CN101685774A - Heteroepitaxial growth process based on interface nano-structure - Google Patents
Heteroepitaxial growth process based on interface nano-structure Download PDFInfo
- Publication number
- CN101685774A CN101685774A CN200810161833A CN200810161833A CN101685774A CN 101685774 A CN101685774 A CN 101685774A CN 200810161833 A CN200810161833 A CN 200810161833A CN 200810161833 A CN200810161833 A CN 200810161833A CN 101685774 A CN101685774 A CN 101685774A
- Authority
- CN
- China
- Prior art keywords
- substrate
- growth process
- heteroepitaxial growth
- epitaxial
- nanowires
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 4
- 239000002070 nanowire Substances 0.000 claims abstract description 77
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims abstract description 47
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 18
- 239000013078 crystal Substances 0.000 claims abstract description 13
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 3
- 239000004065 semiconductor Substances 0.000 claims description 32
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 29
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 28
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 9
- 239000003054 catalyst Substances 0.000 claims description 9
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 7
- 229910002601 GaN Inorganic materials 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 5
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910005540 GaP Inorganic materials 0.000 claims description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 2
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 239000013528 metallic particle Substances 0.000 claims 2
- 230000008021 deposition Effects 0.000 claims 1
- 239000002244 precipitate Substances 0.000 claims 1
- 230000005693 optoelectronics Effects 0.000 abstract description 10
- 230000010354 integration Effects 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 description 15
- 239000002923 metal particle Substances 0.000 description 15
- 238000000407 epitaxy Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229910000673 Indium arsenide Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 208000012868 Overgrowth Diseases 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明提供一种基于界面纳米结构的异质外延生长工艺。其中衬底材料与外延层材料之间存在晶格失配,且外延层的形成包括四个阶段:首先在衬底上形成金属纳米颗粒;接着生长纳米线;然后沉淀掩膜层并使得纳米线的上部露出;最后以露出的纳米线部分作为窗口横向生长外延层。本发明利用高晶体质量的纳米线作为横向生长的窗口,横向生长的外延层与衬底之间间隔着掩膜层,消除了外延层材料和衬底材料之间晶格匹配的限制。本发明能成功解决晶格失配的晶体材料间异质生长的问题,为实现光电子集成提供新思路。
The invention provides a heterogeneous epitaxial growth process based on the interface nanostructure. There is a lattice mismatch between the substrate material and the epitaxial layer material, and the formation of the epitaxial layer includes four stages: first, metal nanoparticles are formed on the substrate; then, nanowires are grown; then, a mask layer is deposited and the nanowires The upper part of the nanowire is exposed; finally, the exposed nanowire part is used as a window to grow an epitaxial layer laterally. The invention uses high crystal quality nanowires as windows for lateral growth, and a mask layer is separated between the laterally grown epitaxial layer and the substrate, eliminating the limitation of lattice matching between the epitaxial layer material and the substrate material. The invention can successfully solve the problem of heterogeneous growth among crystal materials with mismatched crystal lattices, and provides a new idea for realizing optoelectronic integration.
Description
技术领域: Technical field:
本发明涉及光电子领域中的一种异质外延生长工艺,特别涉及晶格失配(即晶格不匹配)的半导体晶体材料间的异质外延生长方法。The invention relates to a heterogeneous epitaxy growth process in the field of optoelectronics, in particular to a heterogeneous epitaxy growth method between semiconductor crystal materials with lattice mismatch (that is, lattice mismatch).
背景技术: Background technique:
当今世界正在演绎着一场光电子器件由分立转向集成的重大转折。由于受到材料、结构和工艺等方面的种种制约和束缚,要取得长足的进展,光电子集成必须解决一系列重要的基础科学问题。Today's world is undergoing a major transition from discrete to integrated optoelectronic devices. Due to various constraints and constraints in terms of materials, structures and processes, optoelectronic integration must solve a series of important basic scientific problems in order to make great progress.
在一种材料衬底上生长各种不同的材料体系(即材料兼容),集各种材料的优异性能为一体,是实现光电子集成的理想途径。例如:硅(Si)晶体是最常用、最便宜的微电子材料;但是由于Si是间接带隙材料,无法用做光电子材料,特别是用于发光材料。而III-V族化合物半导体材料,如砷化镓(GaAs)、磷化铟(InP)、氮化镓(GaN)等,是最常用的光电子材料。如果能实现硅材料与III-V族材料的集成,将二者结合起来;在一块半导体芯片上,既做出微电子集成电路,又做出光电子器件;可望推进光电子集成技术的发展。It is an ideal way to realize optoelectronic integration by growing various material systems on one material substrate (that is, material compatibility), which integrates the excellent properties of various materials. For example: silicon (Si) crystal is the most commonly used and cheapest microelectronic material; but because Si is an indirect bandgap material, it cannot be used as an optoelectronic material, especially for a light-emitting material. The III-V compound semiconductor materials, such as gallium arsenide (GaAs), indium phosphide (InP), gallium nitride (GaN), etc., are the most commonly used optoelectronic materials. If the integration of silicon materials and III-V materials can be realized, the two can be combined; on a semiconductor chip, both microelectronic integrated circuits and optoelectronic devices can be made; it is expected to promote the development of optoelectronic integration technology.
现有的异质外延层状生长法主要面临着晶格失配问题和热失配的问题(D.Colombo,E.Grilli,M.Guzzi,S.Marchionna,M.Bonfanti,“Analysis of strainrelaxation by microcracks in epitaxial GaAs grown on Ge/Si substrates”,Journalof Applied Physics,vol.101,pp.103519,2007.)。例如GaAs/Si的异质外延生长,由于二者间的晶格失配度高达4.1%,这导致了外延层中缺陷密度高达108/cm2。为了解决这个问题,目前采用的技术有:缓冲层技术(N.Gopalakrishnan,K.Baskar,H.Kawanami,et al.,Effects of the lowtemperature buffer layer thickness on the growth of GaAs on Si by MBE,J.Cryst.Growth,vol.250,pp.29-33,2003),柔性衬底技术(C.L.Chua,W.Y.Hsu,C.H.Lin,et al.,Overcoming the pseudomorphic critical thickness limit usingcompliant substrates,Appl.Phys.Lett.,vol.64,pp.3640-3642,1994)和横向外延技术(J.D.Schaub,R.Li,C.L.Schow,et al.,Resonant-Cavity-EnhancedHigh-Speed Si Photodiode Grown by Epitaxial Lateral Overgrowth,IEEEPHOTONICS TECHNOLOGY LETTERS,vol.12,pp.1647,1999)。其中:The existing heteroepitaxial layered growth method mainly faces the problem of lattice mismatch and thermal mismatch (D.Colombo, E.Grilli, M.Guzzi, S.Marchionna, M.Bonfanti, "Analysis of strainrelaxation by microcracks in epitaxial GaAs grown on Ge/Si substrates”, Journal of Applied Physics, vol.101, pp.103519, 2007.). For example, in the heteroepitaxial growth of GaAs/Si, since the lattice mismatch between the two is as high as 4.1%, the defect density in the epitaxial layer is as high as 10 8 /cm 2 . In order to solve this problem, the technologies currently used are: buffer layer technology (N.Gopalakrishnan, K.Baskar, H.Kawanami, et al., Effects of the lowtemperature buffer layer thickness on the growth of GaAs on Si by MBE, J. Cryst.Growth, vol.250, pp.29-33, 2003), flexible substrate technology (CLChua, WYHsu, CHLin, et al., Overcoming the pseudomorphic critical thickness limit using compliant substrates, Appl.Phys.Lett., vol. 64, pp.3640-3642, 1994) and lateral epitaxy technology (JDSchaub, R.Li, CLSchow, et al., Resonant-Cavity-Enhanced High-Speed Si Photodiode Grown by Epitaxial Lateral Overgrowth, IEEEPHOTONICS TECHNOLOGY LETTERS, vol.12, pp.1647, 1999). in:
缓冲层(buffer)技术:是通过引入缓冲层来实现将衬底(比如Si)的晶格常数过渡到外延层(比如GaAs)的晶格常数。通过引入失配位错(misfitdislocation)来弛豫晶格常数,阻止或抑制由于晶格失配所造成的穿透位错(threading dislocation)贯穿到外延层中,从而改善外延层的晶体质量。但是为了弛豫晶格常数,缓冲层的生长温度通常远低于正常的生长温度,因此缓冲层本身的缺陷密度较高,这降低了顶上生长的外延层的晶体质量(J.A.Carlin,S.A.Ringel,et al.,Impact of GaAs buffer thickness on electronicquality of GaAs grown on graded Ge/GeSi/Si substrates,Appl.Phys.Lett.,vol.14,pp.1884,2000)。因此外延层的缺陷密度很难做到低于106/cm2,无法用于制备高性能光电子器件,特别是用于发光器件;Buffer layer (buffer) technology: the transition from the lattice constant of the substrate (such as Si) to the lattice constant of the epitaxial layer (such as GaAs) is achieved by introducing a buffer layer. The lattice constant is relaxed by introducing misfit dislocations, preventing or inhibiting threading dislocations caused by lattice mismatch from penetrating into the epitaxial layer, thereby improving the crystal quality of the epitaxial layer. But in order to relax the lattice constant, the growth temperature of the buffer layer is usually much lower than the normal growth temperature, so the defect density of the buffer layer itself is higher, which reduces the crystal quality of the epitaxial layer grown on top (JACarlin, SARingel, et al. al., Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates, Appl. Phys. Lett., vol.14, pp.1884, 2000). Therefore, the defect density of the epitaxial layer is difficult to be lower than 10 6 /cm 2 , which cannot be used to prepare high-performance optoelectronic devices, especially for light-emitting devices;
柔性衬底(Compliant Substrate)技术:是在衬底和外延层间引入一柔性层材料,并通过该柔性层的弹性形变来吸收或释放由晶格失配引起的应变,从而减少外延层的缺陷。目前采用的柔性层有两种:扭曲键合的薄层和钛酸锶(SrTiO3)薄层。对于扭曲键合的薄层,由于键合工艺非常复杂、很难实现大面积的制备,而且残余应力和薄层表面起伏较大(F.E.Ejeckam,M.L.Seaford,Y.H.Lo,H.Q.Hou,et al.,Appl.Phys.Lett.,vol.71,pp.776,1997)。对于钛酸锶(SrTiO3)薄层,摩托罗拉在2001首次报道以后(K.Eisenbeiser,J.Finder,R.Emrick,et al.,RF devices implemented on GaAs on Si substratesusing a SrTiO3 buffer layer,in Proc.GaAs IC Symp.,Baltimore,MD,2001),由于试验重复性问题未见后续报道。因此柔性衬底技术还处于探索阶段,还未彻底解决晶格失配的问题;Compliant Substrate technology: introduces a flexible layer material between the substrate and the epitaxial layer, and absorbs or releases the strain caused by lattice mismatch through the elastic deformation of the flexible layer, thereby reducing the defects of the epitaxial layer . There are two types of flexible layers currently used: twist-bonded thin layers and strontium titanate (SrTiO 3 ) thin layers. For twist-bonded thin layers, due to the complex bonding process, it is difficult to achieve large-area preparation, and the residual stress and thin layer surface fluctuations are relatively large (FEEjeckam, MLSeaford, YHLo, HQHou, et al., Appl.Phys. Lett., vol.71, pp.776, 1997). For strontium titanate (SrTiO 3 ) thin layer, Motorola first reported in 2001 (K.Eisenbeiser, J.Finder, R.Emrick, et al., RF devices implemented on GaAs on Si substrates using a SrTiO3 buffer layer, in Proc. GaAs IC Symp., Baltimore, MD, 2001), there is no follow-up report due to the problem of test repeatability. Therefore, flexible substrate technology is still in the exploratory stage, and the problem of lattice mismatch has not been completely solved;
横向外延技术:是先在Si衬底生长GaAs薄层作为种子层,接着覆盖一层掩膜(如SiO2),利用光刻技术在掩膜上产生窗口、从而露出GaAs种子层,最后进行横向外延生长GaAs。由于GaAs在掩膜上的凝聚形核能较大,因此GaAs无法在掩膜上直接生长;因此,GaAs仅在窗口处生长,并逐渐横向扩张,最后形成覆盖在掩膜层上方的GaAs连续层。但是窗口区域的GaAs是直接生长在Si衬底上,仍具有较高的缺陷密度,这降低了横向生长的GaAs晶体质量。同时,光刻工艺较为复杂,并会引入杂质污染。Lateral epitaxy technology: first grow a GaAs thin layer on a Si substrate as a seed layer, then cover a layer of mask (such as SiO 2 ), use photolithography to create a window on the mask to expose the GaAs seed layer, and finally carry out lateral epitaxy. Epitaxial growth of GaAs. Due to the large condensation nucleation energy of GaAs on the mask, GaAs cannot grow directly on the mask; therefore, GaAs only grows at the window, and gradually expands laterally, and finally forms a continuous layer of GaAs covering the mask layer. However, the GaAs in the window region is directly grown on the Si substrate, which still has a high defect density, which reduces the quality of the laterally grown GaAs crystal. At the same time, the photolithography process is relatively complicated and will introduce impurity pollution.
综上所述,以上方法在解决晶格失配问题上,都不理想。有鉴于此,探索新工艺和新方案,解决外延层与衬底之间晶格失配所带来的问题,提高外延层的晶体质量,是一个现有技术难以克服的问题。In summary, the above methods are not ideal for solving the lattice mismatch problem. In view of this, exploring new processes and new solutions to solve the problems caused by the lattice mismatch between the epitaxial layer and the substrate, and to improve the crystal quality of the epitaxial layer is a problem that is difficult to overcome in the existing technology.
目前半导体纳米线的生长通常以金属纳米颗粒作为催化剂,利用半导体外延生长工艺,在金属颗粒的位置生长出垂直或倾斜于衬底水平面的柱状纳米线。由于纳米线与衬底的接触面积非常小(小于1平方微米),晶格失配不会在这么小的区域内产生缺陷。因此,纳米线的晶体质量不受衬底的影响,纳米线的异质外延不存在晶格失配问题。目前,已经在Si衬底上生长出了无缺陷的高质量GaAs纳米线(ThomasC.Patrik T.Svensson,et al,Epitaxial III-V Nanowires on Silicon,Nano.Lett.,vol.4,pp.1987-1990,2004)。At present, the growth of semiconductor nanowires usually uses metal nanoparticles as a catalyst, and uses semiconductor epitaxial growth technology to grow columnar nanowires vertically or inclined to the horizontal plane of the substrate at the position of the metal particles. Since the contact area of the nanowires with the substrate is very small (less than 1 square micron), the lattice mismatch does not create defects in such a small area. Therefore, the crystal quality of the nanowires is not affected by the substrate, and there is no lattice mismatch problem in the heteroepitaxy of the nanowires. At present, defect-free high-quality GaAs nanowires have been grown on Si substrates (Thomas C. Patrik T. Svensson, et al, Epitaxial III-V Nanowires on Silicon, Nano. Lett., vol.4, pp.1987-1990, 2004).
但是目前半导体器件结构基本都属于平行的层状结构,相应的工艺也是针对层状结构;而针对垂直或倾斜的纳米线结构,要在如此纤细的纳米线上制作器件则非常困难,同时需要复杂、昂贵的电子束光刻等设备。因此如何利用高晶体质量的纳米线,并将其转变为平面层状结构,也是亟待解决的一个技术难题。However, at present, the structure of semiconductor devices basically belongs to the parallel layered structure, and the corresponding process is also aimed at the layered structure; and for the vertical or inclined nanowire structure, it is very difficult to fabricate devices on such a thin nanowire, and it requires complex processes. , expensive electron beam lithography and other equipment. Therefore, how to use high-quality nanowires and transform them into planar layered structures is also a technical problem to be solved urgently.
发明内容: Invention content:
本发明的目的是找出一种新的外延方案,实现晶格失配度较大(晶格失配度=((外延材料晶格常数-衬底晶格常数)/衬底晶格常数)×100%)的两种材料的高质量外延。本发明的目的可以按照下述方式实现。The purpose of the present invention is to find out a kind of new epitaxy scheme, realize that the degree of lattice mismatch is bigger (degree of lattice mismatch=((lattice constant of epitaxial material-substrate lattice constant)/substrate lattice constant) ×100%) for high-quality epitaxy of both materials. The object of the present invention can be achieved in the following manner.
本发明提供一种基于界面纳米结构的异质外延生长工艺,其中衬底材料与外延层材料之间存在晶格失配,且外延层的形成包括如下四个阶段:The present invention provides a heterogeneous epitaxial growth process based on interface nanostructures, wherein there is a lattice mismatch between the substrate material and the epitaxial layer material, and the formation of the epitaxial layer includes the following four stages:
首先在衬底上形成金属纳米颗粒;first forming metal nanoparticles on the substrate;
接着生长纳米线;Then grow nanowires;
然后沉淀掩膜层并使得纳米线的上部露出;then depositing a mask layer and exposing the upper portion of the nanowire;
最后以露出的纳米线部分作为窗口横向生长外延层。Finally, the exposed nanowire part is used as a window to grow the epitaxial layer laterally.
其中第一阶段所形成的金属纳米颗粒直径为10~500nm。The metal nanoparticles formed in the first stage have a diameter of 10-500nm.
其中优选衬底材料与外延层材料之间晶格失配度超过0.1%。Among them, it is preferred that the lattice mismatch between the substrate material and the epitaxial layer material exceeds 0.1%.
其中第二阶段中纳米线生长是以金属纳米颗粒作为催化剂,在金属颗粒的位置生长出垂直或倾斜于衬底水平面的半导体柱状纳米线,其中纳米线的直径与金属颗粒的直径相近。In the second stage of nanowire growth, metal nanoparticles are used as catalysts, and semiconductor columnar nanowires are grown vertically or inclined to the horizontal plane of the substrate at the position of the metal particles, wherein the diameter of the nanowires is similar to that of the metal particles.
其中第三阶段沉积掩膜层使得纳米线和衬底掩埋在掩膜层中,经由刻蚀、研磨或超声波等方法使得纳米线的上部露出,而纳米线的底部和衬底表面仍然被掩膜层包覆。In the third stage, the mask layer is deposited so that the nanowire and the substrate are buried in the mask layer, and the upper part of the nanowire is exposed by etching, grinding or ultrasonic methods, while the bottom of the nanowire and the surface of the substrate are still masked. layer cladding.
其中第四阶段中以纳米线露出的部分作为窗口,进行横向外延生长半导体材料形成一层连续半导体外延层。In the fourth stage, the exposed part of the nanowire is used as a window to perform lateral epitaxial growth of semiconductor material to form a continuous semiconductor epitaxial layer.
所述衬底材料选自如下晶体:硅、砷化镓、磷化铟或锗。The substrate material is selected from the following crystals: silicon, gallium arsenide, indium phosphide or germanium.
所述外延层材料选自III-V族半导体材料或IV族半导体材料,优选为选自砷化镓、磷化铟、氮化镓、磷化镓、砷化铟或锗硅。The epitaxial layer material is selected from group III-V semiconductor materials or group IV semiconductor materials, preferably selected from gallium arsenide, indium phosphide, gallium nitride, gallium phosphide, indium arsenide or silicon germanium.
本发明的方案结合了纳米线生长技术和横向外延生长技术的优势。通过先生长与衬底垂直或倾斜的纳米线,此时,由于外延层材料纳米线与衬底的接触面积很小(纳米尺度),并且纳米线中的原子可以横向伸缩;因此即使外延层的晶格常数与衬底不匹配,在衬底上仍然能生长得到低缺陷密度、高质量的纳米线。The solution of the invention combines the advantages of the nanowire growth technology and the lateral epitaxial growth technology. By first growing nanowires that are vertical or inclined to the substrate, at this time, because the contact area between the epitaxial layer material nanowire and the substrate is small (nanoscale), and the atoms in the nanowire can be stretched laterally; therefore, even if the epitaxial layer The lattice constant does not match the substrate, and the nanowires with low defect density and high quality can still be grown on the substrate.
本方案与横向外延生长技术相比,采用纳米线作为外延窗口,无须复杂的光刻工艺,并减少了光刻工艺所带来的污染。同时,由于纳米线具有更高的晶体质量,后续的横向外延层的晶体质量也更高。因此,本方案具有工艺简单,外延层晶体质量更高的优点。Compared with the lateral epitaxial growth technology, this solution adopts the nanowire as the epitaxial window, does not need complex photolithography process, and reduces the pollution caused by the photolithography process. At the same time, due to the higher crystalline quality of the nanowires, the crystalline quality of the subsequent lateral epitaxial layer is also higher. Therefore, this solution has the advantages of simple process and higher crystal quality of the epitaxial layer.
附图说明: Description of drawings:
图1为Si衬底上形成纳米金属颗粒示意图;Fig. 1 is a schematic diagram of forming nano-metal particles on a Si substrate;
图2为利用金属颗粒作为催化剂生长的半导体纳米线示意图;2 is a schematic diagram of a semiconductor nanowire grown using metal particles as a catalyst;
图3(a)为生长的掩膜层覆盖衬底和纳米线示意图;Figure 3 (a) is a schematic diagram of the grown mask layer covering the substrate and nanowires;
图3(b)为利用刻蚀、研磨或超声波等方法使得纳米线的上部露出示意图;Figure 3(b) is a schematic diagram of exposing the upper part of the nanowires by means of etching, grinding or ultrasonic waves;
图4(a)为以纳米线为窗口进行横向外延生长的初始阶段示意图;Figure 4(a) is a schematic diagram of the initial stage of lateral epitaxial growth using nanowires as windows;
图4(b)为以纳米线为窗口进行横向外延的最终效果示意图。Figure 4(b) is a schematic diagram of the final effect of lateral epitaxy using nanowires as windows.
具体实施方式: Detailed ways:
下面结合附图对本发明进行详细说明以便更好了解本发明的实质。The present invention will be described in detail below in conjunction with the accompanying drawings in order to better understand the essence of the present invention.
例1:example 1:
GaAs/Si异质外延生长GaAs/Si Heteroepitaxial Growth
1.首先,在Si衬底上镀一层约0.5nm厚的金等金属薄膜,经过高温退火,得到半径约为10nm的金属纳米颗粒,如图1所示;1. First, coat a metal film such as gold with a thickness of about 0.5 nm on the Si substrate, and after high-temperature annealing, obtain metal nanoparticles with a radius of about 10 nm, as shown in Figure 1;
2.然后以金属纳米颗粒作为催化剂,利用半导体外延生长工艺,在有金属颗粒的位置,生长出垂直于衬底水平面的GaAs柱状纳米线。其中GaAs纳米线的直径与金属颗粒的直径相近,高度大于10nm,如图2所示;2. Then, metal nanoparticles are used as catalysts, and GaAs columnar nanowires perpendicular to the horizontal plane of the substrate are grown at the position of the metal particles by using the semiconductor epitaxial growth process. The diameter of the GaAs nanowire is similar to the diameter of the metal particle, and the height is greater than 10nm, as shown in Figure 2;
3.接着继续沉积一层二氧化硅(SiO2)材料作为掩膜层,使得纳米线掩埋在掩膜层中,如图3(a)所示;然后利用刻蚀方法使得纳米线的上部露出,而纳米线的底部和衬底表面仍然被掩膜层包覆,如图3(b)所示;3. Then continue to deposit a layer of silicon dioxide (SiO 2 ) material as a mask layer, so that the nanowires are buried in the mask layer, as shown in Figure 3(a); then use an etching method to expose the upper part of the nanowires , while the bottom of the nanowire and the substrate surface are still covered by the mask layer, as shown in Figure 3(b);
4.最后利用纳米线露出的部分作为窗口,进行横向外延生长GaAs半导体材料,如图4(a)所示,继续生长最后形成一层连续半导体外延层,如图4(b)所示。4. Finally, use the exposed part of the nanowire as a window to perform lateral epitaxial growth of the GaAs semiconductor material, as shown in Figure 4(a), and continue growing to form a continuous semiconductor epitaxial layer, as shown in Figure 4(b).
例2:Example 2:
InP/Ge异质外延生长InP/Ge Heteroepitaxial Growth
1.首先,在Ge衬底上镀一层约2nm厚的铂金属薄膜,经过高温退火,得到半径约为100nm的金属纳米颗粒;1. First, coat a layer of platinum metal film with a thickness of about 2nm on the Ge substrate, and after high-temperature annealing, obtain metal nanoparticles with a radius of about 100nm;
2.然后以金属纳米颗粒作为催化剂,利用半导体外延生长工艺,在有金属颗粒的位置,生长出倾斜于衬底水平面的的InP柱状纳米线。其中InP纳米线的直径与金属颗粒的直径相近,高度大于10nm;2. Then, using metal nanoparticles as a catalyst, using a semiconductor epitaxial growth process, grow InP columnar nanowires inclined to the horizontal plane of the substrate at the position of the metal particles. The diameter of the InP nanowire is similar to the diameter of the metal particle, and the height is greater than 10nm;
3.接着继续沉积一层氮化硅(Si3N4)材料作为掩膜层,使得纳米线掩埋在掩膜层中,然后利用研磨方法使得纳米线的上部露出,而纳米线的底部和衬底表面仍然被掩膜层包覆;3. Then continue to deposit a layer of silicon nitride (Si 3 N 4 ) material as a mask layer, so that the nanowires are buried in the mask layer, and then use the grinding method to expose the upper part of the nanowires, while the bottom of the nanowires and the lining The bottom surface is still covered by the mask layer;
4.最后利用纳米线露出的部分作为窗口,进行横向外延生长InP半导体材料继续生长最后形成一层连续半导体外延层。4. Finally, use the exposed part of the nanowire as a window to perform lateral epitaxial growth of the InP semiconductor material to continue growing and finally form a continuous semiconductor epitaxial layer.
例3Example 3
GaN/Si异质外延生长GaN/Si Heteroepitaxial Growth
1.首先,在Si衬底上镀一层约10nm厚的钛金属薄膜,经过高温退火,得到半径约为500nm的金属纳米颗粒;1. First, coat a layer of titanium metal film with a thickness of about 10nm on the Si substrate, and after high-temperature annealing, obtain metal nanoparticles with a radius of about 500nm;
2.然后以金属纳米颗粒作为催化剂,利用半导体外延生长工艺,在有金属颗粒的位置,生长出垂直于衬底水平面的GaN柱状纳米线。其中GaN纳米线的直径与金属颗粒的直径相近,高度大于10nm,如图2所示。2. Then, metal nanoparticles are used as catalysts, and GaN columnar nanowires perpendicular to the horizontal plane of the substrate are grown at the position of the metal particles by using the semiconductor epitaxial growth process. The diameter of the GaN nanowire is similar to that of the metal particle, and the height is greater than 10 nm, as shown in FIG. 2 .
3.接着继续沉积一层氮氧硅(SiON)材料作为掩膜层,使得纳米线掩埋在掩膜层中,然后利用超声波方法使得纳米线的上部露出,而纳米线的底部和衬底表面仍然被掩膜层包覆;3. Then continue to deposit a layer of silicon oxynitride (SiON) material as a mask layer, so that the nanowires are buried in the mask layer, and then use the ultrasonic method to expose the upper part of the nanowires, while the bottom of the nanowires and the surface of the substrate remain covered by a mask layer;
4.最后利用纳米线露出的部分作为窗口,进行横向外延生长GaN半导体材料,继续生长最后形成一层连续半导体外延层。4. Finally, use the exposed part of the nanowire as a window to perform lateral epitaxial growth of the GaN semiconductor material, and continue to grow to form a continuous semiconductor epitaxial layer.
例4Example 4
SiGe/GaAs异质外延生长SiGe/GaAs Heteroepitaxial Growth
1.首先,在GaAs衬底上镀一层约8nm厚的金金属薄膜,经过高温退火,得到半径约为300nm的金属纳米颗粒;1. First, a layer of gold metal film with a thickness of about 8nm is plated on the GaAs substrate, and after high-temperature annealing, metal nanoparticles with a radius of about 300nm are obtained;
2.然后以金属纳米颗粒作为催化剂,利用半导体外延生长工艺,在有金属颗粒的位置,生长出垂直于衬底水平面的SiGe柱状纳米线。其中纳米线的直径与金属颗粒的直径相近,高度大于10nm;2. Then, using metal nanoparticles as a catalyst, using semiconductor epitaxial growth process, growing SiGe columnar nanowires perpendicular to the horizontal plane of the substrate at the position where there are metal particles. Wherein the diameter of the nanowire is similar to that of the metal particle, and the height is greater than 10nm;
3.接着继续沉积一层二氧化硅(SiO2)材料作为掩膜层,使得纳米线掩埋在掩膜层中,然后利用刻蚀方法使得纳米线的上部露出,而纳米线的底部和衬底表面仍然被掩膜层包覆;3. Then continue to deposit a layer of silicon dioxide (SiO 2 ) material as a mask layer, so that the nanowires are buried in the mask layer, and then use an etching method to expose the upper part of the nanowires, while the bottom of the nanowires and the substrate The surface is still covered by the mask layer;
4.最后利用纳米线露出的部分作为窗口,进行横向外延生长SiGe半导体材料,继续生长最后形成一层连续半导体外延层。4. Finally, use the exposed part of the nanowire as a window to perform lateral epitaxial growth of SiGe semiconductor material, and continue to grow to form a continuous semiconductor epitaxial layer.
例5Example 5
InAs/Si异质外延生长InAs/Si Heteroepitaxial Growth
1.首先,在Si衬底上镀一层约5nm厚的铂金属薄膜,经过高温退火,得到半径约为400nm的金属纳米颗粒;1. First, coat a layer of platinum metal film with a thickness of about 5 nm on the Si substrate, and after high-temperature annealing, obtain metal nanoparticles with a radius of about 400 nm;
2.然后以金属纳米颗粒作为催化剂,利用半导体外延生长工艺,在有金属颗粒的位置,生长出倾斜于衬底水平面的InAs柱状纳米线。其中纳米线的直径与金属颗粒的直径相近,高度大于10nm;2. Then, using metal nanoparticles as a catalyst, using a semiconductor epitaxial growth process, grow InAs columnar nanowires inclined to the horizontal plane of the substrate at the position of the metal particles. Wherein the diameter of the nanowire is similar to that of the metal particle, and the height is greater than 10nm;
3.接着继续沉积一层氮化硅(Si3N4)材料作为掩膜层,使得纳米线掩埋在掩膜层中,然后利用研磨方法使得纳米线的上部露出,而纳米线的底部和衬底表面仍然被掩膜层包覆;3. Then continue to deposit a layer of silicon nitride (Si 3 N 4 ) material as a mask layer, so that the nanowires are buried in the mask layer, and then use the grinding method to expose the upper part of the nanowires, while the bottom of the nanowires and the lining The bottom surface is still covered by the mask layer;
4.最后利用纳米线露出的部分作为窗口,进行横向外延生长InAs半导体材料,继续生长最后形成一层连续半导体外延层。4. Finally, use the exposed part of the nanowire as a window to perform lateral epitaxial growth of the InAs semiconductor material, and continue to grow to form a continuous semiconductor epitaxial layer.
以上所述是本发明应用的技术原理和非限制性实例,依本发明的构想所做的等效变换,只要其所运用的方案仍未超出权利要求书所涵盖的范围时,均应在本发明的范围内。The above are the technical principles and non-limiting examples of the application of the present invention. The equivalent transformation done according to the conception of the present invention, as long as the scheme used still does not exceed the scope covered by the claims, should be included in this document. within the scope of the invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101618330A CN101685774B (en) | 2008-09-24 | 2008-09-24 | Heteroepitaxial growth process based on interface nano-structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101618330A CN101685774B (en) | 2008-09-24 | 2008-09-24 | Heteroepitaxial growth process based on interface nano-structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101685774A true CN101685774A (en) | 2010-03-31 |
CN101685774B CN101685774B (en) | 2012-06-13 |
Family
ID=42048848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101618330A Expired - Fee Related CN101685774B (en) | 2008-09-24 | 2008-09-24 | Heteroepitaxial growth process based on interface nano-structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101685774B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102618922A (en) * | 2012-04-06 | 2012-08-01 | 中国科学院合肥物质科学研究院 | Method for epitaxially growing GaAs thin film on Si substrate |
CN103378230A (en) * | 2012-04-23 | 2013-10-30 | 奈米晶光电股份有限公司 | Method for manufacturing flat substrate with low defect density |
CN103794472A (en) * | 2014-01-20 | 2014-05-14 | 中国科学院上海微系统与信息技术研究所 | Method for filtering dislocation through semiconductor materials |
CN104205294A (en) * | 2012-02-14 | 2014-12-10 | 昆南诺股份有限公司 | Electronic devices based on gallium nitride nanowires |
CN105088181A (en) * | 2014-05-23 | 2015-11-25 | 北京邮电大学 | MOCVD preparation method for silicon-based quantum dot laser material |
CN105405745A (en) * | 2015-11-10 | 2016-03-16 | 中国科学院半导体研究所 | Preparation method for vertical III-V family antimonide semiconductor monocrystalline thin film |
CN107849727A (en) * | 2015-06-26 | 2018-03-27 | 哥本哈根大学 | A network of nanostructures grown on a substrate |
CN108604538A (en) * | 2015-12-14 | 2018-09-28 | 奥斯坦多科技公司 | Method for producing compound GaN nano-pillars and the light emitting structure made of this method |
CN108807279A (en) * | 2018-06-25 | 2018-11-13 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN111554567A (en) * | 2020-05-18 | 2020-08-18 | 中国科学院半导体研究所 | A kind of nanowire Dirac semimetal cadmium arsenide and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9570551B1 (en) | 2016-02-05 | 2017-02-14 | International Business Machines Corporation | Replacement III-V or germanium nanowires by unilateral confined epitaxial growth |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009537439A (en) * | 2006-05-19 | 2009-10-29 | マサチューセッツ・インスティテュート・オブ・テクノロジー | Continuous processing for the generation of nanostructures containing nanotubes |
-
2008
- 2008-09-24 CN CN2008101618330A patent/CN101685774B/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104205294B (en) * | 2012-02-14 | 2017-05-10 | 六边钻公司 | Electronic devices based on gallium nitride nanowires |
CN104205294A (en) * | 2012-02-14 | 2014-12-10 | 昆南诺股份有限公司 | Electronic devices based on gallium nitride nanowires |
US9653286B2 (en) | 2012-02-14 | 2017-05-16 | Hexagem Ab | Gallium nitride nanowire based electronics |
CN102618922A (en) * | 2012-04-06 | 2012-08-01 | 中国科学院合肥物质科学研究院 | Method for epitaxially growing GaAs thin film on Si substrate |
CN103378230A (en) * | 2012-04-23 | 2013-10-30 | 奈米晶光电股份有限公司 | Method for manufacturing flat substrate with low defect density |
CN103794472A (en) * | 2014-01-20 | 2014-05-14 | 中国科学院上海微系统与信息技术研究所 | Method for filtering dislocation through semiconductor materials |
CN105088181B (en) * | 2014-05-23 | 2017-11-28 | 北京邮电大学 | A kind of MOCVD preparation methods of si-based quantum dot laser material |
CN105088181A (en) * | 2014-05-23 | 2015-11-25 | 北京邮电大学 | MOCVD preparation method for silicon-based quantum dot laser material |
CN107849727A (en) * | 2015-06-26 | 2018-03-27 | 哥本哈根大学 | A network of nanostructures grown on a substrate |
CN107849727B (en) * | 2015-06-26 | 2021-07-13 | 哥本哈根大学 | A network of nanostructures grown on a substrate |
CN105405745A (en) * | 2015-11-10 | 2016-03-16 | 中国科学院半导体研究所 | Preparation method for vertical III-V family antimonide semiconductor monocrystalline thin film |
CN105405745B (en) * | 2015-11-10 | 2018-06-22 | 中国科学院半导体研究所 | The preparation method of vertical iii-v antimonide semiconductor single crystal thin film |
CN108604538A (en) * | 2015-12-14 | 2018-09-28 | 奥斯坦多科技公司 | Method for producing compound GaN nano-pillars and the light emitting structure made of this method |
CN108807279A (en) * | 2018-06-25 | 2018-11-13 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN108807279B (en) * | 2018-06-25 | 2021-01-22 | 中国科学院微电子研究所 | Semiconductor structure and method of making the same |
CN111554567A (en) * | 2020-05-18 | 2020-08-18 | 中国科学院半导体研究所 | A kind of nanowire Dirac semimetal cadmium arsenide and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101685774B (en) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101685774B (en) | Heteroepitaxial growth process based on interface nano-structure | |
Bakkers et al. | Epitaxial growth of III-V nanowires on group IV substrates | |
CN100380588C (en) | Preparation method of gallium nitride layer | |
US8574968B2 (en) | Epitaxial methods and templates grown by the methods | |
EP2564415B1 (en) | Dislocation and stress management by mask-less processes using substrate patterning | |
CN101510504B (en) | Transversal epitaxial growth method for nano area of semiconductor film | |
CN101866834B (en) | Method for preparing SiGe material of high-Ge content | |
US20170047223A1 (en) | Epitaxial growth of gallium arsenide on silicon using a graphene buffer layer | |
US20070134901A1 (en) | Growth of GaAs expitaxial layers on Si substrate by using a novel GeSi buffer layer | |
TW200534382A (en) | A novel technique to grow high quality SnSe epitaxy layer on Si substrate | |
Sundaram et al. | MOVPE of GaN-based mixed dimensional heterostructures on wafer-scale layered 2D hexagonal boron nitride—A key enabler of III-nitride flexible optoelectronics | |
Paszuk et al. | Controlling the polarity of metalorganic vapor phase epitaxy-grown GaP on Si (111) for subsequent III-V nanowire growth | |
CN105624792B (en) | A kind of silicon substrate GaAs monocrystal thin films and preparation method thereof | |
CN112490112A (en) | Gallium oxide thin film and its heteroepitaxial growth method and application | |
TWI237908B (en) | A method for manufacturing a strained Si having few threading dislocations | |
US10854719B2 (en) | Platform of large metal nitride islands with lateral orientations and low-defect density | |
CN104979377A (en) | III nitride/foreign substrate composite template and preparation method thereof | |
CN110534626B (en) | Superlattice quantum dot structure and manufacturing method thereof | |
Roddaro et al. | Growth of vertical InAs nanowires on heterostructured substrates | |
US20050248003A1 (en) | One dimensional nanostructures for vertical heterointegration on a silicon platform and method for making same | |
Lalev et al. | Direct growth of CdTe (1 0 0) epilayers on Si (1 0 0) substrate by hot wall epitaxy | |
Blanchard et al. | Engineering pseudosubstrates with porous silicon technology | |
Hocevar et al. | Hybrid III–V/Silicon Nanowires | |
CN101026203A (en) | Semiconductor nano structure and its preparing method | |
TWI221001B (en) | A method for growing a GaAs epitaxial layer on Ge/GeSi/Si substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120613 Termination date: 20170924 |