CN101703917A - Magnetic nano hydroxyapatite adsorbent, preparation and application thereof - Google Patents
Magnetic nano hydroxyapatite adsorbent, preparation and application thereof Download PDFInfo
- Publication number
- CN101703917A CN101703917A CN200910310387A CN200910310387A CN101703917A CN 101703917 A CN101703917 A CN 101703917A CN 200910310387 A CN200910310387 A CN 200910310387A CN 200910310387 A CN200910310387 A CN 200910310387A CN 101703917 A CN101703917 A CN 101703917A
- Authority
- CN
- China
- Prior art keywords
- adsorbent
- hydroxyapatite
- solution
- magnetic nano
- fecl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003463 adsorbent Substances 0.000 title claims abstract description 73
- 229910052588 hydroxylapatite Inorganic materials 0.000 title claims abstract description 51
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 title claims description 10
- 239000002351 wastewater Substances 0.000 claims abstract description 38
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 28
- 150000002500 ions Chemical class 0.000 claims abstract description 22
- 238000001179 sorption measurement Methods 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims abstract description 6
- 229910014497 Ca10(PO4)6(OH)2 Inorganic materials 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract 2
- 238000000227 grinding Methods 0.000 claims abstract 2
- 239000011701 zinc Substances 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000011133 lead Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052753 mercury Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 4
- 229910021529 ammonia Inorganic materials 0.000 claims 2
- 230000032683 aging Effects 0.000 claims 1
- 238000011017 operating method Methods 0.000 claims 1
- 239000013049 sediment Substances 0.000 claims 1
- 239000006247 magnetic powder Substances 0.000 abstract description 7
- 239000000839 emulsion Substances 0.000 abstract description 6
- 239000000084 colloidal system Substances 0.000 abstract description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 abstract description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 abstract description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract 1
- 239000006249 magnetic particle Substances 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000003321 atomic absorption spectrophotometry Methods 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229920001661 Chitosan Polymers 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052586 apatite Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000007885 magnetic separation Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- -1 FeCl 2 4H 2 O Chemical compound 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种磁性纳米羟基磷灰石吸附剂及其制备和应用,该吸附剂是以纳米羟基磷灰石Ca10(PO4)6(OH)2为基体,基体中均匀分散有磁性粉末Fe2O3,纳米羟基磷灰石与磁性粉末Fe2O3的质量比为(1.5~1)∶1,其制备方法是将质量比为(0.75~0.85)∶1的FeCl2和FeCl3溶解于去氧水中,然后加入氨水溶液并搅拌均匀,再将Ca(NO3)2溶液和(NH4)2HPO4溶液同时加入并搅拌均匀后得乳状胶体,将该乳状胶体于90℃~100℃温度下加热,再经冷却、分离、洗涤、干燥、研磨后得到磁性纳米羟基磷灰石吸附剂。本发明的吸附剂比表面积大、吸附效率高、成本低、易分离,且能有效去除废水中的重金属离子。The invention discloses a magnetic nano-hydroxyapatite adsorbent and its preparation and application. The adsorbent uses nano-hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 as a matrix, and magnetic particles are evenly dispersed in the matrix. Powder Fe 2 O 3 , the mass ratio of nano-hydroxyapatite to magnetic powder Fe 2 O 3 is (1.5-1):1, and its preparation method is to mix FeCl 2 and FeCl with a mass ratio of (0.75-0.85):1 3 Dissolve in deoxygenated water, then add ammonia solution and stir evenly, then add Ca(NO 3 ) 2 solution and (NH 4 ) 2 HPO 4 solution at the same time and stir evenly to obtain emulsion colloid, and place the emulsion colloid at 90°C Heating at ~100°C, cooling, separating, washing, drying and grinding to obtain magnetic nano-hydroxyapatite adsorbent. The adsorbent of the invention has large specific surface area, high adsorption efficiency, low cost, easy separation, and can effectively remove heavy metal ions in waste water.
Description
技术领域technical field
本发明涉及一种无机材料吸附剂及其制备和应用,尤其涉及一种主要由磷灰石构成的吸附剂及其制备和应用。The invention relates to an inorganic material adsorbent and its preparation and application, in particular to an adsorbent mainly composed of apatite and its preparation and application.
背景技术Background technique
重金属污染主要来自采矿业、冶金、机械加工、表面处理及重工业等。除去水中重金属离子的方法很多,传统的方法有化学沉淀法、氧化还原法、铁氧体法、电解法、蒸发浓缩法、离子交换树脂法等,但是这些方法存在投资大、运行成本高、操作管理繁琐、且容易造成二次污染等问题,同时也不能有效实现重金属和水资源的再利用。目前,实际运用中较多的是采用吸附法,吸附法因其材料便宜易得、成本低、去除效果好而一直受到人们的青睐。常用的去除重金属的吸附剂主要有活性炭、介孔材料、黏土、沸石、壳聚糖和磷灰石等,然而这些吸附剂都存在着吸附容量小或吸附后不易分离等缺点,因此必须努力寻找新的有前景的吸附剂。Heavy metal pollution mainly comes from mining, metallurgy, machining, surface treatment and heavy industry. There are many ways to remove heavy metal ions in water. The traditional methods include chemical precipitation, redox, ferrite, electrolysis, evaporation and concentration, ion exchange resin, etc., but these methods have large investment, high operating cost, and The management is cumbersome, and it is easy to cause secondary pollution and other problems. At the same time, it cannot effectively realize the reuse of heavy metals and water resources. At present, the adsorption method is mostly used in practical applications. The adsorption method has been favored by people because of its cheap and easy-to-obtain materials, low cost, and good removal effect. Commonly used adsorbents for removing heavy metals mainly include activated carbon, mesoporous materials, clay, zeolite, chitosan and apatite, etc. However, these adsorbents have disadvantages such as small adsorption capacity or difficult separation after adsorption, so efforts must be made to find New promising adsorbents.
近年来利用天然的或合成的无机材料作为吸附剂已经成为一个热门的研究领域,其主要原因在于无机吸附剂与吸附质间的作用力较弱,而且无机吸附剂具有极大的热稳定性,从而使得无机吸附剂的再生比较简单。然而,由于传统的无机吸附剂比表面积不大,故吸附容量较低。In recent years, the use of natural or synthetic inorganic materials as adsorbents has become a hot research field. The main reason is that the interaction between inorganic adsorbents and adsorbates is weak, and inorganic adsorbents have great thermal stability. This makes the regeneration of the inorganic adsorbent relatively simple. However, due to the small specific surface area of traditional inorganic adsorbents, the adsorption capacity is low.
纳米材料具有极大的比表面积,所以由无机物形成的纳米材料已成为广泛使用的吸附剂之一。纳米羟基磷灰石(简称HAP)作为一种由无机物组成的纳米材料吸附剂,其具有较高的生物相容性和吸附性能,并且已广泛应用于重金属离子的去除。目前,国内外以研究羟基磷灰石、羟基磷灰石的复合物以及纳米羟基磷灰石作为吸附剂的相关报道居多,但作为吸附处理重金属离子的纳米羟基磷灰石吸附剂,其性能和效果还有进一步改进和提升的空间。Nanomaterials have a large specific surface area, so nanomaterials formed from inorganic substances have become one of the widely used adsorbents. Nano-hydroxyapatite (HAP for short), as a nano-material adsorbent composed of inorganic substances, has high biocompatibility and adsorption performance, and has been widely used in the removal of heavy metal ions. At present, most of the relevant reports at home and abroad focus on the study of hydroxyapatite, hydroxyapatite composites, and nano-hydroxyapatite as adsorbents. The effect still has room for further improvement and improvement.
发明内容Contents of the invention
本发明要解决的技术问题是克服现有技术的不足,提供一种比表面积大、吸附效率高、成本低、易分离的将磁性分离技术与吸附过程相结合的磁性纳米羟基磷灰石吸附剂,同时还提供与该吸附剂相配套的、成本低廉且操作简单的磁性纳米羟基磷灰石吸附剂的制备方法及应用。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a magnetic nano-hydroxyapatite adsorbent that combines magnetic separation technology and adsorption process with large specific surface area, high adsorption efficiency, low cost and easy separation , and also provide a preparation method and application of a low-cost and simple-to-operate magnetic nano-hydroxyapatite adsorbent matched with the adsorbent.
为解决上述技术问题,本发明提出的技术方案为一种磁性纳米羟基磷灰石吸附剂,其特征在于:所述吸附剂是以纳米羟基磷灰石为基体,基体中均匀分散有磁性粉末Fe2O3,所述纳米羟基磷灰石的分子式为Ca10(PO4)6(OH)2,所述纳米羟基磷灰石与所述磁性粉末Fe2O3的质量比为(1.5~1)∶1。In order to solve the above technical problems, the technical solution proposed by the present invention is a magnetic nano-hydroxyapatite adsorbent, which is characterized in that: the adsorbent is based on nano-hydroxyapatite, and magnetic powder Fe is evenly dispersed in the matrix. 2 O 3 , the molecular formula of the nano-hydroxyapatite is Ca 10 (PO 4 ) 6 (OH) 2 , and the mass ratio of the nano-hydroxyapatite to the magnetic powder Fe 2 O 3 is (1.5-1 ): 1.
作为一个总的技术构思,本发明还提供一种磁性纳米羟基磷灰石吸附剂的制备方法,其操作步骤如下:在室温且惰性气体保护下,将质量比为(0.75~0.85)∶1的FeCl2和FeCl3(也可以是氯化亚铁和氯化铁的结晶水合物,例如FeCl2·4H2O、FeCl3·6H2O等)溶解于去氧水中,然后向该溶液中加入氨水溶液(氨水溶液的浓度在公知的范围内优选为25%~28%)并搅拌均匀得到沉淀液,再将分别调pH值后的Ca(NO3)2溶液和(NH4)2HPO4溶液同时加入到所述沉淀液中,其中Ca(NO3)2与FeCl2的摩尔比满足(18~18.5)∶1,(NH4)2HPO4与FeCl2的摩尔比满足(10~11)∶1,搅拌均匀后得乳状胶体,将该乳状胶体于90℃~100℃温度下加热(加热时间在公知的范围内优选为2h~3h),然后冷却到室温并老化,最后将老化所得的沉淀物分离,用去离子水洗涤至中性,经干燥、研磨后得到磁性纳米羟基磷灰石吸附剂。As a general technical idea, the present invention also provides a preparation method of magnetic nano-hydroxyapatite adsorbent, the operation steps are as follows: at room temperature and under the protection of inert gas, the mass ratio is (0.75~0.85): 1 FeCl 2 and FeCl 3 (also crystalline hydrates of ferrous chloride and ferric chloride, such as FeCl 2 4H 2 O, FeCl 3 6H 2 O, etc.) are dissolved in deoxygenated water, and then added to the solution Ammonia solution (the concentration of the ammonia solution is preferably 25% to 28% within the known range) and stirred evenly to obtain a precipitate, and then the Ca(NO 3 ) 2 solution and (NH 4 ) 2 HPO 4 The solution is added to the precipitation solution at the same time, wherein the molar ratio of Ca(NO 3 ) 2 to FeCl 2 satisfies (18-18.5):1, and the molar ratio of (NH 4 ) 2 HPO 4 to FeCl 2 satisfies (10-11 ): 1, after stirring evenly to obtain emulsion colloid, heat the emulsion colloid at a temperature of 90°C to 100°C (heating time is preferably 2h to 3h in a known range), then cool to room temperature and age, and finally age the obtained The precipitate was separated, washed with deionized water until neutral, dried and ground to obtain a magnetic nano-hydroxyapatite adsorbent.
上述的制备方法中,所述调pH值后的Ca(NO3)2溶液、(NH4)2HPO4溶液的pH值均优选控制在10~11。In the above preparation method, the pH values of the Ca(NO 3 ) 2 solution and the (NH 4 ) 2 HPO 4 solution after pH adjustment are preferably controlled at 10-11.
作为一个总的技术构思,本发明还提供一种磁性纳米羟基磷灰石吸附剂的应用,其特征在于:用所述吸附剂去除废水中的重金属离子,所述重金属包括铜、铅、锌、钴、镍、锰、镉、汞、钨、钼中的一种或多种,所述吸附剂在废水中用量为0.1g/L~0.2g/L。As a general technical conception, the present invention also provides the application of a magnetic nano-hydroxyapatite adsorbent, characterized in that: the adsorbent is used to remove heavy metal ions in wastewater, and the heavy metals include copper, lead, zinc, One or more of cobalt, nickel, manganese, cadmium, mercury, tungsten, and molybdenum, and the amount of the adsorbent used in the waste water is 0.1g/L-0.2g/L.
上述的应用中,所述吸附剂在废水中进行吸附处理时的pH值优选控制在5~8,吸附处理的时间优选控制在12h~24h。In the above application, the pH value of the adsorbent is preferably controlled at 5-8 when the adsorption treatment is carried out in the wastewater, and the time of the adsorption treatment is preferably controlled at 12h-24h.
与现有技术相比,本发明的优点在于:本发明提供的磁性纳米羟基磷灰石吸附剂是一种将磁性分离技术与吸附过程相结合的新型吸附剂,不仅具有纳米粒子比表面积大、表面原子易与其它原子、离子相结合的特点,而且由于合成的纳米粒子具有磁性,从而很容易从待处理溶液中分离出来。本发明中的磁性纳米羟基磷灰石与活性炭、沸石、黏土、壳聚糖等吸附剂相比,不仅比表面积更大,吸附效率更高,而且制备简单,成本低廉,很容易从溶液中分离并进行回收利用。与本发明的磁性纳米羟基磷灰石吸附剂相配套,本发明还提供了该磁性纳米羟基磷灰石吸附剂相应的制备方法和使用方法,该方法不仅操作简单,成本低廉,而且能够有效实现该磁性纳米羟基磷灰石吸附剂的工业化生产,实现其对废水中重金属离子的有效吸附及处理,采用本发明的磁性纳米羟基磷灰石吸附剂对废水中重金属的去除率基本稳定在75%以上,最高可达95%,要明显优于现有的纳米羟基磷灰石吸附剂,这为将来废水中重金属污染的治理提供了新的途径。Compared with the prior art, the present invention has the advantages that: the magnetic nano-hydroxyapatite adsorbent provided by the present invention is a new adsorbent that combines magnetic separation technology with the adsorption process, and not only has a large specific surface area of nanoparticles, Surface atoms are easy to combine with other atoms and ions, and because the synthesized nanoparticles are magnetic, they can be easily separated from the solution to be treated. Compared with adsorbents such as activated carbon, zeolite, clay, and chitosan, the magnetic nano-hydroxyapatite in the present invention not only has a larger specific surface area and higher adsorption efficiency, but also has simple preparation, low cost, and is easy to separate from the solution. and recycle. Compatible with the magnetic nano-hydroxyapatite adsorbent of the present invention, the present invention also provides a corresponding preparation method and use method of the magnetic nano-hydroxyapatite adsorbent. The method is not only simple in operation and low in cost, but also can effectively realize The industrial production of the magnetic nano-hydroxyapatite adsorbent realizes its effective adsorption and treatment of heavy metal ions in wastewater, and the removal rate of heavy metals in wastewater by using the magnetic nano-hydroxyapatite adsorbent of the present invention is basically stable at 75%. The above, up to 95%, is obviously better than the existing nano-hydroxyapatite adsorbent, which provides a new way for the treatment of heavy metal pollution in wastewater in the future.
附图说明Description of drawings
图1为本发明实施例1中磁性纳米羟基磷灰石吸附剂的扫描电镜图;Fig. 1 is the scanning electron micrograph of magnetic nano-hydroxyapatite adsorbent in Example 1 of the present invention;
图2为本发明实施例1中磁性纳米羟基磷灰石吸附剂的X射线能量色散分析图;Fig. 2 is the X-ray energy dispersion analysis diagram of magnetic nano-hydroxyapatite adsorbent in Example 1 of the present invention;
图3为本发明实施例1中磁性纳米羟基磷灰石吸附剂的磁化曲线图。Fig. 3 is a graph of the magnetization curve of the magnetic nano-hydroxyapatite adsorbent in Example 1 of the present invention.
具体实施方式Detailed ways
实施例1:Example 1:
一种磁性纳米羟基磷灰石吸附剂,该吸附剂是以纳米羟基磷灰石为基体,基体中均匀分散有磁性粉末Fe2O3,纳米羟基磷灰石的分子式为Ca10(PO4)6(OH)2,纳米羟基磷灰石与磁性粉末Fe2O3的质量比约为1.36,即磁性粉末Fe2O3在该吸附剂中的质量分数约为42.4%。A magnetic nano-hydroxyapatite adsorbent. The adsorbent is based on nano-hydroxyapatite, and magnetic powder Fe 2 O 3 is evenly dispersed in the matrix. The molecular formula of nano-hydroxyapatite is Ca 10 (PO 4 ) 6 (OH) 2 , the mass ratio of nano-hydroxyapatite to magnetic powder Fe 2 O 3 is about 1.36, that is, the mass fraction of magnetic powder Fe 2 O 3 in the adsorbent is about 42.4%.
本实施例上述的磁性纳米羟基磷灰石吸附剂的制备方法如下:The preparation method of the above-mentioned magnetic nano-hydroxyapatite adsorbent in this embodiment is as follows:
在室温并通入氮气的气氛下,将1.85mmoL的FeCl2·4H2O和3.7mmoL的FeCl3·6H2O溶解在30mL的去氧水中,然后向该溶液中加入25%的氨水溶液10mL并进行机械搅拌15min,搅拌均匀后得到沉淀液,再将pH值分别调到11的50mL的Ca(NO3)2(含溶质33.67mmol)和50mL的(NH4)2HPO4(含溶质20mmol)溶液同时逐滴加入到该沉淀液中并进行机械搅拌,搅拌均匀后得深褐色乳状胶体,将该乳状胶体于90℃温度下加热2h,然后冷却到室温并老化12h~24h,最后将老化所得的沉淀物用磁铁分离,再用去离子水洗涤至中性,将洗涤后的产物置于烘箱中于90℃温度下干燥4h,经冷却后研磨粉碎得到成品。从成品的物理性状及化学反应基本原理可以初步判断成品为磁性纳米羟基磷灰石吸附剂。Dissolve 1.85mmoL of FeCl 2 4H 2 O and 3.7mmoL of FeCl 3 6H 2 O in 30mL of deoxygenated water at room temperature under a nitrogen atmosphere, and then add 10mL of 25% ammonia solution to the solution And carry out mechanical stirring for 15min, after stirring evenly, to obtain the precipitated liquid, then adjust the pH value to 11 respectively 50mL of Ca(NO 3 ) 2 (containing 33.67mmol of solute) and 50mL of (NH 4 ) 2 HPO 4 (containing 20mmol of solute ) solution was added dropwise to the precipitation solution and mechanically stirred. After stirring evenly, a dark brown emulsion colloid was obtained. The emulsion was heated at 90°C for 2h, then cooled to room temperature and aged for 12h to 24h, and finally aged The obtained precipitate was separated with a magnet, and then washed with deionized water until it was neutral. The washed product was dried in an oven at 90° C. for 4 hours, cooled, ground and pulverized to obtain the finished product. From the physical properties of the finished product and the basic principle of the chemical reaction, it can be preliminarily judged that the finished product is a magnetic nano-hydroxyapatite adsorbent.
将上述制得的成品置于10000倍的扫描电镜下观察该成品的表面形貌结构,其扫描电镜图如图1所示,从图1可以看出该成品表面疏松多孔,有巨大的比表面积。再通过X射线能量色散分析该成品,其分析结果如图2所示,由图2可以看出该成品中主要含有Ca、P、Fe和O四种元素(由于氢元素的含量较少,所以吸收峰的强度较弱,故没有作出标示),其中的Ca元素也能与重金属离子进行离子交换,这些性质和特点都进一步证明了该成品属于一种纳米羟基磷灰石吸附剂,使该吸附剂对重金属离子的吸附成为可能。再对该成品进行磁化测试,从测试后的磁化曲线图(如图3所示)可以看出,该纳米羟基磷灰石吸附剂具有较强的磁性,且外观呈棕褐色,这说明在该纳米羟基磷灰石吸附剂中分散有磁性粉末Fe2O3,属于本发明的磁性纳米羟基磷灰石吸附剂,因此通过磁铁能使其很容易从溶液中分离出来。Place the above-mentioned finished product under a scanning electron microscope of 10,000 times to observe the surface morphology and structure of the finished product. The scanning electron microscope picture is shown in Figure 1. From Figure 1, it can be seen that the surface of the finished product is loose and porous, and has a huge specific surface area. . This finished product is analyzed by X-ray energy dispersion again, and its analysis result is as shown in Figure 2, can find out that mainly contains Ca, P, Fe and O four kinds of elements in this finished product by Fig. 2 (because the content of hydrogen element is less, so The intensity of the absorption peak is weak, so it is not marked), and the Ca element in it can also ion-exchange with heavy metal ions. These properties and characteristics further prove that the finished product belongs to a nano-hydroxyapatite adsorbent, making the adsorption It is possible for the agent to adsorb heavy metal ions. Carry out magnetization test to this finished product again, as can be seen from the magnetization curve figure (as shown in Figure 3) after the test, this nano-hydroxyapatite adsorbent has stronger magnetism, and appearance is tan, and this shows that in this Magnetic powder Fe 2 O 3 is dispersed in the nano-hydroxyapatite adsorbent, which belongs to the magnetic nano-hydroxyapatite adsorbent of the present invention, so it can be easily separated from the solution by a magnet.
实施例2:Example 2:
将实施例1中制得的本发明的磁性纳米羟基磷灰石吸附剂分别添加到各20mL的含Cd2+、Zn2+的废水中(每种废水中重金属离子的初始浓度见表1所示),每种废水中该吸附剂的用量均为0.1g/L,调节pH值至5.0±0.1,在室温下利用水浴恒温振荡器进行振荡吸附,24h后用磁铁将该吸附剂从上述废水中分离出来,并用火焰原子吸收分光光度法测定废水中未被吸附的Cd2+、Zn2+含量,测定结果如下表1所示。The magnetic nano-hydroxyapatite adsorbent of the present invention prepared in Example 1 was added to 20 mL of Cd2 + and Zn2 + -containing wastewater respectively (the initial concentration of heavy metal ions in each wastewater is shown in Table 1. Shown), the amount of the adsorbent in each kind of wastewater is 0.1g/L, adjust the pH value to 5.0±0.1, use a water bath constant temperature oscillator to carry out oscillation adsorption at room temperature, and use a magnet to remove the adsorbent from the above wastewater after 24h The content of unadsorbed Cd 2+ and Zn 2+ in the wastewater was determined by flame atomic absorption spectrophotometry. The results are shown in Table 1 below.
表1:处理前后废水中重金属离子的含量Table 1: Contents of heavy metal ions in wastewater before and after treatment
实施例3:Example 3:
将实施例1中制得的本发明的磁性纳米羟基磷灰石吸附剂添加到20mL含Cd2+和Zn2+两种重金属离子的废水中(废水中各重金属离子的初始浓度见表2所示),吸附剂的用量为0.1g/L,调节pH值至5.0±0.1,在室温下利用水浴恒温振荡器进行振荡吸附,24h后用磁铁将该吸附剂从上述废水中分离出来,并用火焰原子吸收分光光度法测定废水中未被吸附的Cd2+、Zn2+含量。表2中列出了利用磁性纳米羟基磷灰石吸附剂同时处理含Cd2+和Zn2+的废水时的去除效果。The magnetic nano-hydroxyapatite adsorbent of the present invention that is made in embodiment 1 is added to 20mL containing Cd 2+ and Zn 2+ in the wastewater of two kinds of heavy metal ions (the initial concentration of each heavy metal ion in the wastewater is shown in Table 2 Shown), the amount of adsorbent is 0.1g/L, adjust the pH value to 5.0±0.1, use a water bath constant temperature oscillator to carry out vibration adsorption at room temperature, use a magnet to separate the adsorbent from the above wastewater after 24h, and use a flame Determination of unadsorbed Cd 2+ and Zn 2+ contents in wastewater by atomic absorption spectrophotometry. Table 2 lists the removal effect of using magnetic nano-hydroxyapatite adsorbent to simultaneously treat wastewater containing Cd 2+ and Zn 2+ .
表2:处理前后废水中重金属离子的含量Table 2: Contents of heavy metal ions in wastewater before and after treatment
实施例4:Example 4:
将实施例1中制得的本发明的磁性纳米羟基磷灰石吸附剂分别添加到各20mL的含Cd2+、Zn2+的废水中(每种废水中重金属离子的初始浓度见表3所示),吸附剂的用量为0.1g/L,调节pH值至8.0±0.1,在室温下利用水浴恒温振荡器进行振荡吸附,24h后用磁铁将该吸附剂从上述废水中分离出来,并用火焰原子吸收分光光度法测定废水中未被吸附的Cd2+、Zn2+含量。表3中列出了在pH=8时利用磁性纳米羟基磷灰石吸附剂处理含Cd2+和含Zn2+废水时的去除效果。The magnetic nano-hydroxyapatite adsorbent of the present invention prepared in Example 1 was added to 20mL of waste water containing Cd2 + and Zn2 + respectively (the initial concentration of heavy metal ions in each kind of waste water is shown in Table 3. Shown), the amount of adsorbent is 0.1g/L, adjust the pH value to 8.0±0.1, use a water bath constant temperature oscillator to carry out oscillation adsorption at room temperature, use a magnet to separate the adsorbent from the above wastewater after 24h, and use a flame Determination of unadsorbed Cd 2+ and Zn 2+ contents in wastewater by atomic absorption spectrophotometry. Table 3 lists the removal effect when using magnetic nano-hydroxyapatite adsorbent to treat Cd 2+ and Zn 2+ wastewater at pH=8.
表3:处理前后废水中重金属离子的含量Table 3: Contents of heavy metal ions in wastewater before and after treatment
实施例5:Example 5:
将实施例1中制得的本发明的磁性纳米羟基磷灰石吸附剂分别添加到各20mL的含Cd2+、Zn2+的废水中(每种废水中重金属离子的初始浓度见表4所示),吸附剂的用量为0.2g/L,调节pH值至5.0±0.1,在室温下利用水浴恒温振荡器进行振荡吸附,24h后用磁铁将该吸附剂从上述废水中分离出来,并用火焰原子吸收分光光度法测定废水中未被吸附的Cd2+、Zn2+含量。表4中列出了在吸附剂的用量为0.2g/L时利用磁性纳米羟基磷灰石吸附剂处理含Cd2+和Zn2+废水时的去除效果。The magnetic nano-hydroxyapatite adsorbent of the present invention prepared in Example 1 was added to 20mL of Cd2 + and Zn2 + -containing wastewater respectively (see Table 4 for the initial concentration of heavy metal ions in each wastewater) Shown), the amount of adsorbent is 0.2g/L, adjust the pH value to 5.0±0.1, use a water bath constant temperature oscillator to carry out oscillation adsorption at room temperature, use a magnet to separate the adsorbent from the above wastewater after 24h, and use a flame Determination of unadsorbed Cd 2+ and Zn 2+ contents in wastewater by atomic absorption spectrophotometry. Table 4 lists the removal effect when using magnetic nano-hydroxyapatite adsorbent to treat wastewater containing Cd 2+ and Zn 2+ when the amount of adsorbent is 0.2g/L.
表4:处理前后废水中重金属离子的含量Table 4: Contents of heavy metal ions in wastewater before and after treatment
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910310387A CN101703917A (en) | 2009-11-25 | 2009-11-25 | Magnetic nano hydroxyapatite adsorbent, preparation and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910310387A CN101703917A (en) | 2009-11-25 | 2009-11-25 | Magnetic nano hydroxyapatite adsorbent, preparation and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101703917A true CN101703917A (en) | 2010-05-12 |
Family
ID=42374209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910310387A Pending CN101703917A (en) | 2009-11-25 | 2009-11-25 | Magnetic nano hydroxyapatite adsorbent, preparation and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101703917A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102020258A (en) * | 2010-10-26 | 2011-04-20 | 青岛科技大学 | Method for preparing magnetic fluorescence hydroxyapatite nanocomposite structure |
CN102500333A (en) * | 2011-10-28 | 2012-06-20 | 上海海洋大学 | Magnetic cationic surfactant modified chitosan / hydroxyapatite / zeolite composite and preparation method and application thereof |
CN102814158A (en) * | 2012-07-20 | 2012-12-12 | 安徽师范大学 | Preparation method and application of porous magnetic superstructure nanocomposite |
CN104289181A (en) * | 2014-10-25 | 2015-01-21 | 济南大学 | Preparation and application of magnetic hydroxyapatite/graphene oxide adsorbent |
CN104386859A (en) * | 2014-12-02 | 2015-03-04 | 河海大学 | Underground water fluoride removing device based on magnetic hydroxyapatite |
CN104549127A (en) * | 2015-01-29 | 2015-04-29 | 宁波大学 | Magnetic composite hydroxyapatite nanoparticles as well as preparation method and application thereof |
US20150225429A1 (en) * | 2014-02-07 | 2015-08-13 | Sedigheh Khosrovaninia | Method for separation and purification of phosphatidylcholine employing magnetic nanoparticles and compositions so produced |
CN105255853A (en) * | 2015-11-10 | 2016-01-20 | 河南工业大学 | Preparation method of magnetic hydroxyapatite immobilized lipase and application in edible fat and oil processing |
CN105289533A (en) * | 2015-10-23 | 2016-02-03 | 苏州书瑞环保科技有限公司 | Environment-friendly adsorbing material for treating mercury-lead-containing wastewater and preparation method thereof |
CN105642222A (en) * | 2016-02-29 | 2016-06-08 | 衡阳师范学院 | Preparation method and application of magnetic recyclable adsorbent |
CN105771875A (en) * | 2016-05-18 | 2016-07-20 | 湖南大学 | Magnetic nano-chlorine apatite adsorbent and preparation method thereof |
CN105903069A (en) * | 2016-06-28 | 2016-08-31 | 扬州大学 | One-step Synthesis of Hydroxyapatite/Ferric Oxide Composite |
CN105948157A (en) * | 2016-05-18 | 2016-09-21 | 湖南大学 | Method for removing heavy metals in waste water by using magnetic nano chlorapatite adsorbent |
CN106040170A (en) * | 2016-06-08 | 2016-10-26 | 芜湖市长江起重设备制造有限公司 | Crane electroplating wastewater treating agent capable of efficiently adsorbing metal ions and production method of agent |
CN106732357A (en) * | 2016-12-21 | 2017-05-31 | 浙江省农业科学院 | A kind of preparation method of charcoal Hydroxyapatite Nanocomposites |
CN108444925A (en) * | 2018-01-30 | 2018-08-24 | 大工(青岛)新能源材料技术研究院有限公司 | Absorption detection method of the hydroxyapatite to metallic nickel ions |
CN108479693A (en) * | 2018-05-04 | 2018-09-04 | 成都理工大学 | Hydroxyapatite attapulgite composite material and its preparation method and application |
CN109351322A (en) * | 2018-11-07 | 2019-02-19 | 西南大学 | A kind of preparation method of micro-nano MFH composite material for treating lead-contaminated soil |
CN109692655A (en) * | 2019-01-14 | 2019-04-30 | 昆明理工大学 | The preparation method and application of modified dicyanodiamide adsorbent material |
CN110844898A (en) * | 2019-12-24 | 2020-02-28 | 东北农业大学 | Preparation method and application of modified hydroxyapatite |
CN111196618A (en) * | 2020-03-16 | 2020-05-26 | 河北省科学院生物研究所 | A method for removing cobalt ions and/or antibiotics in wastewater |
CN111377516A (en) * | 2020-04-16 | 2020-07-07 | 昆明理工大学 | Acid mine wastewater treatment process |
CN112691638A (en) * | 2020-12-08 | 2021-04-23 | 广西博世科环保科技股份有限公司 | PRB filler modified based on catalyst filter residue and preparation method thereof |
CN112871134A (en) * | 2021-01-18 | 2021-06-01 | 重庆大学 | Cu-HAP-biochar composite material for adsorbing hydrogen sulfide and preparation method thereof |
CN113274986A (en) * | 2021-04-13 | 2021-08-20 | Tcl华星光电技术有限公司 | Magnetic solid phase extracting agent and preparation method, application and application method thereof |
CN113871129A (en) * | 2021-11-08 | 2021-12-31 | 昆明理工大学 | Preparation method and application of liquid magnetofluid |
-
2009
- 2009-11-25 CN CN200910310387A patent/CN101703917A/en active Pending
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102020258B (en) * | 2010-10-26 | 2013-01-09 | 青岛科技大学 | Method for preparing magnetic fluorescence hydroxyapatite nanocomposite structure |
CN102020258A (en) * | 2010-10-26 | 2011-04-20 | 青岛科技大学 | Method for preparing magnetic fluorescence hydroxyapatite nanocomposite structure |
CN102500333A (en) * | 2011-10-28 | 2012-06-20 | 上海海洋大学 | Magnetic cationic surfactant modified chitosan / hydroxyapatite / zeolite composite and preparation method and application thereof |
CN102500333B (en) * | 2011-10-28 | 2013-06-26 | 上海海洋大学 | Magnetic cationic surfactant modified chitosan/hydroxyapatite/zeolite composite and its preparation method and application |
CN102814158B (en) * | 2012-07-20 | 2015-01-28 | 安徽师范大学 | Preparation method and application of porous magnetic superstructure nanocomposite |
CN102814158A (en) * | 2012-07-20 | 2012-12-12 | 安徽师范大学 | Preparation method and application of porous magnetic superstructure nanocomposite |
US9353137B2 (en) * | 2014-02-07 | 2016-05-31 | Ghassem Amoabediny | Method for separation and purification of phosphatidylcholine employing magnetic nanoparticles and compositions so produced |
US20150225429A1 (en) * | 2014-02-07 | 2015-08-13 | Sedigheh Khosrovaninia | Method for separation and purification of phosphatidylcholine employing magnetic nanoparticles and compositions so produced |
CN104289181A (en) * | 2014-10-25 | 2015-01-21 | 济南大学 | Preparation and application of magnetic hydroxyapatite/graphene oxide adsorbent |
CN104386859A (en) * | 2014-12-02 | 2015-03-04 | 河海大学 | Underground water fluoride removing device based on magnetic hydroxyapatite |
CN104386859B (en) * | 2014-12-02 | 2016-06-08 | 河海大学 | A kind of Removal of Fluorine From Underground Water device based on magnetic hydroxylapatite |
CN104549127A (en) * | 2015-01-29 | 2015-04-29 | 宁波大学 | Magnetic composite hydroxyapatite nanoparticles as well as preparation method and application thereof |
CN105289533A (en) * | 2015-10-23 | 2016-02-03 | 苏州书瑞环保科技有限公司 | Environment-friendly adsorbing material for treating mercury-lead-containing wastewater and preparation method thereof |
CN105255853A (en) * | 2015-11-10 | 2016-01-20 | 河南工业大学 | Preparation method of magnetic hydroxyapatite immobilized lipase and application in edible fat and oil processing |
CN105642222A (en) * | 2016-02-29 | 2016-06-08 | 衡阳师范学院 | Preparation method and application of magnetic recyclable adsorbent |
CN105948157B (en) * | 2016-05-18 | 2019-01-29 | 湖南大学 | Utilize the method for magnetic Nano chlorapatite adsorbent removal heavy metal in waste water |
CN105771875A (en) * | 2016-05-18 | 2016-07-20 | 湖南大学 | Magnetic nano-chlorine apatite adsorbent and preparation method thereof |
CN105948157A (en) * | 2016-05-18 | 2016-09-21 | 湖南大学 | Method for removing heavy metals in waste water by using magnetic nano chlorapatite adsorbent |
CN106040170A (en) * | 2016-06-08 | 2016-10-26 | 芜湖市长江起重设备制造有限公司 | Crane electroplating wastewater treating agent capable of efficiently adsorbing metal ions and production method of agent |
CN105903069A (en) * | 2016-06-28 | 2016-08-31 | 扬州大学 | One-step Synthesis of Hydroxyapatite/Ferric Oxide Composite |
CN106732357A (en) * | 2016-12-21 | 2017-05-31 | 浙江省农业科学院 | A kind of preparation method of charcoal Hydroxyapatite Nanocomposites |
CN108444925A (en) * | 2018-01-30 | 2018-08-24 | 大工(青岛)新能源材料技术研究院有限公司 | Absorption detection method of the hydroxyapatite to metallic nickel ions |
CN108479693A (en) * | 2018-05-04 | 2018-09-04 | 成都理工大学 | Hydroxyapatite attapulgite composite material and its preparation method and application |
CN109351322A (en) * | 2018-11-07 | 2019-02-19 | 西南大学 | A kind of preparation method of micro-nano MFH composite material for treating lead-contaminated soil |
CN109692655B (en) * | 2019-01-14 | 2021-08-06 | 昆明理工大学 | Preparation method and application of modified natural apatite adsorption material |
CN109692655A (en) * | 2019-01-14 | 2019-04-30 | 昆明理工大学 | The preparation method and application of modified dicyanodiamide adsorbent material |
CN110844898A (en) * | 2019-12-24 | 2020-02-28 | 东北农业大学 | Preparation method and application of modified hydroxyapatite |
CN110844898B (en) * | 2019-12-24 | 2023-02-24 | 东北农业大学 | Preparation method and application of modified hydroxyapatite |
CN111196618A (en) * | 2020-03-16 | 2020-05-26 | 河北省科学院生物研究所 | A method for removing cobalt ions and/or antibiotics in wastewater |
CN111377516A (en) * | 2020-04-16 | 2020-07-07 | 昆明理工大学 | Acid mine wastewater treatment process |
CN112691638A (en) * | 2020-12-08 | 2021-04-23 | 广西博世科环保科技股份有限公司 | PRB filler modified based on catalyst filter residue and preparation method thereof |
CN112871134A (en) * | 2021-01-18 | 2021-06-01 | 重庆大学 | Cu-HAP-biochar composite material for adsorbing hydrogen sulfide and preparation method thereof |
CN112871134B (en) * | 2021-01-18 | 2022-04-15 | 重庆大学 | Cu-HAP-biochar composite material for adsorbing hydrogen sulfide and preparation method thereof |
CN113274986A (en) * | 2021-04-13 | 2021-08-20 | Tcl华星光电技术有限公司 | Magnetic solid phase extracting agent and preparation method, application and application method thereof |
CN113871129A (en) * | 2021-11-08 | 2021-12-31 | 昆明理工大学 | Preparation method and application of liquid magnetofluid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101703917A (en) | Magnetic nano hydroxyapatite adsorbent, preparation and application thereof | |
Yang et al. | Simultaneous adsorption of Cd (II) and As (III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems | |
Guo et al. | Photocatalytic degradation of tetracycline antibiotics using delafossite silver ferrite-based Z-scheme photocatalyst: Pathways and mechanism insight | |
Li et al. | Dual-functional sites for selective adsorption of mercury and arsenic ions in [SnS4] 4-/MgFe-LDH from wastewater | |
Wang et al. | One-pot synthesis of multifunctional magnetic ferrite–MoS 2–carbon dot nanohybrid adsorbent for efficient Pb (ii) removal | |
Zhang et al. | Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: combination of adsorption and catalysis oxidation | |
Li et al. | Fulvic acid anchored layered double hydroxides: A multifunctional composite adsorbent for the removal of anionic dye and toxic metal | |
Wang et al. | Hierarchically flower-like WS2 microcrystals for capture and recovery of Au (III), Ag (I) and Pd (II) | |
Srivastava et al. | Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr (VI) adsorption from aqueous solution | |
Ren et al. | Comparison of Cd2+ adsorption onto amphoteric, amphoteric-cationic and amphoteric-anionic modified magnetic bentonites | |
Shan et al. | Magnetite/hydrated cerium (III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation | |
CN107029671A (en) | A kind of MODIFIED Fe3O4The preparation method and applications of@MOF composites | |
CN1751783A (en) | Composite adsorption material for removing arsenic in water and preparation method thereof | |
CN107281999B (en) | Iron oxide/manganese dioxide nano composite material and preparation method and application thereof | |
Yan et al. | Evenly distribution of amorphous iron sulfides on reconstructed Mg-Al hydrotalcites for improving Cr (VI) removal efficiency | |
Jiang et al. | Structural insight into the alginate derived nano-La (OH) 3/porous carbon composites for highly selective adsorption of phosphate | |
Li et al. | In-situ preparation of lignin/Fe3O4 magnetic spheres as bifunctional material for the efficient removal of metal ions and methylene blue | |
Abdolmaleki et al. | Efficient heavy metal ion removal by triazinyl-β-cyclodextrin functionalized iron nanoparticles | |
CN102941060B (en) | Manganese oxide diatomite composite adsorbent for treating lead-containing wastewater and preparation method thereof | |
CN107021469A (en) | A kind of utilization spent acid and bagasse prepare BC S Fe/Ni method and its remove the application of nitrate | |
Zhou et al. | Adsorption properties of a novel 3D graphene/MgO composite for heavy metal ions | |
Song et al. | 2D magnetic scallion sheathing-based biochar composites design and application for effective removal of arsenite in aqueous solutions | |
Sikdar et al. | Synthesis of MgO micro-rods coated with charred dextrose and its application for the adsorption of selected heavy metals from synthetic and real groundwater | |
CN102380348A (en) | Pectin modified magnetic nano-adsorbent and preparation method and application thereof | |
CN104353407B (en) | A kind of Fe-Mn system adsorbent and its preparation and application method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100512 |