[go: up one dir, main page]

CN101694876A - Lithium-rich manganese-based anode material and preparation method thereof - Google Patents

Lithium-rich manganese-based anode material and preparation method thereof Download PDF

Info

Publication number
CN101694876A
CN101694876A CN200910186311A CN200910186311A CN101694876A CN 101694876 A CN101694876 A CN 101694876A CN 200910186311 A CN200910186311 A CN 200910186311A CN 200910186311 A CN200910186311 A CN 200910186311A CN 101694876 A CN101694876 A CN 101694876A
Authority
CN
China
Prior art keywords
lithium
manganese
salt
nickel
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910186311A
Other languages
Chinese (zh)
Inventor
钟盛文
胡伟
张骞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jiangte Lithium Lon Battery Material Co Ltd
Jiangxi University of Science and Technology
Original Assignee
Jiangxi Jiangte Lithium Lon Battery Material Co Ltd
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jiangte Lithium Lon Battery Material Co Ltd, Jiangxi University of Science and Technology filed Critical Jiangxi Jiangte Lithium Lon Battery Material Co Ltd
Priority to CN200910186311A priority Critical patent/CN101694876A/en
Publication of CN101694876A publication Critical patent/CN101694876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂离子二次电池用正极材料技术,特别是富锂锰基正极材Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)及其制备方法。本发明富锂锰基正极材料,其通式为:Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu),其中0<x≤0.5,当M=Co、Al时,0<y<2x,a=b=y/2;当M=Ti时,0<y<(2-x)/3,a=0,b=y;当M=Mg、Cu时,0<y<x,a=y,b=0。本发明具有高的放电比容量,常温及高温循环性能优良,安全性好,并且原材料成本和生产成本低,具有很高的性价比。

Figure 200910186311

The invention relates to the positive electrode material technology for lithium-ion secondary batteries, in particular to the lithium-rich manganese-based positive electrode material Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M =Co, Al, Ti, Mg, Cu) and their preparation methods. The lithium-rich manganese-based cathode material of the present invention has a general formula: Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu), where 0<x≤0.5, when M=Co, Al, 0<y<2x, a=b=y/2; when M=Ti, 0<y<(2-x)/ 3. a=0, b=y; when M=Mg, Cu, 0<y<x, a=y, b=0. The invention has high discharge specific capacity, excellent cycle performance at normal temperature and high temperature, good safety, low raw material cost and production cost, and high cost performance.

Figure 200910186311

Description

富锂锰基正极材料及其制备方法Lithium-rich manganese-based cathode material and preparation method thereof

技术领域technical field

本发明涉及锂离子二次电池用正极材料技术,特别是富锂锰基正极材Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)及其制备方法。The invention relates to the positive electrode material technology for lithium-ion secondary batteries, in particular to the lithium-rich manganese-based positive electrode material Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M =Co, Al, Ti, Mg, Cu) and their preparation methods.

背景技术Background technique

锂离子电池正极材料是锂离子电池的关键原材料,其性能的好坏决定了锂离子电池的性能,其价格的高低决定了锂离子电池的成本,目前市场上的正极材料以钴酸锂为主,尖晶石锰酸锂、镍钴锰酸锂、镍钴酸锂、磷酸亚铁锂等材料也占有了一定的市场份额。钴酸锂是率先实现商品化的正极材料,其性能稳定、制备简单、工艺成熟,但是全球钴资源紧缺,并且我国是贫钴国家,因此钴酸锂的生产成本很高,产品价格居高不下,而且钴具有一定的毒性,钴酸锂的发展受到了阻碍,需要其它材料作为其替代品。尖晶石锰酸锂是目前市场上最低廉的正极材料,安全性也好,但是其比容量较低、高温循环性能差。镍钴锰酸锂与钴酸锂相比,价格低,比容量高,安全性好,对环境更友好,但是其平台电压低,压实密度也要更低一些。镍钴酸锂具有好的电化学性能,但是其价格比镍钴锰酸锂要高,并且安全性差。Lithium-ion battery cathode material is the key raw material of lithium-ion batteries. Its performance determines the performance of lithium-ion batteries, and its price determines the cost of lithium-ion batteries. At present, the cathode materials on the market are mainly lithium cobalt oxide. , materials such as spinel lithium manganate, nickel cobalt lithium manganese oxide, nickel cobalt lithium oxide, and lithium iron phosphate also occupy a certain market share. Lithium cobaltate is the first positive electrode material to be commercialized. It has stable performance, simple preparation, and mature technology. However, the global cobalt resources are in short supply, and my country is a cobalt-poor country. Therefore, the production cost of lithium cobaltate is very high, and the product price remains high. , and cobalt has certain toxicity, the development of lithium cobaltate has been hindered, and other materials are needed as its substitutes. Spinel lithium manganese oxide is currently the cheapest cathode material on the market, and has good safety, but its specific capacity is low and its high-temperature cycle performance is poor. Compared with lithium cobalt oxide, lithium nickel cobalt manganese oxide has lower price, higher specific capacity, better safety, and is more environmentally friendly, but its platform voltage is lower and its compaction density is lower. Lithium nickel cobalt oxide has good electrochemical properties, but its price is higher than that of lithium nickel cobalt manganese oxide, and its safety is poor.

与目前市场上的正极材料相比,富锂锰基正极材料Li[Li(1-2x)/3NixMn(2-x)/3]O2由于过渡金属元素以锰为主,锰资源丰富,价格低廉,并且对环境友好,因此是一种具有较好发展前景的新型材料。Li[Li(1-2x)/3NixMn(2-x)/3]O2材料是Li2MnO3与LiMn0.5Ni0.5O2的固溶体,是一种复合结构,它在较高的充电电压下,具有很高的比容量,有文献报道Li1.2Ni0.2Mn0.6O2材料在2-4.8V以20mA/g的电流充放电的初始放电比容量为288mAh/g,但其循环稳定性很差,30次循环后放电比容量便降到213mAh/g。从目前文献中所报道的Li[Li(1-2x)/3NixMn(2-x)/3]O2材料来看,其存在着明显的缺陷,第一,文献中报道的Li[Li(1-2x)/3NixMn(2-x)/3]O2材料的高比容量都是在很低的倍率下充放电而得到的,当倍率增加时,比容量下降很快,材料的倍率性能是较差的;第二,Li[Li(1-2x)/3NixMn(2-x)/3]O2材料只有当其充电到4.5V以上时才能得到较高的比容量,如果在较低的电压下充电得到的比容量比钴酸锂等材料要低很多。综上所述,目前的Li[Li(1-2x)/3NixMn(2-x)/3]O2材料性能并没有达到实际应用的要求,因此迫切需要对其进行性能改进,以使其具备更优良的性能,尽快实现工业化生产。Compared with the cathode materials currently on the market, the lithium-rich manganese-based cathode material Li[Li (1-2x)/3 Ni x Mn (2-x)/3 ]O 2 is dominated by manganese as a transition metal element, and manganese resources Rich, cheap, and environmentally friendly, it is a new type of material with good development prospects. Li[Li (1-2x)/3 Ni x Mn (2-x)/3 ]O 2 material is a solid solution of Li 2 MnO 3 and LiMn 0.5 Ni 0.5 O 2 , which is a composite structure. Under the charging voltage, it has a very high specific capacity. It is reported that the initial discharge specific capacity of Li 1.2 Ni 0.2 Mn 0.6 O 2 material at 2-4.8V with a current of 20mA/g is 288mAh/g, but its cycle is stable The performance is very poor, and the discharge specific capacity drops to 213mAh/g after 30 cycles. Judging from the Li[Li (1-2x)/3 Ni x Mn (2-x)/3 ]O 2 materials reported in the current literature, there are obvious defects. First, the Li[ The high specific capacity of Li (1-2x)/3 Ni x Mn (2-x)/3 ]O 2 material is obtained by charging and discharging at a very low rate. When the rate increases, the specific capacity drops rapidly , the rate performance of the material is poor; second, the Li[Li (1-2x)/3 Ni x Mn (2-x)/3 ]O 2 material can only get a higher rate when it is charged above 4.5V If the specific capacity is charged at a lower voltage, the specific capacity obtained is much lower than that of lithium cobalt oxide and other materials. In summary, the performance of the current Li[Li (1-2x)/3 Ni x Mn (2-x)/3 ]O 2 material does not meet the requirements of practical applications, so it is urgent to improve its performance in order to Make it have better performance, realize industrialized production as soon as possible.

发明内容Contents of the invention

本发明目的是提供一种高比容量、高倍率、价格低廉、电化学性能优良、结构稳定性好及高安全性的富锂锰基正极材料Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)。The purpose of the present invention is to provide a lithium-rich manganese-based positive electrode material Li[Li (1-2x)/3 Ni xa M with high specific capacity, high rate, low price, excellent electrochemical performance, good structural stability and high safety. y Mn (2-x)/3-b ]O 2 (M = Co, Al, Ti, Mg, Cu).

本发明的另一个目的在于提供所述的富锂锰基正极材料Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)的制备方法。Another object of the present invention is to provide the lithium-rich manganese-based cathode material Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al , Ti, Mg, Cu) preparation method.

本发明技术方案:富锂锰基正极材料,其通式为:The technical solution of the present invention: a lithium-rich manganese-based positive electrode material, the general formula of which is:

Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu),Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu),

其中0<x≤0.5,where 0<x≤0.5,

当M=Co、Al时,0<y<2x,a=b=y/2;When M=Co, Al, 0<y<2x, a=b=y/2;

当M=Ti时,0<y<(2-x)/3,a=0,b=y;When M=Ti, 0<y<(2-x)/3, a=0, b=y;

当M=Mg、Cu时,0<y<x,a=y,b=0。When M=Mg, Cu, 0<y<x, a=y, b=0.

所述的富锂锰基正极材料的微观结构为Li2MnO3和LiMO2层状复合结构。The microstructure of the lithium-rich manganese-based cathode material is a layered composite structure of Li 2 MnO 3 and LiMO 2 .

所述的富锂锰基正极材料的制备方法,包括以下步骤:The preparation method of the lithium-rich manganese-based positive electrode material comprises the following steps:

a)将可溶性镍、锰、M盐按(x-a)∶[(2-x)/3-b]∶y的摩尔比溶于去离子水中,配制成总浓度为0.5~4mol/L的溶液,其中,0<x≤0.5,当M=Co、Al时,0<y<2x,a=b=y/2;;当M=Ti时,0<y<(2-x)/3,a=0,b=y;当M=Mg、Cu时,0<y<x,a=y,b=0;a) dissolving soluble nickel, manganese, and M salt in deionized water at a molar ratio of (x-a):[(2-x)/3-b]:y, and preparing a solution with a total concentration of 0.5~4mol/L, Wherein, 0<x≤0.5, when M=Co, Al, 0<y<2x, a=b=y/2;; when M=Ti, 0<y<(2-x)/3, a =0, b=y; when M=Mg, Cu, 0<y<x, a=y, b=0;

b)配制碱溶液或者碱与氨水的混合溶液,碱浓度为1~8mol/L,氨水摩尔浓度为0.1~4mol/L;b) preparing an alkali solution or a mixed solution of alkali and ammonia water, the alkali concentration is 1-8 mol/L, and the ammonia water molar concentration is 0.1-4 mol/L;

c)在反应釜内加入占反应釜总容积10%-30%的去离子水,将所述的镍、锰、M盐溶液泵入到反应釜中,同时将所述的碱溶液或者碱与氨水的混合溶液泵入到反应釜中,对反应釜内的物料进行搅拌,控制反应釜内的温度、pH值,通过共沉淀反应生成前驱体[Ni(x-a)/(x+(2-x)/3)My/(x+(2-x)/3)Mn((2-x)/3-b)/(x+(2-x)/3)](OH)2沉淀;c) Add deionized water accounting for 10%-30% of the total volume of the reactor in the reactor, pump the nickel, manganese, and M salt solutions into the reactor, and simultaneously mix the alkali solution or the alkali with the The mixed solution of ammonia water is pumped into the reactor, the materials in the reactor are stirred, the temperature and pH value in the reactor are controlled, and the precursor [Ni (xa)/(x+(2-x) /3) M y/(x+(2-x)/3) Mn ((2-x)/3-b)/(x+(2-x)/3) ](OH) Precipitation;

d)将前驱体过滤、洗涤、烘干后与锂化合物按锂的摩尔数与镍、锰、M总的摩尔数之比为{[1+(1-2x)/3]/[x-a+y+(2-x)/3-b]+z}∶1的比例进行均匀混合,其中,0<x≤0.5,0≤z≤0.1,当M=Co、Al时,0<y<2x,a=b=y/2;当M=Ti时,0<y<(2-x)/3,a=0,b=y;当M=Mg、Cu时,0<y<x,a=y,b=0;d) After the precursor is filtered, washed, and dried, the ratio of the moles of lithium to the total moles of nickel, manganese, and M with the lithium compound is {[1+(1-2x)/3]/[x-a +y+(2-x)/3-b]+z}:1 ratio for uniform mixing, wherein, 0<x≤0.5, 0≤z≤0.1, when M=Co, Al, 0<y<2x , a=b=y/2; when M=Ti, 0<y<(2-x)/3, a=0, b=y; when M=Mg, Cu, 0<y<x, a =y,b=0;

e)将前驱体与锂化合物的均匀混合物在高温下进行烧制,即得到e) firing the homogeneous mixture of the precursor and the lithium compound at high temperature to obtain

Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)材料。Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu) material.

步骤(a)中所述的可溶性镍盐可以是硫酸镍、硝酸镍、氯化镍、乙酸镍中一种或其混合盐;可溶性锰盐可以是硫酸锰、硝酸锰、氯化锰、乙酸锰中一种或其混合盐;可溶性钴盐可以是硫酸钴、硝酸钴、氯化钴、乙酸钴中一种或其混合盐;可溶性铝盐可以是硫酸铝、硝酸铝、氯化铝中一种或其混合盐;可溶性钛盐可以是四氯化钛;可溶性镁盐可以是硫酸镁、氯化镁、硝酸镁、乙酸镁中一种或其混合盐;可溶性铜盐可以是硫酸铜、氯化铜、硝酸铜、乙酸铜中一种或其混合盐。The soluble nickel salt described in step (a) can be one or its mixed salt in nickel sulfate, nickel nitrate, nickel chloride, nickel acetate; Soluble manganese salt can be manganese sulfate, manganese nitrate, manganese chloride, manganese acetate One or its mixed salt; soluble cobalt salt can be one of cobalt sulfate, cobalt nitrate, cobalt chloride, cobalt acetate or their mixed salt; soluble aluminum salt can be one of aluminum sulfate, aluminum nitrate, aluminum chloride or its mixed salt; soluble titanium salt can be titanium tetrachloride; soluble magnesium salt can be one of magnesium sulfate, magnesium chloride, magnesium nitrate, magnesium acetate or its mixed salt; soluble copper salt can be copper sulfate, copper chloride, One of copper nitrate and copper acetate or their mixed salts.

步骤(b)中所述的碱可以是氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠中一种,或者是氢氧化钠、氢氧化钾、氢氧化锂的混合物,其浓度为1-8mol/L。The alkali described in step (b) can be a kind of in sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, or the mixture of sodium hydroxide, potassium hydroxide, lithium hydroxide, and its concentration is 1- 8mol/L.

步骤(c)中所述的镍、锰、M溶液是在反应釜上部以喷雾形式加入到反应釜中,所述的碱溶液是从反应釜下部通入。The nickel, manganese, and M solutions described in step (c) are added to the reactor in the form of spraying on the upper part of the reactor, and the alkali solution is introduced from the lower part of the reactor.

步骤(c)中所述的反应釜内的温度为40~60℃,pH值为8~12之间。The temperature in the reaction kettle described in the step (c) is 40-60° C., and the pH value is between 8-12.

步骤(d)中所述的锂化合物可以是氢氧化锂、碳酸锂、硝酸锂中一种或其混合物,单种锂盐或混合锂盐中总的锂摩尔数与镍、锰、M总的摩尔数之比为{[1+(1-2x)/3]/[x-a+y+(2-x)/3-b]+z}∶1,其中,0<x≤0.5,0≤z≤0.1,当M=Co、Al时,0<y<2x,a=b=y/2;;当M=Ti时,0<y<(2-x)/3,a=0,b=y;当M=Mg、Cu时,0<y<x,a=y,b=0。The lithium compound described in step (d) can be one or its mixture in lithium hydroxide, lithium carbonate, lithium nitrate, the total lithium molar number and nickel, manganese, M in a single lithium salt or mixed lithium salt The molar ratio is {[1+(1-2x)/3]/[x-a+y+(2-x)/3-b]+z}: 1, where 0<x≤0.5, 0≤ z≤0.1, when M=Co, Al, 0<y<2x, a=b=y/2;; when M=Ti, 0<y<(2-x)/3, a=0, b =y; when M=Mg, Cu, 0<y<x, a=y, b=0.

步骤(d)中所述的过滤、洗涤是使得前驱体中的Na+、K+总含量小于300ppm,硫酸根离子、氯离子总含量小于0.5%,烘干是在80-150℃之间进行。The filtration and washing described in step (d) are to make the total content of Na + and K + in the precursor less than 300ppm, the total content of sulfate ion and chloride ion is less than 0.5%, and the drying is carried out between 80-150°C .

步骤(e)中所述的高温烧制,是以1~20℃/min的升温速率升温到400~800℃,保温2~20h,然后再以1~20℃/min的升温速率升温到800~1100℃,保温4~40h。The high-temperature firing described in step (e) is to heat up to 400-800°C at a heating rate of 1-20°C/min, keep the temperature for 2-20h, and then heat up to 800°C at a heating rate of 1-20°C/min. ~1100℃, keep warm for 4~40h.

具体地说,是将可溶性镍、锰、M盐(如硫酸盐、氯化盐、硝酸盐、乙酸盐)按(x-a)∶[(2-x)/3-b]∶y的摩尔比溶于去离子水中,形成过渡金属离子总摩尔浓度为0.5~4mol/L的均匀透明溶液,其中,0<x≤0.5,当M=Co、Al时,0<y<2x,a=b=y/2;当M=Ti时,0<y<(2-x)/3,a=0,b=y;当M=Mg、Cu时,0<y<x,a=y,b=0。配制摩尔浓度为1~8mol/L的碱溶液,或者配制碱与氨水的混合溶液,氨水摩尔浓度为0.1~4mol/L,其中碱可以是氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠等。在反应釜内加入一定量的去离子水,将所述的镍、锰、M盐溶液和碱溶液(或碱和氨水的混合溶液)同时泵入到反应釜中,完全反应形成混合金属氢氧化物或金属碳酸盐或金属碱式碳酸盐沉淀,反应过程中对反应釜内的物料加以搅拌,并控制反应釜内的温度在40~60℃、pH值在8~12之间,通过调节碱液流速来控制pH值。将沉淀过滤、清洗、烘干、研磨成粉状,制得前驱体[Ni(x-a)/(x+(2-x)/3)My/(x+(2-x)/3)Mn((2-x)/3-b)/(x+(2-x)/3)](OH)2,将制得的前驱体与锂化合物按锂的摩尔数与镍、锰、M总的摩尔数之比为{[1+(1-2x)/3]/[x-a+y+(2-x)/3-b]+z}∶1的比例进行均匀混合,其中,0<x≤0.5,0≤z≤0.1,当M=Co、Al时,0<y<2x,a=b=y/2;当M=Ti时,0<y<(2-x)/3,a=0,b=y;当M=Mg、Cu时,0<y<x,a=y,b=0,锂化合物可以是碳酸锂、氢氧化锂、硝酸锂或其混合物。将前驱体与锂化合物的均匀混合物以1~20℃/min的升温速率升温到400~800℃,保温2~20h,然后再以1~20℃/min的升温速率升温到800~1100℃,保温4~40h,得到权利要求1所述的富锂锰基正极材料Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)。Specifically, soluble nickel, manganese, and M salts (such as sulfate, chloride, nitrate, and acetate) are used in a molar ratio of (xa):[(2-x)/3-b]:y Dissolved in deionized water to form a uniform transparent solution with a total molar concentration of transition metal ions of 0.5-4mol/L, where 0<x≤0.5, when M=Co, Al, 0<y<2x, a=b= y/2; when M=Ti, 0<y<(2-x)/3, a=0, b=y; when M=Mg, Cu, 0<y<x, a=y, b= 0. Prepare an alkali solution with a molar concentration of 1-8mol/L, or prepare a mixed solution of alkali and ammonia water, the molar concentration of ammonia water is 0.1-4mol/L, and the alkali can be sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate wait. Add a certain amount of deionized water into the reactor, pump the nickel, manganese, M salt solution and alkali solution (or the mixed solution of alkali and ammonia) into the reactor at the same time, and completely react to form mixed metal hydroxide During the reaction process, the materials in the reactor are stirred, and the temperature in the reactor is controlled at 40-60 ° C and the pH value is between 8 and 12. Adjust the lye flow rate to control the pH. The precipitate was filtered, washed, dried, and ground into powder to obtain the precursor [Ni (xa)/(x+(2-x)/3) M y/(x+(2-x)/3) Mn (( 2-x)/3-b)/(x+(2-x)/3) ](OH) 2 , the prepared precursor and lithium compound are calculated according to the moles of lithium and the total moles of nickel, manganese and M The ratio is {[1+(1-2x)/3]/[x-a+y+(2-x)/3-b]+z}: 1 for uniform mixing, where 0<x≤0.5 , 0≤z≤0.1, when M=Co, Al, 0<y<2x, a=b=y/2; when M=Ti, 0<y<(2-x)/3, a=0 , b=y; when M=Mg, Cu, 0<y<x, a=y, b=0, the lithium compound can be lithium carbonate, lithium hydroxide, lithium nitrate or a mixture thereof. The homogeneous mixture of precursor and lithium compound is heated to 400-800°C at a heating rate of 1-20°C/min, kept for 2-20h, and then heated to 800-1100°C at a heating rate of 1-20°C/min. Insulated for 4 to 40 hours to obtain the lithium-rich manganese-based positive electrode material Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu).

本发明的优点:Advantages of the present invention:

比容量高。以本发明所述的Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)材料为正极材料制作的锂离子电池充电截止电压高,可以达到4.6V,在2.5~4.6V之间充放电时,放电比容量可达到250mAh/g。并且在较低的充电电压下也能得到高的放电比容量,在2.75-4.2V、0.1C的充放电条件下放电比容量可达到166mAh/g。High specific capacity. Use the Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu) material described in the present invention as the positive electrode material The lithium-ion battery produced has a high charging cut-off voltage, which can reach 4.6V, and when charging and discharging between 2.5 and 4.6V, the discharge specific capacity can reach 250mAh/g. Moreover, a high discharge specific capacity can also be obtained at a lower charging voltage, and the discharge specific capacity can reach 166mAh/g under the charging and discharging conditions of 2.75-4.2V and 0.1C.

循环性能稳定。以本发明所述的Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)材料为正极材料制作的锂离子电池在2.75-4.2V之间以1C充放电时,初始放电比容量为141mAh/g,300次循环后容量保持率为97%,1600次循环后容量保持率为74%;倍率循环性能优良,6C放电比容量为0.5C的94%;The cycle performance is stable. Use the Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu) material described in the present invention as the positive electrode material When the manufactured lithium-ion battery is charged and discharged at 1C between 2.75-4.2V, the initial discharge specific capacity is 141mAh/g, the capacity retention rate is 97% after 300 cycles, and the capacity retention rate is 74% after 1600 cycles; Excellent cycle performance, 6C discharge specific capacity is 94% of 0.5C;

高温循环稳定且比容量高。在2.75-4.2V,1C,55℃的条件下充放电时,初始放电比容量为157mAh/g,180次循环后容量保持率为92.2%。High temperature cycle stability and high specific capacity. When charging and discharging under the conditions of 2.75-4.2V, 1C, 55°C, the initial discharge specific capacity is 157mAh/g, and the capacity retention rate after 180 cycles is 92.2%.

安全性好。以本发明所述的Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)材料为正极材料制作的锂离子电池能通过外部短路、穿钉实验,能耐5C10V过充,热稳定性好,环境最高安全温度为170℃。Good security. Use the Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu) material described in the present invention as the positive electrode material The manufactured lithium-ion battery can pass the external short circuit and nail penetration test, can withstand 5C10V overcharge, has good thermal stability, and the maximum safe temperature of the environment is 170°C.

环境友好材料。本发明所述的Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)材料钴含量少或不含钴,是一种对环境友好的材料。Environmentally friendly material. The Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu) material of the present invention has less cobalt content or It does not contain cobalt and is an environmentally friendly material.

成本低。本发明所述的Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)材料以锰为主,因此成本非常低,性价比优势很明显。low cost. The Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu) material described in the present invention is mainly manganese , so the cost is very low, and the cost performance advantage is obvious.

本发明提供的Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)材料的制备方法简易,有利于工业化大生产。The preparation method of the Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu) material provided by the present invention is simple and convenient, Conducive to large-scale industrial production.

附图说明Description of drawings

图1Li[Li0.067Ni0.3Cu0.1Mn0.533]O2材料的XRD图。Fig. 1 XRD pattern of Li[Li 0.067 Ni 0.3 Cu 0.1 Mn 0.533 ]O 2 material.

图2Li[Li0.067Ni0.3Co0.2Mn0.433]O2材料的SEM图。Fig. 2 SEM image of Li[Li 0.067 Ni 0.3 Co 0.2 Mn 0.433 ]O 2 material.

图3Li[Li0.2Ni0.19Al0.02Mn0.59]O2材料的首次充放电曲线(2.5~4.6V,0.1C,室温)。Fig. 3 The initial charge-discharge curve of Li[Li 0.2 Ni 0.19 Al 0.02 Mn 0.59 ]O 2 material (2.5-4.6V, 0.1C, room temperature).

图4Li[Li0.2Ni0.19Al0.02Mn0.59]O2材料在不同倍率下的放电比容量(2.75~4.2V,室温)。Fig. 4 Discharge specific capacity of Li[Li 0.2 Ni 0.19 Al 0.02 Mn 0.59 ]O 2 material at different rates (2.75-4.2V, room temperature).

具体实施方式Detailed ways

以下通过实施例详细介绍本发明的内容,提供实施例是为了便于理解本发明,绝不是限制本专利发明。The content of the present invention is described in detail below through the examples, and the examples are provided to facilitate understanding of the present invention, and are by no means limiting the invention of the patent.

本发明提供的富锂锰基正极材料分子式为Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu),其中其中0<x≤0.5,当M=Co、Al时,0<y<2x,a=b=y/2;当M=Ti时,0<y<(2-x)/3,a=0,b=y;当M=Mg、Cu时,0<y<x,a=y,b=0。The molecular formula of the lithium-rich manganese-based cathode material provided by the present invention is Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu), wherein 0<x≤0.5, when M=Co, Al, 0<y<2x, a=b=y/2; when M=Ti, 0<y<(2-x)/3 , a=0, b=y; when M=Mg, Cu, 0<y<x, a=y, b=0.

本发明所提供的富锂锰基材料Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)在锂离子电池制备中作为正极材料应用。Lithium-rich manganese-based material Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu) provided by the present invention It is used as a positive electrode material in the preparation of lithium-ion batteries.

本发明所提供的富锂锰基正极材料Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)的制备方法包括以下几个步骤:The lithium-rich manganese-based cathode material Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al, Ti, Mg, Cu ) preparation method comprises the following steps:

a.将可溶性镍、锰、M盐按(x-a)∶[(2-x)/3-b]∶y的摩尔比溶于去离子水中,配制成总浓度为0.5~4mol/L的溶液,其中,0<x≤0.5,当M=Co、Al时,0<y<2x,a=b=y/2;当M=Ti时,0<y<(2-x)/3,a=0,b=y;当M=Mg、Cu时,0<y<x,a=y,b=0;a. soluble nickel, manganese, M salt are dissolved in deionized water in a molar ratio of (x-a): [(2-x)/3-b]: y, and the total concentration is prepared into a solution of 0.5~4mol/L, Wherein, 0<x≤0.5, when M=Co, Al, 0<y<2x, a=b=y/2; when M=Ti, 0<y<(2-x)/3, a= 0, b=y; when M=Mg, Cu, 0<y<x, a=y, b=0;

b.配制碱溶液或者碱与氨水的混合溶液,碱浓度为1~8mol/L,氨水摩尔浓度为0.1~4mol/L;b. Prepare an alkali solution or a mixed solution of alkali and ammonia water, the alkali concentration is 1-8mol/L, and the molar concentration of ammonia water is 0.1-4mol/L;

c.在反应釜内加入一定量的去离子水,将所述的镍、锰、M盐溶液泵入到反应釜中,同时将所述的碱溶液泵入到反应釜中,对反应釜内的物料进行搅拌,控制反应釜内的温度、pH值,通过共沉淀反应生成前驱体沉淀;c. add a certain amount of deionized water in the reactor, pump the nickel, manganese, M salt solution into the reactor, and pump the alkali solution into the reactor simultaneously, Stir the materials, control the temperature and pH value in the reactor, and form precursor precipitation through co-precipitation reaction;

d.将前驱体过滤、洗涤、烘干后与锂化合物按锂的摩尔数与镍、锰、M总的摩尔数之比为{[1+(1-2x)/3]/[x-a+y+(2-x)/3-b]+z}∶1的比例进行均匀混合,其中,0<x≤0.5,0≤z≤0.1,当M=Co、Al时,0<y<2x,a=b=y/2;当M=Ti时,0<y<(2-x)/3,a=0,b=y;当M=Mg、Cu时,0<y<x,a=y,b=0;d. After the precursor is filtered, washed, and dried, the ratio of the moles of lithium to the total moles of nickel, manganese, and M with the lithium compound is {[1+(1-2x)/3]/[x-a +y+(2-x)/3-b]+z}:1 ratio for uniform mixing, wherein, 0<x≤0.5, 0≤z≤0.1, when M=Co, Al, 0<y<2x , a=b=y/2; when M=Ti, 0<y<(2-x)/3, a=0, b=y; when M=Mg, Cu, 0<y<x, a =y,b=0;

e.将前驱体与锂化合物的均匀混合物进行高温烧结,即得到Li[Li(1-2x)/3Nix-aMyMn(2-x)/3-b]O2(M=Co、Al、Ti、Mg、Cu)材料。e. Sinter the homogeneous mixture of precursor and lithium compound at high temperature to obtain Li[Li (1-2x)/3 Ni xa M y Mn (2-x)/3-b ]O 2 (M=Co, Al , Ti, Mg, Cu) materials.

步骤a所述的可溶性镍、锰、M盐可以是硫酸盐、氯化盐、硝酸盐、乙酸盐或者混合盐,步骤b所述碱可以是氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠等,或者是氢氧化钠、氢氧化钾、氢氧化锂的两两混合或三者混合。步骤c所述的锂化合物可以是氢氧化锂、碳酸锂、硝酸锂或其混合物,步骤c中所述的温度在40~60℃、pH值在8~12之间,通过调节碱液(或碱和氨水的混合溶液)流速来控制pH值。步骤e所述的高温烧结是将前驱体与锂化合物的均匀混合物以1~20℃/min的升温速率升温到400-800℃,保温2-20h,然后再以1-20℃/min的升温速率升温到800~1100℃,保温4-40h。The soluble nickel described in step a, manganese, M salt can be sulfate, chloride salt, nitrate, acetate or mixed salt, and the alkali described in step b can be sodium hydroxide, potassium hydroxide, lithium hydroxide, Sodium carbonate, etc., or a mixture of two or three of sodium hydroxide, potassium hydroxide, and lithium hydroxide. The lithium compound described in step c can be lithium hydroxide, lithium carbonate, lithium nitrate or a mixture thereof, the temperature described in step c is between 40~60° C., the pH value is between 8~12, by adjusting the lye (or The mixed solution of alkali and ammonia water) flow rate to control the pH value. The high-temperature sintering described in step e is to raise the temperature of the homogeneous mixture of the precursor and the lithium compound to 400-800°C at a heating rate of 1-20°C/min, keep it warm for 2-20h, and then raise the temperature at a rate of 1-20°C/min Raise the temperature at a rate of 800-1100°C and keep it warm for 4-40h.

实施例1Example 1

以镍、锰、铝金属离子摩尔百分比为0.123∶0.850∶0.027,将硫酸镍、硫酸锰、硫酸铝溶于去离子水中,配成锰、镍、铝离子总浓度为2mol/L的均匀透明溶液,配制4mol/L的氢氧化钠溶液,将混合金属盐溶液与氢氧化钠溶液同时泵入到反应釜中进行共沉淀反应。沉淀产物经过滤、清洗、干燥,得到金属氢氧化物前驱体Mn0.85Ni0.123Al0.027(OH)2The molar percentage of nickel, manganese and aluminum metal ions is 0.123:0.850:0.027. Dissolve nickel sulfate, manganese sulfate and aluminum sulfate in deionized water to prepare a uniform and transparent solution with a total concentration of manganese, nickel and aluminum ions of 2mol/L , prepare a 4mol/L sodium hydroxide solution, pump the mixed metal salt solution and the sodium hydroxide solution into the reactor at the same time for co-precipitation reaction. The precipitated product was filtered, washed and dried to obtain the metal hydroxide precursor Mn 0.85 Ni 0.123 Al 0.027 (OH) 2 .

将前驱体与碳酸锂按锂的摩尔数与镍、锰、铝总的摩尔数之比为1.77∶1的比例进进行均匀混合,将均匀混合好的粉末压实,在450℃保温2小时,然后升温到800℃保温40小时,得到富锂锰基材料Li[Li0.267Ni0.09Al0.02Mn0.623]O2The precursor and lithium carbonate are uniformly mixed according to the ratio of the molar number of lithium to the total molar number of nickel, manganese, and aluminum of 1.77:1, and the uniformly mixed powder is compacted and kept at 450°C for 2 hours. Then the temperature was raised to 800° C. and kept for 40 hours to obtain Li[Li 0.267 Ni 0.09 Al 0.02 Mn 0.623 ]O 2 , a lithium-rich manganese-based material.

以制备的Li[Li0.267Ni0.09Al0.02Mn0.623]O2为正极材料组装成AA型电池。在2.5-4.6V,0.1C的充放电条件下,放电比容量为250mAh/g。AA batteries were assembled using the prepared Li[Li 0.267 Ni 0.09 Al 0.02 Mn 0.623 ]O 2 as the cathode material. Under the charging and discharging conditions of 2.5-4.6V and 0.1C, the discharge specific capacity is 250mAh/g.

实施例2Example 2

以镍、锰、铝金属离子摩尔百分比为0.238∶0738∶0.025.,将氯化镍、硫酸锰、氯化铝溶于去离子水中,配成锰、镍、铝离子总浓度为2mol/L的均匀透明溶液,配制4mol/L的氢氧化钠溶液,将混合金属盐溶液与氢氧化钠溶液同时泵入到反应釜中进行共沉淀反应。沉淀产物经过滤、清洗、干燥,得到金属氢氧化物前驱体Mn0.738Ni0.238Al0.025(OH)2With the molar percentage of nickel, manganese, and aluminum metal ions as 0.238:0738:0.025, nickel chloride, manganese sulfate, and aluminum chloride are dissolved in deionized water, and the total concentration of manganese, nickel, and aluminum ions is 2mol/L. Uniform and transparent solution, prepare 4mol/L sodium hydroxide solution, pump the mixed metal salt solution and sodium hydroxide solution into the reactor at the same time for co-precipitation reaction. The precipitated product was filtered, washed and dried to obtain the metal hydroxide precursor Mn 0.738 Ni 0.238 Al 0.025 (OH) 2 .

将前驱体与碳酸锂按锂的摩尔数与镍、锰、铝总的摩尔数之比为1.54∶1的比例进进行均匀混合,将均匀混合好的粉末压实,在550℃保温4小时,然后升温到900℃保温20小时,得到富锂锰基材料Li[Li0.2Ni0.19Al0.02Mn0.59]O2The precursor and lithium carbonate are uniformly mixed according to the ratio of the molar number of lithium to the total molar number of nickel, manganese, and aluminum of 1.54:1, and the uniformly mixed powder is compacted and kept at 550°C for 4 hours. Then the temperature was raised to 900° C. and kept for 20 hours to obtain Li[Li 0.2 Ni 0.19 Al 0.02 Mn 0.59 ]O 2 , a lithium-rich manganese-based material.

以Li[Li0.2Ni0.19Al0.02Mn0.59]O2为正极材料组装成AA型电池。在2.5-4.6V,0.1C的充放电条件下,放电比容量与实施例1中材料相同,也为250mAh/g。在其它电压区间进行充放电也表现出了较高的容量,2.5-4.2V,0.3C充放电时,放电比容量为150-160mAh/g之间,2.5-4.3V,0.3C充放电时,放电比容量为160-170mAh/g之间,2.5-4.4V,0.3C充放电时,放电比容量为170-180mAh/g之间,2.5-4.5V,0.3C充放电时,放电比容量为180-190mAh/g之间。在2.75-4.2V,1C的条件下进行充放电循环,初始放电比容量为141mAh/g,300次循环后容量保持率为97%,1600次循环后容量保持率为74%;倍率循环性能优良,6C放电比容量为0.5C的94%;高温循环稳定且比容量高,在2.75-4.2V,1C,55℃的条件下充放电时,初始放电比容量为157mAh/g,180次循环后容量保持率为92.2%。AA batteries were assembled with Li[Li 0.2 Ni 0.19 Al 0.02 Mn 0.59 ]O 2 as the cathode material. Under the charging and discharging conditions of 2.5-4.6V and 0.1C, the discharge specific capacity is the same as that of the material in Example 1, which is also 250mAh/g. Charging and discharging in other voltage ranges also shows a higher capacity. When charging and discharging at 2.5-4.2V and 0.3C, the discharge specific capacity is between 150-160mAh/g. When charging and discharging at 2.5-4.3V and 0.3C, The discharge specific capacity is between 160-170mAh/g, 2.5-4.4V, 0.3C charge and discharge, the discharge specific capacity is between 170-180mAh/g, 2.5-4.5V, 0.3C charge and discharge, the discharge specific capacity is Between 180-190mAh/g. Under the conditions of 2.75-4.2V, 1C, the charge-discharge cycle is carried out, the initial discharge specific capacity is 141mAh/g, the capacity retention rate after 300 cycles is 97%, and the capacity retention rate after 1600 cycles is 74%; the rate cycle performance is excellent , 6C discharge specific capacity is 94% of 0.5C; high temperature cycle stability and high specific capacity, when charging and discharging under the conditions of 2.75-4.2V, 1C, 55 ℃, the initial discharge specific capacity is 157mAh/g, after 180 cycles The capacity retention rate was 92.2%.

实施例3Example 3

以镍、锰、铜金属离子摩尔百分比为0.231∶0.654∶0.115,将硫酸镍、硫酸锰、硫酸铜溶于去离子水中,配成锰、镍、铜离子总浓度为2mol/L的均匀透明溶液,配制4mol/L的氢氧化钾溶液,将混合金属盐溶液与氢氧化钠溶液同时泵入到反应釜中进行共沉淀反应。沉淀产物经过滤、清洗、干燥,得到金属氢氧化物前驱体Mn0.654Ni0.231Cu0.115(OH)2Dissolve nickel sulfate, manganese sulfate, and copper sulfate in deionized water with a molar percentage of nickel, manganese, and copper metal ions of 0.231:0.654:0.115 to prepare a uniform transparent solution with a total concentration of manganese, nickel, and copper ions of 2 mol/L , prepare a 4mol/L potassium hydroxide solution, pump the mixed metal salt solution and the sodium hydroxide solution into the reactor at the same time for co-precipitation reaction. The precipitated product was filtered, washed and dried to obtain the metal hydroxide precursor Mn 0.654 Ni 0.231 Cu 0.115 (OH) 2 .

将前驱体与碳酸锂按锂的摩尔数与镍、锰、铜总的摩尔数之比为1.35∶1的比例进进行均匀混合,将均匀混合好的粉末压实,在500℃保温15小时,然后升温到1000℃保温8小时,得到富锂锰基材料Li[Li0.133Ni0.2Cu0.1Mn0.567]O2The precursor and lithium carbonate are uniformly mixed according to the ratio of the moles of lithium to the total moles of nickel, manganese, and copper of 1.35:1, and the uniformly mixed powder is compacted and kept at 500°C for 15 hours. Then the temperature was raised to 1000° C. and kept for 8 hours to obtain Li[Li 0.133 Ni 0.2 Cu 0.1 Mn 0.567 ]O 2 , a lithium-rich manganese-based material.

以Li[Li0.133Ni0.2Cu0.1Mn0.567]O2为正极材料组装成AA电池。在2.5-4.6V,1C的充放电条件下放电比容量为225mAh/g。AA batteries were assembled with Li[Li 0.133 Ni 0.2 Cu 0.1 Mn 0.567 ]O 2 as the cathode material. Under 2.5-4.6V, 1C charge and discharge conditions, the discharge specific capacity is 225mAh/g.

实施例4Example 4

以镍、锰、铜金属离子摩尔百分比为0.322∶0.571∶0.107,将硫酸镍、硫酸锰、硫酸铜溶于去离子水中,配成锰、镍、铜离子总浓度为2mol/L的均匀透明溶液,配制2mol/L的碳酸钠溶液,将混合金属盐溶液与碳酸钠溶液同时泵入到反应釜中进行共沉淀反应。沉淀产物经过滤、清洗、干燥,得到碳酸盐前驱体Mn0.571Ni0.322Cu0.107CO3The molar percentage of nickel, manganese and copper metal ions is 0.322:0.571:0.107. Dissolve nickel sulfate, manganese sulfate and copper sulfate in deionized water to prepare a uniform and transparent solution with a total concentration of manganese, nickel and copper ions of 2mol/L , prepare a 2mol/L sodium carbonate solution, and pump the mixed metal salt solution and the sodium carbonate solution into the reactor simultaneously for co-precipitation reaction. The precipitated product was filtered, washed and dried to obtain the carbonate precursor Mn 0.571 Ni 0.322 Cu 0.107 CO 3 .

将前驱体与碳酸锂按锂的摩尔数与镍、锰、铜总的摩尔数之比为1.18∶1的比例进进行均匀混合,将均匀混合好的粉末压实,在600℃保温20小时,然后升温到1100℃保温4小时,得到富锂锰基材料Li[Li0.067Ni0.3Cu0.1Mn0.533]O2The precursor and lithium carbonate are uniformly mixed according to the ratio of the moles of lithium to the total moles of nickel, manganese, and copper of 1.18:1, and the uniformly mixed powder is compacted and kept at 600°C for 20 hours. Then the temperature was raised to 1100° C. and kept for 4 hours to obtain Li[Li 0.067 Ni 0.3 Cu 0.1 Mn 0.533 ]O 2 , a lithium-rich manganese-based material.

XRD图锋形尖锐,衍射强度高,材料具有层状结构且晶形完整。The XRD pattern has a sharp front and high diffraction intensity, and the material has a layered structure and a complete crystal form.

以Li[Li0.067Ni0.3Cu0.1Mn0.533]O2为正极材料组装成AA电池。在2.5-4.6V,1C的充放电条件下放电比容量为220mAh/g。AA batteries were assembled using Li[Li 0.067 Ni 0.3 Cu 0.1 Mn 0.533 ]O 2 as the cathode material. Under 2.5-4.6V, 1C charge and discharge conditions, the discharge specific capacity is 220mAh/g.

实施例5Example 5

以镍、钴、锰金属离子摩尔百分比为0.322∶0.214∶0.464,将硫酸镍、硫酸锰、硫酸锰溶于去离子水中,配成镍、钴、锰离子总浓度为1mol/L的均匀透明溶液,配制2mol/L的氢氧化钠与3mol/L的氨水混合溶液,将混合金属盐溶液与氢氧化钠溶液同时泵入到反应釜中进行共沉淀反应。沉淀产物经过滤、清洗、干燥,得到金属氢氧化物前驱体Ni0.322Co0.214Mn0.464(OH)2Dissolve nickel sulfate, manganese sulfate, and manganese sulfate in deionized water with a molar percentage of nickel, cobalt, and manganese metal ions of 0.322:0.214:0.464 to form a uniform transparent solution with a total concentration of nickel, cobalt, and manganese ions of 1mol/L , Prepare a mixed solution of 2mol/L sodium hydroxide and 3mol/L ammonia water, and pump the mixed metal salt solution and sodium hydroxide solution into the reactor at the same time for coprecipitation reaction. The precipitated product was filtered, washed and dried to obtain a metal hydroxide precursor Ni 0.322 Co 0.214 Mn 0.464 (OH) 2 .

将前驱体与碳酸锂按锂的摩尔数与镍、锰总的摩尔数之比为1.18∶1的比例进进行均匀混合,将均匀混合好的粉末压实,在750℃保温10小时,然后升温到900℃保温30小时,得到富锂锰基材料Li[Li0.067Ni0.3Co0.2Mn0.433]O2Mix the precursor and lithium carbonate uniformly according to the ratio of the moles of lithium to the total moles of nickel and manganese as 1.18:1, compact the uniformly mixed powder, keep it at 750°C for 10 hours, and then heat up The temperature was kept at 900° C. for 30 hours to obtain the lithium-rich manganese-based material Li[Li 0.067 Ni 0.3 Co 0.2 Mn 0.433 ]O 2 .

以Li[Li0.067Ni0.3Co0.2Mn0.433]O2为正极材料组装成AA电池。在2.75-4.2V,1C的条件下充放电时放电比容量为160mAh/g。AA batteries were assembled with Li[Li 0.067 Ni 0.3 Co 0.2 Mn 0.433 ]O 2 as the cathode material. The discharge specific capacity is 160mAh/g when charging and discharging under the condition of 2.75-4.2V and 1C.

Claims (10)

1. lithium-rich manganese-based anode material, its general formula is:
Li[Li (1-2x)/3Ni x-aM yMn (2-x)/3-b]O 2
Wherein M=Co, Al, Ti, Mg, Cu, 0<x≤0.5,
When M=Co, Al, 0<y<2x, a=b=y/2;
When M=Ti, 0<y<(2-x)/3, a=0, b=y;
When M=Mg, Cu, 0<y<x, a=y, b=0.
2. lithium-rich manganese-based anode material according to claim 1 is characterized in that: the microstructure of described lithium-rich manganese-based anode material is Li 2MnO 3And LiMO 2Layered composite structure.
3. the preparation method of lithium-rich manganese-based anode material according to claim 1 may further comprise the steps:
A) soluble nickel, manganese, M salt are pressed (x-a): [(2-x)/and 3-b]: the mol ratio of y is dissolved in the deionized water, is mixed with the solution that total concentration is 0.5~4mol/L, wherein, and 0<x≤0.5, when M=Co, Al, 0<y<2x, a=b=y/2; When M=Ti, 0<y<(2-x)/3, a=0, b=y; When M=Mg, Cu, 0<y<x, a=y, b=0;
B) mixed solution of preparation aqueous slkali or alkali and ammoniacal liquor, alkali concn is 1~8mol/L, the ammoniacal liquor molar concentration is 0.1~4mol/L;
C) in reactor, add the deionized water that accounts for reactor total measurement (volume) 10%-30%, described nickel, manganese, M salting liquid are pumped in the reactor, mixed solution with described aqueous slkali or alkali and ammoniacal liquor is pumped in the reactor simultaneously, material in the reactor is stirred, temperature, pH value in the control reactor generate presoma [Ni by coprecipitation reaction (x-a)/(x+ (2-x)/3)M Y/ (x+ (2-x)/3)Mn ((2-x)/3-b)/(x+ (2-x)/3)] (OH) 2Precipitation;
D) presoma is filtered, washing, oven dry back and lithium compound be that { [1+ (1-2x)/3]/[x-a+y+ (2-x)/3-b]+z}: 1 ratio is evenly mixed by the ratio of the total molal quantity of the molal quantity of lithium and nickel, manganese, M, wherein, 0<x≤0.5,0≤z≤0.1, when M=Co, Al, 0<y<2x, a=b=y/2; When M=Ti, 0<y<(2-x)/3, a=0, b=y; When M=Mg, Cu, 0<y<x, a=y, b=0;
E) homogeneous mixture of presoma and lithium compound is at high temperature fired, promptly obtained Li[Li (1-2x)/3Ni X-aM yMn (2-x)/3-b] O 2Material, wherein M=Co, Al, Ti, Mg, Cu.
4. the preparation method of lithium-rich manganese-based anode material according to claim 3, it is characterized in that: the soluble nickel salt described in the step (a) can be a kind of or its salt-mixture in nickelous sulfate, nickel nitrate, nickel chloride, the nickel acetate; Soluble manganese salt can be a kind of or its salt-mixture in manganese sulfate, manganese nitrate, manganese chloride, the manganese acetate; The solubility cobalt salt can be a kind of or its salt-mixture in cobaltous sulfate, cobalt nitrate, cobalt chloride, the cobalt acetate; Aluminum soluble salt can be a kind of or its salt-mixture in aluminum sulfate, aluminum nitrate, the aluminium chloride; The solubility titanium salt can be a titanium tetrachloride; The solubility magnesium salts can be a kind of or its salt-mixture in magnesium sulfate, magnesium chloride, magnesium nitrate, the magnesium acetate; Soluble copper salt can be a kind of or its salt-mixture in copper sulphate, copper chloride, copper nitrate, the copper acetate.
5. the preparation method of lithium-rich manganese-based anode material according to claim 3, it is characterized in that: the alkali described in the step (b) can be a kind of in NaOH, potassium hydroxide, lithium hydroxide, the sodium carbonate, or the mixture of NaOH, potassium hydroxide, lithium hydroxide, its concentration is 1-8mol/L.
6. the preparation method of lithium-rich manganese-based anode material according to claim 3, it is characterized in that: the nickel described in the step (c), manganese, M solution are to join in the reactor with Sprayable on reactor top, and described aqueous slkali is to feed from the reactor bottom.
7. the preparation method of lithium-rich manganese-based anode material according to claim 3 is characterized in that: the temperature in the reactor described in the step (c) is 40~60 ℃, and the pH value is between 8~12.
8. the preparation method of lithium-rich manganese-based anode material according to claim 3, it is characterized in that: the lithium compound described in the step (d) can be a kind of or its mixture in lithium hydroxide, lithium carbonate, the lithium nitrate, single ratio of planting lithium salts or mixing the total molal quantity of lithium molal quantity total in the lithium salts and nickel, manganese, M is { [1+ (1-2x)/3]/[x-a+y+ (2-x)/3-b]+z}: 1, wherein, 0<x≤0.5,0≤z≤0.1 is when M=Co, Al, 0<y<2x, a=b=y/2; When M=Ti, 0<y<(2-x)/3, a=0, b=y; When M=Mg, Cu, 0<y<x, a=y, b=0.
9. the preparation method of lithium-rich manganese-based anode material according to claim 3 is characterized in that: the filtration described in the step (d), washing are to make Na in the presoma +, K +Total content is less than 300ppm, and sulfate ion, chloride ion total content are less than 0.5%, and oven dry is to carry out between 80-150 ℃.
10. the preparation method of lithium-rich manganese-based anode material according to claim 3, it is characterized in that: the high-temperature firing described in the step (e), be that heating rate with 1~20 ℃/min is warmed up to 400~800 ℃, insulation 2~20h, and then be warmed up to 800~1100 ℃ with the heating rate of 1~20 ℃/min, insulation 4~40h.
CN200910186311A 2009-10-22 2009-10-22 Lithium-rich manganese-based anode material and preparation method thereof Pending CN101694876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910186311A CN101694876A (en) 2009-10-22 2009-10-22 Lithium-rich manganese-based anode material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910186311A CN101694876A (en) 2009-10-22 2009-10-22 Lithium-rich manganese-based anode material and preparation method thereof

Publications (1)

Publication Number Publication Date
CN101694876A true CN101694876A (en) 2010-04-14

Family

ID=42093825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910186311A Pending CN101694876A (en) 2009-10-22 2009-10-22 Lithium-rich manganese-based anode material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101694876A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013481A (en) * 2010-10-22 2011-04-13 北京工业大学 Method for synthesizing spherical gradient lithium-rich anode material
CN102208607A (en) * 2011-04-29 2011-10-05 广州市香港科大霍英东研究院 Synthesis and surface modification method of lithium excessive laminar oxide anode material
CN102354741A (en) * 2011-09-09 2012-02-15 中国科学院宁波材料技术与工程研究所 Preparation method of high-capacity layered lithium-rich manganese-based oxide
CN102593445A (en) * 2012-03-15 2012-07-18 湖南杉杉户田新材料有限公司 Aluminum clad manganese-base laminated composite lithium ion battery cathode material and preparation method thereof
CN102881873A (en) * 2012-09-28 2013-01-16 广东中科信泰新能源有限公司 Layered lithium-rich material preparation method
CN102916176A (en) * 2012-11-02 2013-02-06 多氟多化工股份有限公司 Microsphere laminated lithium-enriched manganese-based solid solution anode material and preparation method thereof
CN102956881A (en) * 2011-08-25 2013-03-06 深圳市钦雨新能源科技有限公司 High-manganese solid solution as lithium ion battery anode material and preparation method thereof
CN103035900A (en) * 2011-10-10 2013-04-10 北大先行科技产业有限公司 High-capacity lithium-rich cathode material and preparation method thereof
CN103078107A (en) * 2013-02-22 2013-05-01 郑州大学 Polybasic layered oxide lithium ion battery material and preparation method thereof
CN103259010A (en) * 2013-04-23 2013-08-21 宁夏东方钽业股份有限公司 Preparation method of amphoteric metal element doped lithium-ion cathode material precursor
CN103441252A (en) * 2013-08-12 2013-12-11 天津巴莫科技股份有限公司 Method for preparing lithium-enriched manganese-based anode material of nano-oxide-coated lithium ion battery
CN103606667A (en) * 2013-11-26 2014-02-26 浙江南都电源动力股份有限公司 Preparation method for manganese solid solution anode material of lithium ion battery material
CN103700835A (en) * 2013-09-24 2014-04-02 上海空间电源研究所 High-specific energy composite lithium-rich cathode material of lithium ion battery and preparation method thereof
CN103825018A (en) * 2014-03-17 2014-05-28 山东润峰集团新能源科技有限公司 High-performance manganese-lithium-base enriched positive slurry and application method thereof
CN103972491A (en) * 2013-12-30 2014-08-06 合肥国轩高科动力能源股份公司 Preparation method of lithium-rich manganese-base anode material
CN104241631A (en) * 2014-09-04 2014-12-24 中国科学院化学研究所 High-capacity positive electrode material for lithium ion battery
CN104852039A (en) * 2015-04-16 2015-08-19 中南大学 Preparation method of cathode material for lithium ion battery
CN105189361A (en) * 2013-07-24 2015-12-23 株式会社Lg化学 Lithium manganese-based oxide and positive electrode active material containing same
CN105576202A (en) * 2015-12-21 2016-05-11 哈尔滨工业大学 Rich-lithium manganese-selenium-based anode material and preparation method thereof
CN105742622A (en) * 2016-03-27 2016-07-06 华南理工大学 A kind of olivine structure LiMPO4 surface modified layered lithium-rich manganese-based positive electrode material and preparation method thereof
CN105810934A (en) * 2016-05-09 2016-07-27 北京工业大学 Method capable of improving stability of crystal domain structure of lithium-rich layered oxide material
CN106229502A (en) * 2016-09-24 2016-12-14 上海大学 A kind of preparation method of the lithium-rich anode material of sulfide doping
CN106410186A (en) * 2016-11-17 2017-02-15 天津理工大学 Preparation method and application of lithium-rich layered oxide cathode material
CN107293717A (en) * 2017-06-23 2017-10-24 深圳市沃特玛电池有限公司 The preparation method of the rich lithium nickel manganese binary material of fluoride cladding
CN107482172A (en) * 2016-06-07 2017-12-15 江苏当升材料科技有限公司 A kind of high-rate type stratiform lithium-rich manganese-based anode material and preparation method thereof
CN107732229A (en) * 2017-07-24 2018-02-23 江苏大学 A kind of titanium doped lithium-rich manganese-based anode material for lithium-ion batteries and preparation method thereof
CN108448109A (en) * 2018-03-23 2018-08-24 中南大学 A kind of layered lithium-rich manganese-based positive electrode material and preparation method thereof
CN108640167A (en) * 2018-05-28 2018-10-12 安徽工程大学 A kind of preparation method of two-dimensional nano piece
JP2019021610A (en) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
CN109546115A (en) * 2018-11-19 2019-03-29 安徽安凯汽车股份有限公司 A kind of NCA ternary battery of nickelic rich lithium manganese base solid solution positive electrode
CN109704415A (en) * 2018-12-26 2019-05-03 惠州亿纬锂能股份有限公司 A kind of lithium-rich manganese-based presoma, and preparation method thereof and lithium-rich manganese-based anode material
GB2569392A (en) * 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
GB2569389A (en) * 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
GB2569390A (en) * 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
CN111082009A (en) * 2019-12-17 2020-04-28 中南大学 A lithium-rich manganese-based composite cathode material improved by using phosphate and preparation method thereof
CN111224089A (en) * 2020-01-17 2020-06-02 江西理工大学 A kind of lithium ion battery ternary cathode material NCM811 prepared by molten salt method and preparation method thereof
US10763551B2 (en) 2016-03-15 2020-09-01 Dyson Technology Limited Method of fabricating an energy storage device
CN114497452A (en) * 2021-12-28 2022-05-13 高点(深圳)科技有限公司 Positive electrode material for silicon battery and preparation method and application thereof
US11616229B2 (en) 2017-12-18 2023-03-28 Dyson Technology Limited Lithium, nickel, manganese mixed oxide compound and electrode comprising the same
US11769911B2 (en) 2017-09-14 2023-09-26 Dyson Technology Limited Methods for making magnesium salts
US11817558B2 (en) 2017-09-14 2023-11-14 Dyson Technology Limited Magnesium salts
US11967711B2 (en) 2017-12-18 2024-04-23 Dyson Technology Limited Lithium, nickel, cobalt, manganese oxide compound and electrode comprising the same
CN119890287A (en) * 2025-03-26 2025-04-25 国联汽车动力电池研究院有限责任公司 Lithium-rich manganese-based positive electrode material with ultra-large interplanar spacing, and preparation method and application thereof

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013481A (en) * 2010-10-22 2011-04-13 北京工业大学 Method for synthesizing spherical gradient lithium-rich anode material
CN102208607A (en) * 2011-04-29 2011-10-05 广州市香港科大霍英东研究院 Synthesis and surface modification method of lithium excessive laminar oxide anode material
CN102956881B (en) * 2011-08-25 2015-11-04 深圳市钦雨新能源科技有限公司 Anode material for lithium-ion batteries height manganese solid solution and preparation method thereof
CN102956881A (en) * 2011-08-25 2013-03-06 深圳市钦雨新能源科技有限公司 High-manganese solid solution as lithium ion battery anode material and preparation method thereof
CN102354741B (en) * 2011-09-09 2014-02-19 中国科学院宁波材料技术与工程研究所 A kind of preparation method of high-capacity layered lithium-rich manganese-based oxide
CN102354741A (en) * 2011-09-09 2012-02-15 中国科学院宁波材料技术与工程研究所 Preparation method of high-capacity layered lithium-rich manganese-based oxide
CN103035900A (en) * 2011-10-10 2013-04-10 北大先行科技产业有限公司 High-capacity lithium-rich cathode material and preparation method thereof
CN102593445A (en) * 2012-03-15 2012-07-18 湖南杉杉户田新材料有限公司 Aluminum clad manganese-base laminated composite lithium ion battery cathode material and preparation method thereof
CN102593445B (en) * 2012-03-15 2014-12-24 湖南杉杉户田新材料有限公司 Aluminum clad manganese-base laminated composite lithium ion battery cathode material and preparation method thereof
CN102881873B (en) * 2012-09-28 2015-05-13 广东中科信泰新能源有限公司 Layered lithium-rich material preparation method
CN102881873A (en) * 2012-09-28 2013-01-16 广东中科信泰新能源有限公司 Layered lithium-rich material preparation method
CN102916176A (en) * 2012-11-02 2013-02-06 多氟多化工股份有限公司 Microsphere laminated lithium-enriched manganese-based solid solution anode material and preparation method thereof
CN103078107A (en) * 2013-02-22 2013-05-01 郑州大学 Polybasic layered oxide lithium ion battery material and preparation method thereof
CN103259010B (en) * 2013-04-23 2015-06-17 宁夏东方钽业股份有限公司 Preparation method of amphoteric metal element doped lithium-ion cathode material precursor
CN103259010A (en) * 2013-04-23 2013-08-21 宁夏东方钽业股份有限公司 Preparation method of amphoteric metal element doped lithium-ion cathode material precursor
US9780370B2 (en) 2013-07-24 2017-10-03 Lg Chem, Ltd. Lithium manganese-based oxide and cathode active material including the same
CN105189361B (en) * 2013-07-24 2017-01-11 株式会社Lg 化学 Lithium manganese-based oxide and positive electrode active substance comprising same
CN105189361A (en) * 2013-07-24 2015-12-23 株式会社Lg化学 Lithium manganese-based oxide and positive electrode active material containing same
CN103441252A (en) * 2013-08-12 2013-12-11 天津巴莫科技股份有限公司 Method for preparing lithium-enriched manganese-based anode material of nano-oxide-coated lithium ion battery
CN103441252B (en) * 2013-08-12 2015-09-09 天津巴莫科技股份有限公司 The preparation method of nano-oxide coated lithium ion battery lithium-rich manganese-based anode material
CN103700835A (en) * 2013-09-24 2014-04-02 上海空间电源研究所 High-specific energy composite lithium-rich cathode material of lithium ion battery and preparation method thereof
CN103700835B (en) * 2013-09-24 2016-03-30 上海空间电源研究所 A kind of high-specific energy composite lithium-rich cathode material of lithium ion battery and preparation method thereof
CN103606667A (en) * 2013-11-26 2014-02-26 浙江南都电源动力股份有限公司 Preparation method for manganese solid solution anode material of lithium ion battery material
CN103972491A (en) * 2013-12-30 2014-08-06 合肥国轩高科动力能源股份公司 Preparation method of lithium-rich manganese-base anode material
CN103825018B (en) * 2014-03-17 2017-02-15 山东润峰集团新能源科技有限公司 High-performance manganese-lithium-base enriched positive slurry and application method thereof
CN103825018A (en) * 2014-03-17 2014-05-28 山东润峰集团新能源科技有限公司 High-performance manganese-lithium-base enriched positive slurry and application method thereof
CN104241631A (en) * 2014-09-04 2014-12-24 中国科学院化学研究所 High-capacity positive electrode material for lithium ion battery
CN104852039A (en) * 2015-04-16 2015-08-19 中南大学 Preparation method of cathode material for lithium ion battery
CN104852039B (en) * 2015-04-16 2017-05-10 中南大学 A kind of preparation method of positive electrode material of lithium ion battery
CN105576202A (en) * 2015-12-21 2016-05-11 哈尔滨工业大学 Rich-lithium manganese-selenium-based anode material and preparation method thereof
CN105576202B (en) * 2015-12-21 2018-03-06 哈尔滨工业大学 A kind of rich lithium manganese seleno positive electrode and preparation method thereof
US10763551B2 (en) 2016-03-15 2020-09-01 Dyson Technology Limited Method of fabricating an energy storage device
CN105742622A (en) * 2016-03-27 2016-07-06 华南理工大学 A kind of olivine structure LiMPO4 surface modified layered lithium-rich manganese-based positive electrode material and preparation method thereof
CN105810934B (en) * 2016-05-09 2019-07-05 北京工业大学 A kind of stabilizing lithium rich layered oxide material crystalline domain structure method
CN105810934A (en) * 2016-05-09 2016-07-27 北京工业大学 Method capable of improving stability of crystal domain structure of lithium-rich layered oxide material
CN107482172A (en) * 2016-06-07 2017-12-15 江苏当升材料科技有限公司 A kind of high-rate type stratiform lithium-rich manganese-based anode material and preparation method thereof
CN106229502A (en) * 2016-09-24 2016-12-14 上海大学 A kind of preparation method of the lithium-rich anode material of sulfide doping
CN106229502B (en) * 2016-09-24 2019-06-25 上海大学 A kind of preparation method of the lithium-rich anode material of sulfide doping
CN106410186A (en) * 2016-11-17 2017-02-15 天津理工大学 Preparation method and application of lithium-rich layered oxide cathode material
CN107293717A (en) * 2017-06-23 2017-10-24 深圳市沃特玛电池有限公司 The preparation method of the rich lithium nickel manganese binary material of fluoride cladding
JP2019021610A (en) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP7135354B2 (en) 2017-07-12 2022-09-13 住友金属鉱山株式会社 Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN107732229A (en) * 2017-07-24 2018-02-23 江苏大学 A kind of titanium doped lithium-rich manganese-based anode material for lithium-ion batteries and preparation method thereof
US11769911B2 (en) 2017-09-14 2023-09-26 Dyson Technology Limited Methods for making magnesium salts
US11817558B2 (en) 2017-09-14 2023-11-14 Dyson Technology Limited Magnesium salts
GB2569390A (en) * 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
US11616229B2 (en) 2017-12-18 2023-03-28 Dyson Technology Limited Lithium, nickel, manganese mixed oxide compound and electrode comprising the same
GB2569392A (en) * 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
US11967711B2 (en) 2017-12-18 2024-04-23 Dyson Technology Limited Lithium, nickel, cobalt, manganese oxide compound and electrode comprising the same
US11658296B2 (en) 2017-12-18 2023-05-23 Dyson Technology Limited Use of nickel in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
GB2569389A (en) * 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
US11489158B2 (en) 2017-12-18 2022-11-01 Dyson Technology Limited Use of aluminum in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
GB2569389B (en) * 2017-12-18 2022-02-09 Dyson Technology Ltd Compound
GB2569392B (en) * 2017-12-18 2022-01-26 Dyson Technology Ltd Use of aluminium in a cathode material
CN108448109B (en) * 2018-03-23 2021-07-02 中南大学 A layered lithium-rich manganese-based cathode material and preparation method thereof
CN108448109A (en) * 2018-03-23 2018-08-24 中南大学 A kind of layered lithium-rich manganese-based positive electrode material and preparation method thereof
CN108640167A (en) * 2018-05-28 2018-10-12 安徽工程大学 A kind of preparation method of two-dimensional nano piece
CN109546115A (en) * 2018-11-19 2019-03-29 安徽安凯汽车股份有限公司 A kind of NCA ternary battery of nickelic rich lithium manganese base solid solution positive electrode
CN109704415A (en) * 2018-12-26 2019-05-03 惠州亿纬锂能股份有限公司 A kind of lithium-rich manganese-based presoma, and preparation method thereof and lithium-rich manganese-based anode material
CN111082009B (en) * 2019-12-17 2021-04-09 中南大学 Lithium-rich manganese-based composite positive electrode material improved by adopting phosphate and preparation method thereof
CN111082009A (en) * 2019-12-17 2020-04-28 中南大学 A lithium-rich manganese-based composite cathode material improved by using phosphate and preparation method thereof
CN111224089A (en) * 2020-01-17 2020-06-02 江西理工大学 A kind of lithium ion battery ternary cathode material NCM811 prepared by molten salt method and preparation method thereof
CN114497452A (en) * 2021-12-28 2022-05-13 高点(深圳)科技有限公司 Positive electrode material for silicon battery and preparation method and application thereof
CN119890287A (en) * 2025-03-26 2025-04-25 国联汽车动力电池研究院有限责任公司 Lithium-rich manganese-based positive electrode material with ultra-large interplanar spacing, and preparation method and application thereof
CN119890287B (en) * 2025-03-26 2025-06-17 国联汽车动力电池研究院有限责任公司 Lithium-rich manganese-based positive electrode material with ultra-large interplanar spacing, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN101694876A (en) Lithium-rich manganese-based anode material and preparation method thereof
CN102751480B (en) A kind of cladded type lithium-rich manganese base material and preparation method thereof
CN100585922C (en) Preparation method of lithium-ion battery cathode material nickel-cobalt-manganese-lithium oxide
CN102627332B (en) Oxide solid solution, preparation method of oxide solid solution, lithium ion battery anode material and preparation method of lithium ion battery anode material
CN102074679B (en) Method for preparing spherical aluminum-doped nickel lithium carbonate for lithium ion battery positive electrode material
CN103715409B (en) A kind of preparation method of cladded type nickel ion doped anode material for lithium-ion batteries
CN102569781B (en) High-voltage lithium ion battery cathode material and preparation method thereof
CN104037404B (en) A kind of lithium ion battery nickel cobalt aluminum lithium and LiMn2O4 composite and preparation method thereof
CN103311513B (en) A kind of high-performance layed solid-solution lithium electricity positive electrode and preparation method thereof
CN103682322B (en) A kind of rich lithium Fe-Mn base lithium ion cell positive material and preparation method thereof
CN102306765A (en) A kind of preparation method of lithium ion cathode material nickel manganese cobalt
CN104466158A (en) Lithium-rich positive electrode material and preparation method thereof
CN107910531A (en) A kind of preparation method of high nickel base ternary cathode material
CN109888273B (en) Preparation method of K, Ti element co-doped high-nickel-base ternary cathode material
CN102683645A (en) Preparation method of layered lithium-rich manganese base oxide of positive material of lithium ion battery
CN105118981A (en) High-capacity nickel-cobalt-lithium manganate precursor and preparation method thereof
CN104466154A (en) Preparation method of lithium ion battery positive material nickel cobalt aluminum
CN101304090A (en) Method for synthesizing lithium ion battery anode material LiNixCoyMn(1-x-y)O2
CN103325992B (en) Lithium ion battery positive electrode material precursor nickel-cobalt-manganese hydroxide powder and preparation method thereof
CN103606667A (en) Preparation method for manganese solid solution anode material of lithium ion battery material
CN102838169B (en) Preparation method of iron-containing lithium-rich manganese-based positive electrode material
CN104362332B (en) Preparation method of lithium-rich cathode material for lithium ion battery
CN102730761A (en) Oxalate coprecipitation preparation method for high-capacity lithium-rich cathode material
CN112447946B (en) Li (lithium ion battery) 2 TiO 3 、Li 2 ZrO 3 Preparation method of composite coated ternary positive electrode material
CN105609758A (en) Preparation method of rubdium- and cesium-doped lithium-rich ternary cathode material for lithium-ion battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100414