CN101665321B - Monolithic glass molded composite lens and method of manufacturing the same - Google Patents
Monolithic glass molded composite lens and method of manufacturing the same Download PDFInfo
- Publication number
- CN101665321B CN101665321B CN2008101491081A CN200810149108A CN101665321B CN 101665321 B CN101665321 B CN 101665321B CN 2008101491081 A CN2008101491081 A CN 2008101491081A CN 200810149108 A CN200810149108 A CN 200810149108A CN 101665321 B CN101665321 B CN 101665321B
- Authority
- CN
- China
- Prior art keywords
- glass
- composite lens
- optical element
- lamellar body
- glass material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011521 glass Substances 0.000 title claims abstract description 130
- 239000002131 composite material Substances 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 84
- 239000000463 material Substances 0.000 claims abstract description 59
- 238000005520 cutting process Methods 0.000 claims abstract description 35
- 238000000465 moulding Methods 0.000 claims abstract description 26
- 230000009477 glass transition Effects 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 25
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 230000001815 facial effect Effects 0.000 claims 5
- 239000003550 marker Substances 0.000 claims 3
- 230000001360 synchronised effect Effects 0.000 claims 1
- 230000004075 alteration Effects 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 description 21
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 229910003460 diamond Inorganic materials 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000005304 optical glass Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000005357 flat glass Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- 238000009489 vacuum treatment Methods 0.000 description 2
- 241000511976 Hoya Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Abstract
Description
技术领域 technical field
本发明涉及一种光学元件,更具体地说,涉及一种整片式玻璃模造复合镜片及其制造方法。The present invention relates to an optical element, and more particularly, to a monolithic glass molded composite lens and its manufacturing method.
背景技术 Background technique
已知的光学玻璃元件的模造技术中,多采用单个模具的模穴来成形单个的光学玻璃元件,或者采用具有多个模仁的单个模具来成形多个独立的光学玻璃元件,其共同点都是用单一的玻璃材料预形体来成形单一的光学玻璃元件。其主要的缺陷在,单一玻璃材料预形体的加工,增加了光学玻璃元件的制造成本;同时,这些已知的技术不易制造微小的光学元件,例如微小光学镜片(MicroLens)、微小光学镜片阵列(Micro Lens Array)等,无法有效地提高产量并降低生产成本。In the known molding technology of optical glass elements, the mold cavity of a single mold is often used to form a single optical glass element, or a single mold with multiple mold cores is used to form a plurality of independent optical glass elements. A single optical glass element is formed from a single glass material preform. Its main defect is that the processing of a single glass material preform increases the manufacturing cost of optical glass elements; at the same time, these known technologies are not easy to manufacture tiny optical elements, such as tiny optical lenses (MicroLens), tiny optical lens arrays ( Micro Lens Array), etc., cannot effectively increase production and reduce production costs.
在公开号为US2003/0115907A1的美国专利申请中,公开了一种多镜片模造系统和方法,可用于同时制造多个光学元件。参照图1,在该方法中,采用了具有多个玻璃模造成形面的成形模具13,通过将平板玻璃材料的预形体15压置于该成形模具13上并进行加热和加压,将成形模具13上的多个成形面转写于平板玻璃材料的预形体15上,形成具有多个光学元件的玻璃基板。之后进行切割,即可得到多个光学元件。这种技术虽然可以使用简单的平板玻璃材料的预形体15来进行光学元件或者微小光学元件的玻璃模造成形,具有量产性并可降低生产成本,但是其模具制造较为复杂,并且,在将单个光学元件从具有多个光学元件的玻璃基板上分离时,难以控制其尺寸精度,不易获得较高精度的光学玻璃元件。In US Patent Application Publication No. US2003/0115907A1, a multi-lens molding system and method are disclosed, which can be used to manufacture multiple optical elements at the same time. Referring to FIG. 1, in this method, a forming
众所周知,在已知的技术中,为了能够有效减少色差,会在光学系统中加入由两个不同的镜片接合而成的复合式镜片。在第一镜片的表面涂覆黏着剂,再将第二镜片覆盖其上,调整两个镜片的位置,使两者的光轴达到同轴后,将黏着剂以加热或照射UV线(Ultraviolet Rays,紫外线)等方式予以固化。黏着剂固化后将使两个镜片接合在一起,获得所需的复合镜片。As we all know, in the known technology, in order to effectively reduce chromatic aberration, a composite lens formed by bonding two different lenses is added to the optical system. Coat the surface of the first lens with an adhesive, then cover the second lens, adjust the position of the two lenses so that the optical axes of the two are coaxial, and heat or irradiate the adhesive with UV rays (Ultraviolet Rays) , UV) and other methods to be cured. After curing the adhesive will join the two lenses together to obtain the desired composite lens.
这两个镜片需先经研磨或模造成形后,经过定芯工序定义其外径与偏心状况,才能进行黏合工序,因此个别独立的光学镜片在黏合过程中易再发生偏心恶化的状况,必须改变镜片的相对位置,予以调芯校正后才能进行接合。The two lenses need to be ground or molded first, and then go through the centering process to define their outer diameter and eccentricity before proceeding to the bonding process. Therefore, individual independent optical lenses are prone to eccentricity and deterioration during the bonding process, which must be changed. The relative position of the lens can only be bonded after being adjusted and corrected.
此外,黏着剂固化后将在两个光学镜片之间形成界面,该界面具有不同于这两个光学镜片的光学特性,通常会具有较低的折射率、较高的反射率或吸收率,受此界面的影响,使该复合镜片并无法充分提升收色差的效果。In addition, after the adhesive is cured, an interface will be formed between two optical lenses. Due to the impact of this interface, the composite lens cannot fully improve the effect of chromatic aberration.
黏着剂通常为高子物质所形成,因此其固化后形成的界面易于日后使用中产生劣化现象,耐久性差。并且,该界面的热膨胀率与两个镜片的热膨胀率差异大,易受热膨胀的影响,于日后使用中可能产生破坏剥离的现象。Adhesives are usually formed of high-substances, so the interface formed after curing is prone to deterioration in future use and has poor durability. Moreover, the thermal expansion rate of the interface is greatly different from that of the two lenses, which is easily affected by thermal expansion, and may cause damage and peeling in future use.
发明内容 Contents of the invention
本发明要解决的技术问题在于,针对现有技术的镜片模造技术仅能制造单片式镜片且精度不高、而黏合式的复合镜片易受到黏着剂不良影响的缺陷,提供一种整片式玻璃模造复合镜片及其制造方法,可在模造过程中形成整片式玻璃模造复合镜片,避免黏着剂的影响。The technical problem to be solved by the present invention is to provide a whole-piece lens molding technology that can only manufacture single-piece lenses with low precision, and bonded composite lenses are easily affected by adhesives. The glass molded composite lens and its manufacturing method can form a whole glass molded composite lens in the molding process, avoiding the influence of adhesives.
本发明解决其技术问题所采用的技术方案是:构造一种整片式玻璃模造复合镜片,包含:The technical solution adopted by the present invention to solve the technical problem is to construct a monolithic glass molded composite lens, comprising:
第一片体,是由第一玻璃材料制成,该第一玻璃材料具有玻璃转化温度,该第一片体具有顶面、底面、多个沿数切割方向形成于该顶、底面之间而呈多组式排列的第一光学元件,该第一光学元件分别具有第一接合面部;及The first sheet is made of a first glass material, the first glass material has a glass transition temperature, the first sheet has a top surface, a bottom surface, and a plurality of cutting directions are formed between the top and bottom surfaces. First optical elements arranged in multiple groups, the first optical elements respectively have first bonding surfaces; and
多个第二光学元件,是由多个第二玻璃材料分别制成,每一第二玻璃材料具有小于或等于该第一玻璃材料的玻璃转化温度的成形温度,该第二光学元件分别具有融着于该第一接合面部上的第二接合面部。A plurality of second optical elements are respectively made of a plurality of second glass materials, each second glass material has a forming temperature less than or equal to the glass transition temperature of the first glass material, and the second optical elements have melting The second joint surface rests on the first joint surface.
在本发明所述的整片式玻璃模造复合镜片中,更包含对正标记,位于该第一片体沿其中任一切割方向设置于该顶、底面的至少其中一者上。In the integral glass molded composite lens of the present invention, an alignment mark is further included, located on at least one of the top and bottom surfaces of the first sheet along any cutting direction.
在本发明所述的整片式玻璃模造复合镜片中,该第一光学组件的第一接合面部和第二光学组件的第二接合面部均呈球面状,或者均呈非球面状。In the monolithic glass molded composite lens of the present invention, the first joint surface of the first optical component and the second joint surface of the second optical component are both spherical or aspherical.
在本发明所述的整片式玻璃模造复合镜片中,该第一光学元件是沿两互相垂直的切割方向形成于该顶、底面之间而呈多组式排列。In the monolithic glass molded composite lens of the present invention, the first optical elements are formed between the top and bottom surfaces along two mutually perpendicular cutting directions and are arranged in multiple groups.
在本发明所述的整片式玻璃模造复合镜片中,该第一片体的横截面是呈圆形,该对正标记是位于该第一片体的中心在线并对称于该第一片体的中心。In the monolithic glass molded composite lens of the present invention, the cross section of the first sheet is circular, and the alignment mark is located on the center line of the first sheet and is symmetrical to the first sheet center of.
本发明还提供了一种整片式玻璃模造复合镜片的制造方法,包含:The present invention also provides a method for manufacturing a monolithic glass molded composite lens, comprising:
(A)将第一玻璃材料成形为第一片体,该第一玻璃材料具有玻璃转化温度,该第一片体具有顶面、底面、多个沿数切割方向形成于该顶、底面之间而呈多组式排列的第一光学元件,该第一光学元件分别具有第一接合面部;及(A) forming the first glass material into a first sheet, the first glass material has a glass transition temperature, the first sheet has a top surface, a bottom surface, and a plurality of cutting directions are formed between the top and bottom surfaces and the first optical elements arranged in multiple groups, the first optical elements each have a first bonding surface; and
(B)将多个第二玻璃材料分别在该第一光学元件的第一接合面部上同步成形为多个第二光学元件,每一第二玻璃材料具有小于或等于该玻璃转化温度的成形温度,该第二光学元件分别具有融着于该第一接合面部上的第二接合面部。(B) Simultaneously molding a plurality of second glass materials on the first bonding surface of the first optical element to form a plurality of second optical elements, each second glass material having a forming temperature less than or equal to the glass transition temperature , the second optical element respectively has a second bonding surface fused to the first bonding surface.
在本发明所述的整片式玻璃模造复合镜片的制造方法中,在该步骤〔A〕中,至少一对正标记沿其中一切割方向设置于该顶、底面的其中一者上。In the method for manufacturing a monolithic glass molded composite lens according to the present invention, in the step [A], at least one pair of positive marks are arranged on one of the top and bottom surfaces along one of the cutting directions.
在本发明所述的整片式玻璃模造复合镜片的制造方法中,更包含在该步骤(B)之后的步骤(C),在该步骤(C)中,沿该切割方向将该第一光学元件切割分离。In the manufacturing method of the monolithic glass molded composite lens according to the present invention, it further comprises a step (C) after the step (B), in the step (C), the first optical lens is cut along the cutting direction Components are cut and separated.
在本发明所述的整片式玻璃模造复合镜片的制造方法中,该第一光学组件的第一接合面部和该第二光学组件的第二接合面部均呈球面状,或者均呈非球面状。In the method for manufacturing a monolithic glass molded composite lens according to the present invention, both the first joint surface of the first optical component and the second joint surface of the second optical component are spherical, or both are aspherical .
在本发明所述的整片式玻璃模造复合镜片的制造方法中,在该步骤(A)中,该第一片体的横截面是呈圆形,该对正标记是位于该第一片体的中心线并对称于该第一片体的中心。In the method for manufacturing a monolithic glass molded composite lens according to the present invention, in the step (A), the cross section of the first sheet is circular, and the alignment mark is located on the first sheet and symmetrical to the center of the first sheet.
实施本发明的整片式玻璃模造复合镜片及其制造方法,具有以下有益效果:在两个阶段的成形过程中,利用Tg点差异大的玻璃材质形成整片式玻璃模造复合镜片。在同一模穴中,于不同阶段加压成形的玻璃镜片会因表面的反应或融着现象,在无须任何接著物质的辅助下仍能紧密结合在一起,且两个镜片在界面处具有共同形状的曲面,达到收色差的效果。除此之外,在含多个光学元件的基板上,以对正标记进行精密对准切割制程,提升了产量与制造精度。The implementation of the monolithic glass molded composite lens and its manufacturing method of the present invention has the following beneficial effects: In the two-stage forming process, the monolithic glass molded composite lens is formed by using glass materials with large differences in Tg points. In the same mold cavity, glass lenses formed under pressure at different stages can still be tightly bonded together without the aid of any adhesive material due to surface reaction or fusion phenomenon, and the two lenses have a common shape at the interface surface, to achieve the effect of color difference. In addition, on a substrate containing a plurality of optical elements, a precision alignment and cutting process is performed by aligning marks, which improves yield and manufacturing accuracy.
附图说明 Description of drawings
下面将结合附图及实施例对本发明作进一步说明,附图中:The present invention will be further described below in conjunction with accompanying drawing and embodiment, in the accompanying drawing:
图1是现有技术中用于模造多个单镜片的模具的横截面图;1 is a cross-sectional view of a mold for molding a plurality of single lenses in the prior art;
图2是本发明的模具组的示意图;Fig. 2 is the schematic diagram of mold group of the present invention;
图3是本发明的第一片体在第一阶段成形前,模具组与第一片体的横截面图;Fig. 3 is a cross-sectional view of the mold set and the first sheet before the first sheet of the present invention is formed in the first stage;
图4是本发明的第一片体在第一阶段成形时,模具组与第一片体的横截面图;Fig. 4 is a cross-sectional view of the mold set and the first sheet when the first sheet of the present invention is formed in the first stage;
图5是本发明的玻璃模造复合镜片在第二阶段成形前,模具组、玻璃预形体、以及第一片体的横截面图;5 is a cross-sectional view of the mold set, the glass preform, and the first sheet before the glass molded composite lens of the present invention is formed in the second stage;
图6是本发明的玻璃模造复合镜片在第二阶段成形时,模具组、玻璃预形体、以及第一片体的横截面图;6 is a cross-sectional view of the mold set, the glass preform, and the first sheet when the glass molded composite lens of the present invention is formed in the second stage;
图7是本发明的整片式玻璃模造复合镜片阵列基板的横截面图;7 is a cross-sectional view of a monolithic glass molded composite lens array substrate of the present invention;
图8是从图7所示的整片式玻璃模造复合镜片阵列基板分离得到的单个整片式玻璃模造复合镜片的横截面图。8 is a cross-sectional view of a single monolithic glass molded composite lens separated from the monolithic glass molded composite lens array substrate shown in FIG. 7. FIG.
图9是将单个整片式玻璃模造复合镜片从整片式玻璃模造复合镜片阵列基板上分离的示意图;9 is a schematic diagram of separating a single monolithic glass molded composite lens from the monolithic glass molded composite lens array substrate;
图10是将单个整片式玻璃模造复合镜片从整片式玻璃模造复合镜片阵列基板上分离的横截面图。10 is a cross-sectional view of a single monolithic glass molded composite lens separated from a monolithic glass molded composite lens array substrate.
具体实施方式 Detailed ways
图2是本发明的模具组的示意图。参照图2,该模具组用于成形光学元件阵列,从而得到例如光学镜片(Optical Lens)、微小镜片(Micro Lens)、微小镜片阵列(Micro Lens Array)或衍射光学元件(Diffractive OpticalElement)。该模具组100包括多个按照特定规则性阵列排列的成形模仁101、以及多个对正标记模仁102,模具100的横截面可以是圆形或者方形。Figure 2 is a schematic diagram of the die set of the present invention. Referring to FIG. 2, the mold set is used to form an array of optical elements to obtain, for example, optical lenses (Optical Lens), micro lenses (Micro Lens), micro lens arrays (Micro Lens Array) or diffractive optical elements (Diffractive Optical Element). The
将图中成形模仁101所排列的行和列的方向分别定义为X和Y方向,这两个方向也是所成形的光学元件阵列基板的切割方向。多个成型模仁101的中心在X方向的间距相等,均为A,且多个成型模仁101的中心在Y方向的间距相等,均为B。X方向上的模仁中心间距A和Y方向上的模仁中心间距B可以相等或者不相等,这根据最终光学元件的外观来确定。当最终的光学元件为长方形时,A与B不相等;当最终的光学元件为正方形时,A与B相等。The directions of rows and columns in which the forming
多个对正标记模仁102排列于模具组100的中心及两侧。其数量可以为,例如两个,并分别配置于模具组100中心的两侧。对正标记模仁102的排列间距可以与以上所述的成形模仁101的间距相同,也可以与之不同。但是,对正标记模仁102需配置于模具组100的中心线上,各对正标记模仁102的间距相等且关于模具组100的中心对称。此外,成形模仁101均布且对称地排列在对正标记模仁102的两侧。A plurality of
成形模仁101的外径或者最终光学元件的光学有效直径在X方向的间距为C,在Y方向的间距为D。得到最终的光学元件阵列基板后,将沿着两个光学元件的有效直径之间的部分进行切割,使其相互分离。根据最终的光学元件的外观,C和D可以相等或不等。当最终的光学元件为长方形时,C与D不相等;当最终的光学元件为正方形时,C与D相等。The outer diameter of the forming
由于在分离相邻的光学元件时,需要采用钻石砥石刀具进行切割,因此成形模仁101的外径在X方向的间距C、在Y方向的间距D都必须大于钻石砥石刀片的厚度,一般为100~500μm。Since the adjacent optical elements need to be cut with a diamond whetstone cutter, the distance C of the outer diameter of the forming
模具组100组装完成后,以具有模仁成形面的方向为镀膜面施以表面保护镀膜工艺,在模仁成形面上形成保护层。该保护层可以是例如钻石膜、碳塑薄膜、类钻碳薄膜、或者含有Pt、Ir、Re、Ru、Cr、Ni、Al、Ti、W、Mo中的一种或多种的金属或化合物薄膜。After the mold set 100 is assembled, a surface protection coating process is applied to the coating surface in the direction of the molding surface of the mold core to form a protective layer on the molding surface of the mold core. The protective layer can be, for example, a diamond film, a carbon plastic film, a diamond-like carbon film, or a metal or compound containing one or more of Pt, Ir, Re, Ru, Cr, Ni, Al, Ti, W, Mo film.
图3是本发明的第一片体在第一阶段成形前,模具组与第一片体的横截面图。如图3所示,上模具组100和下模具组200彼此相对设置。其中上模具组100包括如上所述的多个成形模仁101、多个对正标记模仁102、以及固定压板104。类似地,下模具组200包括多个成形模仁201、多个对正标记模仁202、以及固定压板204。第一片体300由第一玻璃材质制成,位于上模具组100和下模具组200之间。上模具组100和下模具组200分别带有模仁成形面103、203,分别用于第一片体300的顶面、底面的成形。Fig. 3 is a cross-sectional view of the mold set and the first sheet before the first sheet is formed in the first stage of the present invention. As shown in FIG. 3 , the upper mold set 100 and the lower mold set 200 are disposed opposite to each other. The upper mold set 100 includes a plurality of forming
模仁成形面103、203可以均为凸面,这种情况下所得到第一光学元件的两面均为凹面;模仁成形面103、203也可以是其中一个为凸面,另一个为凹面;这种情况下所得到第一光学元件的一面为凹面,另一面为凸面。此外,模仁成形面103、203可以是球面或者非球面,其尺寸也可以有所差异。这些都可根据要求而改变。The mold
在相同的排列方向上,成形模仁101和成形模仁201具有相同的中心间距E。图3是沿着图2中的Y方向得到的横截面,E与B相等。并且,成形模仁101和成形模仁201的排列方式采用上下一对一的方式,以确保上模具组100的各成形模仁101和对正标记模仁102,能与下模具组200的各成形模仁201和对正标记模仁202的中心轴线重合。In the same arrangement direction, the forming
在模造成形前,第一片体300置于模穴中央。当需在第一片体300上成形凸面形光学元件时,对应的成形模仁为凹面形。为了避免凹面的成形模仁内残留气体,成形前必须施以真空处理。凹面形光学元件的成形无气泡残留的疑虑,因此一般不必施以抽真空处理。Before molding, the
第一片体300的横截面形状为圆形或者方形,视模具组100和200的形状或设计而定。The cross-sectional shape of the
图4是本发明的第一片体在第一阶段成形时,上、下模具组100、200与第一片体300的横截面图。参照图4,该第一片体300具有顶面304和底面305。上、下模具组100、200将第一片体300夹在中间,成形时,采用例如电阻式或红外线加热方式,对上、下模具组100、200以及第一片体300进行直接或间接加热。当温度达到第一片体300的软化点或接近软化点的成形温度时,移动上模具组100往下运动;或者移动下模具组200向上运动,并对第一玻璃材质的第一片体300施加适当的成形压力,直至达到所需的厚度,随后加以冷却并取出。此时上、下模具组100、200的成形模仁101、201在第一片体300的顶面和底面之间形成多个第一光学元件301,这多个第一光学元件301沿着切割方向X、Y呈多组式排列,其上形成第一结合面部306。同时,对正标记模仁102、202的记号也转印于第一片体300上,形成含有对正标记302、303的第一片体300。该第一片体300包括四个对正标记,其中两个对正标记302沿着X或Y中的一个切割方向设置于第一片体300的顶面304;另两个对正标记303沿着X或Y中的一个切割方向设置于第一片体300的底面305。第一阶段的成形结束。Fig. 4 is a cross-sectional view of the upper and lower mold sets 100, 200 and the
参照图5和图6,在第二阶段的成形过程中,会在第一片体300上成形多个第二光学元件,形成整片式玻璃模造复合镜片阵列基板。将第一阶段成形时得到的第一片体300以对正标记303对位后,放置于模穴中,并将多个第二玻璃材质的玻璃预形体500放置于第一玻璃材料形成的第一片体300的第一结合面部306上。使用上模具组800、下模具组200将它们夹在中间。在图5和图6所示实施例中,上模具组800包括多个成形模仁801、多个对正标记模仁802、以及固定压板804。上模具组800使第二玻璃材质的玻璃预形体500的一面成形为凸面,因此其模仁成形面803为凹面。这可通过更改成形模仁101或更换模具组来实现。Referring to FIG. 5 and FIG. 6 , in the forming process of the second stage, a plurality of second optical elements will be formed on the
第一玻璃材质的第一片体300与第二玻璃材质的玻璃预形体500的差别在于,这两种材质的玻璃转化温度(Glass Transformation Point,Tg点,玻璃黏度约1012泊)差异较大,且第一玻璃材质的玻璃转化温度(Tg点)必须大于或等于第二玻璃材质的软化点温度(Soft Point,SP点,玻璃黏度约107.6泊)。该第二玻璃材质的成形温度介于其软化点温度与其降伏点温度之间,并且,该第二玻璃材质的成形温度小于或等于其软化温度,大于其降伏点温度。在模造成形过程中,先在第一阶段成形的过程中使第一玻璃材质的第一光学元件成形;之后在第二阶段成形的过程中才使第二玻璃材质的第二光学元件成形。The difference between the
之后,采用例如电阻式或红外线加热方式,对上模具组800、下模具组200、以及第二玻璃材质的玻璃预形体500进行直接或者间接加热。加热的温度不高于第一玻璃材质的第一片体300的Tg点,这是考虑到加热不至于造成较早成形的第一片体300产生变形现象,并能在模造时维持其应有的曲面形状与表面状况。当温度达到第二玻璃材质的玻璃预形体500的软化点或者接近其软化点的成形温度时,移动上模具组100往下运动,或者移动下模具组200往上运动,并对玻璃预形体500施加适当的成形压力,直至达到所需的厚度为止,随后加以冷却并取出。此时形成第二光学元件400。Afterwards, the upper mold set 800 , the lower mold set 200 , and the
在加热过程中,第一片体300的第一接合面部306与第二玻璃材质的第二光学元件400的第二接合面部401相邻,且两者之间的界面发生反应或者融著现象,使得两者无需任何接著物质的辅助就能够紧密结合在一起。上模具组100上的模仁成形面106的形状将转印于第二玻璃材质的第二光学元件400上,且第二玻璃材质的第二光学元件400将贴附于第一片体300的第一光学元件301上,形成具有对正标记记号302、303的整片式玻璃模造复合镜片阵列基板600(参照图7)。其中第一接合面部306和第二接合面部401可以均为球面,或者均为非球面。During the heating process, the
在本发明的第一实施例中,第一玻璃材质是日本OHARA公司的L-LAL13号玻璃,其Tg=534℃,SP=618℃,在第一阶段的成形中,于605℃成形;第二玻璃材质是日本OHARA公司的L-PHL2号玻璃,其Tg=381℃,SP=440℃,在第二阶段的成形中,于435℃成形。In the first embodiment of the present invention, the first glass material is No. L-LAL13 glass of Japan OHARA Company, its Tg=534 ℃, SP=618 ℃, in the forming of the first stage, it is formed at 605 ℃; The second glass material is No. L-PHL2 glass from Japan OHARA Company, its Tg=381°C, SP=440°C, in the second stage of forming, it is formed at 435°C.
在本发明的第二实施例中,第一玻璃材质是日本HOYA公司的M-BACD5N号玻璃,其Tg=480℃,SP=625℃,在第一阶段的成形中,于610℃成形;第二玻璃材质是日本OHARA公司的L-PHL1号玻璃,其Tg=347℃,SP=408℃,在第二阶段的成形中,于400℃成形。In the second embodiment of the present invention, the first glass material is No. M-BACD5N glass of Japan HOYA Company, its Tg=480 ℃, SP=625 ℃, in the forming of the first stage, it is formed at 610 ℃; The second glass material is No. L-PHL1 glass from Japan OHARA Company, its Tg=347°C, SP=408°C, in the second stage of forming, it is formed at 400°C.
在本发明的第三实施例中,第一玻璃材质是德国Schott公司的BK7号玻璃,其Tg=557℃,SP=719℃,在第一阶段的成形中,于700℃成形;第二玻璃材质是日本Sumita公司的K-PG395号玻璃,其Tg=381℃,SP=420℃,在第二阶段的成形中,于398℃成形。In the third embodiment of the present invention, the first glass material is No. BK7 glass of German Schott Company, its Tg=557 ℃, SP=719 ℃, in the forming of the first stage, it is formed at 700 ℃; the second glass The material is No. K-PG395 glass of Japan Sumita Company, its Tg=381°C, SP=420°C, in the second stage of forming, it is formed at 398°C.
由于形成整片式玻璃模造复合镜片阵列基板600的两种玻璃材料具有差异较大的Tg点,并在同一模穴中以不同阶段的加压成形工艺制成,因界面的反应或融着现象而紧密结合,且两个光学元件在界面处具有共同形状的曲面,无异质界面,能充分提升复合式镜片的收色差效果。此外,两个光学元件在同一模穴中直接模造接合成形,可确保同心,无需任何后续调芯工程。并且模造接合成形的接合强度高,界面无接合物质不发生界面劣化,且受热膨胀影响小;接合成形后,可再直接进行退火、定芯、涂墨等工程,而不发生界面剥离现象。Since the two glass materials that form the monolithic glass molded composite
如图7和图8所示,整片式玻璃模造复合镜片阵列基板600含有上对正标记302、下对正标记303,其上的整片式玻璃模造复合镜片为规则形阵列,具有第一面形601、第二面形602、和第三面形603(参照图8),并且由第一玻璃材质的第一光学元件301和第二玻璃材质的第二光学元件400组合而成。其中,第二面形602由第二光学元件400的第二接合面部401融着于第一片体300的第一接合面部306而形成。之后利用对正标记302、303以及规则阵列的特性,沿着切割方向将单个整片式玻璃模造复合镜片从整片式玻璃模造复合镜片阵列基板600上分离,得到所需的整片式玻璃模造复合镜片700(如图8所示)。以下将参照图9和图10描述将光学元件分离的过程。As shown in Figures 7 and 8, the integral glass molded composite
参照图9和图10,将沿着各光学元件之间的X方向的切割道605、Y方向上的切割道606来切割整片式玻璃模造复合镜片阵列基板600。X方向的各切割道605之间的间距必须相等,且Y方向的各切割道606之间的间距必须相等。根据最终的光学元件的外观,X方向的各切割道605之间的间距和Y方向的各切割道606之间的间距可以相等或不等。当最终的光学元件为长方形时,两者不相等;当最终的光学元件为正方形时,两者相等。Referring to FIG. 9 and FIG. 10 , the monolithic glass molded composite
将整片式玻璃模造复合镜片700自整片式玻璃模造复合镜片阵列基板600上切割分离,需先以显微镜或CCD校准多个对正标记302、303的相对位置,以作为后续钻石砥石切割时的基准。依此基准,调节数控平台与待切割基板的相对位置,使切割过程沿着切割道605、606进行,最终获得整片式玻璃模造复合镜片700。To cut and separate the monolithic glass molded
在图9所示的实施例中,整片式玻璃模造复合镜片阵列基板600为圆形,切割得到的整片式玻璃模造复合镜片700为正方形,且具有凸面和凹面面型。In the embodiment shown in FIG. 9 , the monolithic glass molded composite
参照图10,切割分离时,将整片式玻璃模造复合镜片阵列基板600平整黏贴于UV胶带903上,并固定于切割机的数控平台905上。随后采用CCD显微镜头902校准多个对正标记302的相对位置。校准时,在屏幕906上对准并重迭经放大的对正标记302与CCD校准记号901,直到多个对正标记302与CCD校准记号901的相对位置完全吻合。校准记号的形状为例如方形、菱形、星形、十字线等。Referring to FIG. 10 , when cutting and separating, the monolithic glass molded composite
以多个对正标记302、303校准所得到的相对基准线为依据,利用计算机运算并控制相对多个切割道605、606的位置,以高速回转的钻石砥石刀具904进行切割作业。切割时切刃必须切透整片式玻璃模造复合镜片阵列基板600,但不切透UV胶带903。切割完成后,以UV光照射,分离得到独立的多个整片式玻璃模造复合镜片700。Based on the relative reference line obtained by the calibration of multiple alignment marks 302, 303, computer calculations are used to control the positions of
本发明在两个阶段的成形过程中,利用Tg点差异大的玻璃材质形成整片式玻璃模造复合镜片,解决了平板玻璃形成凸面面行的成形干涉问题。在同一模穴中,于不同阶段加压成形的玻璃镜片会因表面的反应或融着现象,因此在无须任何接著物质的辅助下仍能紧密结合在一起,且两个镜片在界面处具有共同形状的曲面,达到收色差的效果。除此之外,在含多个光学元件的基板上,以对正标记进行精密对准切割制程,提升了产量与制造精度。In the two-stage forming process, the present invention utilizes glass materials with large differences in Tg points to form a monolithic glass molded composite lens, and solves the forming interference problem of flat glass forming convex surface rows. In the same mold cavity, the glass lenses formed under pressure at different stages will be closely bonded together without the aid of any adhesive material due to the surface reaction or fusion phenomenon, and the two lenses have a common feature at the interface. The curved surface of the shape can achieve the effect of collecting color difference. In addition, on a substrate containing a plurality of optical elements, a precision alignment and cutting process is performed by aligning marks, which improves yield and manufacturing accuracy.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101491081A CN101665321B (en) | 2008-09-02 | 2008-09-02 | Monolithic glass molded composite lens and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101491081A CN101665321B (en) | 2008-09-02 | 2008-09-02 | Monolithic glass molded composite lens and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101665321A CN101665321A (en) | 2010-03-10 |
CN101665321B true CN101665321B (en) | 2012-08-22 |
Family
ID=41802133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101491081A Expired - Fee Related CN101665321B (en) | 2008-09-02 | 2008-09-02 | Monolithic glass molded composite lens and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101665321B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105437020B (en) * | 2015-12-23 | 2017-08-25 | 福建福光股份有限公司 | There is flat surface spherical mirror processing technology |
CN115536248B (en) * | 2022-10-18 | 2023-12-01 | 上海毫米星光光学有限公司 | Preparation method and system of composite lens |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1406890A (en) * | 2001-08-27 | 2003-04-02 | 保谷株式会社 | Molding shaper and method thereof |
TWI265305B (en) * | 2005-09-13 | 2006-11-01 | Asia Optical Co Inc | Integration of optical product with multiple optical components and casting apparatus thereof |
TW200742738A (en) * | 2006-05-09 | 2007-11-16 | Asia Optical Co Inc | Glass-molded compound lens and manufacturing method thereof |
-
2008
- 2008-09-02 CN CN2008101491081A patent/CN101665321B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1406890A (en) * | 2001-08-27 | 2003-04-02 | 保谷株式会社 | Molding shaper and method thereof |
TWI265305B (en) * | 2005-09-13 | 2006-11-01 | Asia Optical Co Inc | Integration of optical product with multiple optical components and casting apparatus thereof |
TW200742738A (en) * | 2006-05-09 | 2007-11-16 | Asia Optical Co Inc | Glass-molded compound lens and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
JP特开2006-171164A 2006.06.29 |
Also Published As
Publication number | Publication date |
---|---|
CN101665321A (en) | 2010-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3154544U (en) | Small laminated optical glass lens module | |
TW201037385A (en) | Rectangular stacked glass lens module with alignment fixture and manufacturing method thereof | |
US20040050104A1 (en) | Forming information transfer lens array | |
JP3160406U (en) | Rectangular laminated glass lens module (Rectangular stacked glass lens module) | |
US20120045619A1 (en) | Substrate provided with optical structure and optical element using the same | |
JP2008285375A (en) | Bonding optical element and manufacturing method thereof | |
US20130194676A1 (en) | Glass Lens | |
JP2007304569A (en) | Compound lens and manufacture method thereof | |
WO2014042060A1 (en) | Lens array, lens array laminate body, lens array manufacturing method, lens array laminate body manufacturing method, and lens unit manufacturing method | |
US7764446B2 (en) | Bonded optical element | |
CN101665321B (en) | Monolithic glass molded composite lens and method of manufacturing the same | |
CN101872050A (en) | Square stacked glass lens module and its manufacturing method | |
JP2008285374A (en) | Bonding optical element and manufacturing method thereof | |
US7746574B2 (en) | Bonded optical element | |
CN101386465A (en) | Mould of moulded glass | |
JP3154617U (en) | Laminated optical lens array and laminated lens module thereof | |
US20060260363A1 (en) | Method of manufacturing optical element | |
JP4777265B2 (en) | Method and apparatus for manufacturing optical components by thermoforming | |
CN201477271U (en) | Square stacked glass lens module | |
US20070204655A1 (en) | Method of manufacturing optical glass element | |
CN101762856A (en) | Array optical glass lens module and manufacturing method thereof | |
JP3157641U (en) | Optical glass lens array module | |
CN115536248A (en) | A kind of preparation method and system of compound lens | |
JP2004010456A (en) | Optical element manufacturing method and optical element | |
JP2013033222A (en) | Diffractive optical element and imaging apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120822 Termination date: 20130902 |