CN101672990A - Zoom liquid crystal lens - Google Patents
Zoom liquid crystal lens Download PDFInfo
- Publication number
- CN101672990A CN101672990A CN200810212351A CN200810212351A CN101672990A CN 101672990 A CN101672990 A CN 101672990A CN 200810212351 A CN200810212351 A CN 200810212351A CN 200810212351 A CN200810212351 A CN 200810212351A CN 101672990 A CN101672990 A CN 101672990A
- Authority
- CN
- China
- Prior art keywords
- liquid crystal
- electrode
- layer
- crystal lens
- glass substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 196
- 239000011521 glass Substances 0.000 claims abstract description 89
- 239000000758 substrate Substances 0.000 claims abstract description 82
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 238000005530 etching Methods 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052709 silver Inorganic materials 0.000 claims abstract description 6
- 239000004332 silver Substances 0.000 claims abstract description 6
- 238000007789 sealing Methods 0.000 claims abstract 4
- 229920002120 photoresistant polymer Polymers 0.000 claims description 17
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- 238000004062 sedimentation Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 105
- 230000003287 optical effect Effects 0.000 abstract description 21
- 239000002356 single layer Substances 0.000 abstract description 14
- 238000003384 imaging method Methods 0.000 abstract description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000005684 electric field Effects 0.000 description 32
- 230000008859 change Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 125000006850 spacer group Chemical group 0.000 description 14
- 239000000463 material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 210000003644 lens cell Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
技术领域 technical field
本发明是涉及一种液晶透镜,尤其涉及一种变焦液晶透镜。The invention relates to a liquid crystal lens, in particular to a zoom liquid crystal lens.
背景技术 Background technique
相机、手机相机或立体影像处理等装置,常利用变焦镜头将影像放大或缩小以成像。传统变焦镜头设有多个镜群(lens group),通过镜群间沿光轴方向移动,以改变彼此间的间距,而使整体焦距改变,但不影响成像距离。然此种镜头需要较长的镜群移动距离,且其距离为非线性关系,因此在结构设计、控制精确度上甚为困难,成本也居高而难以降低。另有使用液态镜头(liquid lens)或液晶镜头(liquid crystal lens,简称LC lens),以改善镜群移动的距离,以缩小相机的尺寸。液态镜头的原理是由一个可调变的液体填充透镜和一个固体透镜所组成,可以利用改变液体填充透镜的形状(双凸或凹凸)或是改变不同折射率的填充介质来做调整镜头焦距以达到变焦目的,如“Liquid-Crystal Lens-Cells withVariable Focal Length”、作者为Susμmu Sato、Japan J.of Applied physics,1979年3月12日;美国专利US2007/0217023。另,可变焦液晶镜头的原理,是利用非均匀电场施加在非均匀液晶层,或非均匀电场施加在均匀液晶层,或均匀电场施加在非均匀液晶层,以产生一个渐变的折射率,而调整镜头焦距以达到变焦目的,如作者为Yun-Hsing Fan etc.,名称为“Liquid crystal microlens arrayswith switchable positive and negative focal lengths”,Journal of Display Technology,2005年9月。Cameras, mobile phone cameras, or stereoscopic image processing devices often use zoom lenses to enlarge or reduce images to form images. Traditional zoom lenses are equipped with multiple lens groups. By moving the lens groups along the optical axis to change the distance between each other, the overall focal length is changed, but the imaging distance is not affected. However, this kind of lens requires a long moving distance of the mirror group, and the distance is nonlinear, so it is very difficult in structural design and control accuracy, and the cost is high and difficult to reduce. In addition, a liquid lens (liquid lens) or a liquid crystal lens (liquid crystal lens, LC lens for short) is used to improve the moving distance of the lens group and reduce the size of the camera. The principle of the liquid lens is composed of an adjustable liquid-filled lens and a solid lens. The lens focal length can be adjusted by changing the shape of the liquid-filled lens (bi-convex or concave-convex) or changing the filling medium with different refractive indices. To achieve the purpose of zooming, such as "Liquid-Crystal Lens-Cells with Variable Focal Length", the author is Susμmu Sato, Japan J. of Applied physics, March 12, 1979; US Patent US2007/0217023. In addition, the principle of the variable focus liquid crystal lens is to apply a non-uniform electric field to a non-uniform liquid crystal layer, or a non-uniform electric field to a uniform liquid crystal layer, or a uniform electric field to a non-uniform liquid crystal layer to produce a gradual refractive index, and Adjust the focal length of the lens to achieve the purpose of zooming, such as the author is Yun-Hsing Fan etc., titled "Liquid crystal microlens arrays with switchable positive and negative focal lengths", Journal of Display Technology, September 2005.
由于液晶具有良好的光电特性及很低的操作电压,一向就被广泛利用来制作可电控光调制元件。现有的液晶透镜技术,如图1A所示,主要是将液晶分子103封存在两片电极102之间,利用两电极之间电压的分布变化来改变液晶分子的排向,进而改变通过此液晶透镜光圈的光程特性以达成变焦效果。现有液晶透镜电极多采用在玻璃平板102表面镀上一层ITO透明导电薄膜以形成ITO电极101,而ITO为掺杂锡的铟氧化物(Indiμm Tin Oxide,或Tin-doped IndiμmOxide,简称ITO),由于其具有极佳的导电特性(电阻系数可至2×10-4Ω.cm下,约为最佳导体银金属的100倍)及高可见光的透过性及高红外光的反射性,已被发展应用于液晶显示器及液晶透镜使用;其结构上,在液晶层两侧,可为两片ITO膜或一片ITO膜配合一片金属镀膜所构成;如图1A,在ITO101上加上非均匀电场,所述电场施加在均匀液晶材料103上,将会产生接触的厚度的变化,改变液晶透镜的折射率,使液晶透镜由非聚焦转变成聚焦,或改变其焦距;如美国专利US6,882,390、US7,388,822、US2007/0183293台湾专利TWM327490、日本专利JP08-258624、WIPO专利WO/1993/009524等。但由于ITO透明导电薄膜需使用的电压较高,与液晶组成液晶镜头(即液晶透镜模块)时,其反应时间较长,切换速度缓慢,不适合用于相机或手机镜头使用。Because liquid crystals have good photoelectric properties and low operating voltage, they have been widely used to make electronically controllable light modulation elements. The existing liquid crystal lens technology, as shown in FIG. 1A, mainly seals
对于替代ITO材料,现有技术尚有在玻璃基板上镀上铝膜并蚀刻出特定光圈以作为电极,如图1B,如美国专利US2007/0183293、US2007/0182915更进一步公开使用低电阻的铝、金、银或铬与高电阻的氧化锌、氧化铅或氧化铟搭配;美国US2007/0024801专利则公开传热介质使用金膜(gold film);通过施以电压以改变光圈中液晶的排向方式而达到变焦的目的;或以快速热传导。由于在液晶分子上下层之间,由于使用不同配置的电极,造成电场不同,虽可形成渐变的折射率,但也形成边缘衰减现象而造成成像品质不佳,或具有高操作电压、聚焦效率不高、聚焦效率与偏振为相依性、及可调控焦距范围不够大等缺点,致在使用上仍有许多限制;而为解决上述问题,现有技术常需要搭配其他传统透镜以组成一复合式透镜,以补偿变焦速度与成像品质,但是也相对增加整体的厚度与成本,并且仍然无法有效解决变焦切换速度的问题。For the replacement of ITO materials, the existing technology is to coat aluminum film on the glass substrate and etch a specific aperture as an electrode, as shown in Figure 1B, such as US2007/0183293 and US2007/0182915, which further disclose the use of low-resistance aluminum, Gold, silver or chromium are matched with high-resistance zinc oxide, lead oxide or indium oxide; US2007/0024801 patent discloses the use of gold film as a heat transfer medium; by applying voltage to change the liquid crystal alignment in the aperture To achieve the purpose of zooming; or to fast heat conduction. Due to the use of electrodes with different configurations between the upper and lower layers of liquid crystal molecules, the electric field is different. Although a gradual refractive index can be formed, it also forms an edge attenuation phenomenon, resulting in poor imaging quality, or high operating voltage and poor focusing efficiency. High, focusing efficiency and polarization are dependent, and the range of adjustable focal length is not large enough, so there are still many limitations in use; and in order to solve the above problems, the existing technology often needs to be combined with other traditional lenses to form a composite lens , to compensate the zoom speed and imaging quality, but it also relatively increases the overall thickness and cost, and still cannot effectively solve the problem of zoom switching speed.
发明内容 Contents of the invention
本发明的主要目的在于提供一种变焦液晶透镜,其利用至少两片预定厚度的玻璃基板,并通过蚀刻方式以在玻璃基板上构成单面金属蚀刻的表面配向电极或双面金属蚀刻的表面配向电极;再将所述等玻璃基板以预定间距封存液晶分子,以构成液晶透镜单元;进一步利用液晶透镜单元以组成单层或多层变焦液晶透镜,而可以电压来独立调控各液晶透镜单元中液晶分子的排向,产生预定的光学特性,供给相机、手机相机或立体影像处理等装置镜头的变焦目的使用。The main purpose of the present invention is to provide a zoom liquid crystal lens, which utilizes at least two glass substrates with a predetermined thickness, and forms single-sided metal-etched surface alignment electrodes or double-sided metal-etched surface alignment electrodes on the glass substrates by etching electrode; then seal the liquid crystal molecules with the glass substrates at a predetermined distance to form a liquid crystal lens unit; further use the liquid crystal lens unit to form a single-layer or multi-layer zoom liquid crystal lens, and the voltage can be used to independently control the liquid crystal in each liquid crystal lens unit The alignment of molecules produces predetermined optical properties, which are used for the purpose of zooming in devices such as cameras, mobile phone cameras, or stereoscopic image processing.
为达成上述目的,本发明的单层变焦液晶透镜包括单层液晶透镜单元,所述液晶透镜单元利用两片预定厚度的玻璃基板排列构成,利用铝膜、银膜或其他可透光的金属膜,通过蚀刻方式以在玻璃基板上构成单面金属蚀刻的表面配向电极或双面金属蚀刻的表面配向电极,以取代现有由ITO(掺杂锡的铟氧化物,Tin-doped Indiμm Oxide,简称ITO)透明导电薄膜形成的电极结构;其中,所述金属蚀刻的表面配向电极在玻璃基板的两侧(双面)上可为对称,并形成相同配向图样的表面配向电极;或所述表面配向电极可为不对称并形成不同配向图样的表面配向电极;再使所述两片玻璃基板以预定间距平行间隔排列,构成容室,并在容室中装填液晶材料,构成单层液晶透镜单元;当施以特定电压于表面配向电极,可使液晶产生特定的折射率与光学特性;对于施以不同电压可产生不同的折射率与光学特性,而产生变焦液晶透镜的变焦效果。In order to achieve the above object, the single-layer zoom liquid crystal lens of the present invention includes a single-layer liquid crystal lens unit, and the liquid crystal lens unit is formed by arranging two glass substrates with a predetermined thickness, and an aluminum film, a silver film or other light-transmitting metal films are used to , by etching to form a single-sided metal-etched surface alignment electrode or a double-sided metal-etched surface alignment electrode on the glass substrate to replace the existing ITO (indium oxide doped with tin, Tin-doped Indiμm Oxide, referred to as ITO) an electrode structure formed by a transparent conductive film; wherein, the metal-etched surface alignment electrodes can be symmetrical on both sides (both sides) of the glass substrate, and form surface alignment electrodes with the same alignment pattern; or the surface alignment electrodes The electrodes can be asymmetrical surface alignment electrodes that form different alignment patterns; then the two glass substrates are arranged in parallel at predetermined intervals to form a chamber, and liquid crystal materials are filled in the chamber to form a single-layer liquid crystal lens unit; When a specific voltage is applied to the surface alignment electrodes, the liquid crystal can produce a specific refractive index and optical characteristics; different voltages can produce different refractive indices and optical characteristics, thereby producing the zoom effect of the zoom liquid crystal lens.
本发明的另一目的在于提供一种变焦液晶透镜,包括双层或三层以上液晶透镜单元,所述液晶透镜单元利用至少两片预定厚度的玻璃基板排列构成,利用铝膜、银膜或其他可透光的金属膜,通过蚀刻方式以在玻璃基板上构成单面金属蚀刻的表面配向电极或双面金属蚀刻的表面配向电极;其中,所述金属蚀刻的表面配向电极在玻璃基板两侧(双面)上可为对称并形成相同配向图样的表面配向电极;或所述表面配向电极可为不对称并形成不同配向图样的表面配向电极;再使两片玻璃基板以预定间距平行间隔排列,构成容室,并在容室中装填液晶材料,构成双层或多层的液晶透镜单元;当施以特定电压于各层的表面配向电极,可使液晶产生特定的折射率与光学特性;对于施以不同电压则可产生不同的折射率与光学特性,而产生变焦液晶透镜的变焦效果。Another object of the present invention is to provide a zoom liquid crystal lens, which includes a double-layer or more than three-layer liquid crystal lens unit, and the liquid crystal lens unit is formed by arranging at least two glass substrates with a predetermined thickness. The light-transmitting metal film is etched to form a single-sided metal-etched surface alignment electrode or a double-sided metal-etched surface alignment electrode on the glass substrate; wherein, the metal-etched surface alignment electrodes are on both sides of the glass substrate ( The surface alignment electrodes on both sides) can be symmetrical and form the same alignment pattern; or the surface alignment electrodes can be asymmetrical and form different alignment patterns; then the two glass substrates are arranged in parallel at predetermined intervals, Constitute a chamber, and fill the chamber with liquid crystal material to form a double-layer or multi-layer liquid crystal lens unit; when a specific voltage is applied to the surface alignment electrodes of each layer, the liquid crystal can produce specific refractive index and optical characteristics; for Applying different voltages can produce different refractive indices and optical properties, thereby producing the zoom effect of the zoom liquid crystal lens.
本发明的又一目的在于提供一种变焦液晶透镜,对于单层或多层液晶透镜单元的玻璃基板表面的金属蚀刻所形成的表面配向电极,可设计为单孔式或同心圆式配向图样,以提供光圈、折射率、焦距等光学特性的多种变化。Another object of the present invention is to provide a zoom liquid crystal lens. The surface alignment electrodes formed by metal etching on the glass substrate surface of a single-layer or multi-layer liquid crystal lens unit can be designed as a single-hole or concentric circle alignment pattern. To provide a variety of changes in optical properties such as aperture, refractive index, and focal length.
本发明的再一目的在于提供一种变焦液晶透镜,以改善现有的ITO构成的液晶透镜,由于现有的ITO构成的液晶透镜的结构为在液晶层两侧,可为两片ITO膜或一片ITO膜配合一片为金属镀膜所构成,因此在液晶接触的两片玻璃基板表面配向电极表面,是不同材质的状况,当施以电压时,材质不同的表面配向电极对于液晶造成的拖曳力(anchoring force)会有些许差距,因而影响到液晶透镜光圈最后的偏光性质;为改善此现象,本发明的特征之一为在液晶层两侧采用相同材质的表面配向电极,可容易的调整到良好对称,减少液晶透镜光圈偏心问题。Another object of the present invention is to provide a kind of zoom liquid crystal lens, to improve the liquid crystal lens that existing ITO forms, because the structure of the liquid crystal lens that existing ITO forms is for the liquid crystal layer both sides, can be two ITO films or One piece of ITO film is combined with one piece of metal coating. Therefore, the surface of the alignment electrode on the surface of the two glass substrates in contact with the liquid crystal is a state of different materials. When a voltage is applied, the drag force ( anchoring force) will have a slight gap, thus affecting the final polarization properties of the liquid crystal lens aperture; in order to improve this phenomenon, one of the characteristics of the present invention is to use surface alignment electrodes of the same material on both sides of the liquid crystal layer, which can be easily adjusted to a good Symmetrical, reducing the problem of liquid crystal lens aperture eccentricity.
与现有技术相比,本发明的变焦液晶透镜可依据光学设计需要,搭配不同层数的单层或多层液晶透镜单元与不同表面配向电极,通过单独控制液晶透镜单元的电压,产生折射率、光圈大小等光学特性变化,以改善变焦切换速及优化整体液晶透镜模块的光学效果及变焦品质,可减少整体镜头厚度及制作成本。Compared with the prior art, the variable-focus liquid crystal lens of the present invention can be matched with single-layer or multi-layer liquid crystal lens units of different layers and different surface alignment electrodes according to the needs of optical design, and the voltage of the liquid crystal lens unit can be individually controlled to generate a refractive index , aperture size and other optical characteristics changes to improve the zoom switching speed and optimize the optical effect and zoom quality of the overall liquid crystal lens module, which can reduce the overall lens thickness and production cost.
附图说明 Description of drawings
图1A、1B是现有变焦液晶透镜的侧视示意图。1A and 1B are schematic side views of conventional zoom liquid crystal lenses.
图2是本发明单层液晶透镜单元的外观示意图。Fig. 2 is a schematic diagram of the appearance of the single-layer liquid crystal lens unit of the present invention.
图3是本发明单层液晶透镜单元的外观分解示意图。Fig. 3 is an exploded schematic view of the appearance of the single-layer liquid crystal lens unit of the present invention.
图4A是表面配向电极的电场作用示意图(上、下层表面配向电极不对称)。FIG. 4A is a schematic diagram of the electric field action of the surface alignment electrodes (the upper and lower surface alignment electrodes are asymmetrical).
图4B是液晶分子在图4A电场作用时的情形示意图。FIG. 4B is a schematic diagram of liquid crystal molecules under the action of the electric field in FIG. 4A .
图5A是表面配向电极的电场作用示意图(上、下层表面配向电极对称)。FIG. 5A is a schematic diagram of the electric field action of the surface alignment electrodes (the upper and lower surface alignment electrodes are symmetrical).
图5B是液晶分子在图5A电场作用时的情形示意图。FIG. 5B is a schematic diagram of liquid crystal molecules under the action of the electric field in FIG. 5A .
图6是折射率与入射角度的关系示意图。Fig. 6 is a schematic diagram of the relationship between the refractive index and the incident angle.
图7A、7B、7C是液晶透镜单元(第一实施例)在不同电场中产生不同折射率时的光路示意图。7A, 7B, and 7C are schematic diagrams of optical paths when the liquid crystal lens unit (first embodiment) produces different refractive indices in different electric fields.
图8是双面电极玻璃基板的制造示意图。Fig. 8 is a schematic diagram of manufacturing a double-sided electrode glass substrate.
图9是本发明的双层液晶透镜单元(第二实施例)的结构侧面及光路示意图。Fig. 9 is a schematic diagram of the structural side and optical path of the double-layer liquid crystal lens unit (second embodiment) of the present invention.
图10是本发明的三层液晶透镜单元(第三实施例)的结构侧面及光路示意图。Fig. 10 is a schematic diagram of the structural side and optical path of the three-layer liquid crystal lens unit (third embodiment) of the present invention.
附图标记说明:变焦液晶透镜-1、2、3;玻璃基板-10;单面电极玻璃基板-10a;双面电极玻璃基板-10b;光圈-11;表面配向电极-20、20a、20b;液晶层-30;间隔片-40;金属膜-50;光阻层-51;光罩-52。Description of reference signs: zoom liquid crystal lens-1, 2, 3; glass substrate-10; single-sided electrode glass substrate-10a; double-sided electrode glass substrate-10b; aperture-11; surface alignment electrodes-20, 20a, 20b; Liquid crystal layer-30; spacer-40; metal film-50; photoresist layer-51; photomask-52.
具体实施方式 Detailed ways
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。The above and other technical features and advantages of the present invention will be described in more detail below in conjunction with the accompanying drawings.
本发明以下所揭示的实施例,是针对本发明变焦液晶透镜的主要构成元件而作说明,因此就一般液晶透镜模块结构而言,本领域普通技术人员了解,本发明所公开的变焦液晶透镜的构成元件并不限制于以下所公开的实施例结构,也就是所述变焦液晶透镜各构成元件是可以进行许多改变、修改、甚至等效变更的,例如:所述变焦液晶透镜的外观形状设计并不限制,或表面配向电极的配向图样也不限制。The following embodiments of the present invention are described for the main components of the zoom liquid crystal lens of the present invention. Therefore, in terms of the general liquid crystal lens module structure, those of ordinary skill in the art understand that the zoom liquid crystal lens disclosed in the present invention The constituent elements are not limited to the structure of the embodiments disclosed below, that is, the constituent elements of the zoom liquid crystal lens can be changed, modified, or even equivalently changed, for example: the appearance shape design of the zoom liquid crystal lens and There is no limitation, or the alignment pattern of the surface alignment electrodes is also not limited.
图4A所示为单纯电场的电力线的示意图,若上层表面配向电极20a与下层表面配向电极20b分别带正电与负电,则电力线在边缘处会产生非直线的情形。当在表面配向电极20a与表面配向电极20b间装填成液晶层30后,如图4B所示,当上层表面配向电极20a与下层表面配向电极20b分别带正电与负电时,液晶层30的液晶分子受电场产生力矩,为要得最小能量状态,液晶层30的液晶分子的主轴线将与外加电场平行(沿电场的切线方向)排列,形成特定排列而产生特定的折射率与光学特性。由于所述液晶层30的液晶分子的结构为异向性,具有双折射特性,当光线通过所述液晶层30时,光线偏振方向会与液晶分子的主轴线有关,入射光在正交的光场分量使液晶分子产生偏振,当对于电场边缘(例如两电极线的边缘),在电场边缘影响范围之外的区域,电场强迫液晶分子的主轴线方向,使液晶分子在此电场中呈现折射率n0;而在两个电场边缘的电场电力线将使所述液晶层30的液晶分子改变其原本的主轴线,如此在两个电场边缘形成不同的折射率n1;但在两个电场边缘中心,液晶分子并未受到电场影响而改变液晶分子的主轴线,此处的折射率为n。使在Y方向上折射率的变化为n0-n1-n-n1-n0,则形成折射率梯度;当对所述上层表面配向电极20a与所述下层表面配向电极20b施以不同强度的电场时,在Z方向则产生不同的折射率,此可为光线通过时产生变焦。4A is a schematic diagram of the electric force lines of a simple electric field. If the upper
若所述上层表面配向电极20a与所述下层表面配向电极20b对称,如图5A与图5B,则电场边缘影响范围之外的区域相对较小,在Y方向上折射率的变化近似为n0-n-n0,则形成与图4B不同的折射率梯度;当对上层表面配向电极20a与下层表面配向电极20b施以不同强度的电场时,在Z方向则产生不同的折射率,此可为光线通过时产生变焦。If the upper layer
因此在液晶透镜单元1使用光电场偏振方向与液晶分子的方向不同,而形成折射率不同(折射率梯度)的原理,制成类似GRIN透镜,并通过施以不同外加电场以改变折射率梯度,使入射的光线在液晶透镜单元内部,因折射率的梯度而使光线改变行径角度而聚焦,如图6、7A、7B、7C所示。在图6中,对于不同折射率的梯度,可以视为n个层来分析,并遵守斯耐尔定律(snell’s law)的下列关系式:Therefore, in the liquid crystal lens unit 1, the polarization direction of the light field is different from the direction of the liquid crystal molecules, and the principle of forming a different refractive index (refractive index gradient) is made into a similar GRIN lens, and the refractive index gradient is changed by applying different external electric fields. Make the incident light inside the liquid crystal lens unit, because of the gradient of the refractive index, the light changes the angle of travel and focuses, as shown in Figures 6, 7A, 7B, and 7C. In Figure 6, for the gradients of different refractive indices, it can be considered as n layers for analysis, and obeys the following relationship of Snell’s law:
n1cos(θ1)=n2cos(θ2)=…nicos(θi)=…=nncos(θn) (1)n 1 cos(θ 1 )=n 2 cos(θ 2 )=…n i cos(θ i )=…=n n cos(θ n ) (1)
其中,ni为假设的第i层的折射率、90°-θi为第i层光线在第i层与i+1层界面的法线的夹角。Among them, ni is the assumed refractive index of the i-th layer, and 90°-θi is the angle between the normal of the i-th layer light at the interface between the i-th layer and the i+1 layer.
由于液晶在液晶透镜单元受电场强弱不同,形成折射率ni不同,但ni不易量测,则可用平均折射率n与折射率变化率α近似,焦距f则可由下式估计可得:Since the liquid crystal is subjected to different electric fields in the liquid crystal lens unit, the refractive index ni is different, but ni is not easy to measure, the average refractive index n can be used to approximate the refractive index change rate α, and the focal length f can be estimated by the following formula:
对于一定厚度D的液晶透镜单元的液晶层30,若改变不同的电场强度及方向,将改变液晶透镜的折射率梯度(即改变折射率变化率α与平均折射率n),则可形成不同的出射角度,因而形成不同的焦距,如图7A、7B、7C所示;当对于不同液晶透镜单元透过外加电压于表面配向电极20,可改变其不同折射率,即可使光线聚焦或发散,可形成如镜片组的变焦功能。For the
更进一步,对于表面配向电极20在上层的表面配向电极20a与下层表面配向电极20b,可设置为对称或不对称,也可设为单孔状配向图样、同心圆状配向图样或其他光学目的设计的图样,以造成不同光圈效果。为清楚说明本发明的运用情形的实施例,在图2、3、8至图10均使用单孔状对称的表面配向电极20。Furthermore, for the
第一实施例first embodiment
参阅图2、3所示,其是本发明由单层液晶透镜单元所构成的变焦液晶透镜实施例的基本结构,本实施例的单层变焦液晶透镜1,自物侧面起算,包含:单面上设有表面配向电极20的玻璃基板10(以下称单面电极玻璃基板10b)、间隔片(spacer)40及装填在单面电极玻璃基板10b与间隔片40所形成的容室的液晶层30及单面电极玻璃基板10b;其中,所述间隔片40可为环状片或数个叠加而成;其中,所述玻璃基板10的表面上附着表面配向电极20,所述表面配向电极20在所述玻璃基板10镀有一金属膜,如铝,银,或金等金属,其金属的选用为可透光金属;所述金属膜通过蚀刻方式成型,若所述表面配向电极20的形式为单孔状配向图样,则形成单孔的光圈11;其中,两片玻璃基板10结合后以所述间隔片(spacer)40定义出其间隙厚度,即所述液晶层30的厚度。Referring to Fig. 2, shown in 3, it is the basic structure of the zoom liquid crystal lens embodiment that the present invention is made of single-layer liquid crystal lens unit, the single-layer zoom liquid crystal lens 1 of the present embodiment, counting from object side, comprises: single-sided The glass substrate 10 (hereinafter referred to as the single-sided
参阅图8为玻璃基板10上表面配向电极20的黄光制程示意图,本制程图仅说明具有双面表面配向电极20的玻璃基板10(以下称双面电极玻璃基板10a)的制作过程示意图,而所述单面电极玻璃基板10b的单面表面配向电极20的制作过程也相类似,仅在所述玻璃基板10的单面上具有金属膜。首先,先在所述玻璃基板10的表面上以沉积法或溅镀法镀上一层金属膜50,再使用黄光制程加以蚀刻成所需要的表面配向电极20配向图样;其加工步骤如下:在所述金属膜50外侧设一光阻层51,再在所述光阻层51外侧罩设一特定配向图样的光罩52,再经曝光、显影、冲洗及蚀刻等相关程序以移除非所述表面配向电极20的其余光阻层及金属膜,只保留所述表面配向电极20所对应的光阻层及金属膜,再去除光阻层51,即成型出表面配向电极20。若欲使所述玻璃基板10的双面的表面配向电极20具有对称配向图样,在黄光制成时可使用所述光罩52,以双面黄光制程机台来制作一次完成蚀刻;对于双面不同的表面配向电极20,则分别使用不同的光罩52,可使用单面制作黄光制程机台来制作。Referring to FIG. 8 , it is a schematic diagram of the yellow light manufacturing process of the
一般而言,为使操作电压不致太高,单孔状的表面配向电极20所形成的光圈11的大小与所述液晶层30的厚度比约为2.5比1,所述光圈11的大小可以从100μm到1mm不等;对于不同厚度的液晶层30,可使用不同厚度的间隔片40所构成。在本实施例使用的液晶材料为相列型液晶E7,在物侧的玻璃基板10使用1mm厚度的玻璃基板,在像侧的玻璃基板10使用0.5mm厚度的玻璃基板10,液晶层30的厚度D=120μm。Generally speaking, in order to keep the operating voltage from being too high, the ratio of the size of the
当对表面配向电极20施以电压后,可产生电场,进而改变所述液晶层30的折射率,在本实施例其关系如表一及图2.7A-7C,当欲改变单层变焦液晶透镜1的焦距时,则于玻璃基板10两侧的表面配向电极电极20施以表一的电压差。When a voltage is applied to the
表一、Table I,
表二至表五为四个不同焦距时,单层变焦液晶透镜1的焦距f(mm)、焦数FNo、后焦距(BL)(mm),对于在光轴上入射光线与光轴夹角θ各角度下的均方根光点(spot size rms,root-means-square μm)、几何光点(GEO spot size,Geometric,μm)、切线场曲(field TAN,Tangential field curvature)、弧矢场曲(field SAG,Sagittal field curvature)、畸变率(distortion rate)%、在60°TAN调制传递函数(MTF,modulation transfer function)与60°SAG MTF的相关数据,可供给相机、手机相机等装置的成像镜头使用。Tables 2 to 5 show the focal length f (mm), focal number FNo, and back focal length (BL) (mm) of the single-layer zoom liquid crystal lens 1 for four different focal lengths, for the angle between the incident light and the optical axis on the optical axis Root mean square spot (spot size rms, root-means-square μm), geometric spot size (GEO spot size, Geometric, μm), tangential field curvature (field TAN, Tangential field curvature), sagittal field curvature at each angle of θ (field SAG, Sagittal field curvature), distortion rate (distortion rate)%, at 60 ° TAN modulation transfer function (MTF, modulation transfer function) and 60 ° SAG MTF related data, which can be provided for imaging of devices such as cameras and mobile phones lens used.
表二Table II
表三Table three
表四Table four
表五Table five
第二实施例second embodiment
参阅图9所示,其是本发明由双层液晶透镜单元所构成的的双层变焦液晶透镜的实施例基本结构。本实施例的双层变焦液晶透镜2,自物侧面起算,包含:单面电极玻璃基板10b、间隔片40及第一层液晶层30、双面电极玻璃基板10a、间隔片40及第二层液晶层30及单面电极玻璃基板10b;其中,所述单面电极玻璃基板10b与所述双面电极玻璃基板10a之间,以所述间隔片40分别定义出两层液晶层30的厚度。当入射光线在经过所述变焦液晶透镜2的第一层液晶层30产生第一次折射后,再进入所述液晶透镜单元2的第二层液晶层30,可以产生第二次折射;当控制第一层电压使第一层液晶层30形成折射率n1、控制第二层电压使所述第二层液晶层30形成折射率n2,经由式(2)可计算出光线聚焦的位置;同理在使用于相机或手机相机等装置上,对于不同焦距的变焦需求上,只要控制第一层电压与第二层电压产生匹配,可达到变焦效果,相较于传统透镜多片组合模块可以省去许多空间。Referring to FIG. 9 , it is the basic structure of an embodiment of the double-layer zoom liquid crystal lens composed of double-layer liquid crystal lens units of the present invention. The double-layer zoom
为说明方便,在本实施例中,采用如同第一实施相同的液晶层30、相同厚度的间隔片40、相同材质与厚度的玻璃基板10、表面配向电极20等;为达总体焦距为0.866mm,则对第一层液晶层30(即第一液晶透镜单元)施以2.15V电压使其产生焦距为1.111mm、对第二层液晶层30(即第二液晶透镜单元)施以1.49V电压使其产生焦距为2.525mm,表六为在本实施例焦距为0.866mm时,对于在光轴上入射光线与光轴夹角θ各角度下的均方根光点、几何光点、切线场曲、孤矢场曲、畸变率%、在60°TAN调制传递函数与60°SAG MTF的相关数据,可供给相机、手机相机等装置的成像镜头使用。For the convenience of description, in this embodiment, the same
表六Table six
当为变焦至总体焦距为0.746mm时,则对第一层液晶层30(即第一液晶透镜单元)施以1.74V电压使其产生焦距为1.720mm、对第二层液晶层30(即第二液晶透镜单元)施以2.31V电压使其产生焦距为1.013mm。表七为在本实施例焦距为0.746mm时,对于在光轴上入射光线与光轴夹角θ各角度下的均方根光点、几何光点、切线场曲、弧矢场曲、畸变率%、在60°TAN调制传递函数与60°SAG MTF的相关数据,可供给相机、手机相机等装置的成像镜头使用。When zooming to an overall focal length of 0.746mm, a voltage of 1.74V is applied to the first liquid crystal layer 30 (i.e. the first liquid crystal lens unit) to produce a focal length of 1.720mm, and the second liquid crystal layer 30 (i.e. the first liquid crystal lens unit) Two liquid crystal lens units) apply a voltage of 2.31V to produce a focal length of 1.013mm. Table 7 is when the focal length of this embodiment is 0.746mm, for the root mean square light spot, geometric light spot, tangential field curvature, sagittal field curvature, and distortion rate % under the angle θ between the incident light and the optical axis on the optical axis , The relevant data of 60° TAN modulation transfer function and 60° SAG MTF can be used for imaging lenses of cameras, mobile phone cameras and other devices.
表七Table Seven
第三实施例third embodiment
参阅图10所示,其是本发明由三层液晶透镜单元所构成的的三层变焦液晶透镜3的实施例基本结构。本实施例的三层变焦液晶透镜3,自物侧面起算,包含:单面电极玻璃基板10b、间隔片40及第一层液晶层30、双面电极玻璃基板10a、间隔片40及第二层液晶层30、双面电极玻璃基板10a、间隔片40及第三层液晶层30及单面电极玻璃基板10b;所述单面电极玻璃基板10b与所述双面电极玻璃基板10a之间,以所述间隔片40分别定义出三层液晶层30的厚度。当入射光线在经过所述三层变焦液晶透镜3的第一层液晶层30产生第一次折射后,再进入所述变焦液晶透镜3的第二层液晶层30产生第二次折射,再进入所述液晶透镜单元3的第三层液晶层30产生第三次折射;当控制第一层电压使所述第一层液晶层30形成折射率n1、控制第二层电压使所述第二层液晶层30形成折射率n2、控制第三层电压使所述第三层液晶层30形成折射率n3,经由式(2)可计算出光线聚焦的位置;同理在使用于相机或手机相机等装置上,对于不同焦距的变焦需求上,只要控制第一层电压、第二层电压与第三层电压产生匹配,可达到变焦效果,相较于传统透镜多片组合模块可以省去许多空间。Referring to FIG. 10 , it is the basic structure of an embodiment of the three-layer zoom
由上可知,本发明至少具有以下优点:As can be seen from the above, the present invention has at least the following advantages:
(1)、本发明的变焦液晶透镜,以液晶透镜单元10来做变焦动作,不需要加入力学移动机制,整体模块可以做得比较轻薄短小。(1) The zooming liquid crystal lens of the present invention uses the liquid
(2)、本发明的变焦液晶透镜,每层液晶层30之间使用铝膜(或银膜等其他合适的透光金属)的表面配向电极20结构来取代现有ITO电极,可减少成本。(2) In the zoom liquid crystal lens of the present invention, the
(3)、本发明的变焦液晶透镜,其中液晶透镜单元的表面配向电极20可由单孔状、同心圆状等不同配向图样设计,通过表面配向电极20产生的不同电场型式,可产生不同的光圈大小效果,再通过单层或多层液晶透镜单元组合成变焦液晶透镜,可构成实用的相机、手机相机或影像处理装置的变焦镜头。(3), the zoom liquid crystal lens of the present invention, wherein the
以上说明对本发明而言只是说明性的,而非限制性的,本领域普通技术人员理解,在不脱离以下所附权利要求所限定的精神和范围的情况下,可做出许多修改,变化,或等效,但都将落入本发明的保护范围内。The above description is only illustrative, rather than restrictive, to the present invention. Those of ordinary skill in the art understand that many modifications and changes can be made without departing from the spirit and scope defined by the following appended claims. Or equivalent, but all will fall within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102123513A CN101672990B (en) | 2008-09-10 | 2008-09-10 | Zoom liquid crystal lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102123513A CN101672990B (en) | 2008-09-10 | 2008-09-10 | Zoom liquid crystal lens |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101672990A true CN101672990A (en) | 2010-03-17 |
CN101672990B CN101672990B (en) | 2012-04-25 |
Family
ID=42020284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102123513A Expired - Fee Related CN101672990B (en) | 2008-09-10 | 2008-09-10 | Zoom liquid crystal lens |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101672990B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102749769A (en) * | 2012-07-16 | 2012-10-24 | 四川大学 | 2D/3D switchable free stereo display device based on double-layer liquid crystal lenses |
CN102809865A (en) * | 2011-05-20 | 2012-12-05 | 株式会社日本显示器东 | Image display device and liquid crystal lens |
CN104081260A (en) * | 2012-01-30 | 2014-10-01 | 日本电气硝子株式会社 | Liquid-crystal lens and liquid-crystal lens-cell |
CN104914643A (en) * | 2014-03-12 | 2015-09-16 | 点晶科技股份有限公司 | Optical zoom structure |
CN105334691A (en) * | 2015-12-15 | 2016-02-17 | 深圳市时代华影科技股份有限公司 | High-light-effect 3D system adaptable to various sizes of projection halls |
CN105842888A (en) * | 2016-05-31 | 2016-08-10 | 成都微晶景泰科技有限公司 | Quick focusing optical element and imaging device |
CN105867011A (en) * | 2016-06-27 | 2016-08-17 | 京东方科技集团股份有限公司 | Display panel and display device |
CN107272300A (en) * | 2016-04-07 | 2017-10-20 | Lg电子株式会社 | Vehicle parking assistance device |
CN108267896A (en) * | 2016-12-30 | 2018-07-10 | 深圳超多维光电子有限公司 | polarization imaging device and method |
CN108717235A (en) * | 2018-08-29 | 2018-10-30 | 深圳珑璟光电技术有限公司 | A kind of nearly eye of adjustable diopter waveguide shows Optical devices |
CN110082982A (en) * | 2019-05-27 | 2019-08-02 | 北京航空航天大学 | A kind of liquid crystal lens array of simple electrode structure |
CN110149466A (en) * | 2019-05-31 | 2019-08-20 | 深圳前海达闼云端智能科技有限公司 | Optical filtering variable focus package, camera module and terminal |
CN112099285A (en) * | 2020-11-03 | 2020-12-18 | 南昌虚拟现实研究院股份有限公司 | Liquid crystal lens device and virtual reality zooming method |
CN113189825A (en) * | 2020-01-13 | 2021-07-30 | 点晶科技股份有限公司 | Mobile communication device and aperture module |
CN115167058A (en) * | 2022-06-17 | 2022-10-11 | 重庆翰博显示科技研发中心有限公司 | Variable-focus liquid crystal molecular lens |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1688783B1 (en) * | 2003-11-27 | 2009-10-14 | Asahi Glass Company Ltd. | Optical element using liquid crystal having optical isotropy |
CN100492505C (en) * | 2004-02-03 | 2009-05-27 | 旭硝子株式会社 | Liquid crystal lens element and optical head device |
WO2006043516A1 (en) * | 2004-10-19 | 2006-04-27 | Asahi Glass Company, Limited | Liquid crystal diffractive lens element and optical head device |
-
2008
- 2008-09-10 CN CN2008102123513A patent/CN101672990B/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102809865B (en) * | 2011-05-20 | 2016-04-06 | 株式会社日本显示器 | Image display device and liquid crystal lens |
CN102809865A (en) * | 2011-05-20 | 2012-12-05 | 株式会社日本显示器东 | Image display device and liquid crystal lens |
CN104081260B (en) * | 2012-01-30 | 2016-11-09 | 日本电气硝子株式会社 | Liquid crystal lens and liquid crystal lens structure cell |
CN104081260A (en) * | 2012-01-30 | 2014-10-01 | 日本电气硝子株式会社 | Liquid-crystal lens and liquid-crystal lens-cell |
US9405167B2 (en) | 2012-01-30 | 2016-08-02 | Nippon Electric Glass Co., Ltd. | Liquid-crystal lens and liquid-crystal lens-cell |
TWI550330B (en) * | 2012-01-30 | 2016-09-21 | Nippon Electric Glass Co | Liquid crystal lens and liquid crystal lens unit |
CN102749769A (en) * | 2012-07-16 | 2012-10-24 | 四川大学 | 2D/3D switchable free stereo display device based on double-layer liquid crystal lenses |
CN104914643A (en) * | 2014-03-12 | 2015-09-16 | 点晶科技股份有限公司 | Optical zoom structure |
CN105334691A (en) * | 2015-12-15 | 2016-02-17 | 深圳市时代华影科技股份有限公司 | High-light-effect 3D system adaptable to various sizes of projection halls |
CN107272300A (en) * | 2016-04-07 | 2017-10-20 | Lg电子株式会社 | Vehicle parking assistance device |
US10768505B2 (en) | 2016-04-07 | 2020-09-08 | Lg Electronics Inc. | Driver assistance apparatus and vehicle |
CN105842888A (en) * | 2016-05-31 | 2016-08-10 | 成都微晶景泰科技有限公司 | Quick focusing optical element and imaging device |
CN105867011B (en) * | 2016-06-27 | 2019-02-05 | 京东方科技集团股份有限公司 | A display panel and display device |
CN105867011A (en) * | 2016-06-27 | 2016-08-17 | 京东方科技集团股份有限公司 | Display panel and display device |
CN108267896A (en) * | 2016-12-30 | 2018-07-10 | 深圳超多维光电子有限公司 | polarization imaging device and method |
CN108717235A (en) * | 2018-08-29 | 2018-10-30 | 深圳珑璟光电技术有限公司 | A kind of nearly eye of adjustable diopter waveguide shows Optical devices |
CN110082982A (en) * | 2019-05-27 | 2019-08-02 | 北京航空航天大学 | A kind of liquid crystal lens array of simple electrode structure |
CN110149466A (en) * | 2019-05-31 | 2019-08-20 | 深圳前海达闼云端智能科技有限公司 | Optical filtering variable focus package, camera module and terminal |
CN113189825A (en) * | 2020-01-13 | 2021-07-30 | 点晶科技股份有限公司 | Mobile communication device and aperture module |
CN112099285A (en) * | 2020-11-03 | 2020-12-18 | 南昌虚拟现实研究院股份有限公司 | Liquid crystal lens device and virtual reality zooming method |
CN115167058A (en) * | 2022-06-17 | 2022-10-11 | 重庆翰博显示科技研发中心有限公司 | Variable-focus liquid crystal molecular lens |
Also Published As
Publication number | Publication date |
---|---|
CN101672990B (en) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101672990B (en) | Zoom liquid crystal lens | |
US20100053539A1 (en) | Liquid crystal lens with variable focus | |
JP4057597B2 (en) | Optical element | |
Li et al. | Liquid crystal lens with concentric electrodes and inter-electrode resistors | |
CN101526672B (en) | An optical imaging film | |
WO2018045812A1 (en) | Lens device | |
US20190129238A1 (en) | Display panel, production method, and display apparatus | |
CN108873555A (en) | A method of based on the super surface structure zoom lens of liquid crystal tunable medium | |
TW201033640A (en) | Electrowetting display devices | |
US8928854B2 (en) | Liquid crystal lens structure and electrical controlling liquid crystal glasses structure thereof | |
CN109031811A (en) | A kind of focal length and the variable liquid crystal optical device of phase-delay quantity | |
US20160178965A1 (en) | Display device and manufacturing method of the same | |
CN103543552B (en) | Display panels, its driving method and comprise its liquid crystal display | |
CN107357130B (en) | Mask plate, lens array, preparation method of lens array and display panel | |
CN100568063C (en) | Polymer dispersed liquid crystal door mirror composite film and manufacturing method thereof | |
CN105425503A (en) | Electric-control liquid crystal microlens array capable of achieving focus adjustment and swing and preparation method thereof | |
Li et al. | Low voltage liquid crystal microlens array based on polyvinyl alcohol convex induced vertical alignment | |
Li et al. | Compact integral imaging 2D/3D compatible display based on liquid crystal micro-lens array | |
CN1141602C (en) | Continuous vari-focus Fresnel microlens array device | |
CN108206902B (en) | Light field camera | |
KR20120124344A (en) | Electro-controllable liquid crystal lens by using spiral pattern of transparent conducting oxide | |
CN107357110B (en) | A Large Aperture Liquid Crystal Lens Array Using Composite Dielectric Layers | |
CN110727103B (en) | Electrowetting device and display device | |
JP5572282B2 (en) | Display device and manufacturing method thereof | |
CN205263446U (en) | Automatically controlled burnt liquid crystal microlens array of pendulum that focuses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120425 Termination date: 20120910 |