemical studies of electrospun phosphorus doped porous carbon nanofibers | |
Zhang et al. | Bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber composite: a high-performance oxygen reduction electrocatalyst for zinc-air batteries | |
CN104495788A (zh) | 一种多孔碳的制备方法 | |
CN108962632A (zh) | 一种石墨烯/氮掺杂碳/镍/氧化镍复合材料制备方法 | |
Pooriraj et al. | Impact of silver incorporation on cobalt rich 3-D porous carbon arising from solid state thermolysis of ZIF-67 as a pseudocapacitor electrode: improvement of diffusion-controlled charge storage | |
CN101710540A (zh) | 一种多孔炭超级电容器电极材料及其制备方法 | |
Yue et al. | Coral-like carbon structures derived from the complex of metal-organic frameworks and melamine formaldehyde resin with ideal electrochemical performances | |
CN101740230A (zh) | 一种超级电容电池用碳复合负极材料 | |
JP5145496B2 (ja) | 炭素ナノ構造体の製造方法 | |
Chu et al. | Short‐Range Graphitic Nanodomains in Hypocrystalline Carbon Nanotubes Realize Fast Potassium Ion Migration and Multidirection Stress Release | |
Jia et al. | A simple synthetic route of N-doped mesoporous carbon derived from casein extracted with cobalt ions for high rate performance supercapacitors | |
CN115708180A (zh) | 氮、硫掺杂纳米碳材料及其制备方法、电容器电极材料、电容器电极及其制备方法和电容器 | |
CN101221854A (zh) | 一种负载过渡金属的活性炭电极材料的制备方法及其应用 | |
JP2008141116A (ja) | 電気二重層キャパシタ用炭素材料及びその製造方法並びに該材料を用いた電気二重層キャパシタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120523 Termination date: 20141217 |
|
EXPY | Termination of patent right or utility model |