CN101650837A - Virtual-reality modeling method of ocean water body - Google Patents
Virtual-reality modeling method of ocean water body Download PDFInfo
- Publication number
- CN101650837A CN101650837A CN200910100669A CN200910100669A CN101650837A CN 101650837 A CN101650837 A CN 101650837A CN 200910100669 A CN200910100669 A CN 200910100669A CN 200910100669 A CN200910100669 A CN 200910100669A CN 101650837 A CN101650837 A CN 101650837A
- Authority
- CN
- China
- Prior art keywords
- water body
- ocean water
- data
- opengl
- ocean
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000003860 storage Methods 0.000 claims abstract description 12
- 238000013507 mapping Methods 0.000 claims abstract description 5
- 238000012876 topography Methods 0.000 claims abstract 7
- 238000012800 visualization Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 238000004088 simulation Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 11
- 238000013519 translation Methods 0.000 claims description 8
- 230000000007 visual effect Effects 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 5
- 230000008520 organization Effects 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims 10
- 239000007787 solid Substances 0.000 claims 3
- 238000012512 characterization method Methods 0.000 claims 2
- 238000005520 cutting process Methods 0.000 claims 2
- 238000005286 illumination Methods 0.000 claims 2
- 238000012217 deletion Methods 0.000 claims 1
- 230000037430 deletion Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000012360 testing method Methods 0.000 abstract description 4
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 230000007774 longterm Effects 0.000 abstract 1
- 230000000737 periodic effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000009877 rendering Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Processing Or Creating Images (AREA)
Abstract
本发明公开了一种海洋水体虚拟现实的建模方法。利用RS(遥感)数据通过方便、高效的数据处理过程和科学存储方式,并以OpenGL技术构建模型的主体,采用海表试验区轮廓线构建三维海洋水体的立体建模方法,由纹理映射表现海面波浪,利用平行轮廓线“投影”构造水体柱状体来表达RS数据的水深和水质等物理量变化情况,以体透明的方式再现了海洋水体和海底地形。本发明是在RS和GIS(地理信息系统)技术支持下,利用OpenGL作为建模工具实现三维海洋水体建模的新方法。本发明有效的利用了长期积累的RS资料,经过方便可行的数据处理,通过以上的模型绘制方法来实现三维海洋水体实时建模。本发明在海洋环境监测领域中应用前景非常广泛。The invention discloses a virtual reality modeling method of ocean water body. Using RS (remote sensing) data through convenient and efficient data processing and scientific storage methods, and using OpenGL technology to build the main body of the model, using the contour line of the sea surface test area to construct a three-dimensional modeling method for the three-dimensional ocean water body, and expressing the sea surface by texture mapping Waves use the "projection" of parallel contour lines to construct water body columns to express the changes in physical quantities such as water depth and water quality in RS data, and reproduce ocean water bodies and seabed topography in a volume-transparent manner. The invention is a new method for realizing three-dimensional ocean water body modeling by using OpenGL as a modeling tool under the technical support of RS and GIS (Geographic Information System). The present invention effectively utilizes long-term accumulated RS data, realizes real-time modeling of three-dimensional ocean water bodies through the above model drawing method through convenient and feasible data processing. The invention has very wide application prospect in the field of marine environment monitoring.
Description
技术领域 technical field
本发明涉及海洋水体建模方法,具体涉及一种海洋水体虚拟现实的建模方法。用于实现海洋水体的快速、实时建模,运用该方法可在中国海区域内任意划定观测区进行三维建模。The invention relates to a modeling method of an ocean water body, in particular to a virtual reality modeling method of an ocean water body. It is used to realize rapid and real-time modeling of marine water bodies. Using this method, the observation area can be arbitrarily delineated in the China Sea area for 3D modeling.
背景技术 Background technique
海洋约占地球表面积的71%,是一个开放的、具有多样性的复杂系统,其中有各种不同的时空尺度和不同层次的物质存在和运动形态。目前海洋水体的表达主要以电子海图等二维地图方式,海洋温度、盐度、透明度等反演数据多以文本的形式存在。随着海洋资源的开发与利用,对于海洋水体与海洋环境反演数据三维建模与可视化的需求逐渐增加。海洋资源的开发与利用要以海洋特征和规律为基础,计算机技术、虚拟现实技术等相关技术的发展为海洋水体三维建模提供了强有力的技术支撑。The ocean accounts for about 71% of the earth's surface area. It is an open and complex system with diversity, in which there are various time and space scales and different levels of material existence and movement forms. At present, the expression of ocean water bodies is mainly in the form of two-dimensional maps such as electronic charts, and the inversion data such as ocean temperature, salinity, and transparency mostly exist in the form of text. With the development and utilization of marine resources, the demand for 3D modeling and visualization of marine water and marine environment inversion data is gradually increasing. The development and utilization of marine resources should be based on the characteristics and laws of the ocean. The development of computer technology, virtual reality technology and other related technologies has provided strong technical support for 3D modeling of marine water bodies.
本发明的虚拟现实海洋水体实时建模是了解海洋综合环境的重要手段,是再现海洋温度、盐度、透明度等相关物理量指标的新方法。本研究提出的基于RS和GIS的海洋水体虚拟现实建模方法可以实现海洋水体的快速、实时建模,并能对中国海任意划定区域的水体建模。The real-time modeling of the virtual reality ocean water body of the present invention is an important means for understanding the comprehensive ocean environment, and is a new method for reproducing related physical quantity indicators such as ocean temperature, salinity, and transparency. The virtual reality modeling method of marine water body based on RS and GIS proposed in this study can realize rapid and real-time modeling of marine water body, and can model the water body of any demarcated area in the China Sea.
随着“数字海洋”的提出,国内外海洋三维实时建模研究日益成为热点,见[1]Rinehart R,Wright D.Benthic Habitat Classification and 3-DVisualizations[C].Association of American Geographers Centennial Meeting,American,Samoa,2004.[2]Alan M,et al.Visually-enabled Geo-collaborationto Support Data Exploration & Decision-making[C].Proceedings of the 21stInternational Cartographic Conference,Durban,South Africa,2003[3]上官伟,等.真实海洋环境视景仿真技术研究[J].系统仿真学报.2006:18(增2)。此外,国内外商用软件也不断推出,例如MultiGen-Paradigm.Inc的Vega。但海洋三维实时建模研究尚处于起步阶段,实时性不高,数据来源多样、复杂,商用软件价格昂贵都是目前存在的主要问题。With the proposal of "Digital Ocean", research on 3D real-time ocean modeling at home and abroad has become increasingly hot, see [1] Rinehart R, Wright D. Benthic Habitat Classification and 3-DVisualizations [C]. Association of American Geographers Centennial Meeting, American , Samoa, 2004.[2]Alan M, et al.Visually-enabled Geo-collaborationto Support Data Exploration & Decision-making[C].Proceedings of the 21stInternational Cartographic Conference, Durban, South Africa, 2003[3] Shangguanwei, etc. Research on Visual Simulation Technology of Real Marine Environment [J]. Journal of System Simulation. 2006: 18 (Add 2). In addition, commercial software at home and abroad is also continuously launched, such as Vega of MultiGen-Paradigm.Inc. However, the research on marine 3D real-time modeling is still in its infancy. The real-time performance is not high, the data sources are diverse and complex, and the commercial software is expensive. These are the main problems at present.
虚拟现实(Virtual Reality)是在计算机中构造出一个形象逼真的模型,从而生成一种具有三维世界效果的模拟环境。它是利用计算机对复杂数据进行可视化操作与交互的一种高科技手段,通过模拟的仿真虚拟环境使参观者得到身历其境的感觉。Virtual reality (Virtual Reality) is to construct a realistic model in the computer to generate a simulated environment with a three-dimensional world effect. It is a high-tech method that uses computers to visualize and interact with complex data. Through the simulated virtual environment, visitors can get the feeling of being on the scene.
OpenGL(Open Graphics Library)图形系统是一个软件接口,让程序员能够创建交互式程序,使用计算机图形学技术生成具有真实感的图像。使用OpenGL可以控制计算机图形学技术来生成真实感图形。OpenGL包括大约250个函数,用户可以使用它们来指定物体和操作,以创建交互式三维应用程序。The OpenGL (Open Graphics Library) graphics system is a software interface that enables programmers to create interactive programs that use computer graphics techniques to generate realistic images. Computer graphics techniques can be controlled using OpenGL to generate photorealistic graphics. OpenGL includes about 250 functions that users can use to specify objects and operations to create interactive 3D applications.
本发明中涉及到的OpenGL坐标系统包括以下三种:The OpenGL coordinate system involved in the present invention comprises following three kinds:
世界坐标是OpenGL中用来描述场景的坐标,Z轴垂直屏幕向外,X轴从左到右,Y轴从下到上,是右手笛卡尔坐标系统。The world coordinates are the coordinates used to describe the scene in OpenGL. The Z axis is vertical to the outside of the screen, the X axis is from left to right, and the Y axis is from bottom to top. It is a right-handed Cartesian coordinate system.
物体坐标是以物体某一点为原点而建立的“世界坐标”,该坐标系仅对该物体适用,用来简化对物体各部分坐标的描述。物体放到场景中时,各部分经历的坐标变换相同,相对位置不变,所以可视为一个整体,与人类的思维习惯一致。Object coordinates are "world coordinates" established with a certain point of the object as the origin. This coordinate system is only applicable to the object and is used to simplify the description of the coordinates of each part of the object. When an object is placed in the scene, the coordinate transformation experienced by each part is the same, and the relative position remains unchanged, so it can be regarded as a whole, which is consistent with human thinking habits.
眼坐标是以视点为原点,以视线的方向为Z轴正方向的坐标系中的方向。Eye coordinates are directions in a coordinate system with the viewpoint as the origin and the direction of the line of sight as the positive direction of the Z-axis.
随着海洋环境卫星遥感的发展,大量的RS数据已经或正在应用GIS技术进行管理与维护,海洋环境卫星遥感数据具有范围广、实时性高等特点,通过方便可行的数据处理方法和虚拟现实实时建模可以使大量的RS数据成为反映海洋水体的最直观的资料之一。With the development of marine environmental satellite remote sensing, a large amount of RS data has been or is being managed and maintained using GIS technology. The marine environmental satellite remote sensing data has the characteristics of wide range and high real-time performance. Modeling can make a large amount of RS data become one of the most intuitive materials reflecting ocean water bodies.
发明内容 Contents of the invention
本发明的目的是克服现有技术的不足,提供一种海洋水体虚拟现实的建模方法。海洋水体虚拟现实的建模方法如下步骤:The purpose of the present invention is to overcome the deficiencies of the prior art and provide a virtual reality modeling method for ocean water bodies. The modeling method of ocean water body virtual reality is as follows:
1)通过数据转换服务的方式,将原始海洋遥感环境反演数据文本格式自动转换为栅格数据集;1) Through the data conversion service, the text format of the original marine remote sensing environment inversion data is automatically converted into a raster dataset;
2)对转换后的数据进行了基于时间可视化方式的存储,支持对海量遥感栅格数据集的时空特性进行快速查询;2) The converted data is stored based on time visualization, which supports quick query of the spatio-temporal characteristics of massive remote sensing raster datasets;
3)OpenGL三维海洋水体场景的空间坐标系统设定,经过Z轴缩放、坐标系沿垂直屏幕方向向屏幕内平移、坐标系旋转以及X、Y轴坐标单位统一至经纬度坐标完成场景坐标系统设置;3) The spatial coordinate system setting of the OpenGL 3D ocean water scene, after Z-axis scaling, coordinate system translation to the screen along the vertical screen direction, coordinate system rotation, and X, Y-axis coordinate units unified to latitude and longitude coordinates, the scene coordinate system setting is completed;
4)根据用户构造的任意海域多边形轮廓线构建三维海洋水体表面,以平行轮廓线“投影”生成海洋水体立方体模型的主体;4) Construct the surface of the three-dimensional ocean water body according to the polygonal contour line of any sea area constructed by the user, and generate the main body of the cube model of the ocean water body by "projecting" parallel contour lines;
5)以海面波浪纹理对海表进行贴图,海底地形经由数字高程模型转换为OpenGL原语,用单一颜色渲染与多光源参数设置建模;5) Use the wave texture of the sea surface to map the sea surface, convert the seabed terrain into OpenGL primitives through the digital elevation model, and use single color rendering and multi-light source parameter settings to model;
6)由平行轮廓线“投影”和地形模拟拉伸获得栅格数据集物理量横截面,透明显示海洋水体表面获得各个角度的可视化效果。6) Obtain the cross-section of the physical quantity of the raster data set by the "projection" of the parallel contour line and the stretching of the terrain simulation, and transparently display the surface of the ocean water body to obtain visualization effects from various angles.
所述的通过数据转换服务的方式,将原始海洋遥感环境反演数据文本格式自动转换为栅格数据集步骤:是将原始海洋环境反演数据的Head文件头和数据体以文件流的形式读入内存,再将其按照栅格数据集的数据组织方式写入栅格数据集,利用Internet信息服务器检测目标文件夹下的数据文件,转换入库后删除源文件。The step of automatically converting the text format of the original marine remote sensing environment inversion data into a raster dataset by means of data conversion services: read the Head file header and data body of the original marine environment inversion data in the form of a file stream Then write it into the raster dataset according to the data organization method of the raster dataset, use the Internet information server to detect the data files in the target folder, and delete the source files after conversion and storage.
所述的对转换后的数据进行了基于时间可视化方式的存储,支持对海量遥感栅格数据集的时空特性进行快速查询步骤:基于时间可视化方式的存储是将原始海洋环境反演数据的Head文件头中的产品周期、产品生成时间段、产品生成时间点分别保存在产品元数据表、周期性时间元数据表和瞬时性时间元数据表中,以标准的SQL时间查询语句可快速的查询出时间集合内的数据集。The converted data is stored based on time visualization, which supports quick query of the spatio-temporal characteristics of massive remote sensing raster datasets: the storage based on time visualization is the head file of the original marine environment inversion data The product cycle, product generation time period, and product generation time point in the header are respectively stored in the product metadata table, periodic time metadata table, and instantaneous time metadata table, and can be quickly queried with standard SQL time query statements Datasets within a time collection.
所述的OpenGL三维海洋水体场景的空间坐标系统设定,经过Z轴缩放、XY轴坐标平面沿垂直屏幕方向向屏幕内平移、坐标系旋转以及X、Y轴坐标单位统一至经纬度坐标完成场景坐标系统设置步骤:OpenGL默认的世界坐标系统的X轴、Y轴和Z轴坐标单位长度是统一的,但考虑到海洋水体数据的特征,即水平方向(X,Y)坐标范围为(东经180度至西经180度,北纬90度至南纬90度),而全球海洋深度由0米至-10000多米不等,X轴、Y轴方向与Z轴方向的坐标单位长度相差2倍数量级以上,则会造成Z轴方向过于陡峭,建模效果不佳。所以,将Z轴坐标的单位长度缩小为原始长度的1/100,即X轴、Y轴的1单位长度,在Z轴上为100。OpenGL场景的世界坐标系统与眼坐标系统的XY轴平面是重合于屏幕平面的,所以需要将坐标系统沿垂直屏幕方向向屏幕内平移。世界坐标系统为右手笛卡尔坐标系统,XY轴平面与屏幕平行,生成场景的海平面与屏幕相平行,这与海平面应处于水平方向的常识不符,因此,要将坐标系旋转至Z轴向上,X轴水平向右为正方向、Y轴向上为正方向。代码如下:The spatial coordinate system setting of the OpenGL three-dimensional ocean water scene, after Z-axis scaling, XY-axis coordinate plane translation to the screen along the vertical screen direction, coordinate system rotation and X, Y-axis coordinate units unified to longitude and latitude coordinates to complete the scene coordinates System setting steps: OpenGL default world coordinate system X-axis, Y-axis and Z-axis coordinate unit length is uniform, but considering the characteristics of ocean water body data, that is, the horizontal direction (X, Y) coordinate range is (180 degrees east longitude to 180 degrees west longitude, 90 degrees north latitude to 90 degrees south latitude), while the depth of the global ocean ranges from 0 meters to more than -10,000 meters, and the coordinate unit lengths of the X-axis, Y-axis direction and Z-axis direction differ by more than 2 times the order of magnitude. It will cause the Z-axis direction to be too steep and the modeling effect will be poor. Therefore, the unit length of the Z-axis coordinate is reduced to 1/100 of the original length, that is, the unit length of the X-axis and Y-axis is 100 on the Z-axis. The world coordinate system of the OpenGL scene and the XY axis plane of the eye coordinate system coincide with the screen plane, so the coordinate system needs to be translated in the screen along the vertical screen direction. The world coordinate system is a right-handed Cartesian coordinate system. The XY axis plane is parallel to the screen. The sea level of the generated scene is parallel to the screen. This is inconsistent with the common sense that the sea level should be in the horizontal direction. Therefore, the coordinate system should be rotated to the Z axis , the positive direction of the X-axis is horizontal to the right, and the positive direction of the Y-axis is upward. code show as below:
GL.glScaled(1.0,1.0,1.0/100.0);GL.glScaled(1.0, 1.0, 1.0/100.0);
GL.glTranslatef(0.0f,-200.0f,0.0f);GL.glTranslatef(0.0f, -200.0f, 0.0f);
GL.glRotated(90.0,1.0,0.0,0.0);GL.glRotated(90.0, 1.0, 0.0, 0.0);
所述的根据用户构造的任意海域多边形轮廓线构建三维海洋水体表面,以平行轮廓线“投影”生成海洋水体立方体模型的主体步骤:根据用户构造的任意海域多边形轮廓线,利用GIS的方法裁剪、掩膜海表轮廓线外的区域,构建三维海洋水体表面,以平行轮廓线“投影”生成海洋水体立方体模型的主体。将轮廓线沿Z轴向下移动至海底地形数字高程模型的最大深度,两平行轮廓线之间以上下轮廓线上的拐点利用OpenGL构造矩形面,并透明显示。海洋水体柱状体X轴、Y轴平面内的尺寸取决于用户在二维电子地图中绘制的闭合多边形的尺寸,海洋水体深度Z轴方向是海底地形数字高程模型的最大深度。The main steps of constructing the three-dimensional ocean water body surface according to the polygonal contour line of the arbitrary sea area constructed by the user, and "projecting" the parallel contour line to generate the cube model of the ocean water body: according to the polygonal contour line of the arbitrary sea area constructed by the user, use GIS method to cut, The area outside the sea surface contour is masked to construct a three-dimensional ocean water body surface, and the main body of the ocean water cube model is generated by "projecting" parallel contour lines. Move the contour line down to the maximum depth of the digital elevation model of the seabed terrain along the Z axis, and use OpenGL to construct a rectangular surface at the inflection point between the two parallel contour lines and the upper and lower contour lines, and display it transparently. The size of the X-axis and Y-axis planes of the ocean water column depends on the size of the closed polygon drawn by the user in the two-dimensional electronic map. The depth of the ocean water in the Z-axis direction is the maximum depth of the digital elevation model of the seabed terrain.
所述的以海面波浪纹理对海表进行贴图,海底地形经由数字高程模型转换为OpenGL原语,用单一颜色渲染与多光源参数设置建模步骤:利用OpenGL在顶面进行海洋波浪纹理映射,贴图的位置信息来源于二维轮廓线,因海表为任意多边形,所以采用环绕模式“镜像”重复与裁剪来“补足”海表多边形映射或裁剪纹理,把海底地形数字高程模型先转换为文本文件格式,再用OpenGL原语描述出来,从而转化成OpenGL可识别的图形函数,海底地形采用单一颜色渲染,利用光照视点位置、视线方向、光照参数设置反映高程的变化。The sea surface is mapped with the sea surface wave texture, the seabed terrain is converted into the OpenGL primitive through the digital elevation model, and the modeling steps are set with single color rendering and multi-light source parameter setting: use OpenGL to map the ocean wave texture on the top surface, map The position information of the sea surface comes from the two-dimensional contour line. Since the sea surface is an arbitrary polygon, the surround mode "mirror" is used to repeat and crop to "complement" the sea surface polygon mapping or crop texture, and the seabed terrain digital elevation model is first converted into a text file. format, and then describe it with OpenGL primitives, so as to convert it into a graphics function recognizable by OpenGL. The seabed terrain is rendered in a single color, and the elevation change is reflected by the position of the lighting viewpoint, the direction of the line of sight, and the setting of lighting parameters.
所述的由平行轮廓线“投影”和地形模拟拉伸获得栅格数据集物理量横截面,透明显示海洋水体表面获得各个角度的可视化效果步骤:海洋水体柱状体的侧面用来表达海洋环境反演数据随深度变化的情况,通过平行轮廓线“投影”的方式将海表轮廓线映射到海洋环境反演数据的各分层信息上,得到海洋环境反演数据的二维轮廓线范围内的横截面。经预处理的海洋环境栅格数据集的像素为(x,y,value),其中包含坐标和物理量。海洋环境栅格数据集经由文本文件转换至OpenGL原语,再由地形模拟拉伸,即将物理量值value作为高程方向Z的坐标,以数字高程模型的方式拉伸获得显著直观的分层信息。海洋水体表面采用透明显示以便从任意角度透视各分层海洋环境反演数据。Obtain the cross-section of the physical quantity of the raster data set by the "projection" of the parallel contour lines and the stretching of the terrain simulation, and transparently display the surface of the ocean water body to obtain visualization effects from various angles. Steps: the side of the ocean water column is used to express the inversion of the ocean environment The change of data with depth, the sea surface contour line is mapped to the layered information of the marine environment inversion data through the "projection" method of parallel contour lines, and the transverse contour within the range of the two-dimensional contour line of the marine environment inversion data is obtained. section. The pixel of the preprocessed marine environment raster dataset is (x, y, value), which contains coordinates and physical quantities. The marine environment raster dataset is converted to OpenGL primitives through text files, and then stretched by terrain simulation, that is, the physical value value is used as the coordinate of the elevation direction Z, and stretched in the form of a digital elevation model to obtain significant and intuitive layered information. The surface of the ocean water body is displayed transparently so that the inversion data of each layered ocean environment can be viewed from any angle.
本发明与现有技术相比具有有益效果:Compared with the prior art, the present invention has beneficial effects:
1)实时的三维海洋水体建模,有效的利用了海洋环境卫星遥感数据,提出了从卫星数据到OpenGL建模的解决方法,大大缩短了数据处理周期,与传统船测数据相比,时效性有了很大的提高;1) Real-time three-dimensional ocean water body modeling, effective use of marine environmental satellite remote sensing data, proposed a solution from satellite data to OpenGL modeling, greatly shortening the data processing cycle, compared with traditional ship survey data, the timeliness has been greatly improved;
2)对转换后的数据进行了基于时间可视化方式的存储,支持对海量遥感栅格数据集的时空特性进行快速查询;2) The converted data is stored based on time visualization, which supports quick query of the spatio-temporal characteristics of massive remote sensing raster datasets;
3)通过海表试验区轮廓线构建方法可以构造出任意观测区的海洋水体立方体。这种实时的体构造方法能够更好的适应用户的需要;3) The ocean water cube in any observation area can be constructed by the contour line construction method of the sea surface test area. This real-time volume construction method can better adapt to the needs of users;
4)海洋水体虚拟现实建模是海洋环境监测的新手段。在建模完成后,能够清晰的反映出海洋温度、盐度、透明度等海洋环境反演数据物理量的变化情况,能够很好的对海洋环境进行监测,预报海洋自然灾害的发生,例如赤潮等;4) Virtual reality modeling of marine water bodies is a new means of marine environment monitoring. After the modeling is completed, it can clearly reflect the changes in the physical quantities of the ocean environment retrieval data such as ocean temperature, salinity, and transparency, and can monitor the ocean environment well and predict the occurrence of marine natural disasters, such as red tides, etc.;
5)本发明是基于RS和GIS环境下,利用OpenGL作为建模工具实现三维海洋水体建模的新手段。有效的利用了海洋环境卫星遥感资料,通过划定中国海范围内任意观测区实现实时的三维海洋水体建模,可视化结果清晰、直观。本发明在海洋环境监测领域应用前景非常广阔。5) The present invention is based on RS and GIS environment, utilizes OpenGL as the modeling tool to realize the new means of three-dimensional marine water body modeling. Effective use of marine environment satellite remote sensing data, real-time three-dimensional ocean water body modeling is realized by delineating any observation area within the China Sea, and the visualization results are clear and intuitive. The invention has very wide application prospect in the field of marine environment monitoring.
附图说明 Description of drawings
图1为本发明中RS海洋环境反演数据源文件格式示意图;Fig. 1 is a schematic diagram of the RS marine environment inversion data source file format in the present invention;
图2为本发明基于GIS的海洋环境反演数据处理方法示意图;Fig. 2 is the schematic diagram of the present invention's GIS-based marine environment inversion data processing method;
图3为本发明基于时间的可视化存储方法示意图;Fig. 3 is a schematic diagram of the time-based visual storage method of the present invention;
图4为本发明建模前坐标系统转换示意图;Fig. 4 is the coordinate system conversion schematic diagram before modeling of the present invention;
图5为本发明海表试验区轮廓线构建海表示意图;Fig. 5 is a schematic diagram of constructing a sea surface from the contour line of the sea surface test area of the present invention;
图6为本发明环绕模式“镜像”重复与裁剪示意图;Fig. 6 is a schematic diagram of repetition and cropping of the surround mode "mirroring" in the present invention;
图7为本发明场景生成的数据准备步骤示意图;FIG. 7 is a schematic diagram of data preparation steps for scene generation in the present invention;
图8为本发明生成的海洋水体场景示意图。Fig. 8 is a schematic diagram of an ocean water scene generated by the present invention.
具体实施方式 Detailed ways
海洋水体虚拟现实的建模方法如下步骤:The modeling method of ocean water body virtual reality is as follows:
1)通过数据转换服务的方式,将原始海洋遥感环境反演数据文本格式自动转换为栅格数据集;1) Through the data conversion service, the text format of the original marine remote sensing environment inversion data is automatically converted into a raster dataset;
2)对转换后的数据进行了基于时间可视化方式的存储,支持对海量遥感栅格数据集的时空特性进行快速查询;2) The converted data is stored based on time visualization, which supports quick query of the spatio-temporal characteristics of massive remote sensing raster datasets;
3)OpenGL三维海洋水体场景的空间坐标系统设定,经过Z轴缩放、坐标系统沿垂直屏幕方向向屏幕内平移、坐标系旋转以及X、Y轴坐标单位统一至经纬度坐标完成场景坐标系统设置;3) The spatial coordinate system setting of the OpenGL 3D ocean water scene, after Z-axis scaling, coordinate system translation to the screen along the vertical screen direction, coordinate system rotation, and X, Y-axis coordinate units unified to latitude and longitude coordinates, the scene coordinate system setting is completed;
4)根据用户构造的任意海域多边形轮廓线构建三维海洋水体表面,以平行轮廓线“投影”生成海洋水体立方体模型的主体;4) Construct the surface of the three-dimensional ocean water body according to the polygonal contour line of any sea area constructed by the user, and generate the main body of the cube model of the ocean water body by "projecting" parallel contour lines;
5)以海面波浪纹理对海表进行贴图,海底地形经由数字高程模型转换为OpenGL原语,用单一颜色渲染与多光源参数设置建模;5) Use the wave texture of the sea surface to map the sea surface, convert the seabed terrain into OpenGL primitives through the digital elevation model, and use single color rendering and multi-light source parameter settings to model;
6)由平行轮廓线“投影”和地形模拟拉伸获得栅格数据集物理量横截面,透明显示海洋水体表面获得各个角度的可视化效果。6) Obtain the cross-section of the physical quantity of the raster data set by the "projection" of the parallel contour line and the stretching of the terrain simulation, and transparently display the surface of the ocean water body to obtain visualization effects from various angles.
所述的通过数据转换服务的方式,将原始海洋遥感环境反演数据文本格式自动转换为栅格数据集步骤:原始海洋环境反演数据是十六进制的文本文件格式,如图1所示,具体格式如下表所示:The steps of automatically converting the text format of the original marine remote sensing environment inversion data into a raster dataset by means of data conversion services: the original ocean environment inversion data is in a hexadecimal text file format, as shown in Figure 1 , the specific format is shown in the following table:
将原始海洋环境反演数据的Head文件头和数据体以文件流的形式读入内存,使用循环行与列的方法读取数据块中的物理量。再将其按照栅格数据集的数据组织方式写入栅格数据集,即按照头文件的信息设置栅格数据集的宽度、高度、象元大小、空间参考、波段数,将数据块中的数据写入像素块中的像素。图2是基于GIS的海洋环境反演数据处理方法示意图。Read the Head file header and data body of the original marine environment inversion data into the memory in the form of a file stream, and use the method of looping rows and columns to read the physical quantities in the data block. Then write it into the raster dataset according to the data organization method of the raster dataset, that is, set the width, height, pixel size, spatial reference, and number of bands of the raster dataset according to the information in the header file. Data is written to the pixels in the pixel block. Figure 2 is a schematic diagram of the GIS-based marine environment inversion data processing method.
利用Internet信息服务器检测目标文件夹下的数据文件,转换并入库后删除源文件。Use the Internet information server to detect the data files in the target folder, and delete the source files after conversion and storage.
System.Timers.Timer setTimer=new System.Timers.Timer(2000);System.Timers.Timer setTimer = new System.Timers.Timer(2000);
setTimer.Elapsed+=new ElapsedEventHandler(setTimer_Elapsed);setTimer.Elapsed+=new ElapsedEventHandler(setTimer_Elapsed);
setTimer.Enabled=true;setTimer.Enabled = true;
setTimer.AutoReset=true;setTimer.AutoReset = true;
setTimer.Start();setTimer. Start();
所述的对转换后的数据进行了基于时间可视化方式的存储,支持对海量遥感栅格数据集的时空特性进行快速查询步骤:基于时间可视化方式的存储是将原始海洋环境反演数据的Head文件头中的周期性产品的周期值存放在产品元数据表中,非周期性产品存储为0;周期性时间元数据表存储起始日期(SDate)、终止日期(EDate)字段分别存储产品的开始年月日和终止年月日;起始时间(STime)、终止时间(ETime)字段存储产品的开始时分秒和终止时分秒。瞬时性时间元数据表存储瞬时性时间点的日期(Date)和时间(Time)。产品时间采用以上字段的集合来存储。以上时间存储对象与SQL标准中的时间类型一致,所以采用标准的SQL语言即可快速的查询出时间集合内的数据集。具体的表存储方式如图3所示。The converted data is stored based on time visualization, which supports quick query of the spatio-temporal characteristics of massive remote sensing raster datasets: the storage based on time visualization is the head file of the original marine environment inversion data The periodic value of the periodic product in the header is stored in the product metadata table, and the non-periodic product is stored as 0; the periodic time metadata table stores the start date (SDate) and end date (EDate) fields to store the start of the product respectively YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY thus the fields store the start time and end time minutes and seconds of the product. The instantaneous time metadata table stores the date (Date) and time (Time) of the instantaneous time point. Product time is stored using a collection of the above fields. The above time storage objects are consistent with the time types in the SQL standard, so the data sets in the time collection can be quickly queried by using the standard SQL language. The specific table storage method is shown in Figure 3.
所述的OpenGL三维海洋水体场景的空间坐标系统设定,经过Z轴缩放、XY轴坐标平面沿垂直屏幕方向向屏幕内平移、坐标系旋转以及X、Y轴坐标单位统一至经纬度坐标完成场景坐标系统设置步骤:OpenGL默认的世界坐标系统的X轴、Y轴和Z轴坐标单位长度是统一的,但考虑到海洋水体数据的特征,即水平方向(X,Y)坐标范围为(东经180度至西经180度,北纬90度至南纬90度),而全球海洋深度由0米至-10000多米不等,X轴、Y轴方向与Z轴方向的坐标单位长度相差2倍数量级以上势必会造成Z轴方向过于陡峭,建模效果不佳。所以,将Z轴坐标的单位长度缩小为原始长度的1/100,即X轴、Y轴的1单位长度,在Z轴上为100。OpenGL场景的世界坐标系统与眼坐标系统的XY轴平面是重合于屏幕平面的,所以需要将坐标系统沿垂直屏幕方向向屏幕内平移。世界坐标系统为右手笛卡尔坐标系统,XY轴平面与屏幕平行,生成场景的海平面与屏幕相平行,这与海平面垂直于人眼视线方向的常识不服,要将坐标系旋转至Z轴向上,X轴水平向右为正方向、Y轴向上为正方向。坐标系统转换前后效果图如图4所示。代码如下:The spatial coordinate system setting of the OpenGL three-dimensional ocean water scene, after Z-axis scaling, XY-axis coordinate plane translation to the screen along the vertical screen direction, coordinate system rotation and X, Y-axis coordinate units unified to longitude and latitude coordinates to complete the scene coordinates System setting steps: OpenGL default world coordinate system X-axis, Y-axis and Z-axis coordinate unit length is uniform, but considering the characteristics of ocean water body data, that is, the horizontal direction (X, Y) coordinate range is (180 degrees east longitude to 180 degrees west longitude, 90 degrees north latitude to 90 degrees south latitude), and the depth of the global ocean ranges from 0 meters to more than -10,000 meters. It will cause the Z-axis direction to be too steep, and the modeling effect is not good. Therefore, the unit length of the Z-axis coordinate is reduced to 1/100 of the original length, that is, the unit length of the X-axis and Y-axis is 100 on the Z-axis. The world coordinate system of the OpenGL scene and the XY axis plane of the eye coordinate system coincide with the screen plane, so the coordinate system needs to be translated in the screen along the vertical screen direction. The world coordinate system is a right-handed Cartesian coordinate system. The XY axis plane is parallel to the screen. The sea level of the generated scene is parallel to the screen. This is contrary to the common sense that the sea level is perpendicular to the direction of the human eye line of sight. The coordinate system should be rotated to the Z axis , the positive direction of the X-axis is horizontal to the right, and the positive direction of the Y-axis is upward. The renderings before and after the coordinate system conversion are shown in Figure 4. code show as below:
GL.glScaled(1.0,1.0,1.0/100.0);GL.glScaled(1.0, 1.0, 1.0/100.0);
GL.glTranslatef(0.0f,-200.0f,0.0f);GL.glTranslatef(0.0f, -200.0f, 0.0f);
GL.glRotated(90.0,1.0,0.0,0.0);GL.glRotated(90.0, 1.0, 0.0, 0.0);
所述的根据用户构造的任意海域多边形轮廓线构建三维海洋水体表面,以平行轮廓线“投影”生成海洋水体立方体模型的主体步骤:根据用户构造的任意海域多边形轮廓线,利用GIS的方法裁剪、掩膜海表轮廓线外的区域,构建三维海洋水体表面,以平行轮廓线“投影”生成海洋水体立方体模型的主体。将轮廓线沿Z轴向下移动至海底地形数字高程模型的最大深度,两平行轮廓线之间以上下轮廓线上的拐点利用OpenGL构造矩形面,并透明显示。海洋水体柱状体X轴、Y轴平面内的尺寸取决于用户在二维电子地图中绘制的闭合多边形的尺寸,海洋水体深度Z轴方向是海底地形数字高程模型的最大深度。The main steps of constructing the three-dimensional ocean water body surface according to the polygonal contour line of the arbitrary sea area constructed by the user, and "projecting" the parallel contour line to generate the cube model of the ocean water body: according to the polygonal contour line of the arbitrary sea area constructed by the user, use GIS method to cut, The area outside the sea surface contour is masked to construct a three-dimensional ocean water body surface, and the main body of the ocean water cube model is generated by "projecting" parallel contour lines. Move the contour line down to the maximum depth of the digital elevation model of the seabed terrain along the Z axis, and use OpenGL to construct a rectangular surface at the inflection point between the two parallel contour lines and the upper and lower contour lines, and display it transparently. The size of the X-axis and Y-axis planes of the ocean water column depends on the size of the closed polygon drawn by the user in the two-dimensional electronic map. The depth of the ocean water in the Z-axis direction is the maximum depth of the digital elevation model of the seabed terrain.
所述的根据用户构造的任意海域多边形轮廓线构建三维海洋水体表面,以平行轮廓线“投影”生成海洋水体立方体模型的主体步骤:设置OpenGL的三维空间坐标系统后,将其X轴、Y轴与空间数据的经纬度空间坐标相一致,根据用户构造的任意海域多边形轮廓线利用GIS的方法裁剪、掩膜海表轮廓线外的区域,构建三维海洋水体表面,如图5。以平行轮廓线“投影”生成海洋水体立方体模型的主体,海洋水体柱状体X轴、Y轴平面内的尺寸取决于用户在二维电子地图中绘制的任意多边形的尺寸,海洋水体深度Z轴方向是海底地形数字高程模型的最大深度。The main steps of constructing the three-dimensional ocean water body surface according to the arbitrary sea area polygon contour line constructed by the user, and generating the cube model of the ocean water body with parallel contour lines "projection" are as follows: after setting the three-dimensional space coordinate system of OpenGL, set its X axis, Y axis Consistent with the longitude and latitude spatial coordinates of the spatial data, use the GIS method to cut and mask the area outside the sea surface contour line according to the polygonal contour line of any sea area constructed by the user, and construct the three-dimensional ocean water body surface, as shown in Figure 5. The main body of the ocean water body cube model is generated by "projecting" parallel contour lines. The dimensions of the ocean water column in the X-axis and Y-axis planes depend on the size of any polygon drawn by the user in the two-dimensional electronic map, and the depth of the ocean water body in the Z-axis direction is the maximum depth of the seabed terrain digital elevation model.
所述的以海面波浪纹理对海表进行贴图,海底地形经由数字高程模型转换为OpenGL原语,用单一颜色渲染与多光源参数设置建模步骤:利用OpenGL在顶面进行海洋波浪纹理映射,贴图的位置信息来源于二维轮廓线,因海表为任意多边形,所以采用环绕模式“镜像”重复与裁剪来“补足”海表多边形映射或裁剪纹理,把海底地形数字高程模型先转换为文本文件格式,再用OpenGL原语描述出来,从而转化成OpenGL可识别的图形函数,海底地形采用单一颜色渲染,利用光照视点位置、视线方向、光照参数设置反映高程的变化。光源和视线设置方法如下:The sea surface is mapped with the sea surface wave texture, the seabed terrain is converted into the OpenGL primitive through the digital elevation model, and the modeling steps are set with single color rendering and multi-light source parameter setting: use OpenGL to map the ocean wave texture on the top surface, map The position information of the sea surface comes from the two-dimensional contour line. Since the sea surface is an arbitrary polygon, the surround mode "mirror" is used to repeat and crop to "complement" the sea surface polygon mapping or crop texture, and the seabed terrain digital elevation model is first converted into a text file. format, and then describe it with OpenGL primitives, so as to convert it into a graphics function recognizable by OpenGL. The seabed terrain is rendered in a single color, and the elevation change is reflected by the position of the lighting viewpoint, the direction of the line of sight, and the setting of lighting parameters. The light source and line of sight settings are as follows:
//定义一个随相机移动的移动光源//Define a moving light source that moves with the camera
static float[]ambient={0.5f,0.5f,0.5f,1.0f};static float[] ambient = {0.5f, 0.5f, 0.5f, 1.0f};
static float[]diffuseLight={1.0f,1.0f,1.0f,1.0f};static float[] diffuseLight = {1.0f, 1.0f, 1.0f, 1.0f};
static float[]specularLight={1.0f,1.0f,1.0f,1.0f};static float[] specularLight = {1.0f, 1.0f, 1.0f, 1.0f};
static float[]lightPosition={0.0f,400.0f,200.0f,1.0f};static float[] lightPosition = {0.0f, 400.0f, 200.0f, 1.0f};
//初始化光源//Initialize the light source
GL.glEnable(GL.GL_LIGHTING);GL.glEnable(GL.GL_LIGHTING);
//设置光源//Set the light source
GL.glLightfv(GL.GL_LIGHT0,GL.GL_AMBIENT,ambient);GL.glLightfv(GL.GL_LIGHT0, GL.GL_AMBIENT, ambient);
GL.glLightfv(GL.GL_LIGHT0,GL.GL_DIFFUSE,diffuseLight);GL.glLightfv(GL.GL_LIGHT0, GL.GL_DIFFUSE, diffuseLight);
GL.glLightfv(GL.GL_LIGHT0,GL.GL_SPECULAR,specularLight);GL.glLightfv(GL.GL_LIGHT0, GL.GL_SPECULAR, specularLight);
GL.glLightfv(GL.GL_LIGHT0,GL.GL_POSITION,lightPosition);GL.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, lightPosition);
GL.glEnable(GL.GL_LIGHT0);GL.glEnable(GL.GL_LIGHT0);
//动态设置光源函数// Dynamically set the light source function
public static void SetLight()public static void SetLight()
{{
Vector3vec=MyView.MyCamera.getPosition();Vector3vec = MyView.MyCamera.getPosition();
lightPosition=new float[]{vec.x+0.0000000100f,lightPosition=new float[]{vec.x+0.0000000100f,
vec.y-0.000000003f,vec.z-0.180f,1.0f};vec.y - 0.000000003f, vec.z - 0.180f, 1.0f};
}}
//视线初始化向量值//View initialization vector value
Vector3zero=new Vector3(0.0f,0.0f,0.0f);Vector3zero = new Vector3(0.0f, 0.0f, 0.0f);
Vector3view=new Vector3(0.0f,1.0f,0.5f);Vector3view = new Vector3(0.0f, 1.0f, 0.5f);
Vector3up=new Vector3(0.0f,0.0f,1.0f);Vector3up = new Vector3(0.0f, 0.0f, 1.0f);
//Vector3为自定义的数据类型,是一个三维向量数据//Vector3 is a custom data type, which is a three-dimensional vector data
Position=zero;Position=zero;
View=view;View = view;
UpVector=up;UpVector = up;
//设置视点位置//Set the viewpoint position
public void setLook()public void setLook()
{{
GL.gluLookAt(Position.x,Position.y,Position.z,View.x,GL.gluLookAt(Position.x, Position.y, Position.z, View.x,
View.y,View.z,UpVector.x,UpVector.y,UpVector.z);View.y, View.z, UpVector.x, UpVector.y, UpVector.z);
}}
所述的由平行轮廓线“投影”和地形模拟拉伸获得海洋环境反演数据物理量横截面,透明显示海洋水体表面获得各个角度的可视化效果步骤:海洋水体柱状体的侧面用来表达海洋环境反演数据随深度变化的情况,通过平行轮廓线“投影”的方式,即利用GIS的方法裁剪、掩膜海表轮廓线外的区域将海表轮廓线映射到海洋环境反演数据的各分层信息上,得到海洋环境反演数据的二维轮廓线范围内的横截面。经预处理的海洋环境栅格数据集的像素为(x,y,value),包含坐标和物理量。海洋环境栅格数据集经由文本文件转换至OpenGL原语,再由地形模拟拉伸,即将物理量值value作为高程方向Z的坐标,以数字高程模型的方式拉伸获得显著直观的分层信息。海洋水体表面采用透明显示以便从任意角度透视各分层海洋环境反演数据。The above steps of obtaining the physical quantity cross-section of the marine environment inversion data by parallel contour line "projection" and terrain simulation stretching, and transparently displaying the surface of the ocean water body to obtain visualization effects from various angles: the side surface of the ocean water column is used to express the ocean environment reflection The data changes with the depth, through the "projection" method of parallel contour lines, that is, using the GIS method to cut and mask the area outside the sea surface contour line to map the sea surface contour line to each layer of the marine environment inversion data In terms of information, the cross-section within the scope of the two-dimensional contour line of the inversion data of the marine environment is obtained. The pixel of the preprocessed marine environment raster dataset is (x, y, value), including coordinates and physical quantities. The marine environment raster dataset is converted to OpenGL primitives through text files, and then stretched by terrain simulation, that is, the physical value value is used as the coordinate of the elevation direction Z, and stretched in the form of a digital elevation model to obtain significant and intuitive layered information. The surface of the ocean water body is displayed transparently so that the inversion data of each layered ocean environment can be viewed from any angle.
实施例Example
以2006年3月的海洋遥感温度反演数据为例,首先以文件流方式读取其头文件内的信息如下:Taking the ocean remote sensing temperature retrieval data in March 2006 as an example, first read the information in the header file in the form of file stream as follows:
第二、将头文件内的信息存储到元数据表中。其中,周期性产品的周期值存放在元数据表中,非周期性产品存储为0,以此数据为例,周期值为31;将儒略日转换为月和日,此处周期性产品时间记录表存储起始日期(2006-03-01)、终止日期(2006-03-31);以上时间存储对象与SQL标准中的时间类型一致,所以采用标准的SQL语言即可快速的查询出时间集合内的数据集。Second, store the information in the header file into the metadata table. Among them, the periodic value of the periodic product is stored in the metadata table, and the non-periodic product is stored as 0. Taking this data as an example, the periodic value is 31; the Julian day is converted into month and day, here the periodic product time The record table stores the start date (2006-03-01) and the end date (2006-03-31); the above time storage objects are consistent with the time types in the SQL standard, so the time can be quickly queried by using the standard SQL language Datasets within a collection.
第三、Z轴缩放、XY轴坐标平面沿垂直屏幕方向向屏幕内平移、坐标系旋转以及X、Y轴坐标单位统一至经纬度坐标完成场景坐标系统设置。Third, Z-axis scaling, XY-axis coordinate plane translation along the vertical screen direction to the screen, coordinate system rotation, and X, Y-axis coordinate units are unified to latitude and longitude coordinates to complete the setting of the scene coordinate system.
第四、用户在海表划定任意闭合多变形,栅格数据掩膜轮廓线以外的象元,矢量数据裁剪轮廓线以外的线段。海洋水体采用平行轮廓线“投影”的方法。将轮廓线投影至海底地形曲面,取该投影范围的曲面内水深DEM的最大谷值点,以该点构造一个平行于海表的平面。这样就构成了两相邻平行面。然后,依次连接上下轮廓线上各点形成矩形曲面。Fourth, the user defines any closed multi-deformation on the sea surface, raster data masks the pixels outside the contour line, and vector data clips the line segments outside the contour line. Ocean water bodies use the method of "projection" of parallel contour lines. Project the contour line to the seabed topographic surface, take the maximum valley point of the water depth DEM within the projection range, and use this point to construct a plane parallel to the sea surface. In this way, two adjacent parallel surfaces are formed. Then, connect the points on the upper and lower contour lines in turn to form a rectangular surface.
第五、纹理对象采用二维的海面波纹BMP格式图像。在进行海表纹理映射时要确保各个顶点都指定了纹理坐标。用户在中国海区域内划定的观测区范围不定,而BMP纹理的宽度与高度固定,所以海面波纹的BMP图像的左侧、右侧以及上方、下方边缘相邻时为了达到较好的衔接效果,采用环绕模式“镜像”重复与裁剪,海表边缘不满一副纹理大小的部分利用裁剪的方式补足。Fifth, the texture object adopts a two-dimensional sea surface ripple image in BMP format. When doing sea surface texture mapping, make sure that texture coordinates are assigned to each vertex. The scope of the observation area defined by the user in the China Sea area is uncertain, but the width and height of the BMP texture are fixed, so when the left, right, upper, and lower edges of the BMP image of sea surface ripples are adjacent to each other, in order to achieve a better connection effect , using the surround mode "mirror" to repeat and crop, and the part of the edge of the sea surface that is less than the size of a texture is supplemented by cropping.
第六、海底地形采用单一颜色渲染,利用OpenGL绘制三维海底地形模型之前,设置光源、视点位置、视线方向等参数。Sixth, the seabed terrain is rendered in a single color. Before using OpenGL to draw a 3D seabed terrain model, set parameters such as light source, viewpoint position, and line of sight direction.
第七、同样采用试验区轮廓线构建方法获得海洋温度、盐度、透明度物理量横截面,以物理量值作为高程值,采用与地形建模相同的方式,以单一颜色和设置光源参数的方式表达出物理量的变化。由于物理量是位于体中的断面,所以体表需要设置透明度,透明度在(0,1)区间内,根据需要选择。Seventh, the cross-section of ocean temperature, salinity, and transparency physical quantities is also obtained by using the method of constructing the contour line of the test area, and the physical quantity value is used as the elevation value, and is expressed in a single color and by setting light source parameters in the same way as terrain modeling changes in physical quantities. Since the physical quantity is a section located in the body, the transparency of the body surface needs to be set, and the transparency is in the interval (0, 1), which can be selected according to the needs.
图7是利用上述方法创建的2006年3月近南海海域海洋水体与海洋环境反演数据三维模型。这里的海洋环境数据包括了温度和透明度,采用了分层设色、按物理量拉伸的方式,利用高低起伏的地形模拟方式再现了物理量变化的趋势。Figure 7 is a three-dimensional model of the inversion data of marine water bodies and marine environment in the South China Sea in March 2006 created by the above method. The marine environment data here includes temperature and transparency, and adopts the method of layering coloring and stretching according to physical quantities, and uses the terrain simulation method of high and low fluctuations to reproduce the trend of physical quantity changes.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910100669A CN101650837A (en) | 2009-07-16 | 2009-07-16 | Virtual-reality modeling method of ocean water body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910100669A CN101650837A (en) | 2009-07-16 | 2009-07-16 | Virtual-reality modeling method of ocean water body |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101650837A true CN101650837A (en) | 2010-02-17 |
Family
ID=41673066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910100669A Pending CN101650837A (en) | 2009-07-16 | 2009-07-16 | Virtual-reality modeling method of ocean water body |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101650837A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101937576A (en) * | 2010-09-08 | 2011-01-05 | 北京航空航天大学 | A Dynamic Texture Waterfall Modeling Method Combining Multi-physics Attributes |
CN102214368A (en) * | 2010-04-07 | 2011-10-12 | 北京国遥新天地信息技术有限公司 | Implementation method of three dimensional full-dimension digital globe |
CN102509350A (en) * | 2011-09-30 | 2012-06-20 | 北京航空航天大学 | Cube-based sports event information visualization method |
CN102798384A (en) * | 2012-07-03 | 2012-11-28 | 天津大学 | Ocean remote sensing image water color and water temperature monitoring method based on compression sampling |
CN102831644A (en) * | 2012-07-09 | 2012-12-19 | 哈尔滨工程大学 | Marine environment information three-dimensional visualization method |
CN102881037A (en) * | 2012-09-28 | 2013-01-16 | 深圳第七大道网络技术有限公司 | Method and device for drawing dynamic oceans in map |
CN103198170A (en) * | 2012-12-08 | 2013-07-10 | 北京工业大学 | Method for creating finite element three-dimensional entity based on terrain remote sensing data |
CN103854302A (en) * | 2013-12-23 | 2014-06-11 | 哈尔滨工程大学 | AUV navigation environmental space construction method under plurality of constraint conditions |
CN104063904A (en) * | 2013-06-03 | 2014-09-24 | 腾讯科技(深圳)有限公司 | Method and device for simulating virtual scene real-time processing |
CN105006009A (en) * | 2015-07-02 | 2015-10-28 | 广东小天才科技有限公司 | 2D water simulation method |
CN105278905A (en) * | 2014-07-08 | 2016-01-27 | 三星电子株式会社 | Device and method to display object with visual effect |
CN106372367A (en) * | 2016-09-30 | 2017-02-01 | 浙江大学 | Visual simulation method for Argo float ocean product |
CN107918949A (en) * | 2017-12-11 | 2018-04-17 | 网易(杭州)网络有限公司 | Rendering intent, storage medium, processor and the terminal of virtual resource object |
CN108230436A (en) * | 2017-12-11 | 2018-06-29 | 网易(杭州)网络有限公司 | The rendering intent of virtual resource object in three-dimensional scenic |
CN108305307A (en) * | 2017-01-13 | 2018-07-20 | 北大方正集团有限公司 | The implementation method of three-dimensional geometry body animation realizes system and terminal |
CN109297530A (en) * | 2018-08-06 | 2019-02-01 | 广州海洋地质调查局 | A deep-sea full-water column multi-environmental element information fusion method and processing terminal |
CN110008363A (en) * | 2019-03-19 | 2019-07-12 | 中国科学院国家空间科学中心 | Visual data analysis method, system, device and storage medium for advanced on-orbit system |
CN110188488A (en) * | 2019-06-03 | 2019-08-30 | 中国石油大学(华东) | Simulation method and system for seabed natural gas hydrate outcrop and surrounding environment |
CN110568416A (en) * | 2019-09-17 | 2019-12-13 | 南京莱斯网信技术研究院有限公司 | radar effective detection area extraction method based on remote sensing image |
CN111324658A (en) * | 2020-02-19 | 2020-06-23 | 深圳震有科技股份有限公司 | Ocean temperature visual analysis method, intelligent terminal and storage medium |
WO2022048036A1 (en) * | 2020-09-02 | 2022-03-10 | 北京冰封互娱科技有限公司 | Water body configuration method, device, equipment, and storage medium |
CN114638912A (en) * | 2022-03-16 | 2022-06-17 | 广州博进信息技术有限公司 | Space-time visualization and interaction method, medium and equipment for marine science vector data |
CN115089962A (en) * | 2022-06-27 | 2022-09-23 | 网易(杭州)网络有限公司 | Information processing method, device, storage medium, and electronic device |
CN115934014A (en) * | 2022-05-18 | 2023-04-07 | 南京师范大学 | A Cluster-Driven Immersive Virtual Large Screen Construction Method |
CN118883874A (en) * | 2024-09-18 | 2024-11-01 | 铭派科技集团有限公司 | A real-time marine environment monitoring system based on marine digital twin technology |
CN119048683A (en) * | 2024-09-06 | 2024-11-29 | 郑州大学 | Automatic virtual data set generation method for offshore infrared target identification |
CN119722962A (en) * | 2025-02-28 | 2025-03-28 | 国家深海基地管理中心 | A deep-sea three-dimensional environment simulation and analysis system based on big data |
-
2009
- 2009-07-16 CN CN200910100669A patent/CN101650837A/en active Pending
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102214368A (en) * | 2010-04-07 | 2011-10-12 | 北京国遥新天地信息技术有限公司 | Implementation method of three dimensional full-dimension digital globe |
CN101937576A (en) * | 2010-09-08 | 2011-01-05 | 北京航空航天大学 | A Dynamic Texture Waterfall Modeling Method Combining Multi-physics Attributes |
CN101937576B (en) * | 2010-09-08 | 2013-02-06 | 北京航空航天大学 | A Dynamic Texture Waterfall Modeling Method Combining Multi-physics Attributes |
CN102509350B (en) * | 2011-09-30 | 2013-12-25 | 北京航空航天大学 | Cube-based sports event information visualization method |
CN102509350A (en) * | 2011-09-30 | 2012-06-20 | 北京航空航天大学 | Cube-based sports event information visualization method |
CN102798384A (en) * | 2012-07-03 | 2012-11-28 | 天津大学 | Ocean remote sensing image water color and water temperature monitoring method based on compression sampling |
CN102798384B (en) * | 2012-07-03 | 2014-09-17 | 天津大学 | Ocean remote sensing image water color and water temperature monitoring method based on compression sampling |
CN102831644A (en) * | 2012-07-09 | 2012-12-19 | 哈尔滨工程大学 | Marine environment information three-dimensional visualization method |
CN102881037A (en) * | 2012-09-28 | 2013-01-16 | 深圳第七大道网络技术有限公司 | Method and device for drawing dynamic oceans in map |
CN102881037B (en) * | 2012-09-28 | 2015-01-21 | 深圳第七大道网络技术有限公司 | Method and device for drawing dynamic oceans in map |
CN103198170A (en) * | 2012-12-08 | 2013-07-10 | 北京工业大学 | Method for creating finite element three-dimensional entity based on terrain remote sensing data |
CN104063904A (en) * | 2013-06-03 | 2014-09-24 | 腾讯科技(深圳)有限公司 | Method and device for simulating virtual scene real-time processing |
CN104063904B (en) * | 2013-06-03 | 2016-02-17 | 腾讯科技(深圳)有限公司 | A kind of method and apparatus of simulating virtual scene and processing in real time |
CN103854302A (en) * | 2013-12-23 | 2014-06-11 | 哈尔滨工程大学 | AUV navigation environmental space construction method under plurality of constraint conditions |
CN103854302B (en) * | 2013-12-23 | 2016-09-28 | 哈尔滨工程大学 | A kind of AUV navigation environment space construction process under multi-constraint condition |
CN105278905A (en) * | 2014-07-08 | 2016-01-27 | 三星电子株式会社 | Device and method to display object with visual effect |
CN105278905B (en) * | 2014-07-08 | 2022-06-21 | 三星电子株式会社 | Apparatus and method for displaying object having visual effect |
CN105006009A (en) * | 2015-07-02 | 2015-10-28 | 广东小天才科技有限公司 | 2D water simulation method |
CN105006009B (en) * | 2015-07-02 | 2020-03-24 | 广东小天才科技有限公司 | 2D water simulation method |
CN106372367A (en) * | 2016-09-30 | 2017-02-01 | 浙江大学 | Visual simulation method for Argo float ocean product |
CN108305307A (en) * | 2017-01-13 | 2018-07-20 | 北大方正集团有限公司 | The implementation method of three-dimensional geometry body animation realizes system and terminal |
CN107918949A (en) * | 2017-12-11 | 2018-04-17 | 网易(杭州)网络有限公司 | Rendering intent, storage medium, processor and the terminal of virtual resource object |
CN108230436A (en) * | 2017-12-11 | 2018-06-29 | 网易(杭州)网络有限公司 | The rendering intent of virtual resource object in three-dimensional scenic |
CN109297530B (en) * | 2018-08-06 | 2019-08-23 | 广州海洋地质调查局 | A kind of multi-environment element information fusion method of the full water column in deep-sea and processing terminal |
CN109297530A (en) * | 2018-08-06 | 2019-02-01 | 广州海洋地质调查局 | A deep-sea full-water column multi-environmental element information fusion method and processing terminal |
CN110008363A (en) * | 2019-03-19 | 2019-07-12 | 中国科学院国家空间科学中心 | Visual data analysis method, system, device and storage medium for advanced on-orbit system |
CN110008363B (en) * | 2019-03-19 | 2021-10-22 | 中国科学院国家空间科学中心 | Visual data analysis method, system, device and storage medium for advanced on-orbit system |
CN110188488A (en) * | 2019-06-03 | 2019-08-30 | 中国石油大学(华东) | Simulation method and system for seabed natural gas hydrate outcrop and surrounding environment |
CN110188488B (en) * | 2019-06-03 | 2023-04-07 | 中国石油大学(华东) | Simulation method and system for seabed natural gas hydrate outcrop and surrounding environment |
CN110568416A (en) * | 2019-09-17 | 2019-12-13 | 南京莱斯网信技术研究院有限公司 | radar effective detection area extraction method based on remote sensing image |
CN111324658A (en) * | 2020-02-19 | 2020-06-23 | 深圳震有科技股份有限公司 | Ocean temperature visual analysis method, intelligent terminal and storage medium |
WO2022048036A1 (en) * | 2020-09-02 | 2022-03-10 | 北京冰封互娱科技有限公司 | Water body configuration method, device, equipment, and storage medium |
CN114638912A (en) * | 2022-03-16 | 2022-06-17 | 广州博进信息技术有限公司 | Space-time visualization and interaction method, medium and equipment for marine science vector data |
CN115934014A (en) * | 2022-05-18 | 2023-04-07 | 南京师范大学 | A Cluster-Driven Immersive Virtual Large Screen Construction Method |
CN115934014B (en) * | 2022-05-18 | 2025-04-18 | 南京师范大学 | A cluster-driven immersive virtual large screen construction method |
CN115089962A (en) * | 2022-06-27 | 2022-09-23 | 网易(杭州)网络有限公司 | Information processing method, device, storage medium, and electronic device |
CN119048683A (en) * | 2024-09-06 | 2024-11-29 | 郑州大学 | Automatic virtual data set generation method for offshore infrared target identification |
CN119048683B (en) * | 2024-09-06 | 2025-04-22 | 郑州大学 | Automatic virtual data set generation method for offshore infrared target identification |
CN118883874A (en) * | 2024-09-18 | 2024-11-01 | 铭派科技集团有限公司 | A real-time marine environment monitoring system based on marine digital twin technology |
CN119722962A (en) * | 2025-02-28 | 2025-03-28 | 国家深海基地管理中心 | A deep-sea three-dimensional environment simulation and analysis system based on big data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101650837A (en) | Virtual-reality modeling method of ocean water body | |
Appleton et al. | Rural landscape visualisation from GIS databases: a comparison of approaches, options and problems | |
Vanegas et al. | Modelling the appearance and behaviour of urban spaces | |
Zhou et al. | Digital preservation technology for cultural heritage | |
CN110675496B (en) | Grid subdivision and visualization method and system based on three-dimensional urban geological model | |
Su et al. | Multi-dimensional visualization of large-scale marine hydrological environmental data | |
Liu et al. | Visualizing and analyzing dynamic meteorological data with virtual globes: A case study of tropical cyclones | |
CN102402792B (en) | Real-time shallow water simulation method | |
Li et al. | Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes | |
CN103714167A (en) | On-line three-dimensional display method for disaster information spatio-temporal data | |
CN101320480A (en) | A real-time dynamic water surface simulation method based on GPU | |
CN113593051A (en) | Live-action visualization method, dam visualization method and computer equipment | |
Zhang et al. | Spatial and temporal processes visualization for marine environmental data using particle system | |
Callieri et al. | Virtual Inspector: a flexible visualizer for dense 3D scanned models | |
Gan et al. | Hybrid organization and visualization of the DSM combined with 3D building model | |
Yang et al. | Design of urban landscape visual simulation system based on three-dimensional simulation technology | |
CN114627258B (en) | Method and system for isomorphic modeling of gravity field catamaran spheres | |
CN111179398A (en) | Motor vehicle exhaust diffusion simulation and stereoscopic visualization method based on 3DGIS | |
Forte et al. | DVR-Pompei: a 3D information system for the house of the Vettii in openGL environment | |
Li et al. | Research on 3D International River Visualization Simulation Based on Human‐Computer Interaction | |
Zhang | Development of virtual campus system based on ArcGIS | |
Qi | Computer aided design simulation of 3D garden landscape based on virtual reality | |
Apollonio et al. | An integrated 3D geodatabase for Palladio's work | |
Shu et al. | A geometry‐based method for visualizing time‐varying flow fields on web map platforms using texture polymorphism | |
He et al. | Research and Implementation of Oblique Photography Productions on the WEB3D Visualization of Digtal Earth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100217 |