CN101654060A - Mechanic and hydraulic hybrid type power transmission system and control method - Google Patents
Mechanic and hydraulic hybrid type power transmission system and control method Download PDFInfo
- Publication number
- CN101654060A CN101654060A CN200910092577A CN200910092577A CN101654060A CN 101654060 A CN101654060 A CN 101654060A CN 200910092577 A CN200910092577 A CN 200910092577A CN 200910092577 A CN200910092577 A CN 200910092577A CN 101654060 A CN101654060 A CN 101654060A
- Authority
- CN
- China
- Prior art keywords
- motor
- internal combustion
- hydraulic pump
- hydraulic
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000002485 combustion reaction Methods 0.000 claims abstract description 124
- 238000006073 displacement reaction Methods 0.000 claims abstract description 14
- 239000007858 starting material Substances 0.000 claims abstract description 12
- 238000003860 storage Methods 0.000 claims description 5
- 239000003921 oil Substances 0.000 description 29
- 239000000446 fuel Substances 0.000 description 19
- 238000011084 recovery Methods 0.000 description 13
- 230000001133 acceleration Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 208000006011 Stroke Diseases 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000010720 hydraulic oil Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000049552 Pteris tremula Species 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 210000004712 air sac Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013028 emission testing Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000029305 taxis Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Abstract
本发明涉及一种机液混合动力传动系统及控制方法。传动系统特征在于一台液压泵/马达(12)刚性连接在内燃机(2)和离合器(11)之间,液压泵/马达(12)的高压油口与二位三通阀A(4)相连,并通过液控单向阀(7)与高压蓄能器(5)相连;液压泵/马达(12)的低压油口与低压蓄能器(13)相连;液压泵/马达(12)还通过二位三通阀B(8)与液控单向阀(7)相连;高压蓄能器(5)的压力传感器(6)、制动踏板位置传感器(15)、加速踏板位置传感器(16)和内燃机起动钥匙位置传感器(17)通过电缆与混合动力控制单元(9)连接;混合动力控制单元(9)通过泵/马达排量电液控制装置(14)连接液压泵/马达(12)。该装置结构简单、操作方便、成本较低,既可对在用车进行改造亦可应用于新车。
The invention relates to a machine-hydraulic hybrid power transmission system and a control method. The transmission system is characterized in that a hydraulic pump/motor (12) is rigidly connected between the internal combustion engine (2) and the clutch (11), and the high-pressure oil port of the hydraulic pump/motor (12) is connected with the two-position three-way valve A (4) , and is connected with the high-pressure accumulator (5) through the hydraulic control check valve (7); the low-pressure oil port of the hydraulic pump/motor (12) is connected with the low-pressure accumulator (13); the hydraulic pump/motor (12) also The two-position three-way valve B (8) is connected to the hydraulic control check valve (7); the pressure sensor (6) of the high-pressure accumulator (5), the brake pedal position sensor (15), the accelerator pedal position sensor (16 ) and the internal combustion engine starter key position sensor (17) are connected to the hybrid power control unit (9) through cables; the hybrid power control unit (9) is connected to the hydraulic pump/motor (12) through the pump/motor displacement electro-hydraulic control device (14) . The device has the advantages of simple structure, convenient operation and low cost, and can be used for rebuilding existing vehicles or for new vehicles.
Description
技术领域 technical field
本发明提供一种机液混合动力传动系统及控制方法,具体涉及机动车动力及传动系统的能量利用、转换和存储。本发明的目的是实现机动车的节能和减排。The invention provides a machine-hydraulic hybrid power transmission system and a control method, and specifically relates to energy utilization, conversion and storage of motor vehicle power and transmission systems. The purpose of the invention is to realize the energy saving and emission reduction of motor vehicles.
背景技术 Background technique
随着机动车数量的迅猛增长,石油消耗逐年增加,同时机动车排放的尾气造成了严重的大气污染。研究表明,对以内燃机为动力的车辆,只有15-25%的燃油能量用在驱动车辆上,其余燃油能量则被车辆行驶过程中的滚动阻力、风阻、加速、制动过程所消耗。为了减少机动车的能耗和排放,传统的方法包括,提高内燃机的效率,提高传动系的效率,降低车辆总重,采用低风阻的车身等。以上机动车节能措施需要付出巨大的研制和生产成本,甚至不得不牺牲车辆的安全性和驾驶性能。氢燃料电池车辆具有较高的能量利用效率和零排放,远期前景看好,但是在氢能的低成本制取、安全运输和高能量密度存贮等技术尚未取得根本性突破的情况下,氢燃料电池车辆无法在近期实现商业化。蓄电池驱动的电动车辆具有较高的能量利用效率和零排放,技术较成熟,但是在蓄电池的成本、重量、能量密度、功率密度、续驶里程、寿命、充电时间等技术指标尚未取得明显进步的情况下,蓄电池驱动的电动车辆很难全面实现产业化,只能在特定区域运行。经过多年的研究,车辆界已达成共识,在石油资源尚未枯竭之前,内燃机驱动的车辆仍将是主流,氢燃料电池和蓄电池驱动的零排放车辆是终极目标,在目前比较现实可行的机动车节能减排方案是内燃机与电池的混合动力技术。内燃机-电池-电动机/发电机深度混合动力系统通过发电机回收车辆制动能量、采用电动机起步和辅助内燃机加速并使内燃机始终处于高效工作区,实现机电混合动力车辆相比于传统纯汽油车辆节油30-50%的目标,成为目前最有前途的车辆动力系统节能技术之一。With the rapid growth of the number of motor vehicles, oil consumption is increasing year by year, and the tail gas emitted by motor vehicles has caused serious air pollution. Studies have shown that for vehicles powered by internal combustion engines, only 15-25% of the fuel energy is used to drive the vehicle, and the rest of the fuel energy is consumed by rolling resistance, wind resistance, acceleration, and braking during vehicle driving. In order to reduce energy consumption and emissions of motor vehicles, traditional methods include improving the efficiency of the internal combustion engine, improving the efficiency of the drive train, reducing the total weight of the vehicle, and adopting a body with low wind resistance. The above energy-saving measures for motor vehicles need to pay huge development and production costs, and even have to sacrifice the safety and driving performance of the vehicle. Hydrogen fuel cell vehicles have high energy utilization efficiency and zero emissions, and the long-term prospects are promising. Fuel cell vehicles cannot be commercialized in the near future. Battery-driven electric vehicles have high energy utilization efficiency and zero emissions, and the technology is relatively mature, but technical indicators such as battery cost, weight, energy density, power density, driving range, life, and charging time have not yet made significant progress. Under such circumstances, it is difficult to fully realize the industrialization of battery-driven electric vehicles and can only operate in specific areas. After years of research, the vehicle industry has reached a consensus that before oil resources are exhausted, vehicles driven by internal combustion engines will still be the mainstream, and zero-emission vehicles driven by hydrogen fuel cells and batteries are the ultimate goal. The emission reduction solution is the hybrid technology of internal combustion engine and battery. The internal combustion engine-battery-electric motor/generator deep hybrid system recovers vehicle braking energy through the generator, uses the electric motor to start and assist the internal combustion engine to accelerate, and keeps the internal combustion engine in a high-efficiency working area all the time. Compared with traditional pure gasoline vehicles, electromechanical hybrid vehicles save energy. The goal of oil 30-50% has become one of the most promising energy-saving technologies for vehicle power systems.
然而,目前的机电混合(内燃机-蓄电池-发电机/电动机)动力车辆采用的蓄电池-发电机式制动能量回收系统存在着一些缺点。由于蓄电池固有的充放电特性,使其功率密度较低,无法在短时间内蓄积或释放大量的能量。因此在车辆制动时间很短、制动能量密度极高的情况下,蓄电池-发电机式制动能量回收系统难以有效回收制动瞬间产生的巨大动能,导致其制动能量的回收效率不高。而经常在城市运行的公交车、出租车等车辆需要经常起动、制动,内燃机效率极低,且对制动器要求极高。由此可见,结构更为简单、功率密度更高、成本更低,适合于车辆频繁制动和起步的液压蓄能器-液压泵/马达式制动能量回收技术应运而生。由于在液压蓄能器-液压泵/马达式制动能量回收系统中的能量转换过程中没化学能与机械能之间的相互转化,因此其转换速度快。另外,由于蓄能器的功率密度较高,这使得液压蓄能器-液压泵/马达式制动能量回收系统能够更有效且更快速地回收制动能量。因此,带有液压蓄能器-液压泵/马达式制动能量回收系统的机液混合(内燃机-液压蓄能器-液压泵/马达)动力车辆作为另一种适合于城市工况行驶的节能环保型车辆而越来越受到人们的关注。However, there are some disadvantages in the battery-generator braking energy recovery system adopted by the current electromechanical hybrid (internal combustion engine-battery-generator/electric motor) powered vehicle. Due to the inherent charging and discharging characteristics of the battery, its power density is low, and it is impossible to store or release a large amount of energy in a short time. Therefore, when the braking time of the vehicle is very short and the braking energy density is extremely high, it is difficult for the battery-generator type braking energy recovery system to effectively recover the huge kinetic energy generated at the moment of braking, resulting in low braking energy recovery efficiency. . However, vehicles such as buses and taxis that often operate in cities need to be started and braked frequently. The efficiency of internal combustion engines is extremely low, and the requirements for brakes are extremely high. It can be seen that the structure is simpler, the power density is higher, and the cost is lower. The hydraulic accumulator-hydraulic pump/motor braking energy recovery technology suitable for frequent braking and starting of vehicles has emerged as the times require. Since there is no mutual conversion between chemical energy and mechanical energy in the energy conversion process in the hydraulic accumulator-hydraulic pump/motor brake energy recovery system, its conversion speed is fast. In addition, due to the high power density of the accumulator, this enables the hydraulic accumulator-hydraulic pump/motor braking energy recovery system to recover braking energy more effectively and quickly. Therefore, the machine-hydraulic hybrid (internal combustion engine-hydraulic accumulator-hydraulic pump/motor) powered vehicle with a hydraulic accumulator-hydraulic pump/motor brake energy recovery system is another energy-saving vehicle suitable for driving in urban conditions. Environmentally friendly vehicles are attracting more and more attention.
发明内容 Contents of the invention
本发明针对传统内燃机在能量利用和排放方面的不足以及机电混合动力系统的复杂和高成本,提出一种机液混合动力传动系统及控制方法。本发明的机液混合动力传动系统,根据车辆的实际运行工况,通过对内燃机的运行工况调优、采用液压泵/马达回收制动能量、采用液压泵/马达起动内燃机和驱动车辆、采用内燃机受控熄火等技术手段实现机动车较大幅度的节能减排。The invention proposes a mechanical-hydraulic hybrid power transmission system and a control method aiming at the deficiencies in energy utilization and emission of traditional internal combustion engines and the complexity and high cost of electromechanical hybrid power systems. According to the actual operating conditions of the vehicle, the machine-hydraulic hybrid power transmission system of the present invention optimizes the operating conditions of the internal combustion engine, adopts the hydraulic pump/motor to recover braking energy, uses the hydraulic pump/motor to start the internal combustion engine and drives the vehicle, and adopts Controlled flameout of internal combustion engines and other technical means can achieve relatively large energy saving and emission reduction of motor vehicles.
本发明的目的就是要根据车辆的负荷特点和内燃机的动力特性,通过机液混合实现对车辆动力系统的优化。该系统结构简单、改造容易、操作方便,在保证车辆动力性和舒适性的条件下,使内燃机经常工作在高效低排放区,能够实现停车内燃机熄火、内燃机工况调优、制动能量回收,只需在车辆离合器之前加装一个液压泵/马达,改造容易。The purpose of the present invention is to realize the optimization of the vehicle power system through the mixing of machine and fluid according to the load characteristics of the vehicle and the power characteristics of the internal combustion engine. The system is simple in structure, easy to modify, and easy to operate. Under the condition of ensuring the power and comfort of the vehicle, the internal combustion engine can often work in the high-efficiency and low-emission area, and can realize the shutdown of the internal combustion engine, the optimization of the working conditions of the internal combustion engine, and the recovery of braking energy. It is easy to retrofit by simply installing a hydraulic pump/motor before the vehicle clutch.
本发明的核心思想是,采用液压泵/马达起动内燃机并驱动车辆起步。在低速低负荷,采用内燃机工况调优和液压泵/马达蓄能及内燃机受控熄火,实现内燃机的节能和减排。在中高速采用纯内燃机驱动。刹车时,采用液压泵/马达回收制动能量。采用液压泵/马达,离合器、变速器和混合动力电控单元实现机液混合动力系统的高效和低排放。The core idea of the present invention is to adopt the hydraulic pump/motor to start the internal combustion engine and drive the vehicle to start. At low speed and low load, the internal combustion engine can save energy and reduce emissions by adopting internal combustion engine condition optimization, hydraulic pump/motor energy storage and internal combustion engine controlled flameout. It is driven by pure internal combustion engine at medium and high speeds. When braking, a hydraulic pump/motor is used to recover braking energy. The hydraulic pump/motor, clutch, transmission and hybrid electronic control unit are used to realize the high efficiency and low emission of the mechanical-hydraulic hybrid system.
本发明的一种机液混合动力传动系统包括,内燃机电控单元1、内燃机2、起动电机3、变速器10、离合器11、内燃机起动钥匙位置传感器17;其特征在于还包括,二位三通阀A4、高压蓄能器5、压力传感器6、液控单向阀7、二位三通阀B8、混合动力电控单元9、液压泵/马达12、低压蓄能器13、泵/马达排量电液控制装置14、制动踏板位置传感器15、加速踏板位置传感器16;一台液压泵/马达12刚性连接在内燃机2和离合器11之间,液压泵/马达12的高压油口与二位三通阀A4相连,并通过液控单向阀7与高压蓄能器5相连;液压泵/马达12的低压油口与低压蓄能器13相连;液压泵/马达12还通过二位三通阀B8与液控单向阀7相连;高压蓄能器5的压力传感器6、制动踏板位置传感器15、加速踏板位置传感器16和内燃机起动钥匙位置传感器17通过电缆与混合动力控制单元9连接;混合动力控制单元9通过泵/马达排量电液控制装置14连接液压泵/马达12。A machine-hydraulic hybrid power transmission system of the present invention includes an internal combustion engine
高压蓄能器5和低压蓄能器13均为普通的囊式蓄能器,气囊的一侧充填氮气,另一侧充填液压油。高压蓄能器5的压力上限范围25-40Mpa,高压蓄能器5的压力下限范围10-15Mpa,低压蓄能器13的压力范围0.1-0.5Mpa,可根据需要通过囊式蓄能器上的调压阀设定压力限值。Both the high-
二位三通阀B8处于p1并且二位三通阀A4处于p4接通状态时,来自高压蓄能器5的高压油经二位三通阀B8流向液控单向阀7,使液控单向阀7反向打开,致使来自高压蓄能器5的高压油通过二位三通阀A4流入液压泵/马达12,驱动液压泵/马达转动;二位三通阀B8处于p2断开状态时,液控单向阀7反向关闭。二位三通阀A4处于p3卸载位置时,液压泵/马达12处于卸载状态;二位三通阀A4处于p4接通状态并且二位三通阀B8处于p2断开状态时,车辆惯性通过变速器10、离合器11带动液压泵/马达12转动,泵出的高压油通过液控单向阀7进入高压蓄能器5存储。混合动力电控单元9接收来自高压蓄能器压力传感器6的压力信号g、制动踏板位置信号a、加速踏板位置信号b,内燃机起动钥匙信号c以及来自内燃机电控单元1的内燃机状态信号h。混合动力电控单元9发出起动电机控制信号j、液压泵/马达控制信号d、二位三通阀A4控制信号e、二位三通阀B8控制信号f以及内燃机控制信号i实现内燃机的电动机或液压泵/马达起动、内燃机-液压混合动力加速、液压泵/马达对制动能量的回收、液压泵/马达对制动能量的利用、内燃机自动熄火和起动等功能。When the two-position three-way valve B8 is in p1 and the two-position three-way valve A4 is in the connected state of p4, the high-pressure oil from the high-
本发明装置的工作机制是:The working mechanism of the device of the present invention is:
1)采用离合器11实现液压泵/马达12和变速器10的动力连接或断开。1) The clutch 11 is used to realize the power connection or disconnection of the hydraulic pump/
2)液压泵/马达12与内燃机2动力输出轴刚性连接。内燃机转动时,液压泵/马达跟随转动,通过调节液压泵/马达的斜盘角实现液压泵/马达的负载(斜盘角大于零度)或空载(斜盘角等于零度)运行。2) The hydraulic pump/
3)采用液压泵/马达12回收制动能量或液压泵/马达驱动车辆行驶时,内燃机2跟随液压泵/马达转动,为了减少内燃机跟随转动消耗的泵气功,通过混合动力电控单元9发送指令至内燃机电控单元1,驱动可变气门正时机构同时关闭进排气门,使活塞变成气体弹簧。当需要内燃机工作时,通过混合动力电控单元9发送指令至内燃机电控单元1使进、排气门配气相位恢复到正常值。3) When the hydraulic pump/
4)采用气囊式蓄能器存储液压油。一个高压蓄能器5用于存储液压泵/马达12泵出的高压油,一个低压蓄能器13用于存储液压泵/马达12的低压回油。4) The airbag accumulator is used to store hydraulic oil. A high-
5)在机动车刹车或内燃机2负载运行时,液压泵/马达12处于液压泵工况,液压泵/马达12把机动车的制动能量转化为高压油存储在高压蓄能器5,实现对制动能量的回收;在机动车起步时,液压泵/马达12处于液压马达工况,存储在高压蓄能器5中的高压油驱动液压泵/马达12转动,通过离合器11和变速器10实现动力输出。5) When the motor vehicle brakes or the
6)混合动力电控单元9通过发送二位三通阀B8控制信号f,控制二位三通阀B8处于接通状态p1实现液控单向阀7反向打开,控制二位三通阀B8处于断开状态p2,实现液控单向阀7关闭。6) The hybrid electric control unit 9 controls the two-position three-way valve B8 to be in the connected state p1 by sending the control signal f of the two-position three-way valve B8 to realize the reverse opening of the hydraulic
7)混合动力电控单元9通过发送二位三通阀A4控制信号e,控制二位三通阀A4处于接通状态p4,实现液压泵/马达12通过液控单向阀7泵油至高压蓄能器5或通过混合动力电控单元9实现液控单向阀7反向打开,实现利用高压蓄能器5中存储的高压油驱动液压泵/马达12转动并输出转矩。二位三通阀A4的初始或缺省位置为p3,二位三通阀B8的初始或缺省位置为p2。7) The hybrid electric control unit 9 controls the two-position three-way valve A4 to be in the on-state p4 by sending the two-position three-way valve A4 control signal e, so that the hydraulic pump/
本装置采用如下控制策略,实现机液混合动力系统的高效运行。在内燃机2起动时,采用液压泵/马达12将内燃机2拖到800rpm以上实现高效起动,如高压蓄能器5油压低于压力上限范围,则采用常规电动机3起动。车辆液压起步时,采用液压泵/马达12驱动车辆,直至车速达到变速器可以直接挂入三档后,转换成内燃机2单独或机液混合动力驱动车辆行驶;如高压蓄能器5油压处于压力下限范围,则采用内燃机2单独驱动车辆起步。在车辆低速、低负荷行驶工况,混合动力电控单元9向内燃机电控单元1发送指令,将内燃机2调优至高效工作区,多余的内燃机能量驱动液压泵/马达12把低压蓄能器13中的低压油,泵到高压蓄能器5中存储,当高压蓄能器5内的油压达到压力上限范围,混合动力电控单元9向内燃机电控单元1发出内燃机控制信号i,关闭内燃机2,混合动力电控单元9发出控制指令f,e,d使液压泵/马达12处于马达工况,二位三通阀A4处于接通状态p4,二位三通阀B8处于接通状态p1,存储在高压蓄能器5内的液压油驱动液压泵/马达12通过离合器11和变速器10驱动车辆行驶;当高压蓄能器5内的油压降低到压力下限范围,重新由液压泵/马达12起动内燃机2,如此循环进行。当车辆处于中高速行驶工况,则由内燃机2单独或与液压泵/马达12联合驱动车辆行驶。当踩下制动踏板刹车时,在制动踏板的自由行程阶段,混合动力电控单元9发出控制指令使液压泵/马达12处于泵工况,二位三通阀A4处于接通状态p4,二位三通阀B8处于断开状态p2,通过液压泵/马达12实现制动能量的液压能回收。This device adopts the following control strategy to realize the efficient operation of the machine-hydraulic hybrid power system. When the
本发明的节能和减排效果体现在:The energy saving and emission reduction effects of the present invention are reflected in:
机液混合动力系统车辆的内燃机转速和车辆的速度不再是固定的速比,从而可以使内燃机经常工作在高效、低排放区。在车辆低速、低负荷工况,采用内燃机受控熄火和液压泵/马达回收制动能量及液压泵/马达起动内燃机可大幅提高内燃机的热效率并降低排放。在车辆停车时,采用内燃机熄火节油或使内燃机处于最低油耗工作区,变速器处于空档位置,利用多余的内燃机输出功率驱动液压泵/马达将低压蓄能器内的低压油泵入高压蓄能器存储,以便能够再次采用液压泵/马达起动内燃机或驱动车辆起步。通过内燃机受控熄火和使内燃机经常处于低油耗区运行,可在节油的同时大幅降低排放。The rotational speed of the internal combustion engine and the speed of the vehicle with the mechanical-hydraulic hybrid system are no longer at a fixed speed ratio, so that the internal combustion engine can often work in a high-efficiency and low-emission area. In the low-speed and low-load condition of the vehicle, the use of controlled flameout of the internal combustion engine, recovery of braking energy by the hydraulic pump/motor and starting of the internal combustion engine by the hydraulic pump/motor can greatly improve the thermal efficiency of the internal combustion engine and reduce emissions. When the vehicle is parked, the internal combustion engine is turned off to save fuel or the internal combustion engine is in the lowest fuel consumption working area, the transmission is in the neutral position, and the excess internal combustion engine output power is used to drive the hydraulic pump/motor to pump the low-pressure oil in the low-pressure accumulator into the high-pressure accumulator Stored so that the hydraulic pump/motor can be used again to start the internal combustion engine or drive the vehicle off the ground. By controlling the flameout of the internal combustion engine and making the internal combustion engine often operate in the low fuel consumption area, the emission can be greatly reduced while saving fuel.
内燃机起动internal combustion engine start
转动车辆钥匙至起动点火位置,离合器11结合,变速器10置空档。混合动力电控单元9接收内燃机起动钥匙信号c和高压蓄能器压力信号g,如判定高压蓄能器5中的压力低于压力下限范围,则发出起动电机控制信号j,通过起动电动机3带动飞轮转动,实现内燃机的电动机起动;如判定高压蓄能器5中的压力处于或高于压力下限范围,混合动力电控单元9向泵/马达排量电液控制装置14发出控制指令d使液压泵/马达12处于马达工况,发出控制指令e,f使二位三通阀A4处于接通状态p4,二位三通阀B8处于接通状态p1,存储在高压蓄能器5内的液压油驱动液压泵/马达12高速转动,实现内燃机液压泵/马达起动。电机起动只能将内燃机拖动到250rpm左右即开始点火,此时内燃机的喷油量为正常量的2-5倍以上,混和气过浓,导致油耗和排放过高;液压泵/马达则能将内燃机拖动到800rpm以上方开始点火,此时内燃机的喷油量为正常量的1倍左右,混和气在理论空燃比附近,可大幅度降低起动油耗并通过催化器高效转化内燃机排放。Turn the vehicle key to the starting ignition position, the clutch 11 is combined, and the
混合动力电控单元9接收内燃机起动钥匙信号c和高压蓄能器压力信号g,如判定高压蓄能器5中的压力达到压力上限范围,则内燃机2不起动,而在接到加速踏板位置信号b后,采用液压泵/马达12直接驱动车辆起步。The hybrid electric control unit 9 receives the internal combustion engine start key signal c and the high-pressure accumulator pressure signal g. If it is determined that the pressure in the high-
车辆起步vehicle start
车辆起步分为内燃机起步和液压泵/马达起步2种工况。混合动力电控单元9根据起动钥匙信号c和加速踏板位置信号b等,判定车辆处于起步状态。如车辆起步时,内燃机2处于工作状态,则利用内燃机动力实现车辆起步;如此时高压蓄能器5中的油压达到压力上限范围,则关闭内燃机,采用液压泵/马达12起步。Vehicle starting is divided into two working conditions: internal combustion engine starting and hydraulic pump/motor starting. The hybrid electronic control unit 9 determines that the vehicle is in the starting state according to the start key signal c and the accelerator pedal position signal b. If the
内燃机动力起步internal combustion engine power start
车辆起步时,松开手制动器,离合器11结合,变速器10置一档。内燃机2的动力通过液压泵/马达12、离合器11和变速器10传递给差速器、半轴和车轮,实现车辆的内燃机驱动起步。此时,混合动力电控单元9向泵/马达排量电液控制装置14发出控制指令d使液压泵/马达12的斜盘角为零度,处于卸载状态。When the vehicle starts, the hand brake is released, the clutch 11 is combined, and the
液压泵/马达动力起步Hydraulic pump/motor powered starting
车辆起步时,松开手制动器,离合器11结合,变速器10置一档。混合动力电控单元9根据来自油压传感器6的信号g判定高压蓄能器5中的油压达到压力上限范围,则向泵/马达排量电液控制装置14发出控制指令d使液压泵/马达12处于马达工况并根据加速踏板位置信号b的变化率确定斜盘角的增加率,液压泵/马达动力通过离合器11和变速器10传递给差速器、半轴和车轮,实现车辆平稳液压泵/马达起步。When the vehicle starts, the hand brake is released, the clutch 11 is combined, and the
车辆低速、低负荷行驶Vehicle running at low speed and low load
在车辆低速、低负荷行驶工况,混合动力电控单元9向内燃机电控单元1发送指令,将内燃机2调优至高效工作区,多余的内燃机能量驱动液压泵/马达12把低压蓄能器13中的低压油,泵到高压蓄能器5中存储,当高压蓄能器5的油压达到压力上限范围,关闭内燃机2。混合动力电控单元9发出控制指令f,e,d使液压泵/马达12处于马达工况,二位三通阀A4处于接通状态p4,二位三通阀B8处于接通状态p1,存储在高压蓄能器5内的液压油驱动液压泵/马达12,通过离合器11和变速器10驱动车辆行驶;当高压蓄能器5内的油压降低到压力下限范围,重新由液压泵/马达12起动内燃机2,如此循环进行。In the low-speed, low-load driving condition of the vehicle, the hybrid electric control unit 9 sends instructions to the internal combustion engine
车辆加速行驶vehicle speeding up
车辆加速分为内燃机加速和内燃机及液压泵/马达混合动力加速2种工况。混合动力电控单元9根据加速踏板位置信号b,判定车辆处于加速状态。如车辆加速时,高压蓄能器15中的油压处于压力下限范围,则利用内燃机动力使车辆加速,内燃机2的动力通过处于卸载状态的液压泵/马达12、离合器11和变速器10传递给差速器、半轴和车轮,实现车辆的内燃机加速。如此时高压蓄能器5中的油压达到压力上限范围,则采用内燃机及液压泵/马达混合动力加速。混合动力电控单元9向泵/马达排量电液控制装置14发出控制指令d使液压泵/马达12处于马达工况并根据加速踏板位置信号b的变化率确定斜盘角的增加率。此时,内燃机2和液压泵/马达12的动力通过离合器11和变速器10传递给差速器、半轴和车轮,实现车辆的内燃机及液压泵/马达混合动力加速。车辆加速时,变速器可逐渐挂入高档。Vehicle acceleration is divided into two working conditions: internal combustion engine acceleration and internal combustion engine and hydraulic pump/motor hybrid acceleration. The hybrid electronic control unit 9 determines that the vehicle is in an accelerating state according to the accelerator pedal position signal b. When the vehicle accelerates, the oil pressure in the high-
车辆中高速行驶Vehicle driving at high speed
当车辆处于中高速行驶工况,则由内燃机2单独或与液压泵/马达12联合驱动车辆行驶,控制过程类似3.5.4。When the vehicle is running at a medium-high speed, the
车辆减速行驶Vehicle slows down
车辆减速行驶分为滑行、慢减速(拥堵市区内的频繁缓刹)和快减速(急刹车)3种工况。混合动力电控单元9根据制动踏板位置信号a和加速踏板位置信号b,判定车辆处于减速行驶状态,根据制动踏板位置信号的加速度判定车辆处于慢减速或快减速状态。车辆处于滑行状态时,加速踏板和制动踏板均处于松开状态,此时要利用车辆的行驶动能实现尽可能长的滑行距离,液压系统不回收滑行能量。车辆处于慢减速状态时,松开加速踏板,缓慢踩下制动踏板,在制动踏板的自由行程阶段,利用液压系统回收车辆动能,实现车辆初步减速,如仍达不到需要的减速强度,则在踏板的工作行程通过车辆的机械制动系统实现车辆较快速制动。车辆处于快减速状态时,需要迅速使车辆减速甚至停车,此时必须迅速踩下制动踏板,使制动踏板迅速进入工作行程,实现车辆快速制动,在该制动过程的自由行程,液压泵/马达采用大斜盘角快速回收制动能量并与机械制动系统一道实现快速制动停车。Vehicle deceleration is divided into three working conditions: coasting, slow deceleration (frequent slow braking in congested urban areas) and fast deceleration (sudden braking). The hybrid electric control unit 9 judges that the vehicle is in a deceleration state according to the brake pedal position signal a and the accelerator pedal position signal b, and judges that the vehicle is in a slow deceleration or fast deceleration state according to the acceleration of the brake pedal position signal. When the vehicle is in the coasting state, both the accelerator pedal and the brake pedal are released. At this time, the driving kinetic energy of the vehicle should be used to achieve the longest possible coasting distance, and the hydraulic system does not recover the coasting energy. When the vehicle is in the state of slow deceleration, release the accelerator pedal and slowly step on the brake pedal. During the free travel stage of the brake pedal, use the hydraulic system to recover the kinetic energy of the vehicle to realize the initial deceleration of the vehicle. If the required deceleration intensity is still not reached, Then, in the working stroke of the pedal, the vehicle is braked more quickly through the mechanical braking system of the vehicle. When the vehicle is in a state of rapid deceleration, it is necessary to quickly decelerate or even stop the vehicle. At this time, the brake pedal must be stepped on quickly, so that the brake pedal can quickly enter the working stroke to realize rapid braking of the vehicle. During the free stroke of the braking process, hydraulic pressure The pump/motor adopts a large swash plate angle to quickly recover the braking energy and together with the mechanical braking system, realize quick braking and stopping.
车辆滑行vehicle taxiing
车辆滑行阶段,制动踏板和加速踏板均处于松开状态。混合动力电控单元9根据制动踏板位置信号a和加速踏板位置信号b,判定车辆处于滑行状态。混合动力电控单元9向泵/马达排量电液控制装置14发出控制指令d使液压泵/马达12的斜盘角为零度,泵/马达处于溢流卸载状态,发出控制指令e使二位三通阀A4处于p3卸载位置。滑行过程中可手控或电控内燃机熄火,以实现节油。During the coasting phase of the vehicle, both the brake pedal and the accelerator pedal are released. The hybrid electronic control unit 9 determines that the vehicle is in a coasting state according to the brake pedal position signal a and the accelerator pedal position signal b. The hybrid electric control unit 9 sends a control command d to the pump/motor displacement electro-
车辆慢减速Vehicle slows down
车辆慢减速阶段,加速踏板处于松开状态,缓慢踩下制动踏板。混合动力电控单元9根据制动踏板位置信号a的变化率,判定车辆处于慢减速状态。在制动踏板的自由行程,利用液压泵/马达回收车辆的行驶动能。混合动力电控单元9向泵/马达排量电液控制装置14发出控制指令d使液压泵/马达12处于泵工况并根据制动踏板位置信号a的变化率确定斜盘角的增加率。此时,车辆动能通过变速器10和离合器11驱动液压泵/马达12转动,把存储在低压蓄能器13内的低压油加压后,通过液控单向阀7泵入高压蓄能器5,实现制动能量的液压能回收。During the slow deceleration stage of the vehicle, the accelerator pedal is released, and the brake pedal is slowly stepped on. The hybrid electric control unit 9 determines that the vehicle is in a slow deceleration state according to the rate of change of the brake pedal position signal a. During the free travel of the brake pedal, the hydraulic pump/motor is used to recover the driving kinetic energy of the vehicle. The hybrid electric control unit 9 sends a control command d to the pump/motor displacement electro-
车辆快减速vehicle deceleration
车辆快减速阶段,加速踏板处于松开状态,迅速踩下制动踏板。混合动力电控单元9根据制动踏板位置信号a的变化率,判定车辆处于快减速状态。混合动力电控单元9向泵/马达排量电液控制装置14发出控制指令d使液压泵/马达12处于泵工况并根据制动踏板位置信号a的变化率确定斜盘角的增加率。在车辆快减速阶段的制动自由行程,液压泵/马达采用大斜盘角快速回收制动能量并与机械制动系统一道实现快速制动停车。During the rapid deceleration stage of the vehicle, the accelerator pedal is in a released state, and the brake pedal is quickly stepped on. The hybrid electronic control unit 9 determines that the vehicle is in a fast deceleration state according to the rate of change of the brake pedal position signal a. The hybrid electric control unit 9 sends a control command d to the pump/motor displacement electro-
车辆停车vehicle parking
车辆制动停车时,加速踏板处于松开状态,制动踏板处于松开或踩下状态,变速器置空档。混合动力电控单元9根据制动踏板位置信号a、加速踏板位置信号b和从内燃机电控单元1发送到混合动力电控单元9的内燃机状态信号h中包含的车速信号,判定车辆处于停车状态。如混合动力电控单元9接收高压蓄能器5的压力传感器信号g,判定油压达到压力上限范围,则向内燃机电控单元1发出熄火指令,使内燃机熄火。否则,混合动力电控单元9向内燃机电控单元1发送指令,将内燃机2调优至高效工作区,内燃机能量通过液压泵/马达存储到高压蓄能器5中,当高压蓄能器5内的油压达到压力上限范围,关闭内燃机2。When the vehicle brakes to stop, the accelerator pedal is in the state of release, the brake pedal is in the state of release or depression, and the transmission is in neutral. The hybrid electric control unit 9 judges that the vehicle is in a stopped state according to the brake pedal position signal a, the accelerator pedal position signal b and the vehicle speed signal contained in the internal combustion engine state signal h sent from the internal combustion engine
附图说明 Description of drawings
图1本发明的结构和工作原理图图中1、内燃机电控单元;2、内燃机;3、起动电机;4、二位三通阀A;5、高压蓄能器;6、压力传感器;7液控单向阀;8、二位三通阀B;9、混合动力电控单元;10、变速器;11、离合器;12、液压泵/马达;13、低压蓄能器;14、泵/马达排量电液控制装置;15、制动踏板位置传感器;16、加速踏板位置传感器;17、内燃机起动钥匙位置传感器;a、制动踏板位置信号;b、加速踏板位置信号;c、内燃机起动钥匙位置信号;d、液压泵/马达控制信号;e、二位三通阀A4控制信号;f、二位三通阀B8控制信号;g、高压蓄能器5压力信号;h、来自内燃机电控单元1的内燃机状态信号;i、内燃机控制信号;j、起动电机控制信号。p3二位三通阀A4卸载位置;p4二位三通阀A4接通位置;p1二位三通阀B8接通位置;p2二位三通阀B8断开位置;1, the internal combustion engine electric control unit among the figure 1 structure of the present invention; 2, internal combustion engine; 3, starter motor; 4, two-position three-way valve A; 5, high pressure accumulator; 6, pressure sensor; 7 Hydraulic control check valve; 8. Two-position three-way valve B; 9. Hybrid electric control unit; 10. Transmission; 11. Clutch; 12. Hydraulic pump/motor; 13. Low-pressure accumulator; 14. Pump/motor Displacement electro-hydraulic control device; 15. Brake pedal position sensor; 16. Accelerator pedal position sensor; 17. Internal combustion engine starting key position sensor; a. Brake pedal position signal; b. Accelerator pedal position signal; c. Internal combustion engine starting key Position signal; d, hydraulic pump/motor control signal; e, two-position three-way valve A4 control signal; f, two-position three-way valve B8 control signal; g,
具体实施方式 Detailed ways
基于本发明提出的一种机液混合动力传动系统及控制方法,对一辆1.6L装备手动变速器的达到国4排放标准的轿车进行了改装,采用的液压泵/马达排量为56mL/rpm,转速范围0-3000rpm,额定功率45KW。改装车按照国标GB/T19233-2003《轻型车辆燃料消耗量试验方法》进行了油耗检测,按照国标GB18352.3-2005《轻型车辆污染物排放限值及测量方法》进行了排放检测。检测结果表明,在城市工况,改装车比原车节油30%,在郊区工况与原车相当。综合城市和郊区工况,改装车与原车相比,改装车比原车节油17%,CO2排放降低了16.6%,NOx排放降低了14.3%,CO降低了45.4%,HC降低了53.2%。Based on a kind of mechanical-hydraulic hybrid power transmission system and control method proposed by the present invention, a 1.6L sedan equipped with a manual transmission and reaching the national 4 emission standard has been refitted, and the displacement of the hydraulic pump/motor adopted is 56mL/rpm, Speed range 0-3000rpm, rated power 45KW. The refitted vehicle was tested for fuel consumption in accordance with the national standard GB/T19233-2003 "Test Method for Fuel Consumption of Light Vehicles", and for emission testing in accordance with the national standard GB18352.3-2005 "Limits and Measurement Methods of Pollutant Emissions for Light Vehicles". The test results show that the refitted car can save 30% fuel than the original car in urban working conditions, and is equivalent to the original car in suburban working conditions. Comprehensive urban and suburban working conditions, compared with the original car, the refitted car saves 17% of fuel, reduces CO2 emissions by 16.6%, NOx emissions by 14.3%, CO by 45.4%, and HC 53.2%.
上述整车试验结果表明,采用本发明提供的机液混合动力传动系统,可实现机动车较大幅度的节能和减排,该技术将为机动车达到更高的节能标准提供一条有效的技术途径。The test results of the above-mentioned whole vehicle show that adopting the mechanical-hydraulic hybrid power transmission system provided by the present invention can realize relatively large energy-saving and emission reduction of motor vehicles, and this technology will provide an effective technical approach for motor vehicles to achieve higher energy-saving standards .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910092577A CN101654060A (en) | 2009-09-11 | 2009-09-11 | Mechanic and hydraulic hybrid type power transmission system and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910092577A CN101654060A (en) | 2009-09-11 | 2009-09-11 | Mechanic and hydraulic hybrid type power transmission system and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101654060A true CN101654060A (en) | 2010-02-24 |
Family
ID=41708591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910092577A Pending CN101654060A (en) | 2009-09-11 | 2009-09-11 | Mechanic and hydraulic hybrid type power transmission system and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101654060A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102019842A (en) * | 2010-11-26 | 2011-04-20 | 北京工业大学 | Hydraulic hybrid electric vehicle transmission system and control method thereof |
CN102029888A (en) * | 2010-11-26 | 2011-04-27 | 北京工业大学 | Power system for mechanical-electrical-liquid hybrid-driven vehicle and control method thereof |
CN102795221A (en) * | 2012-08-01 | 2012-11-28 | 江苏大学 | Electric vehicle electric-hydraulic hybrid driving system and control method thereof |
CN102922981A (en) * | 2012-10-29 | 2013-02-13 | 长城汽车股份有限公司 | Hybrid power drive device and vehicle |
CN103476651A (en) * | 2011-04-21 | 2013-12-25 | 丰田自动车株式会社 | Control device for vehicle driving device |
CN103693034A (en) * | 2013-07-15 | 2014-04-02 | 南京工程学院 | Electro-hydraulic proportional valve control pump/motor hydraulic power assisted system of electric automobile |
CN103950389A (en) * | 2014-01-20 | 2014-07-30 | 南京工程学院 | Electric vehicle hydraulic control pump/motor power assisting system |
CN105443509A (en) * | 2015-12-31 | 2016-03-30 | 浙江省送变电工程公司 | Portable vehicle oil line circulating device and working method thereof |
CN105620262A (en) * | 2015-07-30 | 2016-06-01 | 青岛理工大学 | Fuel cell hydraulic hybrid power system and control method thereof |
CN106740083A (en) * | 2016-12-19 | 2017-05-31 | 长安大学 | A kind of propons assistant drive system of dumper |
CN112963394A (en) * | 2021-03-03 | 2021-06-15 | 三一重机有限公司 | Engineering machine and control method |
-
2009
- 2009-09-11 CN CN200910092577A patent/CN101654060A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102029888A (en) * | 2010-11-26 | 2011-04-27 | 北京工业大学 | Power system for mechanical-electrical-liquid hybrid-driven vehicle and control method thereof |
CN102019842A (en) * | 2010-11-26 | 2011-04-20 | 北京工业大学 | Hydraulic hybrid electric vehicle transmission system and control method thereof |
CN103476651A (en) * | 2011-04-21 | 2013-12-25 | 丰田自动车株式会社 | Control device for vehicle driving device |
CN103476651B (en) * | 2011-04-21 | 2015-12-16 | 丰田自动车株式会社 | The control setup of vehicle driving apparatus |
CN102795221B (en) * | 2012-08-01 | 2015-06-10 | 江苏大学 | Electric vehicle electric-hydraulic hybrid driving system and control method thereof |
CN102795221A (en) * | 2012-08-01 | 2012-11-28 | 江苏大学 | Electric vehicle electric-hydraulic hybrid driving system and control method thereof |
CN102922981B (en) * | 2012-10-29 | 2015-06-03 | 长城汽车股份有限公司 | Hybrid power drive device and vehicle |
CN102922981A (en) * | 2012-10-29 | 2013-02-13 | 长城汽车股份有限公司 | Hybrid power drive device and vehicle |
CN103693034A (en) * | 2013-07-15 | 2014-04-02 | 南京工程学院 | Electro-hydraulic proportional valve control pump/motor hydraulic power assisted system of electric automobile |
CN103950389A (en) * | 2014-01-20 | 2014-07-30 | 南京工程学院 | Electric vehicle hydraulic control pump/motor power assisting system |
CN103950389B (en) * | 2014-01-20 | 2016-02-10 | 南京工程学院 | Electronlmobil hydraulic control pump/motor force aid system |
CN105620262A (en) * | 2015-07-30 | 2016-06-01 | 青岛理工大学 | Fuel cell hydraulic hybrid power system and control method thereof |
CN105443509A (en) * | 2015-12-31 | 2016-03-30 | 浙江省送变电工程公司 | Portable vehicle oil line circulating device and working method thereof |
CN105443509B (en) * | 2015-12-31 | 2018-10-16 | 浙江省送变电工程公司 | A kind of portable vehicle oil circulation device and its working method |
CN106740083A (en) * | 2016-12-19 | 2017-05-31 | 长安大学 | A kind of propons assistant drive system of dumper |
CN112963394A (en) * | 2021-03-03 | 2021-06-15 | 三一重机有限公司 | Engineering machine and control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101654060A (en) | Mechanic and hydraulic hybrid type power transmission system and control method | |
CN101913320B (en) | Pressure hybrid power transmission system and control method | |
CN102069788B (en) | Pneumatic vehicular braking energy recovery and recycling device and control method | |
CN202130300U (en) | Flywheel energy storage hydraulic driving device of hybrid power vehicle | |
CN101337499A (en) | Vehicle brake kinetic energy regeneration device | |
CN103223849B (en) | A kind of parallel-connection type hybrid power driver for vehicle | |
CN103029559B (en) | Afterheat of IC engine based on fuel cell utilizes hybrid power system | |
CN102029888B (en) | Power system for mechanical-electrical-liquid hybrid-driven vehicle and control method thereof | |
CN103552454B (en) | Series parallel type hydraulic hybrid vehicle power assembly system | |
CN106428042B (en) | A kind of electro-hydraulic mixing hydrostatic drive system of oil | |
CN100999184A (en) | Rear driven mixed power vehicle of motor hydraulic device connection type | |
CN102019842A (en) | Hydraulic hybrid electric vehicle transmission system and control method thereof | |
CN103775595B (en) | A kind of automobile-used regenerative braking stepless speed variator | |
CN203094026U (en) | Automobile braking energy recycling device | |
CN201816448U (en) | Tandem hydraulic-electric hybrid vehicle driving device | |
CN105292096B (en) | A kind of Recovering Waste Energy of Braking in Automobiles utilizes device | |
CN202345361U (en) | Double-axle drive unit of electrohydraulic composite hybrid power vehicles | |
CN201015988Y (en) | Vehicle energy regeneration device with a clutch | |
CN201472134U (en) | A machine-hydraulic hybrid power transmission system | |
CN102582410B (en) | Multifunctional dual energy-saving emission-reducing apparatus | |
CN104890663A (en) | Control method of uniaxial parallel-type hybrid electric vehicle engine | |
CN112706749A (en) | Hybrid power vehicle retarding method and vehicle | |
CN201240247Y (en) | Gas-electricity hybrid power coach | |
CN102862567A (en) | System and method for increasing operating efficiency of a hybrid vehicle | |
CN107472010B (en) | Electric oil series-parallel hybrid drive system of electric vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20100224 |