CN101685733A - 高温热熔断装置 - Google Patents
高温热熔断装置 Download PDFInfo
- Publication number
- CN101685733A CN101685733A CN200910211606A CN200910211606A CN101685733A CN 101685733 A CN101685733 A CN 101685733A CN 200910211606 A CN200910211606 A CN 200910211606A CN 200910211606 A CN200910211606 A CN 200910211606A CN 101685733 A CN101685733 A CN 101685733A
- Authority
- CN
- China
- Prior art keywords
- high temperature
- hotness
- grain
- temperature
- cutoff device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H37/764—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material in which contacts are held closed by a thermal pellet
- H01H37/765—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material in which contacts are held closed by a thermal pellet using a sliding contact between a metallic cylindrical housing and a central electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H69/00—Apparatus or processes for the manufacture of emergency protective devices
- H01H69/02—Manufacture of fuses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/055—Fusible members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/055—Fusible members
- H01H85/06—Fusible members characterised by the fusible material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H5/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
- H02H5/04—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
- H02H5/047—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using a temperature responsive switch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H37/761—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
- H01H2037/762—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit using a spring for opening the circuit when the fusible element melts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H2037/768—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2223/00—Casings
- H01H2223/008—Casings metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2235/00—Springs
- H01H2235/004—Two parallel coil springs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2235/00—Springs
- H01H2235/01—Spiral spring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49105—Switch making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49107—Fuse making
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fuses (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Thermistors And Varistors (AREA)
- Epoxy Resins (AREA)
Abstract
本发明提供了具有高温热感粒的高温热熔断装置,所述高温热感粒具有大于或等于约240℃的转变温度并包括至少一种有机化合物。所述热感粒设置在以高温密封物密封的外壳中,所述高温密封物在直到至少转变温度时提供基本上的密封。高温TCO还具有电流断路组件,所述电流断路组件在对应于低于所述转变温度的操作温度的第一操作条件下建立电连续性,并且在操作温度超过转变温度时断开电连续性。本发明还提供了制造这种高温热熔断装置的方法。
Description
相关申请的交叉引用
[0001]本申请要求于2008年8月5日提交的美国临时申请第61/086,330号的优先权权益。上述申请的全部公开内容通过引用的方式并入本文。
技术领域
[0002]本发明涉及电流断路器(electrical current interruptiondevices),更具体地,涉及提供对过热条件的保护的高温电流断路安全装置或热熔断器(thermal cut-offs)。
背景技术
[0003]本部分中的描述仅提供了涉及本发明的背景信息,而非构成现有技术。
[0004]电器、电子设备、电机和其它电气装置的操作温度通常具有最佳范围。在系统元件可能发生损坏时或装置可能成为电器中或对终端用户的潜在安全危害时的温度范围起着重要的检测极限的作用。多种装置能够感知这种过热极限(over-temperature threshold)。能够感知过热极限并中断电流的特定装置包括电热熔断器,其仅在很窄的温度范围中工作。例如,形成低共熔金属的锡铅合金、铟锡合金或其它金属合金不适于电器、电子设备、电气和电机设备,因为它们具有不理想的宽温度响应极限(threshold)和/或在所需安全范围之外的检测温度。
发明内容
[0005]一类特别适于过热检测的装置是被称作热熔断装置(thermal cutoff,TCO)的电流断路安全装置,其能够在必要时进行温度检测和同步电流断路。这种TCO装置通常安装在电气设备中的电流源和电气元件之间,因此如果发生可能有害或可能危险的过热条件,则TCO能够断开电路连续性。通常将TCO设计成以不能逆转的方式切断到设备的电流。高温电器和设备需要使用坚固的过热检测装置,其具有超过操作温度和/或常规TCO设计的保持温度(holding temperature)的高保持温度。因此在多个方案中,本发明提供了稳定、可靠和坚固的高温TCO装置。
附图说明
[0006]这里描述的附图仅用于说明的目的,而不意味着以任何方式限制本发明的范围。
[0007]图1是示例性热熔断装置结构的放大横截面图;
[0008]图2描述了在热感粒(thermal pellet)已经历物理转变且电流断路启动组件已经使电气开关断开连续性并改变热熔断装置的运行条件之后的图1的热熔断装置结构;
[0009]图3是描述了电流断路启动组件的侧视透视图;
[0010]图4是图1的电流断路启动组件开关结构的滑动接触构件的侧视图;
[0011]图5是图1的电流断路启动组件的弹簧的侧视图;
[0012]图6是图1的陶瓷衬套的横截面图;
[0013]图7是图1的热感粒的正视图。
具体实施方式
[0014]以下描述实质上仅是示范性的,而不意味着对本发明的公开内容、应用或使用的限制。
[0015]包括热熔断电流断路安全装置(TCO)在内的多种安全电流断路装置符合大范围应用温度的要求,并在高于阈值温度或额定值(通常为约60℃直到约235℃)时断开电流。然而,对于较高温度的应用,如大于或等于240℃时,常规TCO装置是不适用的。换句话说,常规TCO装置已不足以实现在高温应用中长期用作安全装置的性能标准,尤其是稳定性和坚固性。
[0016]在多个方案中,本发明提供了一种高温热熔断装置(以下称为“HTTCO”)。当周围环境或操作温度达到预定阈值温度时,这种HTTCO装置能够改变(switch)电路或电通信的连续性。术语″高温″热熔断装置用于表示该装置具有大于约235℃的阈值或启动温度、任选地大于或等于240℃、任选地大于或等于约245℃、任选地大于或等于250℃、任选地大于或等于约255℃、任选地大于或等于260℃、任选地大于或等于约265℃、任选地大于或等于270℃、任选地大于或等于约275℃、任选地大于或等于280℃、任选地大于或等于约285℃、任选地大于或等于290℃、任选地大于或等于约295℃、任选地大于或等于300℃、并且在特定方案中大于或等于约305℃。在某些方案中,在大于或等于约240℃到小于或等于约270℃、任选地在大于或等于约240℃到小于或等于约265℃、在大于或等于约240℃到小于或等于约260℃、任选地在大于或等于约240℃到小于或等于约255℃、在大于或等于约240℃到小于或等于约250℃、任选地在大于或等于约240℃到小于或等于约245℃、任选地在大于或等于约240℃到小于或等于约243℃的阈值或启动温度时,HTTCO显示出开关特性。在某些方案中,在约240℃、任选地约241℃、任选地约242℃、任选地约243℃、任选地约244℃、任选地约245℃、任选地约246℃、任选地约247℃、任选地约248℃、任选地约249℃、任选地约250℃、任选地约251℃、任选地约252℃、任选地约253℃、任选地约254℃、任选地约255℃、任选地约256℃、任选地约257℃、任选地约258℃、任选地约259℃、任选地约260℃、任选地约261℃、任选地约262℃、任选地约263℃、任选地约264℃、任选地约265℃、任选地约266℃、任选地约267℃、任选地约268℃、任选地约269℃的阈值或启动温度时、以及在某些实施例中任选地约270℃时,HTTCO显示出开关特性。
[0017]证明高温热感粒成分(high-temperature thermal pelletcomposition composition)性能的说明性测试包括在235℃的持续温度时对根据本发明的教导形成的HTTCO装置进行至少1000小时的老化。尽管HTTCO理想地满足或超过上述说明性实验的规则,但本领域技术人员应当理解的是,所述成分预计既可应用于低压应用又可应用于高压应用。而且,在某些方案中,高温热感粒成分满足或超过Underwriter Laboratory test UL 1020或IEC/EN 60691的标准,上述标准通过引用分别并入本文。在某些实施例中,在装置的预选额定高温下,HTTCO装置满足一个或多个这种标准。尽管在这些标准的每一个中均完全概括了性能标准,但是在表1中总结了例证和IEC 60691、第三版标准一致的性能测试的突出方案。
[0018]在多个方案中,本发明的HTTCO包括其中设置有高温热感粒的密封外壳,所述高温热感粒具有大于或等于约240℃的转变温度。高温热感粒的转变温度与HTTCO装置开关(switch)或启动的阈值温度有关,这将在下面更详细地描述。高温热感粒包括至少一种有机化合物,其通常具有与预选或所需转变温度相近的熔点或熔点范围。而且,HTTCO具有设置在外壳的至少一个开口的一部分中的高温密封物(high-temperature seal),所述高温密封物在直到该高温热感粒的转变温度时基本上密封(substantially seal)所述外壳。HTTCO还包括至少部分设置在所述外壳内的电流断路组件(current interruption assembly)。所述电流断路组件在所述HTTCO的第一操作条件下建立电连续性(electrical continuity),并且在操作温度超过转变温度时断开电连续性,其中所述第一操作条件对应于低于所述高温热感粒的转变温度的操作温度。
[0019]通过背景技术,这里描述了示例性的TCO装置,如图1和2所述者。大体上,TCO 10包括具有第一金属电导体12的导电金属外壳(housing)或机壳(casing)11,所述第一金属电导体12与所述外壳11的闭端13电接触。绝缘衬套14(如陶瓷衬套)设置在所述外壳11的开口15中。外壳11还包括挡板边缘(retainer end)16,其将陶瓷衬套14稳固(secure)在外壳11的端部。电流断路组件25例如通过断开电路的连续性而响应高温启动装置,其包括电触点17(例如,金属电导体),所述电触点17通过开口15而至少部分设置在外壳11中。电触点17穿过绝缘衬套14,并且具有相对于绝缘衬套14的一侧19设置的放大终端18和延伸出绝缘衬套14的外端21的第二端20。密封物28设置在开口15之上,并且能够产生与外壳11及其挡板边缘16、绝缘衬套14和电触点17的第二端20的暴露部分的密封接触(sealing contact)。以这种方式,外壳11的内部29被基本上密封为与外部环境30隔离。“基本上密封”意味着尽管屏障密封物(barrier seal)在显微镜水平时是任选多孔的,但所述屏障能够阻止热感粒材料的明显大量损失,例如,所述密封物在235℃连续操作1000个小时的情况下保持至少约95质量%的原始热感粒(initial thermal pellet),任选地约96质量%的原始热感粒、任选地约97质量%的原始热感粒、任选地约98质量%的原始热感粒、任选地约99质量%的原始热感粒、任选地约99.5质量%的原始热感粒、并且在某些方面任选地约99.9质量%的原始热感粒通过连续操作被保持在外壳内。
[0020]启动或开关以改变电路连续性的电流断路组件25还包括由导电材料构成的滑动接触构件22,例如,一金属设置在外壳11的内部并具有弹性周围齿(resilient peripheral finger)23(图4),其以与外壳11的内部周围表面(internal peripheral surface)24滑动啮合的方式设置以便在它们之间提供电接触。而且,当TCO的操作温度低于TCO装置的预定阈值设置点温度时,滑动接触构件22设置为与电触点17的终端18电接触。
[0021]电流断路组件25还包括张力调节机构(tensioningmechanism),其可包括多个张力调节机构。张力调节机构25使滑动接触构件22偏向相对于电触点17的终端18,以便在第一操作条件(其中操作温度低于TCO装置的阈值温度,如下所述)下建立电接触。如图1和2所示,张力调节机构包括一对弹簧31,它们分别设置在滑动接触构件22的相反侧上。弹簧31包括压缩弹簧26和膨胀释放弹簧(expansion trip spring)27。
[0022]正如图3所示般,热响应粒或热感粒25相对于外壳11的端壁13设置在外壳11中。压缩弹簧26以压缩状态位于实心热感粒25和滑动接触构件22之间,并且如示例性设置所示般,所述压缩弹簧26的压缩力通常比膨胀释放弹簧27的力更强,所述膨胀释放弹簧27设置在接触构件22和绝缘衬套14之间,使得滑动接触构件22偏向(bias)电触点17的放大端18并与其电接触。以这种方式,通过导电外壳11和滑动接触构件22而在第一电导体12和电触点17之间建立电路。
如上所述,TCO装置被设计成包括热感粒25,所述热感粒25在第一操作条件(其中操作温度,例如周围环境30的温度低于阈值温度)下可靠稳定,但在操作温度满足或超过该阈值温度时,在第二操作条件下可靠地转变为不同的物理状态。在这种条件下,当操作温度满足或超过阈值温度时,如图2所示,在不利的加热条件中,热感粒25熔化、液化、软化、挥发或以其它方式转变为不同的物理状态。
[0024]弹簧31适于膨胀(expand)和释放(release),如图5中膨胀释放弹簧27所示,并通过特定力与压缩弹簧26和膨胀释放弹簧27长度的关系,以图2所示方式,滑动接触构件22移动脱离与电触点17的端部18的电接触,由此使通过热熔断结构10连接的终端导体12和电触点17之间的电路(通过外壳11和滑动接触构件22)中断并断开,保持断路,如图2所示。
[0025]本发明所述的热熔断装置用于说明的目的,其是示例性的,并且在某些方案中不应构成限制。在特定方案中,多个元件、设计或操作原理可在数量或设计上有所不同。多个其它热开关或熔断装置是本领域已知的,同样可考虑。
[0026]在多个方案中,为在HTTCO应用中使用,本发明所教导的高温热感粒成分是热稳定和化学稳定的、可靠的、并且是坚固的。优选地,高温热感粒成分将包括一种或多种有机化合物,例如结晶有机化合物。在多个方案中,高温热感粒成分被设计为具有允许HTTCO装置具有最终温度(Tf)(也称为启动或阈值温度)的转变温度,在所述最终温度时,内部触点(internal contact)因热感粒成分中的结构变化而断开电连续性,这又导致例如张力调节机构的打开。因此高温热感粒的转变温度直接对应于HTTCO装置的阈值温度Tf,由此启动连续性的切换。如上所述,转变温度通常是指下述温度:在该温度时,热感粒熔化、液化、软化、挥发或以其它方式转变为不同物理状态,从而通过收缩、位移或其它物理变化而从具有结构刚性的固态转变为失去结构刚性的形式或状态,这使得内部电接触因所施加的张力而从张力调节机构分开。因此,如这里所使用的,一旦热感粒材料达到其转变温度,则表示此材料不再具有维持张力调节结构所需的结构刚性,诸如,例如,根据HTTCO装置,位于保持断开或保持闭合位置的开关。
[0027]如这里提到的,这种转变温度还称作“熔点”;然而,热感粒成分中的化合物无需按常规意义般完全熔化以实现电接触的分离从而断开内部电炉和电连续性。如本领域技术人员所意识到的,熔点温度是化合物或成分从固态转变成液态的温度,其可能在一定温度范围内而不是单个离散的温度点上发生。在某些方案中,通过非限定性例子的方式,高温热感粒可能会软化或升华而不是熔化,以实现电接触的分离从而断开电路。熔点温度可用多种设备来测量,例如ThomasHoover、Mettler和Fisher-Johns公司所生产者。差示扫描量热(DSC)技术也是常用的。不同的测量技术可能得到不同的熔点,例如,光学分析方法如Fisher-Johns法通过测量样品的透光率来确定固态到液态的变化。相对于更现代的光束透过率熔点指示器(light beamtransmittance melt point indicator),早期的光学方法可能经受了更严重的观察错误。另外,早期的确定熔点的技术(在数字高速扫描能力应用之前)使熔点和其它转变得到更宽范围的结果。同样,在HPLC和用于确定纯度的其它精确分析技术出现之前,例如,通过DSC(其测量例如结晶度(固相-固相)变化以及固相到液相变化的热流动行为)测量的样品的熔点可能显示了可能已被报道为熔点的杂质的固-固相变(例如脱水或羟基键断裂以及在所关注的材料的熔点时的固-液相变。因此,在多个方案中,可选择用于热感粒中的成分,其经验地显示理想的物理变化,所述物理变化将使热感粒能够发生物理变化而不必与预期的熔点范围相关。
[0028]在某些方案中,热感粒25具有相对迅速和可重复的塌陷速率,者意味着一旦环境30到达阈值温度,则热感粒成分25的物理塌陷(collapse)的速率相对高。例如,热感粒塌陷速率的一种测试方法是通过热机械分析(thermomechanical analysis,TMA),其中热感粒快速加热到与预期熔点温度相差10℃-15℃的范围内,然后选择加热速率,例如,在整个预期熔点温度范围内加热速率为约0.5℃/min。同时,在测试开始时及整个加热过程中,测量热感粒的物理高度,由此测量从热感粒上表面到下铺衬底(热感粒最初位于该衬底上)的位移量。以微米/℃测量的从转变温度开始到结束时的热感粒高度塌陷速率与热感粒塌陷速率相关,例如,在约100微米/℃之内从阈值温度降低了75%的球高度,任选地约500微米/℃,任选地约1000微米/℃。在多个方案中,固-液相变温度和热感粒塌陷速率都是热感粒25的显著特征,因为热感粒塌陷的迅速性确保了HTTCO中电接触的充分分离从而避免了多余的电弧,后者能够使多种组分熔化,并且可能影响HTTCO性能。测试和量化这种热感粒塌陷速率的方法将在下面进一步详述。
[0029]在某些方案中,热感粒包括一种或多种具有对应于理想转变温度的、在一定温度范围内发生的熔点温度(mp)的有机化合物。例如,在某些方案中,高温热感粒具有下述一种或多种有机化合物:所述有机化合物的熔点温度(mp)在比转变温度低约5℃之内和在比转变温度高约2℃之内(也就是说,其中T-5℃≤mp≤T+2℃),其中T是转变温度。
[0030]在多个方案中,高温热感粒成分包括选择为满足一个或多个下述标准的有机化合物或材料。在某些方案中,被选择用于高温热感粒的有机成分具有相当高的化学纯度。例如,在某些实施例中,用于高温热感粒成分的理想候选化学品具有约95%到99+%的纯度等级范围。在某些方案中,被选择用于高温热感粒的有机成分尤其适用于处理、加工和毒性特征。在某些实施例中,被选择用于高温热感粒成分的有机化合物或化学成分的半数致死量毒性值(LD50)对于小鼠来说为小于或等于约220mg/kg(ppm);对于兔子来说小于或等于约400mg/kg(ppm);且对大鼠来说小于或等于约350mg/kg(ppm)。另外,在某些方案中,选择用于高温热感粒的有机化学成分理想地不具有文献记载的致癌效果、致突变效果、神经毒性效果、再生效果、致畸效果和/或其它有害健康或流行病的效果。在另外的其它方案中,用于高温热感粒成分的有机成分选择为使得其它反应性残留物,在制造过程中形成的反应产物,分解产物,或可能在制造、存储或使用中形成的分解产物或其它品种不存在、最小化或能够使这些不想要的品种被净化和去除。
[0031]在某些方案中,选择用于高温热感粒成分的成分显示长期稳定性。例如,成分任选地选择为具有温度稳定性或热稳定性,换句话说,下述化合物可能被拒绝作为可行的候选物:其在与所述有机化合物的转变温度或熔点相差约10℃、任选地约20℃、任选地约30℃、任选地约40℃、任选地约50℃、任选地约60℃、任选地约75℃、并且在某些方案中任选地约100℃的温度范围内显示分解或挥发特性。另外,在某些实施例中,适于用作高温热感粒成分的化学成分将不能显示由热诱导和老化促进的氧化或分解的强可能性。
[0032]另外,适于用作高温热感粒的成分包括“不导电”的那些,这表示该成分在比Tf最终温度高至少5℃时在两电极之间能够耐受至少1分钟的240伏、60Hz的正弦电势而不会导电超过250mA。在某些方案中,所选成分在比Tf最终温度高至少10℃时在两电极之间能够耐受至少1分钟的240伏、60Hz的正弦电势而不会导电超过250mA。在其它方案中,高温热熔断成分在比Tf最终转变温度高至少50℃时在两电极之间任选地能够耐受至少1分钟的240伏、60Hz的正弦电势而不会导电超过250mA。
[0033]在多个方案中,被选择用于高温热感成分(high temperaturethermal composition)的有机化学成分的初始熔点温度为至少约240℃,任选地约241℃,任选地约242℃,任选地约243℃,任选地约244℃,任选地约245℃,任选地约246℃,任选地约247℃,任选地约248℃,任选地约249℃,任选地约250℃,任选地约251℃,任选地约252℃,任选地约253℃,任选地约254℃,任选地约255℃,任选地约256℃,任选地约257℃,任选地约258℃,任选地约259℃,任选地约260℃,任选地约261℃,任选地约262℃,任选地约263℃,任选地约264℃,任选地约265℃,任选地约266℃,任选地约267℃,任选地约268℃,任选地约269℃,任选地约270℃,任选地约271℃,任选地约272℃,任选地约273℃,任选地约274℃,任选地约275℃,任选地约276℃,任选地约277℃,任选地约278℃,任选地约279℃,任选地约280℃,任选地约281℃,任选地约282℃,任选地约283℃,任选地约284℃,任选地约285℃,任选地约286℃,任选地约287℃,任选地约288℃,任选地约289℃,任选地约290℃,任选地约291℃,任选地约292℃,任选地约293℃,任选地约294℃,任选地约295℃,任选地约296℃,任选地约297℃,任选地约298℃,任选地约299℃,任选地约300℃,并且在某些实施例中任选地约301℃。在某些方案中,用于高温热感粒的有机成分的熔点高于275℃,在某些方案中,任选地高于约300℃。在某些实施例中,满足上述选择标准并且能够在50℃到至少235℃的温度范围内保持固态的有机化合物是理想的。在某些方案中,可在直到236℃时保持稳定固态的化合物是理想的,任选地直到约237℃,任选地直到约238℃,任选地直到约239℃,任选地直到约240℃,任选地直到约245℃,任选地直到约250℃,任选地直到约255℃,任选地直到约260℃,任选地直到约265℃,任选地直到约270℃,任选地直到约275℃,任选地直到约280℃,任选地直到约285℃,任选地直到约290℃,任选地直到约295℃,并且在某些方案中任选地达到或超过约300℃。
[0034]用于本发明的HTTCO装置的高温热感粒的合适的候选有机化合物任选地包括下述附加特性。在某些实施方式中,可避免或最小化地使用具有酸性结构(例如具有多羟基的结构或在电场中可能具有离子活性的结构)的有机化学品。另外,在某些用途中可避免使用具有含硫侧基的某些有机化合物,因为它们是具有容易在电场中断开的键结构的化合物。
[0035]在某些实施例中,可根据与用于HTTCO外壳的密封材料有关和与其相互作用的化学品的行为(chemical behavior)来选择可用作这里的热熔断成分的有机化合物,所述密封材料通常是多孔聚合物结构。用于高温热感粒的合适的有机化合物包括那些具有相对大分子尺寸的化合物,例如具有环状结构的有机分子,比如因弯曲或侧基而占据尺寸空间的那些物质。在某些方案中,应避免使用具有平坦或不弯曲的构型或化学结构的适当候选化学品,其可能具有剪切迁移性或通过密封材料中孔隙的相对无损的引导路径(navigation)。同样,在某些方案中,选择用于高温热感粒成分的有机化合物具有相对大的分子复杂性,例如带有会产生不规则的尺寸空间填充构型或构造的复杂键取向有机多环结构。例如,在高能状态时会“缠结”的某些化学结构是理想的,因为它们是具有复杂侧链的相对大的有机物种。
[0036]另外,用于本发明的高温热感成分的适当化合物包括那些例如在环结构(如多芳环、多烷基环、杂烷基环,包括共享一或多个共同键的稠环结构)中具有高分子键强度的那些化合物。与其它环或侧基之间具有高键内强度(introbond strength)的化学结构也是合适的有机物种。而且,具有分子间键强度(intermolecular bond strength)的化合物(包括具有高瞬间极性的非极性或相对低极性强度的结构)也是适合的。例如,具有对其它分子基团的母环或侧基具有“键亲和力”的侧基的结构是理想的。
[0037]高熔点芳香化合物已显示提供了独特的键强度、相对大的分子尺寸和电负性特性,这些性质是当配制为诸如小粒(pellet)等固体形状时用作高温热熔断有机化合物所需的。在某些实施方式中,所述热熔断成分可包括一种或多种芳香性化合物、一种或多种五元环化合物、聚合物、共聚物和它们的混合物。
[0038]在某些方案中,高温热感粒可包括多种有机化合物作为主要成分。因此,用于本发明的HTTCO装置的高温热感粒成分任选地包括一种或多种提供大于或等于约240℃的转变温度的有机化合物。在某些方案中,可使用多种这样的有机成分,以使得到的混合物的熔点提供热感粒成分的预定理想转变温度。如本领域技术人员所知的,不同有机成分或其它组分的组合将产生由下述关系表示的热感粒转变温度Tx:其中Xn是存在于热感粒成分中各单独成分的质量分数(其中n大于1),且“mpn”是各单独成分的初始熔点温度。以这种方式,热感粒的转变温度可根据热感粒成分中村在的多种有机化合物各自的熔点来预测。在某些方案中,热感粒成分可包括单一有机成分作为主要成分,以达到大于或等于约240℃的Tx。在其它方案中,热感粒成分可包括多种有机成分,例如两种或多种有机化合物,以达到大于或等于约240℃的Tx。这样的有机化合物可具有不同的熔点温度或其它特性,并且可通过共沉淀、共结晶、混合、掺合、研磨或以本领域已知的其它适当方式来混合。
[0039]在一些实施方式中,高温热感粒成分包括一种或多种化合物,所述一种或多种化合物包括具有含有一个或多个六元环的化学结构的化合物,所述化学结构具有带有组成侧基(side constituent group)的基本碳骨架。在一些实施方式中,热熔断成分可包括一种或多种通常由结构重复单元(SRU):(-PhRR′-)n描述的化学实体,其中R和R′可以是相同或不同的组成侧基,且其中n也可以是大于或等于1的值,指明结构重复单元(SRU)的重复。在一些实施方式中,高温热感粒成分可包括一个或多个五元环结构,其中侧基和/或SRU可能具有或可以是相同或不同的实体(例如,具有不同的组成侧基),比如,作为一个例子,其中热熔断成分通过标准SRU式(-Ph-RR1)n-(-Ph-R2R3)m描述,其中R和R1是与R2和R3不同的侧基。在一些实施方式中,R和R1可相同或不同,同样,R2和R3可相同或不同。
[0040]在一些实施方式中,术语“烃基(hydrocarbyl)”在这里通常用于表示包括其上附着有氢和任选的其它元素的碳链的有机基团。烃基碳链的CH2或CH基团及C原子可以用一个或多个杂原子(即非碳原子)来替换。合适的杂原子包括但不限于O、S、P和N原子。示例性的烃基基团可包括但不限于烷基、烯基、炔基、醚基、聚醚基、硫醚基、直链或环状糖基、抗坏血酸基、氨基烷基、羟烷基、硫烷基、芳基和杂环芳基、任选取代的三环分子、氨基酸、多醇、二醇、具有饱和及不饱和键混合物的基团、碳环、以及这些基团的组合。该术语还包括直链、支链和环状结构或其组合。烃基基团是任选取代的。烃基取代包括在该基团中的一个或多个碳处被含杂原子的分子部分取代。
[0041]烃基的合适取代基包括但不限于:卤素,包括氯、氟、溴和碘;OH;SH;-N-OH;NH;NH2;-C-NH2=S;CH;-CH-O;C=N;-C-N=O;-C-NH2=O;C=O;COH;-C-NH2=S;CO2;H;-CHBN;-CHP;OR1;SR1;NR1;R″;CONR1R2;及它们的组合,其中R1和R2独立地是烷基、不饱和烃基或芳基。术语烷基采用其在本领域中的通常含义,并且意图包括直链、支链和环烷基基团。该术语包括但不限于甲基、乙基、丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、新戊基、2-甲基丁基、1-甲基丁基、1-甲基丙基、1,1-二甲基丙基、正己基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基、3,3-二甲基丁基、2,2-二甲基丁基、1,1-二甲基丁基、2-乙基丁基、1-乙基丁基、1,3-二甲基丁基、正庚基、5-甲基己基、4-甲基己基、3-甲基己基、2-甲基己基、1-甲基己基、3-乙基戊基、2-乙基戊基、1-乙基戊基、4,4-二甲基戊基、3,3-二甲基戊基、2,2-二甲基戊基、1,1-二甲基戊基、正辛基、6-甲基庚基、5-甲基庚基、4-甲基庚基、3-甲基庚基、2-甲基庚基、1-甲基庚基、1-乙基己基、1-丙基戊基、3-乙基己基、5,5-二甲基己基、4,4-二甲基己基、2,2-二乙基丁基、3,3-二乙基丁基和1-甲基-1-丙基丁基。烷基基团是任选取代的。低级烷基是C1-C6烷基,并且包括甲基、乙基、正丙基和异丙基等。
[0042]术语“环烷基”是指具有烃环、尤其是那些具有3到7个碳原子的烃环的烷基基团。环烷基包括在环上具有烷基取代的那些。环烷基基团可包括直链和支链分子部分。环烷基包括但不限于环丙基、环丁基、环戊基、环己基、环庚基、环辛基和环壬基。环烷基可被任选取代。
[0043]芳基可被一个、两个或多个简单取代基取代,所述简单取代基包括但不限于:低级烷基,例如C1-C4烷基、甲基、乙基、丙基、丁基;卤素,例如氯、溴;硝基;硫酸根(sulfato);磺酰氧基;羧基;羰基-低级烷氧基,例如甲酯基、乙酯基;氨基;单和二-低级烷基胺,例如甲氨基、乙氨基、二甲氨基、甲基乙氨基;酰胺基;羟基;低级烷氧基,例如甲氧基、乙氧基;以及低级烷酰氧基,例如乙酰氧基。
[0044]术语“不饱和烷基(unsaturated alkyl)”在这里用于包括其中一个或多个单独的碳-碳键是双键或三键的烷基基团。该术语在其最普通的含义中包括烯基和炔基。该术语意图包括具有多于一个双键或三键或者具有双键与三键的组合的基团。不饱和烷基不受限制地包括不饱和的直链、支链或环状烷基。不饱和烷基不受限制地包括乙烯基、烯丙基、丙烯基、异丙烯基、丁烯基、戊烯基、己烯基、己二烯基、庚烯基、环丙烯基、环丁烯基、环戊烯基、环戊二烯基、环己烯基、环戊二烯基、1-丙炔基、2-丁炔基、2-甲基-2-丁炔基、乙炔基、丙炔基、3-甲基-1-丙炔基和2-庚炔基。不饱和烷基是任选取代的。
[0045]烷基、环烷基和不饱和烷基的取代包括在所述基团的一个或多个碳上用含杂原子的分子部分取代。这些基团的合适取代基包括但不限于OH、SH、NH2、COH、CO2H、OR3、SR3、P、PO、NR3R4、CONR3R4和卤素(尤其是氯和溴),其中R3和R4独立地是烷基、不饱和烷基或芳基。合适的烷基和不饱和烷基是具有1到约5个碳原子的低级烷基、烯基或炔基。
[0046]术语“芳基”在这里通常用于指具有至少一个含有共轭π电子系统的环的芳族基团,其不受限制地包括碳环芳基、芳烷基、杂环芳基、联芳基和杂环联芳基,它们都是任选取代的。优选的芳基具有一个或两个芳香环。“碳环芳基”是指其中芳环原子都是碳原子的芳基,其不受限制地包括苯基、联苯基和萘基。
[0047]“芳烷基”是指用芳基取代的烷基。合适的芳烷基包括苯甲基、苯乙基等,并且可以是任选取代的,例如,用氮取代的吡啶甲基。芳烷基包括那些具有杂环和碳环的芳族分子部分(aromaticmoieties)。
[0048]“杂环芳基”是指具有至少一个杂芳环的基团,在所述杂芳环中具有1到3个杂原子,其余是碳和氢原子。合适的杂原子不受限制地包括氧、硫和氮。杂环芳基包括呋喃基、噻吩基、吡啶基、吡咯基、N-烷基吡咯并(N-alkyl pyrrolo)、嘧啶基、吡嗪基、咪唑基、苯并呋喃基、喹啉基和吲哚等,它们都是任选取代的。
[0049]“杂环联芳基”是指这样的杂环芳基:其中苯基在该苯基的环与十氢化萘或环己烷的连接点的邻、间或对位被杂环芳基取代。杂环联芳基包括具有用杂芳环取代的苯基的基团等。杂环芳基的芳环可以是任选取代的。
[0050]“联芳基”是指这样的碳环芳基:其中苯基在该苯基的环与十氢化萘或环己烷的连接点的邻、间或对位被碳环芳基取代。联芳基包括第一苯基在该第一苯基的环与十氢化萘或环己烷结构的连接点的邻、间或对位被第二苯基环取代等。优选对位取代。联苯基的芳环可以是任选取代的。
[0051]芳基取代包括在芳基中芳环的一个或多个碳上或如果可能在一个或多个杂原子上被非芳基基团(不包括H)取代。相反,非取代芳基是指其中芳环碳均用H取代的芳基,如未取代的苯基(-C6H5)或萘基(-C10H7)。芳基的合适取代基包括烷基、不饱和烷基、卤素、OH、SH、NH2、COH、CO2H、OR5、SR5、NR6、R6、CONR5R6,其中R5、R6独立地是烷基、不饱和烷基或芳基。优选的取代基是OH、SH、OR5和SR5,其中R5是低级烷基,即,具有1到约5个碳原子的烷基。其它优选的取代基是卤素(更优选氯或溴)、以及具有1到约5个碳原子的低级烷基和不饱和低级烷基。取代基包括芳基中芳环之间的桥接基团,比如-CO2-、-CO-、-O-、-S-、-P-、-NH-、-CH=CH-和-(CH2)l-(其中l是1到约5的整数),尤其是其中l为1的-CH2-。具有桥接取代基的芳基的例子包括苯甲酸苯酯基。取代基还包括分子部分(moieties),例如,-(CH2)J-、-O-(CH2)J-或-OCO(CH2)J-,其中J是约2到7的整数,其对于分子部分来说是合适的,其在单个芳环中(例如在1,2,3,4-四氢化萘基团中)桥接两个环原子。芳基的烷基和不饱和烷基取代基也可以是任选取代的,如前面对于取代的烷基和不饱和烷基所述般。
[0052]术语“烷氧基”和“硫代烷氧基”(还称作硫醇盐基(emrcaptidegroup)、烷氧基的硫类似物)采用它们通常接受的含义。烷氧基包括但不限于:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、异丁氧基、叔丁氧基、正戊氧基、新戊氧基、2-甲基丁氧基、1-甲基丁氧基、1-乙基丙氧基、1,1-二甲基丙氧基、正己氧基、1-甲基戊氧基、2-甲基戊氧基、3-甲基戊氧基、4-甲基戊氧基、3,3-二甲基丁氧基、2,2-二甲氧基丁氧基、1,1二甲基丁氧基、2-乙基丁氧基、1-乙基丁氧基、1,3-二甲基丁氧基、正戊氧基、5-甲基己氧基、4-甲基己氧基、3-甲基己氧基、2-甲基己氧基、1-甲基己氧基、3-乙基戊氧基、2-乙基戊氧基、1-乙基戊氧基、4,4-二甲基戊氧基、3,3-二甲基戊氧基、2,2-二甲基戊氧基、1,1-二甲基戊氧基、正辛氧基、6-甲基庚氧基、5-甲基庚氧基、4-甲基庚氧基、3-甲基庚氧基、2-甲基庚氧基、1-甲基庚氧基、1-乙基己氧基、1-丙基戊氧基、3-乙基己氧基、5,5-二甲基己氧基、4,4-二甲基己氧基、2,2-二乙基丁氧基、3,3-二乙基丁氧基、1-甲基-1-丙基戊氧基、乙氧基甲基、正丙氧基甲基、异丙氧基甲基、仲丁氧基甲基、异丁氧基甲基、(1-乙基丙氧基)甲基、(2-乙基丁氧基)甲基、(1-乙基丁氧基)甲基、(2-乙基戊氧基)甲基、(3-乙基戊氧基)甲基、2-甲氧基乙基、1-甲氧基乙基、2-乙氧基乙基、3-甲氧基丙基、2-甲氧基丙基、1-甲氧基丙基、2-乙氧基丙基、3-(正丙氧基)丙基、4-甲氧基丁基、2-甲氧基丁基、4-乙氧基丁基、2-乙氧基丁基、5-乙氧基戊基和6-乙氧基己基。硫烷基包括但不限于上面明确列出的烷氧基的硫类似物。
[0053]在一些实施方式中,5和6元环中的R、R1、R2、R3、R4、R5和R6侧基可独立地选自任何上述烃基取代基,例如,-CH、-CH-O、-CH-OH、-NH2、-NH、-CH-N、-CH=O、-N-OH、-CHBN、-CHP或其混合物。
[0054]在某些方案中,用于本发明的高温热感粒成分中使用的一种特别合适的有机化合物是三蝶烯(triptycene或tryptycene)(9,10-二氢-9,10-邻-苯并-9,10二氢化蒽,CAS注册号477-75-8),其具有约255℃的转变温度以及255℃到约257℃的熔点温度范围。三蝶烯通常归类为多环芳烃,并通常用示例性的式(1)来表示:
三蝶烯可通过用氢化锂铝或硼氢化铝还原蒽-醌加合物以及本领域技术人员已知的其它方法来制备。三蝶烯在下述文献中描述:OrganicSyntheses,Coll.Vol.4,pp.964(1963),该文献的相关部分通过引用并入本文。
[0055]在某些其它方案中,用于高温热感粒成分中的特别合适的有机化合物是1-氨基蒽醌(也称为1-氨基-9,10-蒽二酮,CAS注册号82-45-1),其归类为具有组成侧基-C=O和C-NH2的多环芳烃,如式(II)所示:
1-氨基蒽醌具有约253℃的预期转变温度,以及253℃到约257℃的熔点范围。1-氨基蒽醌(1-AAQ)可通过2-氯苄基氯和二甲苯在固体酸催化剂存在下的反应或通过本领域已知的其它方法制备。1-氨基蒽醌(也称为1-氨基-9,10-蒽二酮)在美国专利4,006,170和4,695,407中描述,上述专利的相关部分通过引用并入本文。
[0056]根据上面所讨论的标准和下面陈述的估算熔点温度范围,例如但非限制性地,其它代表性的有机化合物(例如在下表2中陈述的示例性化合物)也被认为是本发明HTTCO装置的高温热感粒成分的非常合适的候选物。然而,本发明还设想了多种其它有机化合物,它们尽管没有在这里列出,但符合了上面列出的一项或多项标准,包括对应于高于约240℃的转变温度的熔点数据。如上所述,预期的熔点范围可能根据所使用的分析技术而不同(因此某些化合物具有多个或不同的熔点),因此这种成分被选择为具有经验转变温度(empiricaltransition temperature),其在理想的阈值温度时在热感粒中实现物理转变并改变点连续性。
表2
例子 | 熔点 | 名称 | IUPAC名字 | CAS注册号 |
1 | 241℃ | 扎普司特(Zaprinast) | 5-(2-丙氧基苯基)-2,3-二氢三唑并[4,5-e]嘧啶-7-酮 | 37762-06-4 |
2 | 241-243℃ | 盐酸罗平尼咯(Ropinirolehydrochloride) | 4-[2-(二丙基氨基)乙基]-1,3-二氢吲哚-2-酮盐酸盐 | 91374-20-8 |
3 | 241℃ | 盐酸三苯胍 | (N,N′-二苯基甲脒基)-苯基氯化铵 | 59283-92-0 |
4 | 241-242℃ | 1,4,5,6,7,10,11,12-八氢-萘并萘 | 1,4,5,6,7,10,11,12-八氢萘并萘 | 60700-47-2 |
5 | 241-244℃ | 3-乙氧基苄腈 | 3-乙氧基苄腈 | 25117-75-3 |
6 | 241-242℃ | 顺-1,2,3,4-四氢-1-氨基-N-甲基-4-苯基萘盐酸盐 | (1S,4S)-N-甲基-4-苯基1,2,3,4-四氢化萘-1-铵盐酸盐 | 52371-38-7 |
7 | 241℃ | 2,7-二甲基蒽 | 2,7-二甲基蒽 | 782-23-0 |
8 | 240-243℃ | Sesbanine | 3′-羟基螺[2,7-萘啶-4,1′-环戊烷]-1,3-二酮 | 70521-94-7 |
9 | 241-243℃ | 2-氨基-5-苯基-1,3,4-噁二唑 | 5-苯基-1,3,4-噁二唑-2-胺 | 1612-76-6 |
10 | 241℃ | 苊并(1,2-b)喹喔啉 | 苊并[1,2-b]喹喔啉 | 207-11-4 |
11 | 242℃ | 醋酸酚丁 | 乙酸[4-[3-(4-乙酰基苯基)-2-氧-1H-吲哚-3-基]苯基]酯 | 115-33-3 |
12 | 242℃ | 4-硝基苯并咪唑 | 4-硝基-1H-苯并咪唑 | 10597-52-1 |
13 | 242-244℃ | 生物素酰胺 | 5-[(3aR,6S,6aS)-2-氧-1,3,3a,4,6,6a-六氢噻吩并[3,4-d]咪唑-6-基]戊酰胺 | 6929-42-6 |
14 | 242℃ | 异丁酸托品碱 | 2-甲基丙酸[(1S,5R)-8-甲基-8-氮杂二环[3.2.1]辛-3-基]酯 | 495-80-7 |
15 | 242℃ | 2-(1H-苯并咪唑-2-基)-酚 | 6-(1,3-二氢苯并咪唑-2-叉)环己烷-2,4-二烯-1-酮 | 2963-66-8 |
16 | 242-245℃ | Bufalone | 5-[(5R,8R,9S,10S,13R,14S,17R)-14-羟基-10,13-二甲基-3-氧-2,4,5,6,7,8,9,10,11,12,15,16,17-十二氢-1H-环戊烷并[a]菲-17-基]吡喃-2-酮 | 4029-65-6 |
17 | 242-244℃ | 盐酸氰苯哌酰胺(Difenoximidehydrochloride) | 1-(3-氰基-3,3-二苯基丙基)-4-苯基哌啶-4-甲酸(2,5-二氧吡咯烷-1-基)酯盐酸盐 | 37800-79-6 |
18 | 242-244℃ | 左旋克罗卡林(Levcromakalim) | (3S,4R)-3-羟基-2,2-甲基-4-(2-氧吡咯烷-1-基)色满-6-腈 | 94535-50-9 |
19 | 242-243℃ | Bandrowski氏碱 | 3,6-二[(4-氨基苯基)亚氨基]环己-1,4-二烯-1,4-二胺 | 20048-27-5 |
20 | 242℃ | 吡嗪并[2,3-f]喹喔啉 | 吡嗪并[2,3-f]喹喔啉 | 231-23-2 |
21 | 243-245℃ | 2,4,6-三-2-吡啶基-1,3,5-三嗪 | 2,4,6-三(吡啶-2-基)-1,3,5-三嗪 | 3682-35-7 |
22 | 243-245℃ | 3,3′,5,5′-四-叔丁基[二-2,5-环己二烯-1-叉]-4,4′-二酮 | 2,6-二叔丁基-4-(3,5-二叔丁基-4-氧-1环己-2,5-二烯叉)环已-2,5-二烯-1-酮 | 2455-14-3 |
23 | 243-245℃ | 6-甲基-8-硝基菲啶 | 6-甲基-8-硝基菲啶 | 51381-78-3 |
24 | 243-245℃ | 1,4-二氢-5H-四唑-5-酮 | 1,2-二氢四唑-5-酮 | 16421-52-6 |
25 | 242.5-243℃ | 2-2′-二氨基-1,1′-联萘 | 1-(2-氨基萘-1-基)萘-2-胺 | 18741-85-0 |
26 | 243℃(236-238°) | Violerythrin | 3,5,5-三甲基-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-四甲基-18-(2,5,5-三甲基-3,4-二氧-1-环戊烯基)十八-1,3,5,7,9,11,13,15,17-九烯炔]环戊-3-烯-1,2-二酮 | 22453-06-1 |
27 | 243-245℃ | 苊醌 | 苊-1,2-二酮 | 82-86-0 |
28 | 243℃ | 杜基醛 | 2,4,5-三甲基苯甲醛 | 5779-72-6 |
29 | 244-245.5℃ | Longimammatine | 6-甲氧基-1,2,3,4-四氢异喹啉 | 42923-77-3 |
30 | 244-245℃ | 盐酸氯胍 | (1Z)-1-[氨基-[(4-氯苯基)氨基]甲叉]-2-丙-2-基胍盐酸盐 | 637-32-1 |
31 | 244-247℃ | 5-羟基-2H-1-苯并吡喃-2-酮 | 5-羟基色烯-2-酮 | 6093-67-0 |
32 | 244-245℃; | N,N′-二苯基联 | N-苯基-4-[4-(苯氨基)苯 | 531-91-9 |
251-252℃ | 苯胺 | 基]苯胺 | ||
33 | 244-245℃ | 二(4-氨基苯)-甲酮 | 二(4-氨基苯基)甲酮 | 611-98-3 |
34 | 244℃ | 达匹坦(Dapitant) | (2S)-1-[(3aS,4S,7aS)-4-羟基-4-(2-甲氧基苯基)-7,7-二(苯基)-1,3,3a,5,6,7a-六氢异吲哚-2-基]-2-(2-甲氧基苯基)丙-1-酮 | 153438-49-4 |
35 | 244-245℃ | Cytosinine | 3-氨基-6-(4-氨基-2-氧嘧啶-1-基)-3,6-二氢-2H-吡喃-2-甲酸 | 1860-84-0 |
36 | 244-245℃ | 联二脲(Biurea) | (氨基甲酰基氨基)脲 | 110-21-4 |
37 | 244-245℃ | 9,10-蒽二甲醛 | 蒽-9,10-二甲醛 | 7044-91-9 |
38 | 244-246℃ | 三-3-吲哚基甲烷 | 3-[二(1H-吲哚-3-基)甲基]-1H-吲哚 | 518-06-9 |
39 | 245℃ | 6-苄基-1,3,5-三嗪-2,4-二胺 | 6-(苯甲基)-1,3,5-三嗪-2,4-二胺 | 1853-88-9 |
40 | 245℃ | 蒲公英赛酮 | (4aR,6aR,6aS,8aR,12aS,14aR,14bR)-4,4,6a,6a,8a,11,11,14b-八甲基-2,4a,5,6,8,9,10,12,12a,13,14,14a-十二氢-1H-苉-3-酮 | 514-07-8 |
41 | 245-246℃ | 1,7-二氢-1,7-二甲基-6H-嘌呤-6-酮 | 1,7-二甲基嘌呤-6-酮 | 33155-83-8 |
42 | 245-246℃ | 1-吩嗪酰胺 | 吩嗪-1-酰胺 | 550-89-0 |
43 | 245℃ | 甲吲噻腙 | [(1-甲基-2-氧吲哚-3-叉)氨基]硫脲 | 1910-68-5 |
44 | 245-247℃ | 3-吲唑酮 | 1,2-二氢吲唑-3-酮 | 7364-25-2 |
45 | 245-246℃ | Emd 56431 | (3R,4S)-羟基-2,2-二甲基-4-(2-氧吡啶-1-基)色满-6-腈 | 123595-75-5 |
46 | 245-246.5℃ | 盐酸地莫沙明 | 1-(2,5-二甲氧基-4-甲基 | 52663-86-2 |
苯基)丁-2-胺盐酸盐 | ||||
47 | 245-247℃ | 9H-咔唑-2-胺(9Cl) | 9H-咔唑-2-胺 | 4539-51-9 |
48 | 245-247℃ | (1,2,4)三唑并(4,3-a)吡啶-3(2H)-亚胺 | [1,2,4]三唑并[4,5-a]吡啶-3-亚胺 | 767-62-4 |
49 | 246-248℃(239-240℃) | 苯胺基甲酰胺 | 1,3-二(苯基)脲 | 102-07-8 |
50 | 246-247℃ | 1H-1,2,3-三唑并(4,5-c)吡啶 | 2H-三唑并[4,5-c]吡啶 | 273-05-2 |
51 | 246-248℃ | 六甲苯-α1,α4-二醇 | [4-(羟甲基)-2,3,5,6-四甲基苯]甲醇 | 7522-62-5 |
52 | 246-247℃ | 6-硫代咖啡因 | 1,3,7-三甲基-6-亚硫烷基嘌呤-2-酮 | 13182-58-6 |
53 | 246-249℃ | 1,2,3,4-四氢-9H-咔唑-9-酰胺 | 1,2,3,4-四氢咔唑-9-酰胺 | 67242-61-9 |
54 | 246-248℃ | 9,10-二苯基蒽 | 9,10-二(苯基)蒽 | 1499-10-1 |
55 | 246℃ | O 129 | 6,7-二(丙-2-基)蝶啶-2,4-二胺 | 3810-29-5 |
56 | 246℃ | 9,9′-二-9H-芴 | 9-(9H-芴-9-基)-9H-芴 | 1530-12-7 |
57 | 246-248℃ | 2-[4-(二氰基甲基)苯基]丙二腈 | 2-[4-(二氰基甲基)苯基]丙二腈 | 18643-56-6 |
58 | 247-248℃ | 磺胺喹噁啉 | 4-氨基-N-喹喔啉-2-基苯磺酰胺 | 59-40-5 |
59 | 247℃ | 四聚乙醛 | 2,4,6,8-四甲基-1,3,5,7-四氧杂环辛烷 | 108-62-3 |
60 | 247-250℃ | (6R-(6α(R*),7β(Z),8α))-7-(1-丁烯-3-炔基)-2-(4-戊炔基)-1-氮杂螺(5.5)十一-8-醇 | 7-[(E)-丁-1-烯-3-炔基]-2-戊-4-炔基-1-氮杂螺[5.5]十一-8-醇 | 63983-63-1 |
61 | 247-249℃ | N-乙基-9H-吡 | N-乙基-9H-吡啶并 | 78538-80-4 |
啶并(3,4-b)吲哚-3-酰胺 | [5,4-b]吲哚-3-酰胺 | |||
62 | 247-248℃ | 炎爽痛 | 5-二甲氨基-9-甲基-2-丙基吡唑并[1,2-a][1,2,4]苯并三嗪-1,3-二酮 | 13539-59-8 |
63 | 247-251℃ | 4,4′,5,5′-四苯基-Δ2,2′-二-2H-咪唑 | N-[(4-甲脒基苯基)甲基]-2-[5-氯-3-(3-羟丙基氨基)-2-氧-6-苯基吡嗪-1-基]乙酰胺 | 14551-06-5 |
64 | 247℃ | 2-羟基-3-苯基喹喔啉 | 3-苯基-1H-喹喔啉-2-酮 | 1504-78-5 |
65 | 247-249℃ | 3-羟基-19-去甲孕-1,3,5(10)-三烯-20-酮 | 1-[(8S,9S,13S,14S,17S)-3-羟基-13-甲基-6,7,8,9,11,12,14,15,16,17-十氢环戊烷并[a]菲-17-基]乙酮 | 1667-98-7 |
66 | 248℃ | CP93129 | 3-(1,2,3,6-四氢吡啶-4-基)-1,4-二氢吡咯并[2,3-e]吡啶-5-酮 | 127792-75-0 |
67 | 248℃(238-299°) | 6-苄基-1,3,5-三嗪-2,4-二胺 | 6-(苄基)-1,3,5-三嗪-2,4-二胺 | 1853-88-9 |
68 | 248-250℃ | 6-羟基屈(6-hydroxychrysene) | 屈-6-醇(chrysen-6-ol) | 37515-51-8 |
69 | 248℃ | 四苯基吡嗪 | 2,3,5,6-四(苯基)吡嗪 | 642-04-6 |
70 | 249-251℃ | 2,4,6-嘧啶三胺 | 嘧啶-2,4,6-三胺 | 1004-38-2 |
71 | 249℃ | 吡嗪并[2,3-b]喹喔啉 | 吡嗪并[2,3-b]喹喔啉 | 261-67-6 |
72 | 249-250℃ | 6-肼基-3-哒嗪酰胺 | 6-肼基哒嗪-3-酰胺 | 3614-47-9 |
73 | 249℃ | 4-硝基苯腙 | N-[(2-氯苯基)甲叉氨基]-4-硝基苯胺 | 14295-17-1 |
74 | 249-253℃ | N1,N4-二-E-肉桂酰基腐胺 | 3-苯基-N-[4-(3-苯丙-2-烯酰基氨基)丁基]丙-2-烯酰胺 | 37946-56-8 |
75 | 249-250℃ | 1-氨基噻吨-9-酮 | 1-氨基噻吨-9-酮 | 40021-31-6 |
76 | 249-250℃ | 5-甲氧基-1,2,3,4-四氢-1-萘胺盐酸盐 | (5-甲氧基-1,2,3,4-四氢化萘-1-基)氯化铵 | 41566-70-5 |
77 | 250℃ | NCS404824 | 7H-[1,2,4]三唑并[5,1-f]嘌呤 | 4022-94-0 |
78 | 250-252℃ | 2,4-喹唑啉二胺 | 喹唑啉-2,4-二胺 | 1899-48-5 |
79 | 250℃ | Prioxodan | 3-甲基-6-(6-氧-4,5-二氢-1H-哒嗪-3-基)-1,4-二氢喹唑啉-2-酮 | 111786-07-3 |
80 | 250℃ | 2,6-二甲基蒽 | 2,6-二甲基蒽 | 613-26-3 |
81 | 250℃ | 4,4′-二氨基偶氮苯 | 4-(4-氨基苯基)二氮烯基苯胺 | 538-41-0 |
82 | 250-253℃ | N,N-二甲基-4-丁基苯胺 | 4-叔丁基-N,N-二甲基苯胺 | 2909-79-7 |
83 | 250-251℃ | 解氟灵 | N-屈-5-基乙酰胺 | 34441-00-4 |
84 | 230°;250℃ | 1-吖啶醇 | 10H-吖啶-1-酮 | 5464-73-3 |
85 | 251-252℃ | 2-苯基-1H-吲哚-3-甲醛 | 2-苯基-1H-吲哚-3-甲醛 | 25365-71-3 |
86 | 251℃ | 芴-9-酰胺 | 9H-芴-9-酰胺 | 7471-95-6 |
87 | 251-253℃ | 2,3-二甲基咔唑 | 2,3-二甲基-9H-咔唑 | 18992-70-6 |
88 | 251-253℃ | 9,10-二(2-苯乙炔基)蒽 | 9,10-二(2-苯乙炔基)蒽 | 10075-85-1 |
89 | 251-253℃ | 6-二甲基腺嘌呤 | N,N-二甲基-7H-嘌呤-6-胺 | 938-55-6 |
90 | 252-254℃ | 6-喹噁啉醇(6-Quixoxalinol) | 4H-喹噁啉-6-酮 | 7467-91-6 |
91 | 252-254℃ | 草酰苯胺 | N,N′-二(苯基)草酰胺 | 620-81-5 |
92 | 252-255℃ | 3-(羟亚氨基)-7-甲基二氢吲哚-2-酮 | 3-(羟亚氨基)-7-甲基二氢吲哚-2-酮 | 13208-96-3 |
93 | 252℃ | 2,3-二甲基蒽 | 2,3-二甲基蒽 | 613-06-9 |
94 | 252-255℃ | 2,4-二硝基苯腙 | 2,4-二硝基-N-[(2-苯基色满-4-叉)氨基]苯胺 | 16281-65-5 |
95 | 252-252.5℃ | 1,2,3,4-四氢-环戊烷并(b)吲哚-3-酮 | 2,4-二氢-1H-环戊烷并[b]吲哚-3-酮 | 16244-15-8 |
96 | 253-254℃ | 1-氨基蒽醌 | 1-氨基蒽-9,10-二酮 | 82-45-1 |
97 | 253℃ | 6-硝基-2-苯并噻唑氨胺 | 6-硝基-1,3-苯并噻唑-2-胺 | 6285-57-0 |
98 | 253℃ | 2-硫代-2H-1,3-苯并噁嗪-2,4(3H)-二酮 | 2-亚硫烷基-1,3-苯并噁嗪-4-酮 | 10021-35-9 |
99 | 254-255℃ | 7H-吡啶并(3,4-c)咔唑 | 7H-吡啶并(3,4-c)咔唑 | 205-27-6 |
100 | 254-255℃ | 四氢化肉叶芸香醇盐酸盐 | 1-甲基-2,3,4,9-四氢-1H-吡啶并[3,4-b]吲哚-7-醇盐酸盐 | 17952-75-9 |
101 | 254-256℃ | 二苯并(a,h)蒽-7-酚 | 萘并[1,2-b]菲-7-酚 | 63041-68-9 |
102 | 254-256℃(248-249°) | Glycosminine | 2-(苯甲基)-1H-喹唑啉-4-酮 | 4765-56-4 |
103 | 254℃ | 2-蒽酚(9CI) | 蒽-2-酚 | 613-14-9 |
104 | 254-256℃ | 4-氨基-5-氰基嘧啶 | 4-氨基嘧啶-5-腈 | 16357-69-0 |
105 | 254℃;(233°) | 2-氨基-4-硝基苯并噻唑 | 4-硝基-1,3-苯并噻唑-2-胺 | 6973-51-9 |
106 | 255-256℃(250-252°) | 2,4,6,8-四苯基-3,7-二氮杂二环[3.3.1]壬-9-酮 | 2,4,6,8-四苯基-3,7-二氮二环[3.3.1]壬-9-酮 | 37123-09-4 |
107 | 255-257℃ | 四氢-5,5-二甲基-2(1H)-嘧啶酮 | 5,5-二甲基-1,3-二嗪-2酮 | 17496-93-4 |
108 | 255℃ | 苯甲酸2-(氨基羰基)酰肼9CI | (苯甲酰氨基)脲 | 2845-79-6 |
109 | 255-258℃ | 2,4,6-喹唑啉三胺 | 喹唑啉-2,4,6-三胺 | 13741-90-7 |
110 | 255-256℃ | 3-氰基噻吨酮 | 9-氧噻吨-3-腈 | 51762-90-4 |
111 | 255-256℃ | 6-硝基苯并[a]芘 | 6-硝基苯并[b]芘 | 63041-90-7 |
112 | 255℃ | 3-甲基-1,2,4-三唑并[4,3-a]嘧啶 | 3-甲基-1,2,4-三唑并[4,5-a]嘧啶 | 65267-32-5 |
113 | 255℃ | 2-甲基-4(5)-硝基咪唑 | 2-甲基-4硝基-3H-咪唑 | 696-23-1 |
114 | 255-257℃ | 4-羟基-2-苯基喹啉 | 2-苯基-1H-喹啉-4-酮 | 14802-18-7 |
115 | 255-256℃ | Halfordinol | 4-(2-吡啶-3-基-1,3-噁唑-5-基)苯酚 | 4210-82-6 |
116 | 256-258℃ | 四-4-吡啶基噻吩 | 4-[2,4,5-3-三(吡啶-4-基)噻吩-3-基]吡啶 | 64048-12-0 |
117 | 256-258℃ | 烟胺比林(Nifenazone) | N-(1,5-二甲基-3-氧-2-苯基吡唑-4-基)吡啶-3-酰胺 | 2139-47-1 |
118 | 256-257℃ | 吲地司琼(Indisetron) | N-(3,9-二甲基-3,9-二氮杂二环[3.3.1]壬-7-基)-1H-吲唑-3-酰胺 | 141549-75-9 |
119 | 256℃(241-243°) | 1,2,3-茚满三酮 | 茚-1,2,3-三酮 | 938-24-9 |
120 | 256-258℃ | 1,4-二甲基喹喔啉-2,3-二酮 | 1,4-二甲基喹喔啉-2,3-二酮 | 58175-07-8 |
121 | 256-258℃ | 2-氨基吡啶-1-鎓-4-酰胺 | 2-氨基吡啶-1-鎓-4-酰胺 | 13538-42-6 |
122 | 257-258℃ | Terosite | 4-苯基-2,6-二(4-苯基吡啶-2-基)吡啶 | 24368-63-6 |
123 | 257℃ | 戊芬 | 戊芬 | 222-93-5 |
124 | 258-259℃ | 四氢甲状腺素 | 2-氨基-3-(2-氨基-3,4,5,6-四氢嘧啶-4-基)丙酸 | 72748-96-0 |
125 | 258-260℃ | 喹乙唑胺(Quinezamide) | N-(5-甲基吡唑并[1,5-c]喹唑啉-1-基)乙酰胺 | 77197-48-9 |
126 | 258℃ | 1,10-菲咯啉-5,6-二酮 | 1,10-菲咯啉-5,6-二酮 | 27318-90-7 |
127 | 258℃ | 2-硝基苯并咪唑 | 2-硝基-1H-苯并咪唑 | 5709-67-1 |
128 | 258-259℃ | 1H-咪唑并[5,4-b]吡嗪 | 1H-咪唑并[5,4-b]吡嗪 | 273-94-9 |
129 | 258-260℃ | 武当木兰碱(Magnosprengerine) | 4-(2-二甲基氨基乙基)-2-甲氧基苯酚 | 35266-63-8 |
130 | 258-259℃ | 二苯并(a,h)蒽-6-酚 | 萘并[4,3-b]菲-13-酚 | 83710-52-5 |
131 | 258-260℃ | 6-氨基-5,8-喹啉二酮 | 6-氨基喹啉-5,8-二酮 | 24149-57-3 |
132 | 259-260℃ | 7h-吡咯并[4,3-c]咔唑 | 7h-吡咯并[4,3-c]咔唑 | 205-29-8 |
133 | 259℃ | 2-甲基-9H-咔唑 | 2-甲基-9H-咔唑 | 3652-91-3 |
134 | 259-260℃ | 4,6-二甲基-2-亚硫烷基-1H-吡啶-3-腈 | 4,6-二甲基-2-亚硫烷基-1H-吡啶-3-腈 | 54585-47-6 |
135 | 259-261℃ | CV 399 | 4-甲氧基-6-甲基-1,3,5-三嗪-2-胺 | 1668-54-8 |
136 | 259-260℃ | 6-(4-氨基丁基-乙基氨基)-2,3-二氢-1,4-酞嗪二酮 | 6-(4-氨基丁基-乙基氨基)-2,3-二氢酞嗪-1,4-二酮 | 66612-29-1 |
137 | 259-260℃ | 2-(1(2H)-亚苊基)-1(2H)-苊酮 | 2-亚苊-1-基苊-1-酮 | 477-77-0 |
138 | 260-261℃ | 二氧化二苯撑2,3-醌 | 蒽酚烯-2,3-二酮(oxanthrene-2,3-dione) | 6859-47-8 |
139 | 260℃ | 苯并(a)芘-7,8-二酮 | 苯并(a)芘-7,8-二酮 | 65199-11-3 |
140 | 260-265℃ | 2-金刚烷醇 | 金刚烷-2-醇 | 700-57-2 |
141 | 260-263℃ | 木栓-7-酮 | (4S,4aS,6aS,6bS,8aS,12aR,14aR)-4,4a,6a,8a,11,11,14a-八甲基-2,3,4,5,6a,7,8,9,10,12,12a,13,14,14b-十四氢化-1H-苉-6-酮 | 18671-54-0 |
142 | 260-261℃ | 1,2-屈二酮 | 屈-1,2-二酮 | 2304-83-8 |
143 | 260-262℃ | 苯并[a]蒽-5,6-二酮 | 苯并[c]蒽-5,6-二酮 | 18508-00-4 |
144 | 260℃ | 季戊四醇 | 2,2-二(羟甲基)丙-1,3-二醇 | 115-77-5 |
145 | 260-265℃ | 1-甲基胞嘧啶 | 4-氨基-1-甲基嘧啶-2-酮 | 1122-47-0 |
146 | 260℃(297-299°) | 2,8-二羟基喹啉 | 8-二羟基-1H-喹啉-2-酮 | 15450-76-7 |
147 | 260-262℃ | N(β)-丙氨酰基-1-甲基-组氨酸 | (2S)-2-氨基-3-(1-甲基咪唑-4-基)丙酸3-氨基丙酯 | 331-38-4 |
148 | 261-263℃ | 葚孢霉酯l | 4,19-二甲基-3,12-二(2-甲基丙基)-6,9,15-三(丙-2-基)-1,10-二氧杂-4,7,13,16-四氮杂环二十烷-2,5,8,11,14,17-异己酮 | 2900-38-1 |
149 | 261-264℃ | 吡考屈嗪(Picodralazine) | [4-(吡啶-4-基甲基)酞嗪-1-基]肼 | 17692-43-2 |
150 | 261-262℃ | 8-苯基-1H-嘌呤 | 8-苯基-7H-嘌呤 | 4776-14-1 |
151 | 261℃ | 福来根(Furagin) | 1-[[(E)-3-(5-硝基呋喃-2-基)亚丙-2-烯基]氨基]咪唑烷-2,4-二酮 | 1672-88-4 |
152 | 261℃ | 4,8-二苯甲酰基-5-甲氧基-1-萘酚 | 2-(哌啶-1-基甲基)-10,10a-二氢-5H-咪唑丙[1,5-b]异喹啉-1,3-二酮 | 372520-17-7 |
153 | 261-262℃ | β-咔啉-3-甲酸 | 9H-吡咯并[5,4-b]吲哚 | 69954-48-9 |
甲酯 | -3-甲酸甲酯 | |||
154 | 261℃ | 1,4-二(2-苯并噻唑基)苯 | 2-甲基-N′-(2-氧吲哚-3-基)苯并酰肼 | 5153-65-1 |
155 | 261℃ | 12H-[1]苯并吡喃并[2,3-b]喹喔啉-12-酮 | 色烯并[3,2-b]喹喔啉-12-酮 | 82501-03-9 |
156 | 261-262℃ | 茚并(1,2-c)异色烯-5,11-二酮 | 茚宾[3,2-c]异色烯-5,11-二酮 | 5651-60-5 |
157 | 261-263℃(254-258°)213.5-214°(210-212°) | 苯-1,3,5-三腈 | 苯-1,3,5-三腈 | 10365-94-3 |
158 | 262-263℃ | Guanazine | 1,2,4-三唑-3,4,5-三胺 | 473-96-1 |
159 | 262℃ | 雷唑巴占(Razobazam) | 3,8-二甲基-4-苯基-2H-吡唑并[3,4-b]二氮杂草-5,7-二酮 | 78466-98-5 |
160 | 262℃ | 1-苯基巴比妥酸 | 1-苯基-1,3-二嗪烷-2,4,6-三酮 | 15018-50-5 |
161 | 262-263℃ | 6-甲氧嘌呤 | 6-甲氧基-7H-嘌呤 | 1074-89-1 |
162 | 262℃(283-286°) | N-(4-氯-2-硝基苯基)噻吩-2-酰胺 | N-(4-氯-2-硝基苯基)噻吩-2-酰胺 | 5356-56-9 |
163 | 262-262.5℃ | 7-硝基-9-氧-9H-芴-4-甲酸 | 7-硝基-9-氧芴-4-甲酸 | 42523-38-6 |
164 | 262℃ | 4-硝基吖啶酮 | 4-硝基-10H-吖啶-9-酮 | 4261-62-5 |
165 | 262-264℃ | Papyriogenin A | (4aR,6aR,6aS,6bR,8aR,12aS)-2,2,6a,6b,9,9,12a-七甲基-3,10-二氧-1,4,5,6,6a,7,8,8a,11,12-十氢化苉-4a-甲酸 | 59076-79-8 |
166 | 262-264℃ | N-[(1R,3S)-3-乙酰胺基环己基]乙酰胺 | N-[(1R,3S)-3-乙酰胺基环己基]乙酰胺 | 32189-20-1 |
167 | 262-263℃ | 1,3-二-对-甲苯基脲 | 1,3-二(4-甲基苯基)脲 | 621-00-1 |
168 | 263-265℃ | 1,1,3,3-丙四酰 | 丙-1,1,3,3-四酰胺 | 10550-79-5 |
177 | 263℃ | 7-氨基-5,8-喹啉二酮 | 7-氨基喹啉-5,8-二酮 | 64636-91-5 |
178 | 263-264℃ | 9-吖啶酰胺 | 吖啶-9-酰胺 | 35417-96-0 |
179 | 264℃(268°) | 茶碱 | 1,3-二甲基-7H-嘌呤-2,6-二酮 | 58-55-9 |
180 | 264-265℃ | 氰胍佐旦(Siguazodan) | 3-氰基-2-甲基-1-[4-(4-甲基-6-氧-4,5-二氢-1H-哒嗪-3-基苯基]胍 | 115344-47-3 |
181 | 264℃ | 4-硝基-N-(吡啶-2-亚甲基氨基)苯胺 | 4-硝基N-(吡啶-2-亚甲基氨基)苯胺 | 70421-66-8 |
182 | 264-266℃ | 3-(羟氨基)-1H-异吲哚-1-酮 | 3-(羟氨基)-1H-异吲哚-1-酮 | 29833-90-7 |
183 | 264℃ | 2,3-二氨基吩嗪 | 吩嗪-1,2-二胺 | 655-86-7 |
184 | 264-265℃ | 肉叶芸香碱 | 7-甲氧基-1-甲基-9H-吡咯并[3,4-b]吲哚 | 442-51-3 |
185 | 264-265℃ | 2-羟基异吩噁嗪-3-酮 | 10H-吩噁嗪-2,3-二酮 | 1915-49-7 |
186 | 264-265℃ | 3-羟基雌-1,3,5(10),6-四烯-17-酮 | (8R,9S,13S,14S)-3-羟基-13-甲基-9,11,12,14,15,16-六氢-8H-环戊烷并[a]菲-17-酮 | 2208-12-0 |
187 | 264-268℃ | 21-羟基木栓-3-酮 | (4S,4aS,6aS,6aS,6bS,8aS,10R,12aR,14As,14bS)-10-羟基4,4a,6a,6b,8a,11,11,14a-八甲基-2,4,5,6,6a,7,8,9,10,12,12a,13,14,1b-十四氢-1H-苉-3-酮 | 59995-80-1 |
188 | 264-266℃ | 9-辛基-3H-嘌呤-6-硫酮 | 9-辛基-3H-嘌呤-6-硫酮 | 60632-18-0 |
189 | 265℃ | 3,4,5-三(苯基)-1H-吡唑 | 3,4,5-三(苯基)-1H-吡唑 | 18076-30-7 |
190 | 265-268℃ | 螺二六氢嘧啶 | 4,4,10,10-四甲基-1,3,7,9-四氮杂螺[5.5]十一烷-2,8-二酮 | 4115-66-6 |
191 | 265-267℃ | 1,2,3,4-四氢吖啶-9-酰胺 | 1,2,3,4-四氢吖啶-9-酰胺 | 42878-53-5 |
192 | 265-266℃ | 1,3,7-三甲基-1H-吡咯并(2,3-d)嘧啶-2,4(3H,7H)-二酮 | 1,3,7-三甲基吡咯并[2,3-e]嘧啶-2,4-二酮 | 39930-51-3 |
193 | 265℃ | 4-(4-氨基甲酰基苯氧基)苯甲酰胺 | 4-(4-氨基甲酰基苯氧基)苯甲酰胺 | 636-34-1 |
194 | 265-266℃ | 4,4′-亚氨基二苯基腈 | 4-[(4-氰基苯基)氨基苯基腈 | 36602-05-8 |
195 | 265-266℃ | 5,6-二甲基-1,10-菲咯啉 | 5,6-二甲基-1,10-菲咯啉 | 3002-81-1 |
196 | 265-267℃ | 7-羟基-2-(4-甲氧基苯基)-4H-1-苯并吡喃-4-酮 | 7-羟基-2-(4-甲氧基苯基)-色烯-4-酮 | 487-24-1 |
197 | 265℃ | 1,4,6-三氨基嘧啶-2-三酮 | 1,4,6-三氨基嘧啶-2-三酮 | 4765-63-3 |
198 | 265℃ | 1,8-二氨基-9,10-蒽二酮 | 1,8-二氨基蒽-9,10-二酮 | 129-42-0 |
199 | 265℃ | 2-羟基-1H-苯并[de]异喹啉-1,3(2H)-二酮,9Cl;萘羟氨酸 | 5690-46-0 | |
200 | 265℃ | 3-氨基喹喔啉-2-酰胺酰胺衍生物 | 67568-30-3 | |
201 | 265℃ | 6-硝基-2-喹啉胺 | 49609-07-6 |
202 | 265℃ | 2-氨基萘并[2,1d]噻唑(N-Ac形式) | 54380-14-2 | |
203 | 265℃ | 莲叶桐宁3-甲氧基-衍生物 | 155944-22-2 | |
204 | 265℃ | 3-羟基-6-甲基异喹啉 | 51463-11-7 | |
205 | 265℃ | 六氢-1,2,4-亚乙烷基-1H-环丁烷并[cd]环戊二烯-3,5,7-三酮 | 110243-21-5 | |
206 | 265℃ | 2,6-蒽二酚,二-Ac形式 | 13979-53-8 | |
207 | 265℃ | 1H,9H-吡咯并[3,2-b][1,4]苯并噁嗪-2(3H)-酮 | 147345-48-0 | |
208 | 265℃ | 组氨酸苯丙氨酸酐(-)-顺-形式 | 56586-95-9 | |
209 | 265℃ | 2,4,5,6,7-五甲基-1H-苯并咪唑 | 69700-34-1 | |
210 | 265℃ | 3-[2-(4-吡啶基)乙烯基]-1H-吲哚(E)-形式 | 53645-38-8 | |
211 | 265℃ | 9-氨基芴(N-Ac形式) | 5424-77-1 | |
212 | 265℃ | 吡咯并[2,3-b]吡嗪-2,3-二醇(衍生物3-Et醚) | C7H5N3O2/c 11-6-7(12)10-5-4(9-6)-1-3-8-5/h1-3H,(H,9,11)(H,8,10,12) | 2067-84-7 |
213 | 265℃ | 肼衍生物(C8H8N2S2) | 13363-51-4 | |
214 | 265℃ | 2,4-二硝基苯腙(1-(1H-茚-6-基)氯乙酮的衍生物) | 不可用的 | |
215 | 265℃ | 三卡唑(tricarbazyl)3-(9-咔唑基)-9,9′二咔唑 | 6515-02-2 |
[0057]在某些方案中,对所述一种或多种有机化合物或化学品进行加工以使蒸发损失最小化、提高结晶度和得到高纯度水平。例如,所述一种或多种有机化合物通过在模具或模子中施加压力而被加工为紧实形状(compacted shape)如小粒(pellet)或细粒(grain)。小粒结构的完整性理想地足以耐受HTTCO装置的压力,例如耐受酸施加的力并偏详HTTCO组件中的弹簧和套子。HTTCO的下述独特能力是本发明的高温热感组分的重要特征:即,维持物理刚性和弹簧压缩,以及由此在高温装置中在TCO操作温度时维持电连续性,并进一步具有在额定阈值温度时物理转变和断开电路的能力。例如,如之前所述的,某些HTTCO能够耐受长期暴露于下述操作温度而不会断开电路的电连续性:所述操作温度高达比所述阈值或启动温度低约5℃的温度。
[0058]高温热感粒成分可制成任何适合在TCO外壳中使用的商业可用形式,包括颗粒、小粒、球体和本领域技术人员知道的任何几何形状。除上述的有机化合物之外,本发明的高温热熔点热感粒成分可任选包括一种或多种选自下组的成分:粘合剂、压制助剂(press aid)、脱膜剂、颜料或它们的混合物。粘合剂成分通常在低于所述有机成分熔点的温度软化(熔化),其主要用于协助生产热感粒。尽管各种已知用于热感粒形成的粘合剂均可使用,但合适的粘合剂包括聚乙二醇、1,3-苯二酚、环氧树脂、聚酰胺和它们的混合物。粘合剂的存在量通常为总成分的至多约10wt%。
[0059]另外,当加工热感粒时,可能需要采用润滑剂或压制助剂来流动和填充特性。例如,已被证明有用的众多润滑剂或压制助剂是硬脂酸钙、氮化硼、硅酸镁和聚四氟乙烯等。润滑剂的存在量通常为总热感粒成分的至多约5wt%。在某些应用中,还可能需要向所述热熔断组分中加入着色剂(如颜料)以允许对热感粒状况进行迅速的视觉检查。事实上,与前述热熔断组分相容的任何已知颜料均可使用。当应用时,颜料的存在量通常为所述热感粒成分的至多约2wt%。
[0060]在某些实施方式中,热感粒成分可基本上由单一有机成分(其作为主要组分以达到大于或等于约240℃的转变温度)和任选的粘合剂、任选的压制助剂、任选的脱膜剂和/或任选的颜料组成。这种热感粒成分可包括尽可能少的稀释剂或杂质,所述稀释剂或杂质在高于阈值温度的操作温度时基本上不会影响热感粒成分的转变温度或HTTCO的性能。
[0061]最初,可制备第一高温热感粒样品,目的是得到具有约240℃的预期转变温度(例如,熔点温度或熔化转变温度)的产品。对样品进行加工以提高结晶度,然后通过将约90wt%到约100wt%的化学品单独或与10wt%到约0.25wt%的添加剂(如粘合剂)在锤磨搅拌器中混合来进行制备。加入到上述有机化合物中的量可以是5wt%到0.25wt%的粘合剂(如聚酰胺粘合剂等)和1wt%到0.05wt%的有机偶氮颜料。得到的成分显示约236℃的转变温度/熔点。
[0062]可制备额外的样品以制成具有约257℃的熔点温度的HTTCO产品。在这点上,对样品进行加工以提高结晶度,然后通过将约90wt%到约100wt%之间的化学品单独或与10wt%到约0.25wt%的添加剂(如粘合剂)在锤磨搅拌器(hammermill mixer)中混合来进行制备。加入到上述有机化合物中可以是5wt%到0.25wt%的粘合剂(如聚酰胺粘合剂等)和1%到0.05wt%的有机偶氮颜料。在掺合以均化组分之后,可使用差示扫描量热法(DSC)来分析样品。得到的成分具有约257℃的转变温度/熔点温度。
[0063]除显示可重复的转变温度之外,本发明的高温热熔断成分还预计显示干净的电流断路特性、减少的材料和加工成本,并且应当具有挠性以允许预定热熔断器的定制设计满足定制消费者的需要。在某些方案中,高熔点有机成分可通过使用计算有机化合物熔点的计算机软件来配制,例如,诸如韩国Daijin Technologies Corp.生产的以商品名出售的计算机程序。
[0064]另外,在本发明的热熔断成分中使用的多种成分的转变温度/熔点可使用与或不与质谱(TGA-MS)、差示扫描量热计(DSC)和差热分析(DTA)偶联的热重分析仪来测量。用于完成这些定性和定量分析的装置是可通过商业途径得到的,例如得自TA Instruments,New Castle,DE,USA的Model Q2000(DSC)和Mettler STARe热重分析仪TGA/sDTA851e,其与得自Mettler-Toledo,Columbus,OH的BalzersThermoStar质谱仪偶联。另外,例如但不限于,本发明的成分可使用诸如质子或碳核磁共振、质谱分析或者傅里叶变换红外线频谱技术等已知技术来定量地进行分析。
[0065]高温密封剂
[0066]在本发明的多个实施方式中,高温TCO装置包括高温密封剂系统,该系统应用在外壳的一个或多个开口之上以便在HTTCO的内部和外部环境之间提供屏障。在多个方案中,高温密封剂系统(high temperature sealant system)或密封物(seal)是坚固、可靠的,并且在HTTCO装置的高操作温度下仍保持完整性。密封物是HTTCO装置的可靠性和寿命的重要方面,因为适当密封材料的选择提供了即使在HTTCO的高操作温度下仍保持HTTCO内部化学平衡的屏障,并防止热感粒材料通过密封物或屏障而大量损失。
[0067]因此,在多个方案中,密封材料系统在外壳中一个或多个开口上提供了牢固的密封机构以防止不想要的热感粒的升华,并由此防止了热感粒材料的损失。在某些方案中,HTTCO密封系统的可靠性可能与HTTCO装置的寿命相关,其中预定寿命在235℃(反映了比240℃的额定阈值温度低约5℃的操作温度)时至少为1000小时或更长。
[0068]在某些方案中,高温密封物系统是环氧基系统,其固化以提供耐用的高温牢固密封机构。一种特别适合的耐高温环氧系统是由包含一种或多种双酚A树脂的二缩水甘油醚的前体形成的,所述前体与硬化剂(如改性咪唑硬化剂或表氯醇)相混合。
[0069]在多个实施方式中,本发明的环氧系统通常根据制造者的建议来制备。在某些实施方式中,所述环氧系统以促进环氧系统固化的改良方式来制备:即,在HTTCO组分(金属和陶瓷)之间产生牢固的机械密封,所述牢固的机械密封可耐受高于约235℃的温度,任选地高于约240℃、任选地高于约245℃、任选地高于约250℃、任选地高于约260℃、任选地高于约265℃、任选地高于约270℃、任选地高于约275℃、任选地高于约280℃、任选地高于约285℃、任选地高于约290℃、并且在某些实施方式中任选地高达约300℃,这是通过能够保持稳定的热感粒成分和阻止热感粒成分大量升华的方式来实现的。在一些实施方式中,本发明的环氧系统在适合产生所需屏障密封物的不同温度和相对湿度条件下固化成B级和/或完全高级(full advanced)或加速(accelerated)的固化级。在某些方案中,B-级环氧固化是通常在下述条件下进行的低温固化:即,在低于或等于约60℃的温度,以及在约0%到约85%、约0%到约85%、任选地约0到约75%、任选地约0到约50%、任选地约0到约40%以及在某些方案中约0到约35%的相对湿度条件下。当密封物具有用肖氏硬度计永久凹痕标记的压痕所示的硬度75时,通常认为聚合物密封是B级固化。因此,在某些方案中,进行固化以达到至少肖氏D 75的硬度。在某些实施方式中,在HTTCO装置的B级固化之后在较高温度进行加速或高级固化,例如在约150℃到约175℃进行3到5小时。
[0070]很多市售环氧基系统(epoxy-based system)包括至少两种或三种可固化前体,它们混合在一起然后固化形成聚合物。在某些实施方式中,在HTTCO中形成密封物的一种合适的高温环氧基密封系统包括含有二缩水甘油醚双酚A树脂和硬化剂的前体。在某些方案中,这种硬化剂包括改性咪唑化合物。在某些实施方式中,硬化剂包括2-乙基-4-甲基-1H-咪唑。在某些实施方式中,环氧类密封剂通过混合至少两种环氧前体来形成,其中第一前体包括至少一种环氧树脂(如双酚A二缩水甘油醚)、弹性体聚合物和新戊二醇二缩水甘油醚;且第二前体包括作为硬化剂的2-乙基-4-甲基-1H-咪唑。例如,市售双酚A的二缩水甘油醚和改性咪唑硬化剂系统可从Henkel Loctite买到,如下所述:210210环氧树脂部分A(条目号36745)、 210211;环氧硬化剂部分B(条目号36746);和210209环氧颜料(条目号36745)(这种混合环氧系统称作“C5环氧”)。210211环氧树脂部分A包含约60-100wt%的第一专利环氧树脂(其被认为是改性双酚A二缩水甘油醚环氧树脂)、10-30wt%的第二专利环氧树脂(其也被认为是改性双酚A二缩水甘油醚环氧树脂)、10-30wt%的新戊二醇二缩水甘油醚(CAS号17557-23-2);5-10wt%的专利弹性体、1-5wt%的二氧化钛颜料和1-5wt%的无定形热解法二氧化硅。210210环氧树脂部分B包含60-100wt%的专利改性咪唑(其被认为是2-乙基-4-甲基-1H-咪唑)。 210209环氧树脂部分C包含30-60wt%的二氧化钛、10-30wt%的第一专利环氧树脂(其被认为是改性双酚A二缩水甘油醚环氧树脂)、10-30wt%的第二专利环氧树脂(其也被认为是改性双酚A二缩水甘油醚)和1-5wt%的第三专利环氧树脂(其也被认为是改性双酚A二缩水甘油醚环氧树脂)、1-5wt%新戊二醇二缩水甘油醚、1-5wt%的烷基缩水甘油醚、1-5wt%氧化铝、1-5wt%热解法二氧化硅和最后的1-5wt%的专利弹性聚合物。
[0071]在制备C5环氧时,将80-100wt%的树脂部分A和0-20wt%的硬化剂部分B混合。部分C是任选的,并且可以0-20wt%来加入,以形成要被加入到TCO成分中的最终的C5环氧,所述TCO成分用于密封包含热感粒成分的装置。
[0072]在另一个实施方式中,通过将至少两种前体混合来形成环氧基密封剂,其中第一前体包含环氧树脂或双酚A二缩水甘油醚聚合物;第二前体包含硬化剂或固化剂,如1-(2-氰乙基)-2-乙基-4-甲基咪唑;且第三前体包括含苯四甲酸-1,2,4,5-二酐、六氢邻苯二甲酸酐和邻苯二甲酸酐的催化剂。
[0073]在涂布了可固化环氧基材料以密封TCO部件并密封一个或多个开口之后(如图1-2所示般),任选地使环氧基密封剂系统固化。可通过本领域已知的任何方式进行固化,包括施加热、光辐射等。在某些方案中,环氧密封剂材料经受B级固化(B-stage cure),其中所述环氧系统在相对湿度为0%到80%的受控气氛中被加热到约45℃到约65℃的温度。任选地,可在B级固化之后,进行完全高级(full advanced)的固化。高级固化(advanced cure)任选地在约150℃到约200℃的温度和相对湿度为0%到5%的受控气氛(controlled atmosphere)中进行。在某些方案中,C5环氧密封剂通过下述方式固化:将HTTCO装置放置在烘箱中,并于248℃和0%的相对湿度下加热约3到约9个小时。
[0074]在某些其它实施方式中,HTTCO可用从商购自Emerson&Cuming Corp.,Billerica,MA USA的合适的环氧基系统来密封,所述环氧基系统是双酚A二缩水甘油醚聚合物(部分A)、表氯醇硬化剂(部分B)及催化剂(部分C),其以商品名W 66环氧系统(下称作“W66环氧系统”)出售。特别地,W66环氧系统包括:部分A,该部分包含100wt%的平均分子量小于700的双酚A二缩水甘油醚聚合物;部分B,该部分包括在小于0.1wt%的丙烯腈载体中的大于99wt%的1-(2-氰乙基)-2-乙基-4-甲基咪唑硬化剂。W66的部分C包括包含下述成分的催化剂:即,苯四甲酸-1,2,4,5-二酐(35-50wt%)、六氢邻苯二甲酸酐(35-50wt%)和邻苯二甲酸酐(1-5wt%)。
[0075]在W66环氧系统的制备中,将50wt%到约80wt%的部分A与50wt%到约20wt%的部分B相混并混合。一旦W66环氧系统已被施加来密封HTTCO部件,则W66环氧系统任选地被固化成B级和/或高级固化。例如但非限制性地,W66密封系统通过下述方式来施加和固化:即,将装置放置在受控气氛中,并于40℃和35%到85%的相对湿度的条件下加热约48到约96个小时。
实施例1
[0076]根据本发明的多个方案,如下所述般形成高温TCO装置。通过下述方式形成热感粒:将980g到1000g三蝶烯(商购自Sigma-Aldrich生产商,纯度为95-99%)与20g到0.5g的着色剂、粘合剂和/或脱模剂混合。将均化的混合物在标准粉末压实压机(standardpowder compaction press)(普遍可得自药用设备供应商)上进行处理。粉末通过选通粉末流动控制系统(gated powder flow control system)进给并均匀地分布在在旋转模台上。所述粉末充满所述模具,并且在约1到4吨的压力下冲压模具中的粉末以形成密度为29粒/克到50粒/克密度的紧实粉末热感粒(compacted powder pellet)。将热感粒放置到高导电金属闭端圆筒中,所述圆筒的内径接近所述TCO热感粒的外径。所述圆筒的闭端用突出于所述圆筒之外的轴向导电金属引线来立桩封闭(staked shut)。根据TCO的最终使用需求,将其它部件以堆叠方式装载在热感粒顶上。将下述子组件插入到所述TCO圆筒的开口端(openend),所述子组件由具有轴向镗孔的不导电陶瓷衬套和已插入到该镗孔中的导电性金属导线组成,所述导电性金属导线已通过该金属导线的变形而被机械地限制到永久性的整体组件中。将先前在[0018]段标注的堆叠元件通过陶瓷的绝缘导线组件(ceramic,isolated lead assembly)压缩到圆筒中,且圆筒开口端的边缘机械地滚轧在陶瓷衬套上,以便永久地封闭TCO圆筒的内部部件。然后将封闭的TCO用高温环氧密封剂来密封。环氧基密封剂在25℃通过下述方式制备以便密封衬套和绝缘导线(isolated lead)及滚轧在TCO外壳外部终端区域上的圆筒边缘:即,在真空到30mmHg条件下,在密封的叶片式搅拌机中,以100RPM的速度,将200g210210环氧树脂部分A(包含双酚A和二缩水甘油醚的环氧树脂)、14g 210211环氧硬化剂部分B(咪唑硬化剂)及任选的13.2g210209环氧颜料部分C(环氧树脂、新戊二醇二缩水甘油醚、颜料...)或额外的13.2g的210210环氧树脂部分A混合10分钟,以形成均一的环氧混合物。各试剂总共进行1.5分钟到5分钟的混合,在机械混合结束时,进行10分钟的无混合真空步骤,以形成单一成分的基体混合物。将环氧混合物涂布到衬套和绝缘引线上以覆盖住滚轧在TCO装置上的圆筒边缘,使用具有狭窄尖端(narrow tip)的环氧树脂分配瓶或机械涂布设备以保证均匀的覆盖。
[0077]然后将涂布有环氧密封化合物的组装好的TCO在48℃到50℃和0%到85%RH条件下固化9个小时。然后将B级TCO组件于150℃到任选地235℃的温度和0%到35%RH的条件下在受控气氛中固化3到6个小时。
[0078]研究C5环氧树脂以证明密封剂系统的高温性能及维持HTTCO装置热感粒的多环有机化合物的能力。特别地,高温热感粒包含三蝶烯和聚四氟乙烯脱模剂,当其连续暴露于247℃时会被C5环氧密封物所保持(retained)。由熔点起始于259℃的较小分子季戊四醇(CAS号115-77-5)形成的热感粒当连续暴露于247℃时不会被使用C5密封系统的TCO所保持。这两种热感粒有机化合物三蝶烯和季戊四醇的熔点相似,并且已知具有类似的挥发性散发特性。然而,与季戊四醇相比,C5密封系统能够明显更好地将三蝶烯保持在密封的HTTCO外壳内。
[0079]在第1天,季戊四醇热感粒的高度从1英寸的千分之101的初始热感粒高度变为1英寸的千分之0.00。因此,具有季戊四醇的TCO断开了连续性或几乎立即显示出大于200kOhm(精确的)的电阻。具有含三蝶烯热感粒的HTTCO的初始热感粒高度为1英寸的约千分之98,并且将至少1英寸的千分之80的热感粒高度保持了至少13周,并且直到进行了2100个小时,10个HTTCO样品中的9个也不显示出大于200kOhm的电阻。
[0080]假设化合物的熔点及由TGA引起的它们的挥发性几乎相同,那么认为保持力的差异归因于分子的官能度和/或尺寸。使用简单的计算机模型,计算化合物的尺寸(半径)。如下表3所示,三蝶烯具有0.46nm的半径,而季戊四醇具有0.33nm的半径。而且,三蝶烯分子完全严格地给出三苯环的位阻。当沿分子的端点看时,3个苯分子以120°的最大间隔彼此隔开。另一方面,季戊四醇具有明显较大的分子自由度以使其自身扭曲和再定向。与存在于芳环中的双键不同,三蝶烯具有很少官能度。然而,芳环具有与环氧结构中其它芳环π-π堆叠的能力,这可使它们在孔中固定化从而阻断孔。季戊四醇具有四个极性羟基键,这些羟基键具有氢键受/供能力(hydrogen bond accepting/donating capability)。
表3
[0081]还检查了1-氨基蒽醌[CAS#82-45-1]热感粒在C5环氧密封系统中的性能。1-氨基蒽醌与季戊四醇和三蝶烯具有相同的熔点范围,因此再次测试尺寸和官能度以提供对有机化合物与固化的环氧密封材料之间相互作用的理解。1-氨基蒽醌分子位于单一平面中并且是刚性分子,这可归因于苯环和将它们键合在一起的羰基键——它们都需要平面取向。1-氨基蒽醌的半径是0.45nm,其尺寸与三蝶烯相似。然而,1-氨基蒽醌具有额外的优点,即,其与环氧密封材料相互作用时显示更多官能度。羰基键可接受氢供给,且胺基团可接受/供给氢。根据1-氨基蒽醌与三蝶烯的空间相似性及其与季戊四醇的官能度(functionality)相似性,1-氨基蒽醌与使用三蝶烯或季戊四醇的环氧密封物相比具有甚至更大的保持力。
[0082]通过在下面所列的温度和湿度条件下使各组分反应以制备C5系统的样品。所有样品均暴露于用于B级和高级固化水平的相同温度程序。B级固化样品在48℃加热5小时,然后在58℃加热4小时。B级在两种不同的相对湿度环境(0%和35%RH)中进行,以确定水对B级固化的影响。暴露于35%RH的样品在保持在35%湿度并遵循温度程序的湿度实验容器(humidity chamber)中进行B级。在0%RH条件下制备的样品在烘箱中进行B级。为达到0%RH,采用具有两个脱水器的压缩空气源以确保在B级时没有水暴露于环氧系统中。一些样品需要高级固化(advanced cureing),这要求将B级样品加热到150℃并保持3小时。在高级固化期间没有监控湿度,但为标识的目的仍然能通过其B级的湿度等级认出样品。
[0083]从表面面积数据来看,两种固化环氧密封样品都具有非常低的表面面积(约0.09m2/g),并且吸附块的形状显示了非常无孔(nonporous)的结构。通过将孔体积除以其面积并乘以4,确定了平均孔宽度。为确定孔宽度,使用两种不同的技术——即,BET值和BJH值。对于这两种技术,在35%湿度固化的C5环氧样品显示出比用0%湿度固化的C5环氧样品的孔宽度更大(以BET测量,25.53nm比0.312nm;以BJH测量,39.53nm比27.16nm)。在B级固化中包含水显示出在固化环氧基聚合物中提供更大的孔结构。基于BET孔宽度,例如在0%湿度下固化的较小孔宽度提供了显著提高更大的三蝶烯分子的保持力的能力。
[0084]本文包含了对于环氧基系统的起始材料化学的识别和表征,因为它们是固化环氧基系统的特性。对于C5环氧相同,部分A环氧树脂具有上述列出的六种组分,包括两种专利环氧树脂和一种专利弹性聚合体;部分B具有单一的专利咪唑硬化剂;且部分C是任选的着色剂组分,并且包括九个部分:其包括三种专利环氧树脂和一种专利弹性体。材料分析表明,部分B的硬化剂是2-乙基-4-甲基-1H-咪唑。在所列用于部分A前体的六种组分中,二氧化硅和二氧化钛被认为是相对惰性的,并在固化环氧化学中不起重要的作用。部分A的新戊二醇二缩水甘油醚(CAS#17557-23-2)有两个环氧基团,因此其不会减少交联密度,并且被认为是在更大、更刚性的芳族环氧树脂之间提供了结构挠性。增加的迁移性允许材料理想地流动并增加有效时间。两种专利环氧树脂是部分A前体的主要组成部分。在固化过程中不认为弹性聚合物与环氧物反应,尽管不饱和双键可能参与一些交联。一般来说,当弹性聚合物不反应时,其在环氧树脂内形成单独的相,该相提供了更大的冲击抗力和提高的迁移性。尽管没有将本发明限制到任何特殊的理论,但是可能的是,该弹性聚合物和在环氧树脂主链中包含新戊二醇二缩水甘油醚为C5系统赋予了高温回流能力。两种剩余的部分A环氧树脂前体被确定为双酚A的二缩水甘油醚的衍生物。
[0085]以这种方式,本发明提供了高温热熔断装置和通过形成高温稳定密封物和包含基本上被密封屏障(seal barrier)所保持的一种或多种有机化合物的高温热感粒来制造这种装置的方法。该HTTCO非常稳定,坚固,并且能够在很多以前不可行的高温设备中用作开关装置,例如高温衣物熨斗和烫发器。
Claims (30)
1.一种高温热熔断装置,其包括:
高温热感粒,所述高温热感粒具有大于或等于约240℃的转变温度,包括至少一种有机化合物,并且设置在外壳中;
高温密封物,所述高温密封物设置在所述外壳的至少一个开口的一部分中,以便在直到所述转变温度时基本上密封所述外壳;以及
电流断路组件,所述电流断路组件至少部分设置在所述外壳内,该组件在对应于低于所述热感粒的所述转变温度的操作温度的第一操作条件下建立电连续性,并且在所述操作温度超过所述转变温度时断开电连续性。
2.如权利要求1所述的高温热熔断装置,其中所述至少一种有机化合物的熔点温度mp满足下式:T-5℃≤mp≤T+2℃,其中T表示所述高温热感粒的转变温度。
3.如权利要求1所述的高温热熔断装置,其中所述至少一种有机化合物包括多环有机化合物。
4.如权利要求1所述的高温热熔断装置,其中所述至少一种有机化合物包括三蝶烯。
5.如权利要求1所述的高温热熔断装置,其中所述至少一种有机化合物包括1-氨基蒽醌。
6.如权利要求1所述的高温热熔断装置,其中所述热感粒包括大于或等于约95wt%的所述至少一种有机化合物。
7.如权利要求1所述的高温热熔断装置,其中所述热感粒包括一种或多种选自下组的成分:粘合剂、压制助剂、脱膜剂、颜料或它们的混合物。
8.如权利要求1所述的高温热熔断装置,其中所述高温密封物包括由包含二缩水甘油醚双酚A树脂和硬化剂的前体构成的环氧基密封剂。
9.如权利要求8所述的高温热熔断装置,其中所述硬化剂包括改性咪唑化合物。
10.如权利要求8所述的高温热熔断装置,其中所述硬化剂包括2-乙基-4-甲基-1H-咪唑。
11.如权利要求8所述的高温热熔断装置,其中所述环氧基密封剂通过下述方式形成:使至少两种环氧前体结合,其中第一前体包括至少一种双酚A二缩水甘油醚、弹性体和新戊二醇二缩水甘油醚;且第二前体包括2-乙基-4-甲基-1H-咪唑。
12.如权利要求8所述的高温热熔断装置,其中所述环氧基密封剂通过下述方式形成:使至少两种环氧前体结合,其中第一前体包括双酚A二缩水甘油醚聚合物;第二前体包括1-(2-氰乙基)-2-乙基-4-甲基咪唑;且第三前体包括苯四甲酸-1,2,4,5-二酐、六氢邻苯二甲酸酐和邻苯二甲酸酐。
13.如权利要求1所述的高温热熔断装置,其中所述转变温度大于或等于约240℃并小于或等于约270℃。
14.如权利要求1所述的高温热熔断装置,其中所述装置能够在约235℃的持续温度操作大于或等于约1000小时。
15.一种高温热熔断装置,其包括:
外壳,所述外壳具有至少一个开口;
高温热感粒,所述高温热感粒具有大于或等于约240℃的转变温度,包括至少一种结晶有机化合物,并且设置在所述外壳中;
高温密封物,所述高温密封物设置在所述开口的一部分中,以便在直到所述高温热感粒的所述转变温度时基本上密封所述外壳;以及
电流断路组件,所述电流断路组件包括:电触点,所述电触点与外电流源具有电连续性以便在对应于低于所述热感粒的所述转变温度的操作温度的第一操作条件下建立电路,其中所述电触点的至少一部分设置在所述外壳内,滑动接触构件设置在所述外壳内,且张力调节机构设置在所述外壳中以便使所述滑动接触构件偏向所述电触点以在所述第一操作条件下保持电路,并且在所述操作温度高于所述转变温度时在第二操作条件下释放和中断所述滑动接触构件与所述电触点之间的电连续性。
16.如权利要求15所述的高温热熔断装置,其中所述至少一种结晶有机化合物包括多环有机化合物。
17.如权利要求15所述的高温热熔断装置,其中所述至少一种结晶有机化合物包括三蝶烯。
18.如权利要求15所述的高温热熔断装置,其中所述至少一种结晶有机化合物包括1-氨基蒽醌。
19.如权利要求15所述的高温热熔断装置,其中所述热感粒包括大于或等于约95wt%的所述至少一种有机化合物。
20.如权利要求15所述的高温热熔断装置,其中所述热感粒包括一种或多种选自下组的成分:粘合剂、压制助剂、脱膜剂、颜料或它们的混合物。
21.如权利要求15所述的高温热熔断装置,其中所述高温密封物包括由包含二缩水甘油醚双酚A树脂和硬化剂的前体构成的环氧基密封剂。
22.如权利要求21所述的高温热熔断装置,其中所述硬化剂包括改性咪唑化合物。
23.如权利要求22所述的高温热熔断装置,其中所述硬化剂包括2-乙基-4-甲基-1H-咪唑。
24.如权利要求21所述的高温热熔断装置,其中所述环氧基密封剂通过下述方式形成:使至少两种环氧前体结合,其中第一前体包括至少一种双酚A二缩水甘油醚、弹性体和新戊二醇二缩水甘油醚;且第二前体包括2-乙基-4-甲基-1H-咪唑。
25.如权利要求21所述的高温热熔断装置,其中所述环氧基密封剂通过下述方式形成:使至少两种环氧前体结合,其中第一前体包括双酚A二缩水甘油醚聚合物;第二前体包括1-(2-氰乙基)-2-乙基-4-甲基咪唑;且第三前体包括苯四甲酸-1,2,4,5-二酐、六氢邻苯二甲酸酐和邻苯二甲酸酐。
26.如权利要求15所述的高温热熔断装置,其中所述转变温度大于或等于约240℃并小于或等于约270℃。
27.如权利要求15所述的高温热熔断装置,其中所述装置能够在约235℃的持续温度操作大于或等于约1000小时。
28.一种高温热熔断装置,其包括:
外壳,所述外壳包含高温热感粒,所述高温热感粒具有大于或等于约240℃的转变温度并包括至少一种结晶有机化合物,所述至少一种结晶有机化合物选自三蝶烯和1-氨基蒽醌;
高温环氧基密封物,所述高温环氧基密封物设置在所述外壳的至少一个开口的一部分中,以便在直到所述转变温度时基本上密封所述外壳;以及
电流断路组件,所述电流断路组件至少部分设置在所述外壳内,其在对应于低于所述热感粒的所述转变温度的操作温度的第一操作条件下建立电路,并且在所述操作温度超过所述转变温度时断开电连续性,其中所述高温热熔断装置能够在约235℃的持续温度操作大于或等于约1000小时。
29.一种制造高温热熔断装置的方法,其包括:
在热熔断装置外壳中设置高温热感粒,其中所述高温热感粒具有大于或等于约240℃的转变温度并包括至少一种结晶有机化合物;
将电流断路组件至少部分设置在所述外壳中,其中所述电流断路组件能够在对应于低于所述热感粒的所述转变温度的操作温度的第一操作条件下建立电连续性,并且在所述操作温度超过所述转变温度时断开电连续性;
用高温环氧基密封剂密封所述外壳中的至少一个开口以形成密封的外壳,其中所述高温热熔断装置能够在约235℃的持续温度操作大于或等于约1000小时。
30.如权利要求29所述的方法,其中所述密封还包括在所述至少一个开口上施加可固化环氧基混合物并使所述可固化环氧基混合物固化以形成高温密封物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510726536.6A CN105428176B (zh) | 2008-08-05 | 2009-08-05 | 高温热熔断装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8633008P | 2008-08-05 | 2008-08-05 | |
US61/086,330 | 2008-08-05 | ||
US12/512,369 US20100033295A1 (en) | 2008-08-05 | 2009-07-30 | High temperature thermal cutoff device |
US12/512,369 | 2009-07-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510726536.6A Division CN105428176B (zh) | 2008-08-05 | 2009-08-05 | 高温热熔断装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101685733A true CN101685733A (zh) | 2010-03-31 |
Family
ID=41396166
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510726536.6A Active CN105428176B (zh) | 2008-08-05 | 2009-08-05 | 高温热熔断装置 |
CN200910211606A Pending CN101685733A (zh) | 2008-08-05 | 2009-08-05 | 高温热熔断装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510726536.6A Active CN105428176B (zh) | 2008-08-05 | 2009-08-05 | 高温热熔断装置 |
Country Status (4)
Country | Link |
---|---|
US (3) | US20100033295A1 (zh) |
EP (1) | EP2151846B1 (zh) |
CN (2) | CN105428176B (zh) |
HK (1) | HK1221329A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103239140A (zh) * | 2013-05-27 | 2013-08-14 | 江阴市志翔电子科技有限公司 | 一种电饭锅热熔断体用感温颗粒 |
CN103515041A (zh) * | 2012-06-15 | 2014-01-15 | 热敏碟公司 | 用于热截止装置的高热稳定性丸粒组合物及其制备方法和用途 |
US8961832B2 (en) | 2008-08-05 | 2015-02-24 | Therm-O-Disc, Incorporated | High temperature material compositions for high temperature thermal cutoff devices |
CN105103251A (zh) * | 2012-12-18 | 2015-11-25 | 鲍尔玛格有限公司 | 电力调节和节省装置 |
CN105679603A (zh) * | 2016-03-18 | 2016-06-15 | 厦门赛尔特电子有限公司 | 一种感温型转换开关 |
CN107633984A (zh) * | 2017-10-27 | 2018-01-26 | 梁溪区昊星工业设计工作室 | 一种温度保险丝结构 |
CN108698006A (zh) * | 2016-03-03 | 2018-10-23 | 埃克森美孚研究工程公司 | 固定床反应器的异常温度检测 |
CN109509678A (zh) * | 2018-11-22 | 2019-03-22 | 漳州雅宝电子有限公司 | 一种熔点为236±2℃的耐高温热敏材料 |
US10566600B2 (en) | 2011-10-31 | 2020-02-18 | Powermag, LLC | Power conditioning and saving device |
CN114864351A (zh) * | 2022-05-24 | 2022-08-05 | 漳州雅宝电子股份有限公司 | 一种高稳定热熔块及其制备方法、热熔断体 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2471869B (en) * | 2009-07-15 | 2012-04-25 | Vishay Resistors Belgium Bvba | Thermal switch |
US8941461B2 (en) * | 2011-02-02 | 2015-01-27 | Tyco Electronics Corporation | Three-function reflowable circuit protection device |
US9455106B2 (en) | 2011-02-02 | 2016-09-27 | Littelfuse, Inc. | Three-function reflowable circuit protection device |
US9620318B2 (en) * | 2011-08-12 | 2017-04-11 | Littlefuse, Inc. | Reflowable circuit protection device |
IN2014DN08871A (zh) * | 2012-03-23 | 2015-05-22 | Intelligent Energy Inc | |
IN2014DN08874A (zh) | 2012-03-23 | 2015-05-22 | Intelligent Energy Inc | |
US9431203B2 (en) * | 2012-08-06 | 2016-08-30 | Littelfuse, Inc. | Reflowable circuit protection device |
US10978256B1 (en) | 2013-03-15 | 2021-04-13 | Innovative Switchgear IP, LLC | Electrical switching device |
WO2016033722A1 (en) * | 2014-09-01 | 2016-03-10 | Therm-O-Disc, Incorporated | High thermal stability thermal cutoff device pellet composition |
PL3109564T3 (pl) * | 2015-06-24 | 2020-02-28 | Bleckmann Gmbh & Co. Kg | Urządzenie końcowe do rurowego urządzenia grzewczego ze zintegrowanym bezpiecznikiem |
US9742182B1 (en) * | 2016-08-04 | 2017-08-22 | International Business Machines Corporation | Acclimation sensing and control of electronic equipment |
DE102017105436B3 (de) * | 2017-03-14 | 2018-06-14 | DEHN + SÖHNE GmbH + Co. KG. | Thermisch auslösbare, mechanische Schalteinrichtung |
CN109187622A (zh) * | 2018-07-24 | 2019-01-11 | 彩虹显示器件股份有限公司 | 一种高分辨显示用电子玻璃热收缩的测量方法 |
EP3660881B1 (en) * | 2018-11-27 | 2023-01-04 | Hitachi Energy Switzerland AG | A subsea fuse assembly |
CN111489922A (zh) * | 2020-04-07 | 2020-08-04 | 苏州华德电子有限公司 | 一种保险丝熔体灭弧点胶治具及点胶工艺 |
JP7327289B2 (ja) * | 2020-06-04 | 2023-08-16 | トヨタ自動車株式会社 | 電気加熱式触媒装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3727164A (en) * | 1972-07-14 | 1973-04-10 | Minnesota Mining & Mfg | Temperature-responsive electrical switch |
JPH10177833A (ja) * | 1996-12-18 | 1998-06-30 | Hideo Ito | 温度ヒューズ |
CN2385431Y (zh) * | 1999-07-15 | 2000-06-28 | 中山市升平热保护器实业公司 | 一种热熔断体 |
US6673257B1 (en) * | 2000-09-12 | 2004-01-06 | Therm-O-Disc, Incorporated | Thermal cutoff construction compositions |
Family Cites Families (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE186526C (zh) | 1904-02-22 | |||
US3281559A (en) * | 1964-05-21 | 1966-10-25 | United Carr Inc | Thermal fuse having telescopically received contact members |
US3519972A (en) * | 1969-03-18 | 1970-07-07 | Micro Devices Corp | Temperature responsive electric switch |
US3571777A (en) * | 1969-07-07 | 1971-03-23 | Cabot Corp | Thermally responsive current regulating devices |
US3711428A (en) * | 1971-02-01 | 1973-01-16 | Ibm | Electrical resistor paste containing a small amount of charcoal |
US3692921A (en) * | 1971-04-12 | 1972-09-19 | Joslyn Mfg & Supply Co | Cable coupler |
US3745507A (en) * | 1972-08-18 | 1973-07-10 | Matsushita Electric Ind Co Ltd | Nonflammable composition resistor |
US3793716A (en) * | 1972-09-08 | 1974-02-26 | Raychem Corp | Method of making self limiting heat elements |
US4023072A (en) * | 1973-01-08 | 1977-05-10 | Emerson Electric Co. | Electrical protection means and method |
US3781737A (en) | 1973-02-20 | 1973-12-25 | Essex International Inc | Thermal circuit protector |
JPS568457B2 (zh) * | 1973-05-30 | 1981-02-24 | Matsushita Electric Ind Co Ltd | |
US3883837A (en) * | 1973-11-05 | 1975-05-13 | Robertshaw Controls Co | Thermal responsive switch |
US3898602A (en) * | 1974-01-25 | 1975-08-05 | Itt | Enclosed, non-vented expulsion fuse |
US4001754A (en) * | 1974-05-21 | 1977-01-04 | Emerson Electric Co. | Temperature responsive electrical switch construction and method of making the same |
US3924218A (en) * | 1974-05-22 | 1975-12-02 | Micro Devices Corp | Thermal limiter construction |
US3951582A (en) * | 1974-05-24 | 1976-04-20 | General Electric Company | Switching devices for photoflash unit |
DE2431409C2 (de) | 1974-06-29 | 1982-10-21 | Bayer Ag, 5090 Leverkusen | Verfahren zur Herstellung von 1-Aminoanthrachinon |
US3930215A (en) * | 1974-11-29 | 1975-12-30 | Texas Instruments Inc | Nonresettable thermally actuated switch |
US4006443A (en) * | 1975-09-11 | 1977-02-01 | Allen-Bradley Company | Composition resistor with an integral thermal fuse |
JPS5239162A (en) * | 1975-09-23 | 1977-03-26 | Jiyuichirou Ozawa | Fuse resistor |
US4068204A (en) * | 1975-12-26 | 1978-01-10 | New Nippon Electric Company, Ltd. | Thermal fuse employing a slidable resilient contact member in a conductive housing |
US4197634A (en) * | 1976-08-23 | 1980-04-15 | Emerson Electric Co. | Method of making a thermally actuatable electrical switch construction |
US4075596A (en) * | 1976-08-23 | 1978-02-21 | Emerson Electric Co. | Sealed casing for a thermally actuable electrical switch |
US4065741A (en) | 1977-03-29 | 1977-12-27 | New Nippon Electric Co., Ltd. | Thermal fuse with a fusible temperature sensitive pellet |
SE409381B (sv) * | 1977-04-05 | 1979-08-13 | Ao Arkitekkontor Ab | Temperaturkensligt organ |
US4084147A (en) * | 1977-05-31 | 1978-04-11 | Emerson Electric Co. | Normally open, thermal sensitive electrical switching device |
JPS5749310Y2 (zh) * | 1977-08-29 | 1982-10-28 | ||
US4189697A (en) * | 1977-09-09 | 1980-02-19 | Nifco Inc. | Thermal cut-off fuse |
US4281309A (en) * | 1978-03-28 | 1981-07-28 | Olson Harry W | Thermally actuated cut-off link or switch and method of making the same |
US4276532A (en) * | 1978-07-08 | 1981-06-30 | Murata Manufacturing Co., Ltd. | Thermal fuse |
US4186366A (en) * | 1978-10-20 | 1980-01-29 | Illinois Tool Works Inc. | Radial lead thermal cut-off device |
US4310469A (en) * | 1978-12-29 | 1982-01-12 | General Electric Company | Diaryliodonium salts |
US4249154A (en) * | 1979-02-12 | 1981-02-03 | Emerson Electric Co. | Temperature responsive electrical switching device and method of calibrating |
US4276531A (en) * | 1979-04-20 | 1981-06-30 | Davis Merwyn C | Nonresetable thermally actuated switch |
US4259656A (en) * | 1979-05-11 | 1981-03-31 | Illinois Tool Works Inc. | Thermal cut-off device with an activating spring that is held in a prestressed condition by a thermally fusible pellet |
JPS5935135B2 (ja) * | 1979-09-11 | 1984-08-27 | 昭和電線電纜株式会社 | 温度ヒュ−ズ |
JPS5648020A (en) * | 1979-09-26 | 1981-05-01 | Nifco Inc | Temperature fuse |
US4281308A (en) * | 1979-12-26 | 1981-07-28 | Illinois Tool Works Inc. | Thermal switch with split ring construction |
US4384267A (en) * | 1980-07-07 | 1983-05-17 | Murata Manufacturing Co., Ltd. | Thermosensitive fuse |
JPS5859525A (ja) * | 1981-10-06 | 1983-04-08 | 株式会社ニフコ | 温度フユ−ズ |
US4373556A (en) * | 1981-12-02 | 1983-02-15 | Canadian General Electric Company Limited | Cut-out fuse tube |
JPS58150545A (ja) | 1982-03-03 | 1983-09-07 | Sumitomo Chem Co Ltd | 1−アミノアントラキノンの精製方法 |
US4786438A (en) | 1983-03-08 | 1988-11-22 | Georgia-Pacific Corporation | Lignosulfonate/urea binder for particulate composites |
US4873604A (en) * | 1983-04-21 | 1989-10-10 | Hoechst Celanese Corp. | Fuses having suppressed voltage transients |
US4514718A (en) * | 1983-12-02 | 1985-04-30 | Emerson Electric Co. | Thermal cutoff construction, member therefor and methods of making the same |
DE3422528A1 (de) * | 1984-06-16 | 1985-12-19 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Elektrische schmelzsicherung |
GB8529867D0 (en) * | 1985-12-04 | 1986-01-15 | Emi Plc Thorn | Temperature sensitive device |
EP0231068B1 (en) * | 1986-01-14 | 1994-03-16 | RAYCHEM CORPORATION (a Delaware corporation) | Conductive polymer composition |
GB2186752A (en) * | 1986-02-15 | 1987-08-19 | Stc Plc | Fuse for electronic component |
US4675641A (en) * | 1986-06-20 | 1987-06-23 | General Electric Company | Rating plug for molded case circuit breakers |
US5027101A (en) * | 1987-01-22 | 1991-06-25 | Morrill Jr Vaughan | Sub-miniature fuse |
US5106538A (en) * | 1987-07-21 | 1992-04-21 | Raychem Corporation | Conductive polymer composition |
EP0305314A1 (en) * | 1987-08-18 | 1989-03-01 | A.B. Chance Company | Pultruded or filament wound synthetic resin fuse tube |
US4808965A (en) * | 1987-11-06 | 1989-02-28 | Therm-O-Disc, Incorporated | Thermal protector |
US4763228A (en) * | 1987-11-20 | 1988-08-09 | Union Carbide Corporation | Fuse assembly for solid electrolytic capacitor |
US4878038A (en) | 1987-12-07 | 1989-10-31 | Tsai James T | Circuit protection device |
US4841273A (en) * | 1987-12-18 | 1989-06-20 | Therm-O-Disc, Incorporated | High temperature sensing apparatus |
US4821010A (en) * | 1987-12-30 | 1989-04-11 | Therm-O-Disc, Incorporated | Thermal cutoff heater |
US4873506A (en) * | 1988-03-09 | 1989-10-10 | Cooper Industries, Inc. | Metallo-organic film fractional ampere fuses and method of making |
JP2710160B2 (ja) | 1988-06-08 | 1998-02-10 | 王子製紙株式会社 | 感熱記録体 |
US4881055A (en) | 1988-11-10 | 1989-11-14 | Ingersoll-Rand Company | High-temperature-fluid sensor |
JP2733076B2 (ja) | 1988-11-28 | 1998-03-30 | 大東通信機株式会社 | Ptc組成物 |
US4933658A (en) * | 1989-05-10 | 1990-06-12 | Ingersoll-Rand Company | High temperature fluid sensor |
JPH0814372B2 (ja) | 1989-12-28 | 1996-02-14 | 信越ポリマー株式会社 | 電熱シガーライター |
US4968962A (en) | 1990-01-12 | 1990-11-06 | Therm-O-Disc, Incorporated | Thermal cutoff and resistor assembly |
US5003283A (en) * | 1990-01-22 | 1991-03-26 | Therm-O-Disc, Incorporated | Thermal cutoff with lead indicia |
US5212261A (en) * | 1990-12-17 | 1993-05-18 | Henkel Research Corporation | Latent, heat-curable epoxy resin compositions containing metal carboxylate curing systems |
US5453293A (en) * | 1991-07-17 | 1995-09-26 | Beane; Alan F. | Methods of manufacturing coated particles having desired values of intrinsic properties and methods of applying the coated particles to objects |
US5215636A (en) * | 1991-09-27 | 1993-06-01 | American International Technologies, Inc. | Pulsed discharge surface treatment apparatus and process |
US5153553A (en) | 1991-11-08 | 1992-10-06 | Illinois Tool Works, Inc. | Fuse structure |
US5545679A (en) * | 1993-11-29 | 1996-08-13 | Eaton Corporation | Positive temperature coefficient conductive polymer made from thermosetting polyester resin and conductive fillers |
US6375867B1 (en) * | 1993-11-29 | 2002-04-23 | Eaton Corporation | Process for making a positive temperature coefficient conductive polymer from a thermosetting epoxy resin and conductive fillers |
US5473303A (en) | 1994-05-31 | 1995-12-05 | Therm-O-Disc, Incorporated | Electrical lead |
US5530417A (en) * | 1994-06-06 | 1996-06-25 | Therm-O-Disc, Incorporated | Thermal cutoff with floating contact member |
US5712610C1 (en) * | 1994-08-19 | 2002-06-25 | Sony Chemicals Corp | Protective device |
US5929741A (en) * | 1994-11-30 | 1999-07-27 | Hitachi Chemical Company, Ltd. | Current protector |
US5663702A (en) * | 1995-06-07 | 1997-09-02 | Littelfuse, Inc. | PTC electrical device having fuse link in series and metallized ceramic electrodes |
US6059997A (en) * | 1995-09-29 | 2000-05-09 | Littlelfuse, Inc. | Polymeric PTC compositions |
US5777540A (en) * | 1996-01-29 | 1998-07-07 | Cts Corporation | Encapsulated fuse having a conductive polymer and non-cured deoxidant |
US5709740A (en) * | 1996-02-23 | 1998-01-20 | Hoechst Celanese Corp. | Thermally expandable, viscosity modified wax compositions and method of use in actuators |
US5816493A (en) | 1996-04-08 | 1998-10-06 | Texan Corporation | Thermally expansible compositions methods for preparation and devices using same |
US5750277A (en) * | 1996-04-10 | 1998-05-12 | Texas Instruments Incorporated | Current interrupter for electrochemical cells |
US5939968A (en) * | 1996-06-19 | 1999-08-17 | Littelfuse, Inc. | Electrical apparatus for overcurrent protection of electrical circuits |
US5808538A (en) * | 1996-06-19 | 1998-09-15 | Littelfuse, Inc. | Electrical apparatus for overcurrent protection of electrical circuits |
US6133547A (en) | 1996-09-05 | 2000-10-17 | Medtronic, Inc. | Distributed activator for a two-dimensional shape memory alloy |
US5825277A (en) | 1996-09-27 | 1998-10-20 | Therm-O-Disc, Incorporated | Thermal pellet cutoff switch |
US5837164A (en) | 1996-10-08 | 1998-11-17 | Therm-O-Disc, Incorporated | High temperature PTC device comprising a conductive polymer composition |
US5985182A (en) | 1996-10-08 | 1999-11-16 | Therm-O-Disc, Incorporated | High temperature PTC device and conductive polymer composition |
US5856773A (en) * | 1996-11-04 | 1999-01-05 | Raychem Corporation | Circuit protection device |
FR2761204B1 (fr) | 1997-03-24 | 1999-05-14 | Siemens Automotive Sa | Dispositif de distribution d'energie electrique dans plusieurs circuits alimentes en paralleles, et procede de fabrication de ce dispositif |
US5914649A (en) * | 1997-03-28 | 1999-06-22 | Hitachi Chemical Company, Ltd. | Chip fuse and process for production thereof |
US5993698A (en) | 1997-11-06 | 1999-11-30 | Acheson Industries, Inc. | Electrical device containing positive temperature coefficient resistor composition and method of manufacturing the device |
US6150051A (en) | 1998-02-27 | 2000-11-21 | Telcordia Technologies, Inc. | Thermal switch for use in plastic batteries |
FR2779582B1 (fr) | 1998-06-04 | 2000-07-13 | Alsthom Cge Alcatel | Dispositif de protection de ligne a coupure integree |
US6452138B1 (en) * | 1998-09-25 | 2002-09-17 | Thermosoft International Corporation | Multi-conductor soft heating element |
US5963121A (en) | 1998-11-11 | 1999-10-05 | Ferro Corporation | Resettable fuse |
US6157528A (en) * | 1999-01-28 | 2000-12-05 | X2Y Attenuators, L.L.C. | Polymer fuse and filter apparatus |
US6403935B2 (en) * | 1999-05-11 | 2002-06-11 | Thermosoft International Corporation | Soft heating element and method of its electrical termination |
US6713733B2 (en) * | 1999-05-11 | 2004-03-30 | Thermosoft International Corporation | Textile heater with continuous temperature sensing and hot spot detection |
US6563094B2 (en) * | 1999-05-11 | 2003-05-13 | Thermosoft International Corporation | Soft electrical heater with continuous temperature sensing |
US6300859B1 (en) | 1999-08-24 | 2001-10-09 | Tyco Electronics Corporation | Circuit protection devices |
US6878782B2 (en) * | 1999-12-01 | 2005-04-12 | General Electric | Thermoset composition, method, and article |
US6812276B2 (en) | 1999-12-01 | 2004-11-02 | General Electric Company | Poly(arylene ether)-containing thermoset composition, method for the preparation thereof, and articles derived therefrom |
US7235192B2 (en) * | 1999-12-01 | 2007-06-26 | General Electric Company | Capped poly(arylene ether) composition and method |
DE19959243A1 (de) * | 1999-12-08 | 2001-06-13 | Abb Research Ltd | Sicherung |
US6489879B1 (en) | 1999-12-10 | 2002-12-03 | National Semiconductor Corporation | PTC fuse including external heat source |
WO2001052275A1 (en) * | 2000-01-11 | 2001-07-19 | Tyco Electronics Corporation | Electrical device |
US20040191556A1 (en) * | 2000-02-29 | 2004-09-30 | Jardine Peter A. | Shape memory device having two-way cyclical shape memory effect due to compositional gradient and method of manufacture |
US6388553B1 (en) * | 2000-03-02 | 2002-05-14 | Eaton Corproation | Conductive polymer current-limiting fuse |
US6396384B1 (en) * | 2000-10-10 | 2002-05-28 | Therm-O-Disc, Incorporated | Conductive polymer compositions containing perhydrotriphenylene |
US6359544B1 (en) * | 2000-10-10 | 2002-03-19 | Therm-O-Disc Incorporated | Conductive polymer compositions containing surface treated kaolin clay and devices |
US6896554B2 (en) | 2000-10-13 | 2005-05-24 | Lasko Holdings, Inc. | Safety device for electrical apparatus or appliances |
US20020196592A1 (en) | 2001-06-20 | 2002-12-26 | Chen William W. | Positive temperature coefficient resistivity protected power transformer |
WO2003005118A1 (en) * | 2001-07-02 | 2003-01-16 | Loctite Corporation | Epoxy-based composition |
WO2003009323A1 (fr) * | 2001-07-18 | 2003-01-30 | Nec Schott Components Corporation | Fusible thermique |
US20030080848A1 (en) * | 2001-10-29 | 2003-05-01 | Hubbell Incorporated | Unitary arrester housing and support bracket |
US20030215588A1 (en) * | 2002-04-09 | 2003-11-20 | Yeager Gary William | Thermoset composition, method, and article |
JP2003317589A (ja) * | 2002-04-24 | 2003-11-07 | Nec Schott Components Corp | 感温ペレット型温度ヒュ−ズ |
JP4119159B2 (ja) * | 2002-04-25 | 2008-07-16 | タイコ エレクトロニクス レイケム株式会社 | 温度保護素子 |
AU2003242356A1 (en) | 2002-09-10 | 2004-04-30 | Kurabe Industrial Co., Ltd. | Code-shaped temperature fuse and sheet-shaped temperature fuse |
US7250477B2 (en) * | 2002-12-20 | 2007-07-31 | General Electric Company | Thermoset composite composition, method, and article |
US6981319B2 (en) * | 2003-02-13 | 2006-01-03 | Shrier Karen P | Method of manufacturing devices to protect election components |
DE102004013525B4 (de) * | 2003-04-10 | 2006-02-02 | Forschungszentrum Karlsruhe Gmbh | Lichtleitendes Material und Lichtwellenleiter |
JP4471203B2 (ja) * | 2003-10-28 | 2010-06-02 | エヌイーシー ショット コンポーネンツ株式会社 | 感温ペレット型温度ヒューズおよび感温ペレットの製造方法 |
US7154369B2 (en) | 2004-06-10 | 2006-12-26 | Raytheon Company | Passive thermal switch |
JP4375738B2 (ja) * | 2004-09-17 | 2009-12-02 | エヌイーシー ショット コンポーネンツ株式会社 | 感温ぺレット型温度ヒューズ |
JP4521725B2 (ja) * | 2005-03-17 | 2010-08-11 | エヌイーシー ショット コンポーネンツ株式会社 | 感温ペレット型温度ヒューズ |
JP4583228B2 (ja) | 2005-04-18 | 2010-11-17 | エヌイーシー ショット コンポーネンツ株式会社 | 感温ペレット型温度ヒューズ |
KR100696783B1 (ko) * | 2005-05-03 | 2007-03-19 | 삼성에스디아이 주식회사 | 원통형 리튬 이차전지 |
TW200730578A (en) * | 2005-12-08 | 2007-08-16 | Hitachi Chemical Co Ltd | Liquid resin composition for electronic element and electronic element device |
US20080006795A1 (en) | 2006-07-10 | 2008-01-10 | General Electric Company | Article and associated device |
US20100033295A1 (en) | 2008-08-05 | 2010-02-11 | Therm-O-Disc, Incorporated | High temperature thermal cutoff device |
CN103515041B (zh) * | 2012-06-15 | 2018-11-27 | 热敏碟公司 | 用于热截止装置的高热稳定性丸粒组合物及其制备方法和用途 |
-
2009
- 2009-07-30 US US12/512,369 patent/US20100033295A1/en not_active Abandoned
- 2009-08-05 CN CN201510726536.6A patent/CN105428176B/zh active Active
- 2009-08-05 CN CN200910211606A patent/CN101685733A/zh active Pending
- 2009-08-05 EP EP09167298.0A patent/EP2151846B1/en active Active
-
2010
- 2010-07-28 HK HK16109208.1A patent/HK1221329A1/zh not_active IP Right Cessation
-
2012
- 2012-01-17 US US13/352,181 patent/US8961832B2/en active Active
-
2015
- 2015-01-09 US US14/593,768 patent/US9779901B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3727164A (en) * | 1972-07-14 | 1973-04-10 | Minnesota Mining & Mfg | Temperature-responsive electrical switch |
JPH10177833A (ja) * | 1996-12-18 | 1998-06-30 | Hideo Ito | 温度ヒューズ |
CN2385431Y (zh) * | 1999-07-15 | 2000-06-28 | 中山市升平热保护器实业公司 | 一种热熔断体 |
US6673257B1 (en) * | 2000-09-12 | 2004-01-06 | Therm-O-Disc, Incorporated | Thermal cutoff construction compositions |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9779901B2 (en) | 2008-08-05 | 2017-10-03 | Therm-O-Disc, Incorporated | High temperature material compositions for high temperature thermal cutoff devices |
US8961832B2 (en) | 2008-08-05 | 2015-02-24 | Therm-O-Disc, Incorporated | High temperature material compositions for high temperature thermal cutoff devices |
US10566600B2 (en) | 2011-10-31 | 2020-02-18 | Powermag, LLC | Power conditioning and saving device |
US9171654B2 (en) | 2012-06-15 | 2015-10-27 | Therm-O-Disc, Incorporated | High thermal stability pellet compositions for thermal cutoff devices and methods for making and use thereof |
CN103515041A (zh) * | 2012-06-15 | 2014-01-15 | 热敏碟公司 | 用于热截止装置的高热稳定性丸粒组合物及其制备方法和用途 |
CN105103251A (zh) * | 2012-12-18 | 2015-11-25 | 鲍尔玛格有限公司 | 电力调节和节省装置 |
CN103239140A (zh) * | 2013-05-27 | 2013-08-14 | 江阴市志翔电子科技有限公司 | 一种电饭锅热熔断体用感温颗粒 |
CN108698006A (zh) * | 2016-03-03 | 2018-10-23 | 埃克森美孚研究工程公司 | 固定床反应器的异常温度检测 |
CN105679603A (zh) * | 2016-03-18 | 2016-06-15 | 厦门赛尔特电子有限公司 | 一种感温型转换开关 |
CN105679603B (zh) * | 2016-03-18 | 2018-03-13 | 厦门赛尔特电子有限公司 | 一种感温型转换开关 |
CN107633984A (zh) * | 2017-10-27 | 2018-01-26 | 梁溪区昊星工业设计工作室 | 一种温度保险丝结构 |
CN109509678A (zh) * | 2018-11-22 | 2019-03-22 | 漳州雅宝电子有限公司 | 一种熔点为236±2℃的耐高温热敏材料 |
CN114864351A (zh) * | 2022-05-24 | 2022-08-05 | 漳州雅宝电子股份有限公司 | 一种高稳定热熔块及其制备方法、热熔断体 |
Also Published As
Publication number | Publication date |
---|---|
HK1221329A1 (zh) | 2017-05-26 |
US20100033295A1 (en) | 2010-02-11 |
CN105428176B (zh) | 2019-09-03 |
EP2151846A2 (en) | 2010-02-10 |
US20120121795A1 (en) | 2012-05-17 |
US9779901B2 (en) | 2017-10-03 |
US8961832B2 (en) | 2015-02-24 |
US20150162153A1 (en) | 2015-06-11 |
EP2151846B1 (en) | 2013-10-09 |
CN105428176A (zh) | 2016-03-23 |
EP2151846A3 (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101685733A (zh) | 高温热熔断装置 | |
CN109825170A (zh) | 一种耐高温环氧粉末组合物及其制备方法 | |
JP5807969B2 (ja) | 保護素子用フラックス組成物およびそれを利用した回路保護素子 | |
CN106883724A (zh) | 绝缘粉末涂料及其制备方法、施涂方法,涂有该绝缘粉末涂料的锂电池金属外壳 | |
JP2009001544A (ja) | ピリド[3,2−h]キナゾリノン類、および/または、その5,6−ジヒドロ誘導体類、その製造方法、および、これらを含有するドープされた有機半導体材料 | |
BRPI0612009A2 (pt) | catalisador de cura, composição, dispositivo eletrÈnico e método associado | |
JP2002518567A5 (zh) | ||
IL115236A (en) | History 2-] Dihydro-2-thi (oxobenzazolyl-alkyl [tetrahydro-pyrido-] B-3,4 [and] B-4,3 [indole and pharmaceutical preparations containing or | |
US20070095236A1 (en) | Igniter and gas producing device | |
Chicharro et al. | Synthesis of Tri‐and Tetracyclic Condensed Quinoxalin‐2‐ones Fused Across the C‐3− N‐4 Bond | |
Tasior et al. | Dibenzothienopyrrolo [3, 2‐b] pyrrole: The Missing Member of the Thienoacene Family | |
Ramana et al. | Mass spectrometer as a probe in the synthesis of 2-substituted benzimidazoles | |
Alvarez et al. | Synthesis of pyridoacridines | |
US4379916A (en) | Method for coprecipitating wire coating enamel composition | |
Hu et al. | Iron‐catalyzed oxidative [3+ 2] cycloaddition‐aromatization cascade: Synthesis of pyrrolo‐[2, 1‐a] isoquinolines | |
Sas et al. | One-Pot α-Arylation of β-carboline with indole and naphthol derivatives | |
Szatmari et al. | Solvent-free synthesis of 1-(hydroxyquinolyl)-and 1-(hydroxyisoquinolyl)-1, 2, 3, 4-tetrahydroisoquinolines by modified Mannich reaction | |
CN103203568A (zh) | 一种快速收缩助熔断剂 | |
Hu et al. | Cycloaddition Reactions of Alkyl Cyclopropenecarboxylates Generated in situ with Nitrones: Construction of Substituted Pyrroles and 1, 2‐Oxazinanes | |
EP0005646B1 (en) | Isoquinoline compounds, their preparation, pharmaceutical formulations containing them and intermediates | |
JP2019132436A (ja) | 塞栓材用樹脂組成物 | |
Vitse et al. | Nitration in the imidazo [1, 2‐a] pyrazine series. Experimental and computational results | |
KR102251167B1 (ko) | 신규한 베테인계 화합물, 이를 포함하는 염료 조성물 및 이의 용도 | |
US3542783A (en) | Isoquino(1,2-b)quinazolines | |
JP6219874B2 (ja) | 保護素子用フラックス組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1140853 Country of ref document: HK |
|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20100331 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1140853 Country of ref document: HK |