[go: up one dir, main page]

CN101649325B - Gene series technology for increasing main component content of gene engineering isovaleryl selectomycin - Google Patents

Gene series technology for increasing main component content of gene engineering isovaleryl selectomycin Download PDF

Info

Publication number
CN101649325B
CN101649325B CN 200910148767 CN200910148767A CN101649325B CN 101649325 B CN101649325 B CN 101649325B CN 200910148767 CN200910148767 CN 200910148767 CN 200910148767 A CN200910148767 A CN 200910148767A CN 101649325 B CN101649325 B CN 101649325B
Authority
CN
China
Prior art keywords
gene
ist
copy
plasmid
spiramycin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 200910148767
Other languages
Chinese (zh)
Other versions
CN101649325A (en
Inventor
王以光
赫卫清
戴剑漉
李瑞芬
杨永红
范迎春
武临专
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Tonglian Group Co Ltd
Original Assignee
Shenyang Tonglian Group Co Ltd
Institute of Medicinal Biotechnology of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Tonglian Group Co Ltd, Institute of Medicinal Biotechnology of CAMS and PUMC filed Critical Shenyang Tonglian Group Co Ltd
Priority to CN 200910148767 priority Critical patent/CN101649325B/en
Publication of CN101649325A publication Critical patent/CN101649325A/en
Application granted granted Critical
Publication of CN101649325B publication Critical patent/CN101649325B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及基因工程技术在提高抗生素组分中的应用,具体来讲,涉及一种提高基因工程异戊酰螺旋霉素主组分含量的基因串连技术,它是将必特螺旋霉素基因工程菌中与螺旋霉素异戊酰基化密切相关的ist基因进行串连,通过增强其基因剂量提高产生菌异戊酰基化能力;同时也利用强启动活性的启动子红霉素抗性基因ermE基因启动子序列替换原ist基因启动子序列,以增强串连ist基因的表达,从源头提高基因工程菌产生异戊酰螺旋霉素主组分的比例。

Figure 200910148767

The present invention relates to the application of genetic engineering technology in improving antibiotic components, specifically, it relates to a gene concatenation technology for increasing the main component content of genetically engineered isovalerylspiramycin, which is the gene of piramycin The ist gene closely related to the isovalerylation of spiramycin in engineering bacteria is connected in series, and the isovalerylation ability of the producing bacteria is improved by enhancing its gene dosage; at the same time, the promoter erythromycin resistance gene ermE with strong promoter activity is also used The gene promoter sequence replaces the original ist gene promoter sequence to enhance the expression of the tandem ist gene and increase the ratio of the main component of the isovalerylspiramycin produced by the genetically engineered bacteria from the source.

Figure 200910148767

Description

一种提高基因工程异戊酰螺旋霉素主组分含量的基因串连技术A gene concatenation technology for increasing the main component content of genetically engineered isovalerylspiramycin

技术领域:Technical field:

本发明涉及基因工程技术在提高抗生素组分中的应用。The invention relates to the application of genetic engineering technology in improving antibiotic components.

背景技术:Background technique:

必特螺旋霉素(原名生技霉素)[专利号:ZL97104440.6]是本实验室利用基因工程技术研制的螺旋霉素衍生物。螺旋霉素是一个大环内酯类抗生素,其主核是一个由16元环组成的内酯环与普拉特内酯同质,含有三个糖分子福洛糖胺、碳霉糖胺和碳霉糖,而必特螺旋霉素主组分是螺旋霉素碳霉糖4’位羟基被异戊酰基酯化的衍生物。由于螺旋霉素内酯环3位R羟基可以被乙酰或丙酰基酯化,而形成相应的螺旋霉素I、II、III组分,所以必特螺旋霉素至少含有异戊酰螺旋霉素I、II、III三个组分,必特螺旋霉素主组分的化学结构如下:Bitespiramycin (formerly known as Shengjimycin) [patent number: ZL97104440.6] is a spiramycin derivative developed by our laboratory using genetic engineering technology. Spiramycin is a macrolide antibiotic. Its main core is a 16-membered ring consisting of a lactone ring that is homogeneous to Pratt lactone. Mycose, and the main component of spiramycin is a derivative of spiramycin mycose 4' hydroxyl group esterified with isovaleryl. Since the R hydroxyl group at the 3-position of the spiramycin lactone ring can be esterified by acetyl or propionyl to form the corresponding spiramycin I, II, and III components, so the spiramycin contains at least isovaleryl spiramycin I , II, III three components, the chemical structure of the main component of Bitespiramycin is as follows:

福洛糖胺              普拉特内酯            碳霉糖胺        碳霉糖Phalosamine Pratt lactone Mycaminosamine Mycaminose

必特螺旋霉素结构Bitespiramycin structure

异戊酰螺旋霉素III    R=COCH2CH3     R’=COCH2CH(CH3)2 Isovalerylspiramycin III R=COCH 2 CH 3 R'=COCH 2 CH(CH 3 ) 2

异戊酰螺旋霉素II     R=COCH3        R’=COCH2CH(CH3)2 Isovalerylspiramycin II R=COCH 3 R'=COCH 2 CH(CH 3 ) 2

异戊酰螺旋霉素I      R=H            R’=COCH2CH(CH3)2 Isovalerylspiramycin I R=HR'=COCH 2 CH(CH 3 ) 2

必特螺旋霉素对革兰氏阳性菌有较强的活性,尤其对支原体、衣原体活性强,对红 霉素和β-内酰胺类抗生素耐药菌、流感杆菌、军团菌、产气荚膜梭菌具有抗菌活性,与同类药没有完全交叉耐药性。必特螺旋霉素有较高的亲脂性,口服吸收快,组织渗透性强,分布广,体内维持时间长,有较好的抗生素后效应。目前已完成的基因工程必特螺旋霉素二期临床试验研究表明,必特螺旋霉素治疗上呼吸道感染的总有效率为93%,与目前临床使用的同类最好对照药阿奇霉素无差异,并有抗泌尿道感染的潜在应用价值。必特螺旋霉素作为国家一类新药,现已完成临床三期试验研究,显示了良好的疗效和安全性。Bitspiramycin has strong activity against Gram-positive bacteria, especially against mycoplasma and chlamydia, and against erythromycin and β-lactam antibiotic-resistant bacteria, influenza bacillus, Legionella, and perfringens Clostridium has antibacterial activity, and there is no complete cross-resistance with similar drugs. Bitspiramycin has high lipophilicity, rapid oral absorption, strong tissue permeability, wide distribution, long maintenance time in vivo, and good post-antibiotic effect. The completed phase II clinical trial of bitspiramycin with genetic engineering shows that the total effective rate of bitspiramycin in the treatment of upper respiratory tract infection is 93%, which is no different from azithromycin, which is the best control drug of the same kind currently used clinically. It has the potential application value of anti-urinary tract infection. Bitspiramycin, as a national first-class new drug, has completed the third phase of clinical trials, showing good efficacy and safety.

必特螺旋霉素是基因工程菌的发酵产物,其形成需要以下几个要素和步骤:Bitspiramycin is a fermentation product of genetically engineered bacteria, and its formation requires the following elements and steps:

首先,由螺旋霉素产生菌发酵产生螺旋霉素;First, spiramycin is produced by fermentation of spiramycin-producing bacteria;

其次,从碳霉素产生菌克隆碳霉糖4’位羟基异戊酰基(ist)转移酶基因;Secondly, clone the carbamycin 4'-position hydroxyl isovaleryl (ist) transferase gene from carbamycin-producing bacteria;

再次,将ist基因转入螺旋霉素产生菌获得基因工程菌;Again, transfer the ist gene into the spiramycin-producing bacteria to obtain genetically engineered bacteria;

最后,ist基因表达产物(酶)在螺旋霉素产生菌中有脂肪酰(异戊酰)基团底物存在的情况下,能够催化螺旋霉素分子中的碳霉糖4’位羟基,进行O-酰基化反应,使碳霉糖4’位羟基异戊酰酯化,而这种碳霉糖4’异戊酰酯化的螺旋霉素即称为必特螺旋霉素。由于微生物发酵过程中有多种脂肪酰代谢物存在,如乙酰、丙酰、丁酰等,而异戊酰基(ist)转移酶基因虽然主要识别异戊酰,但对其它脂肪酰基的识别具有一定的宽容性,因此,在发酵过程中,螺旋霉素碳霉糖4’位羟基还可能被乙酰化、丙酰化和丁酰化,形成乙酰、丙酰和丁酰螺旋霉素等组分。为了使必特螺旋霉素成品中的异戊酰成为其主组分(新药申报质量标准要求,其异戊酰螺旋霉素含量不应低于65%),通常需要在发酵液提取过程中增加水洗提取液的次数,然而,每次水洗均会降低提取收率,增加生产成本。所以,抗生素发酵过程产物多组分问题给生产中的后提取工艺及质量标准控制带来诸多困难与挑战。如果能从源头提高菌种合成主组分的能力,对于简化提取流程,降低生产成本,改善环境保护和优化质量标准控制具有显著的经济效益和社会效益。Finally, the expression product (enzyme) of the ist gene can catalyze the 4'-position hydroxyl of mycaminose in the spiramycin molecule in the presence of a fatty acyl (isovaleryl) group substrate in the spiramycin-producing bacteria to carry out The O-acylation reaction results in the esterification of the 4'-hydroxyl isovaleryl of mycaminol, and the spiramycin in which the 4'-isovaleryl of mycaminol is esterified is called bitspiramycin. Due to the existence of various fatty acyl metabolites in the microbial fermentation process, such as acetyl, propionyl, butyryl, etc., although the isovaleryl (ist) transferase gene mainly recognizes isovaleryl, it has a certain ability to recognize other fatty acyl groups. Therefore, during the fermentation process, the 4' hydroxyl group of spiramycin mycaminose may also be acetylated, propionylated and butyrylated to form components such as acetyl, propionyl and butyryl spiramycin. In order to make the isovaleryl in the finished product of bitspiramycin become its main component (the new drug application quality standard requires that its isovalerylspiramycin content should not be less than 65%), it is usually necessary to increase the isovaleryl in the fermentation broth extraction process The number of times of washing the extract with water, however, each washing with water will reduce the extraction yield and increase the production cost. Therefore, the multi-component problem of antibiotic fermentation process products brings many difficulties and challenges to the post-extraction process and quality standard control in production. If the ability of strains to synthesize main components can be improved from the source, it will have significant economic and social benefits for simplifying the extraction process, reducing production costs, improving environmental protection and optimizing quality standard control.

螺旋霉素是由螺旋链霉菌(S.spiramycetisus)或产二素链霉菌(S.ambofaciens)产生的。螺旋霉素生物合成基因簇(长度约90kb)已得到克隆[F Karray et al Microbilogy2007,153:4111-4122],其大环内酯主核系由约40kb的聚酮合酶I型基因产物介导合成,包括5个阅读框(SrmG I、II、III、IV、V),它们利用4个丙二酰CoA、1个乙基丙二酰CoA、1个甲基丙二酰CoA和一个甲氧基丙二酰CoA组成大环内酯;5个基因(orf5*、orf22c、orf23c、orf24c和orf25c)与甲氧基丙二酰携带蛋白相关;一个编码p450基因 (orf1)与C20位羟基化有关;一个编码酰基转移酶基因(orf6*)与内酯环羟基酰基化形成螺旋霉素II和III组分相关;orf31编码酮基还原酶与内酯环C9酮基还原有关,C9位酮基被还原为羟基后进而被糖基化,形成福洛糖胺内酯。在螺旋霉素生物合成基因簇中,orf1*c、orf2-8、orf9c、orf12、orf15c、orf19、orf20、orf21c和orf27等15个基因与螺旋霉素分子中三个糖基的合成相关;orf3*c、orf2*c、orf16-18和orf26等编码糖基转移酶;此外,还有orf7*c、orf11c(srmB)和orf29与抗性相关;orf10(srmR)、orf13c、orf28c和orf32c为螺旋霉素生物合成的调节基因。已知螺旋霉素产生菌除了产生螺旋霉素以外,还产生一种角聚酮类化合物,其生物合成由PKS II酶基因介导[PangX etal Antimicrob.Agents Chemother.2004,48(2):575-588]。Spiramycin is produced by S. spiramycetisus or S. ambofaciens. The spiramycin biosynthetic gene cluster (about 90kb in length) has been cloned [F Karray et al Microbiology2007, 153: 4111-4122], and its macrolide core system is mediated by about 40kb of polyketide synthase type I gene product lead synthesis, including 5 reading frames (SrmG I, II, III, IV, V), which utilize 4 malonyl CoA, 1 ethylmalonyl CoA, 1 methylmalonyl CoA and a formazan Oxymalonyl CoA constitutes a macrolide; five genes (orf5 * , orf22c, orf23c, orf24c, and orf25c) are associated with methoxymalonyl carrier proteins; one gene encoding p450 (orf1) is associated with C20 hydroxylation Related; a gene encoding an acyltransferase (orf6 * ) is related to the acylation of the hydroxyl group of the lactone ring to form spiramycin II and III components; orf31 encodes a ketoreductase related to the reduction of the C9 keto group of the lactone ring, and the C9 keto group After being reduced to a hydroxyl group, it is then glycosylated to form folosamine lactone. In the spiramycin biosynthesis gene cluster, 15 genes including orf1 * c, orf2-8, orf9c, orf12, orf15c, orf19, orf20, orf21c and orf27 are related to the synthesis of three sugar groups in spiramycin molecules; orf3 * c, orf2 * c, orf16-18, and orf26 encode glycosyltransferases; in addition, orf7 * c, orf11c (srmB) and orf29 are related to resistance; orf10 (srmR), orf13c, orf28c, and orf32c are helices Regulatory genes for mycin biosynthesis. In addition to producing spiramycin, it is known that spiramycin-producing bacteria also produce a kind of polyketide compound, and its biosynthesis is mediated by the PKS II enzyme gene [PangX etal Antimicrob.Agents Chemother.2004, 48 (2): 575 -588].

异戊酰螺旋霉素是由异戊酰基转移酶介导,使螺旋霉素异戊酰基化而产生的。因此,异戊酰螺旋霉素的产量依赖于螺旋霉素的产量,同时,异戊酰基转移酶的活性,直接影响螺旋霉素的转化率和异戊酰螺旋霉素的产率,而异戊酰基转移酶的活性,又受基因剂量、基因启动子强度和环境因素(即发酵条件)的调节。Isovalerylspiramycin is produced by isovalerylation of spiramycin mediated by isovaleryltransferase. Therefore, the output of isovalerylspiramycin depends on the output of spiramycin, and at the same time, the activity of isovaleryltransferase directly affects the conversion rate of spiramycin and the productive rate of isovalerylspiramycin, and isovalerylspiramycin The activity of acyltransferase, in turn, is regulated by gene dosage, gene promoter strength and environmental factors (ie, fermentation conditions).

基因剂量即基因拷贝数,对基因表达水平有重要影响。一般而言,质粒载体的高拷贝数常与目的基因的剂量相对应。许多报道表明,质粒拷贝数的增加可以使目的蛋白产量得到提高[Coronado C et al Plasmid 1994,32:336-341,Shen SH et al PNAS1984,1:4627-4631];有人利用双拷贝人α型心钠素基因,在大肠杆菌中提高了心钠素的分泌表达[周春燕等生物化学杂志,1992,8(1):26-32];也有人曾构建了含8个串连重复心钠素基因表达载体,提高了心钠素的产量[Lennick et al Gene 1987,61:103-112]。基因拷贝数对肿瘤坏死因子TNF、破伤风毒素和鼠表皮生长因子在重组毕赤酵母中的表达有明显影响,Sreekrishna等分别将1、10和20个拷贝的TNF基因整合在毕赤酵母的染色体上,TNF表达水平分别为0.05、4.0和10g/L,20个拷贝的TNF重组子的表达水平是单拷贝的200倍。14个破伤风毒素基因串连整合在毕赤酵母染色体的重组子表达水平比单拷贝的提高了6倍[Clare J J et al Biotechnol.1991,9:455-460]。整合19个拷贝的鼠表皮生长因子在重组毕赤酵母中的表达水平提高了13倍[Clare J J et al Gene1991,105:205-212]。有报道说,在棒状链霉菌(S.clavuligerusB71-14)将棒酸生物合成正调控基因CcaR在染色体整合使其增加了一个拷贝,导致棒酸产量提高了1.54倍[白小佳等食品研究与开发2008,29(8):]。Gene dosage is the gene copy number, which has an important impact on the level of gene expression. In general, the high copy number of the plasmid vector often corresponds to the dosage of the gene of interest. Many reports have shown that the increase in the number of plasmid copies can increase the production of the target protein [Coronado C et al Plasmid 1994, 32: 336-341, Shen SH et al PNAS1984, 1: 4627-4631]; The atrial natriuretic peptide gene increases the secretory expression of atrial natriuretic peptide in Escherichia coli [Zhou Chunyan and other biochemical journals, 1992, 8 (1): 26-32]; some people have also constructed an atrial natriuretic peptide containing 8 tandem repeats. Gene expression vector of atrial natriuretic peptide can increase the production of atrial natriuretic peptide [Lennick et al Gene 1987, 61: 103-112]. The gene copy number has a significant effect on the expression of tumor necrosis factor TNF, tetanus toxin and mouse epidermal growth factor in recombinant Pichia pastoris. Sreekrishna et al. integrated 1, 10 and 20 copies of the TNF gene into the chromosome of Pichia pastoris Above, the expression levels of TNF were 0.05, 4.0 and 10g/L, respectively, and the expression level of 20 copies of TNF recombinant was 200 times that of a single copy. The expression level of the 14 tetanus toxin genes tandem integrated in the Pichia yeast chromosome was 6 times higher than that of a single copy [Clare J J et al Biotechnol.1991, 9: 455-460]. Integrating 19 copies of mouse epidermal growth factor increased the expression level of recombinant Pichia pastoris by 13 times [Clare J J et al Gene1991, 105:205-212]. It has been reported that in Streptomyces clavuligerus (S. clavuligerus B71-14), the clavulanic acid biosynthesis positive regulatory gene CcaR was integrated in the chromosome to increase a copy, resulting in a 1.54-fold increase in clavulanic acid production [Bai Xiaojia et al. Food Research and Development 2008 , 29(8):].

启动子是位于结构基因5’端上游的一段DNA序列,能够指导RNA聚合酶全酶 (holoenzyme)同DNA模板正确结合,活化RNA聚合酶,启动基因转录。RNA聚合酶同启动子结合的区域称为启动子区。在原核生物中一般为-10区和-35区。基因启动子的结构不同,包括启动子-10区与-35区之间核苷酸数目的差异,会影响启动子的活性。采用不同启动子,能够影响基因转录活性,从而影响基因的表达。目前认为,红霉素产生菌(Saccharopolyspora erythraea)中,抗性基因启动子ermEp具有较强的启动活性,Schmitt John T等比较了几种不同结构的启动子,包括化学合成的类似于大肠杆菌基因保守序列启动子,新霉素抗性基因apb I启动子,黑色素基因melC启动子,受硫链丝菌素诱导的启动子tipA和ermEp等在变铅青链霉菌中对分泌表达淀粉酶抑肽(tendamistat)的影响,结果表明,采用ermEp启动子可获得500mg/ml淀粉酶抑肽,化学合成类似大肠杆菌启动子可获得10mg/ml的产量,melC启动子为200mg/ml,tipA启动子为0.5-40mg/ml的产量[Schmitt-John TThe promoter is a DNA sequence located upstream of the 5' end of the structural gene, which can guide the RNA polymerase holoenzyme to correctly bind to the DNA template, activate the RNA polymerase, and initiate gene transcription. The region where RNA polymerase binds to the promoter is called the promoter region. In prokaryotes, it is generally -10 and -35 regions. The difference in the structure of the gene promoter, including the difference in the number of nucleotides between the -10 region and the -35 region of the promoter, will affect the activity of the promoter. The use of different promoters can affect gene transcription activity, thereby affecting gene expression. At present, it is believed that in Saccharopolyspora erythraea, the resistance gene promoter ermEp has a strong activation activity. Schmitt John T et al. compared several promoters with different structures, including chemically synthesized genes similar to E. coli Conserved sequence promoters, neomycin resistance gene apb I promoter, melanin gene melC promoter, thiostrepton-induced promoters tipA and ermEp, etc. are secreted and expressed amylase aprotinin in Streptomyces lividans (tendamistat), the results show that 500mg/ml amylase aprotinin can be obtained by adopting the ermEp promoter, the chemical synthesis is similar to the Escherichia coli promoter and can obtain the output of 10mg/ml, the melC promoter is 200mg/ml, and the tipA promoter is 0.5-40mg/ml yield [Schmitt-John T

etal.ApplMicrobial.Biotechnol.1992,36(4):493-8]。et al. Appl Microbial. Biotechnol. 1992, 36(4): 493-8].

红霉素抗性基因ermE有两个启动子ermEp1和ermEp2,前者的转录起始点紧挨ermE起始密码子GTG前面的碱基G,其-10区的序列为TAGGAT,-35区序列为TGGACA,两者相距14bp;ermEp2转录起始点位于ermE起始密码子上游72bp,其-10区序列为GAGGAT,-35区序列为TTGACG,两者相距18bp。两个启动子的转录方向相同。将ermEp1-35区的TGG密码子实施缺失突变,更改为GGCACA序列,获得了更强的启动子ermE*p[Schmitt JT Applied Microbiology Biotechnology,1992,36:493-498,Bibb MJ Molecularand General Genetics,1986,203:468-478]。而ist基因启动子在阅读框起始密码子ATG上游36bp-10区TAGACA和-35区上游61bp TTGCCC,核糖体位点在上游6bp GAGG[NCBI基因库D3182]。The erythromycin resistance gene ermE has two promoters, ermEp1 and ermEp2. The transcription initiation point of the former is close to the base G in front of the GTG start codon of ermE. The sequence of the -10 region is TAGGAT, and the sequence of the -35 region is TGGACA The distance between the two is 14bp; the transcription start point of ermEp2 is located 72bp upstream of the start codon of ermE, the sequence of the -10 region is GAGGAT, and the sequence of the -35 region is TTGACG, and the distance between the two is 18bp. The direction of transcription is the same for both promoters. The TGG codon in the ermEp1-35 region was deleted and mutated to a GGCACA sequence to obtain a stronger promoter ermE * p [Schmitt JT Applied Microbiology Biotechnology, 1992, 36: 493-498, Bibb MJ Molecular and General Genetics, 1986 , 203: 468-478]. The ist gene promoter is 36bp upstream of the ATG start codon of the reading frame, TAGACA in the -10 region and 61bp TTGCCC upstream of the -35 region, and the ribosome site is 6bp GAGG upstream [NCBI Gene Bank D3182].

本发明的目的是,采用基因整合技术,将必特螺旋霉素基因工程菌中与螺旋霉素异戊酰基化密切相关的ist基因进行串连,使ist基因在螺旋霉素产生菌中增加其拷贝数,通过增强其基因剂量提高产生菌异戊酰基化能力;同时也利用强启动活性的启动子如红霉素抗性基因ermE启动子序列替换原ist基因启动子序列,以增强ist基因的表达,从源头提高基因工程菌产生异戊酰螺旋霉素主组分的比例。本发明所说的提高基因工程异戊酰螺旋霉素主组分含量的基因串连技术,迄今为止,尚未见有国内外的相关报道。The object of the present invention is to adopt the gene integration technology to connect the ist gene closely related to spiramycin isovalerylation in the spiramycin genetically engineered bacteria, so that the ist gene can be increased in the spiramycin-producing bacteria. Copy number, improve the isovalerylation ability of the producing bacteria by enhancing its gene dosage; at the same time, replace the original ist gene promoter sequence with a strong promoter such as the erythromycin resistance gene ermE promoter sequence to enhance the ist gene Expression, from the source to increase the ratio of the main component of isovalerylspiramycin produced by genetically engineered bacteria. The gene concatenation technology for increasing the content of the main component of genetically engineered isovalerylspiramycin mentioned in the present invention has not been reported at home and abroad so far.

发明内容:Invention content:

本发明提供的双拷贝ist基因的串连,可以采用重复串连方式,将两个带自身启动 子的ist基因1和2片段进行串连;也可以将第一个带自身启动子的ist基因与第二个不带启动子的ist基因进行串连,使转录能够连续进行;为了实施以上方案,ist基因上游引物可以分别根据ist基因阅读框起始密码子ATG上游,包括启动子或不包括启动子区进行设计;ist基因下游引物设计则可采用带转录终止子和不带转录终止子序列两种方案,在两个ist基因连续转录的情况下,第一个ist基因下游引物设计应该在终止密码子附近,不包含转录终止序列。以含有ist基因的pSW4质粒[Shang Guandong et al The J ofantibiotics 200154(1):66-73]为模板,利用所设计的引物进行PCR,获得两个ist基因,将两个ist基因通过酶切位点进行连接实施其串连,同时加入选择性标记基因,以便对基因转化子进行筛选。The tandem of the double-copy ist gene provided by the present invention can adopt the repeated tandem mode, and two ist gene 1 and 2 fragments with their own promoters can be connected in series; the first ist gene with its own promoter can also be connected in series. Tandem with the second ist gene without a promoter to enable continuous transcription; in order to implement the above scheme, the upstream primers of the ist gene can be included or excluded according to the start codon ATG upstream of the reading frame of the ist gene The promoter region is designed; the ist gene downstream primer design can adopt two schemes with transcription terminator and without transcription terminator sequence. In the case of continuous transcription of two ist genes, the downstream primer design of the first ist gene should be in Near the stop codon, does not contain the transcription termination sequence. Using the pSW4 plasmid containing the ist gene [Shang Guandong et al The J ofantibiotics 200154(1):66-73] as a template, PCR was performed using the designed primers to obtain two ist genes, and the two ist genes were digested Points are connected to carry out its tandem connection, and a selectable marker gene is added at the same time to screen the gene transformants.

本发明所提供双拷贝ist基因与宿主菌染色体的整合,可以采用同源基因重组双交换或直接使用整合型质粒载体。前一方案中,为了使串连的ist外源基因能整合在螺旋霉素产生菌的染色体上,可以在其两侧加上两段与染色体DNA同源的片段。应当采用确实与螺旋霉素生物合成不相关的基因片段进行同源重组,以保证同源基因重组时不影响螺旋霉素的形成。本发明采用前期从螺旋霉素产生菌克隆的PKS II基因,作为与宿主菌染色体DNA同源重组的基因片段,根据PKS II基因序列设计两对引物,在引物核苷酸序列两端加入与ist基因片段相连的相应酶切位点和克隆至载体的酶切位点。扩增两段1kb左右基因片段,分别连接在串连ist基因片段的两侧。PKS II基因来源于本实验室的克隆pCG4[唐莉等,生物工程学报,1991,7(1):24],基因序列已送交NCBI基因库收录,编号为AY779544。The integration of the double-copy ist gene provided by the present invention and the chromosome of the host bacterium can adopt homologous gene recombination double exchange or directly use an integrated plasmid vector. In the former scheme, in order to integrate the tandem ist exogenous gene into the chromosome of the spiramycin-producing bacteria, two fragments homologous to the chromosomal DNA can be added on both sides. Homologous recombination should be carried out with gene fragments that are not related to spiramycin biosynthesis, so as to ensure that the formation of spiramycin will not be affected during homologous gene recombination. The present invention adopts the PKS II gene cloned from the spiramycin-producing bacteria in the early stage as a gene fragment for homologous recombination with the chromosomal DNA of the host bacteria, designs two pairs of primers according to the PKS II gene sequence, and adds and ist at both ends of the primer nucleotide sequence. Corresponding restriction sites for linking gene fragments and restriction sites for cloning into vectors. Two gene fragments of about 1 kb were amplified, respectively connected to both sides of the tandem ist gene fragment. The PKS II gene is derived from the clone pCG4 in our laboratory [Tang Li et al., Acta Biological Engineering, 1991, 7(1): 24], and the gene sequence has been submitted to the NCBI Gene Bank for inclusion, with the number AY779544.

本发明所提供的另一方案是,采用整合型质粒载体,使双拷贝ist基因直接整合在染色体上。原则上可以采用多种链霉菌整合型载体,本发明采用pSET152载体[Bierman Met al Gene 1992,116:43-49],它是一个可以在链霉菌/大肠杆菌中接合转移质粒载体,含有大肠杆菌的pUC18复制点,不含链霉菌的复制点,因而不能在其中以游离形式存在,而是含有ΦC31整合酶基因,以链霉菌噬菌体ΦC31附着位点整合至宿主菌的染色体进行复制。将串连的ist基因克隆到链霉菌整合型载体,通过转化转入螺旋霉素产生菌,根据选择性标记及PCR验证,可以确定串连ist基因在染色体的整合。Another solution provided by the present invention is to use an integrative plasmid vector to directly integrate the double-copy ist gene on the chromosome. In principle, a variety of Streptomyces integrative vectors can be used. The present invention uses the pSET152 vector [Bierman Metal Gene 1992, 116: 43-49], which is a conjugative transfer plasmid vector in Streptomyces/Escherichia coli, containing Escherichia coli The pUC18 replication point does not contain the replication point of Streptomyces, so it cannot exist in a free form, but contains the ΦC31 integrase gene, which is integrated into the chromosome of the host bacterium through the Streptomyces phage ΦC31 attachment site for replication. Cloning the tandem ist gene into the Streptomyces integrative vector, transforming it into a spiramycin-producing strain, and confirming the integration of the tandem ist gene in the chromosome according to the selection marker and PCR verification.

本发明还采用链霉菌强启动子如红霉素抗性基因ermE的启动子ermEp,以提高串连ist基因在宿主菌中的表达,继而提高基因工程菌合成异戊酰螺旋霉素主组分的产率。The present invention also adopts a strong streptomyces promoter such as the promoter ermEp of the erythromycin resistance gene ermE to improve the expression of the tandem ist gene in the host bacterium, and then improve the synthetic isovalerylspiramycin main component of the genetically engineered bacteria yield.

发明效果:Invention effect:

本发明将异戊酰基转移酶基因在螺旋霉素产生菌中串连表达,可以从源头提高必特螺旋霉素产生菌产生主组分异戊酰螺旋霉素的比例,从而大大简化提取工艺,降低生产成本,改善环境保护和优化质量标准的控制,产生明显的的经济和社会效益。In the present invention, the isovaleryltransferase gene is serially expressed in the spiramycin-producing bacteria, which can increase the ratio of the main component isovalerylspiramycin produced by the bitspiramycin-producing bacteria from the source, thereby greatly simplifying the extraction process, Reduce production costs, improve environmental protection and optimize the control of quality standards, resulting in obvious economic and social benefits.

附图说明:Description of drawings:

图1、同源重组双交换ist基因双拷贝质粒(pKC1139-5)的构建及基因整合示意图Figure 1. Schematic diagram of the construction and gene integration of the homologous recombination double exchange ist gene double-copy plasmid (pKC1139-5)

其中:1-螺旋霉素产生菌原株染色体;2-同源重组双交换ist基因双拷贝在染色体的整合;E、K、S、H、B、X和P分别为-EcoRI、KpnI、SphI、HindIII、BamHI、XbaI和PstI酶切位点。Among them: 1-chromosome of the original strain of spiramycin producing bacteria; 2-integration of double copy of ist gene in homologous recombination double exchange in chromosome; E, K, S, H, B, X and P are -EcoRI, KpnI, SphI respectively , HindIII, BamHI, XbaI and PstI restriction sites.

图2、整合型双拷贝ist基因重组质粒pSET-4的构建Figure 2. Construction of the integrated double-copy ist gene recombinant plasmid pSET-4

其中:E、K、S、Sa、B、X、H和EV分别为EcoRI、KpnI、SphI、SalI、BamHI、XbaI和HindIII酶切位点。Among them: E, K, S, Sa, B, X, H and EV are EcoRI, KpnI, SphI, SalI, BamHI, XbaI and HindIII restriction sites, respectively.

图3、整合型双拷贝ist基因在变铅青链霉菌表达转化子转化螺旋霉素产生异戊酰螺旋霉素的HPLC分析。Fig. 3. HPLC analysis of isovalerylspiramycin produced by transformant transformed with integrated double-copy ist gene in Streptomyces lividans to transform spiramycin.

其中:A-必特螺旋霉素标准;B-螺旋霉素标准;C-pSET152-2(ist单拷贝质粒)在变铅青链霉菌TK24的转化子,对螺旋霉素异戊酰基化的HPLC分析;D-pSET152-4(ist双拷贝质粒)在变铅青链霉菌TK24的转化子,对螺旋霉素异戊酰基化的HPLC分析;1,2,3-为异戊酰螺旋霉素I、II、III;1’,2’,3’为螺旋霉素I、II、III。Among them: A-bitspiramycin standard; B-spiramycin standard; C-pSET152-2 (ist single-copy plasmid) in the transformant of Streptomyces lividans TK24, the HPLC of isovalerylation of spiramycin Analysis; D-pSET152-4 (ist double-copy plasmid) in the transformant of Streptomyces lividans TK24, HPLC analysis of spiramycin isovalerylation; 1,2,3- is isovalerylspiramycin I , II, III; 1', 2', 3' are spiramycin I, II, III.

图4、同源重组双交换双拷贝ist基因PCR鉴定。Figure 4. PCR identification of double-copy ist gene by homologous recombination double exchange.

其中:M-λDNA/HindIII酶切标记;1-螺旋霉素产生菌原株;Among them: M-λDNA/HindIII enzyme-cut marker; 1-spiramycin producing strain;

2-6-新构建的含同源重组双交换双拷贝ist基因工程菌株。2-6-Newly constructed double-copy ist gene engineering strain containing homologous recombination double exchange.

图5、同源重组串连ist基因在螺旋霉素产生菌中提高异戊酰螺旋霉素组分的HPLC分析。Fig. 5. HPLC analysis of homologous recombination tandem ist gene in spiramycin-producing bacteria to increase the fraction of isovalerylspiramycin.

其中:pSW4-对照;pKC11395-同源重组双拷贝ist基因工程菌。Among them: pSW4-control; pKC11395-homologous recombination double-copy ist gene engineering bacteria.

实施方案:implementation plan:

以下给出的实施例仅为帮助本领域技术人员更好地理解本发明,但不以任何方式限制本发明。The examples given below are only to help those skilled in the art better understand the present invention, but do not limit the present invention in any way.

<实施例1>:两个带自身启动子双拷贝ist基因的串连<Example 1>: The concatenation of two double-copy ist genes with their own promoters

双拷贝ist基因1和2的串连,采用包括其自身启动子的重复串连方式,在ist基因起始密码子ATG上游-129kb和终止子TAG下游-41设计P1-P2和P3-P4引物(表一),以 含有ist基因的pSW4质粒为模板,经PCR扩增出2个约1.3kb左右带有不同酶切位点,即ist1基因(KpnI-BamH I)和ist 2基因(BamHI-Xba I)片段,利用相同的BamH I酶切位点可以实施双拷贝带自身启动子ist基因之间的串连。For the tandem of double-copy ist genes 1 and 2, use the repeated tandem method including its own promoter, and design P1-P2 and P3-P4 primers at the ist gene start codon ATG upstream - 129kb and terminator TAG downstream - 41 (Table 1), using the pSW4 plasmid containing the ist gene as a template, two about 1.3kb restriction sites with different restriction sites were amplified by PCR, namely the ist1 gene (KpnI-BamH I) and the ist 2 gene (BamHI- Xba I) fragment, the same BamH I restriction site can be used to carry out the double copy with its own promoter ist gene in series.

<实施例2>:双拷贝ist基因串连转录的构建<Example 2>: Construction of double-copy ist gene tandem transcription

在ist基因起始密码子ATG上游-111bp和终止子TAG下游-24bp(不包括转录终止序列)设计P5-P6引物,在ATG上游-105bp和终止子下游-80bp(包括转录终止序列)设计P7-P8引物(表一),双拷贝ist基因串连引物设计部位见图1。以含有ist基因的pSW4质粒为模板,经PCR分别获得ist 3基因(含BamHI-XbaI位点)和ist 4基因(含XbaI-SalI位点)片段,利用相同的XbaI酶切位点,实施双拷贝ist基因的串连。Design P5-P6 primers at the ist gene start codon ATG upstream -111bp and terminator TAG downstream -24bp (excluding the transcription termination sequence), and design P7 at the ATG upstream -105bp and terminator downstream -80bp (including the transcription termination sequence) - P8 primer (Table 1), the design site of the double-copy ist gene tandem primer is shown in Figure 1. Using the pSW4 plasmid containing the ist gene as a template, the ist 3 gene (including BamHI-XbaI site) and ist 4 gene (containing XbaI-SalI site) fragments were respectively obtained by PCR, and the same XbaI restriction site was used to perform double A tandem of copies of the ist gene.

<实施例3>:同源重组双交换ist基因双拷贝质粒(pKC1139-5)的构建<Example 3>: construction of homologous recombination double exchange ist gene double copy plasmid (pKC1139-5)

利用P9-P10引物以pCG4质粒为模板,经PCR扩增出1.1kb左右的同源片段H1,利用P11-P12引物以pCG4质粒为模板,经PCR扩增出1.1kb左右的同源片段H2,用以构建ist基因两侧同源重组双交换的片段。用Xba I-Pst I酶切pWS1质粒[Shang Guandonget al The J of antibiotics 2001 54(1):66-73],获得长约1.3kb硫链丝菌素抗性基因(Tsrr)片段,作为同源重组双交换的筛选标记。将H1片段(EcoR I-Kpn I)、实施例1所述的ist1基因(Kpn I-BamH I)、ist 2基因(BamHI-Xba I)以及Tsrr基因(Xba I-PstI)和H2(PstI-Hind III)片段直接连接到温敏型质粒载体pKC1139质粒[Bierman M,et al.Gene,1992,116:43-49]EcoR I-Hind III位点上,转化大肠杆菌DH5α[Takara公司],通过质粒提取、测序,获得可进行同源重组双交换的双拷贝ist基因的重组质粒pKC1139-5(图1)。Using P9-P10 primers and pCG4 plasmid as a template, the homologous fragment H 1 of about 1.1kb was amplified by PCR, and the homologous fragment H of about 1.1kb was amplified by PCR using the pCG4 plasmid as a template using P11-P12 primers 2 , to construct a fragment of double crossover of homologous recombination on both sides of the ist gene. Digest the pWS1 plasmid with Xba I-Pst I [Shang Guandong et al The J of antibiotics 2001 54(1):66-73] to obtain a 1.3kb thiostrepton resistance gene (Tsr r ) fragment, as the same Screening markers for source recombination double crossovers. The H 1 fragment (EcoR I-Kpn I), ist1 gene (Kpn I-BamH I), ist 2 gene (BamHI-Xba I) and Tsr r gene (Xba I-PstI) described in Example 1 and H 2 The (PstI-Hind III) fragment was directly connected to the thermosensitive plasmid vector pKC1139 plasmid [Bierman M, et al.Gene, 1992, 116: 43-49] on the EcoR I-Hind III site, and transformed into Escherichia coli DH5α [Takara Company ], through plasmid extraction and sequencing, the recombinant plasmid pKC1139-5 (Fig. 1) of double-copy ist gene capable of homologous recombination double exchange was obtained.

表一  实施例1-3中所用引物的序列Table 1 The sequences of the primers used in Examples 1-3

Figure G2009101487678D00071
Figure G2009101487678D00071

Figure G2009101487678D00081
Figure G2009101487678D00081

<实施例4>:串连ist基因构建中的PCR反应<Example 4>: PCR reaction in tandem ist gene construction

PCR反应的主要技术参数为反应体积20μl,采用TakaRa公司LATaq酶和2×GC缓冲液I;模板基因DNA取50-100ng;96℃变性3min,退火温度为61℃,72℃延伸1.5min,进行30个循环,72℃延伸5min,结束反应。The main technical parameters of the PCR reaction are reaction volume 20 μl, using TakaRa company LATaq enzyme and 2×GC buffer I; take 50-100 ng of template gene DNA; 30 cycles, extended at 72°C for 5 min, and the reaction was terminated.

<实施例5>:整合型强启动子双拷贝ist基因重组质粒的构建<Example 5>: Construction of a double-copy ist gene recombination plasmid with an integrated strong promoter

从质粒pGH113[莫宏波生物工程学报2004,20(5):662-666]中,将红霉素抗性基因启动子区[Bibb MJ et al Gene,1985,38:215-226]进行KpnI和BamHI双酶切,获得279bp片段,与实施例2中所述ist 3基因(BamHI-XbaI)及ist 4基因(XbaI-SalI)片段进行连接,并克隆于pUC18质粒(Promega公司)KpnI-SalI酶切位点,然后将外源片段以EcoRI-SphI酶切,再与pSET152质粒[Bierman M et al Gene 1992,116:43-49]EcoRI-EcoRV酶切片段进行半平末端化连接,获得pSET152-4重组质粒(图2)。以相似的方法,将ist单基因克隆至pSET152载体,获得pSET152-2重组质粒,作为对照。From the plasmid pGH113 [Journal of Mohongbo Bioengineering 2004, 20 (5): 662-666], the erythromycin resistance gene promoter region [Bibb MJ et al Gene, 1985, 38: 215-226] was subjected to KpnI and BamHI double digestion, obtain 279bp fragment, connect with ist 3 gene (BamHI-XbaI) and ist 4 gene (XbaI-SalI) fragment described in embodiment 2, and clone in pUC18 plasmid (Promega company) KpnI-SalI enzyme Cut the site, then digest the foreign fragment with EcoRI-SphI, and then perform semi-blunt ligation with the pSET152 plasmid [Bierman M et al Gene 1992, 116:43-49] EcoRI-EcoRV fragment to obtain pSET152-4 Recombinant plasmid (Figure 2). In a similar manner, the ist single gene was cloned into the pSET152 vector to obtain the pSET152-2 recombinant plasmid as a control.

<实施例6>:整合型强启动子双拷贝ist基因异源表达提高螺旋霉素异戊酰化活性确认<Example 6>: Confirmation of heterologous expression of double-copy ist gene with integrated strong promoter to improve spiramycin isovalerylation activity

分别将ist单拷贝的pSET152-2对照及所构建的pSET152-4重组质粒转入链霉菌通用宿主菌变铅青链霉菌(S.lividans TK24)[T Kieser et al Practical StreptomycesGenetics The John Innes Foundation,Norwich,2000,p425]。The ist single-copy pSET152-2 control and the constructed pSET152-4 recombinant plasmid were transformed into Streptomyces universal host strain Streptomyces lividans TK24 [T Kieser et al Practical Streptomyces Genetics The John Innes Foundation, Norwich , 2000, p425].

取新鲜的变铅青链霉菌斜面孢子接种于R2YE培养基[蔗糖10.3%,葡萄糖1.0%,酵母净出液0.4%,胰蛋白胨0.2%,蛋白胨0.4%,酪蛋白水解氨基酸0.4%,K2SO4 0.025%,无水CaCl2 0.216%,KH2PO4 0.005%,MgCl2.6H2O 1.012%,100ml培养基中加入NaOH(1M)0.5ml,Tris-HCl(0.25M)pH7.210ml,微量元素溶液0.2ml(ZnCl2 0.004%,FeCl3.6H2O 0.02%,CuCl2.2H2O 0.001%,MnCl2.4H2O 0.001%,Na2B4O7.10H2O 0.001%,(NH4)6Mo7O2.4H2O 0.001%)],用蒸馏水配制pH6.5,37℃摇瓶振荡培养48h,培养物以10%的转种量转种于新鲜的补加了2%甘氨酸的R2YE培养基中,28℃振荡培养20h。取10ml菌液于离心管中,3000r/min离心收集菌丝体,沉淀用P缓冲液[1mol/LTris-HCl(pH8.0)0.31ml,CaCl2.2H2O 0.368%,MgCl2.6H2O 0.204%,蔗糖10.3%,葡萄 糖0.1%,微量元素0.2ml/100ml],pH 7.6,洗涤3次。加入10ml含2mg/ml溶菌酶的P缓冲液,混合均匀,于37℃水浴中保温1~2h,每隔10~15min振荡一次,促进原生质体的释放。经脱脂棉过滤,滤液离心后,用P缓冲液洗涤2次。最后用1ml P缓冲液悬浮原生质体。Inoculate fresh slant spores of Streptomyces lividans into R2YE medium [10.3% sucrose, 1.0% glucose, 0.4% net yeast liquid, 0.2% tryptone, 0.4% peptone, 0.4% casein hydrolyzed amino acid, K2SO 4 0.025%, anhydrous CaCl 2 0.216%, KH 2 PO 4 0.005%, MgCl 2 .6H 2 O 1.012%, add NaOH (1M) 0.5ml to 100ml medium, Tris-HCl (0.25M) pH7.210ml, Trace element solution 0.2ml (ZnCl 2 0.004%, FeCl 3 .6H 2 O 0.02%, CuCl 2 .2H 2 O 0.001%, MnCl 2 .4H 2 O 0.001%, Na 2 B 4 O 7 .10H 2 O 0.001% , (NH 4 ) 6 Mo 7 O 2 .4H 2 O 0.001%)], prepared pH 6.5 with distilled water, cultured in shaking flask at 37°C for 48 hours, and transferred the culture to freshly supplemented In the R2YE medium supplemented with 2% glycine, shake culture at 28°C for 20h. Take 10ml of bacterial liquid in a centrifuge tube, centrifuge at 3000r/min to collect mycelium, and use P buffer [1mol/LTris-HCl (pH8.0) 0.31ml, CaCl 2 .2H 2 O 0.368%, MgCl 2 .6H for precipitation 2 O 0.204%, sucrose 10.3%, glucose 0.1%, trace elements 0.2ml/100ml], pH 7.6, washed 3 times. Add 10ml of P buffer solution containing 2mg/ml lysozyme, mix well, incubate in a 37°C water bath for 1-2h, and shake once every 10-15min to promote the release of protoplasts. After filtering through absorbent cotton, the filtrate was centrifuged and washed twice with P buffer. Finally, suspend the protoplasts with 1ml P buffer.

取100μl原生质体,加入10μl质粒DNA溶液,轻弹管壁混匀,迅速加入400μl含25%PEG-1000的P缓冲液,吹吸混匀,室温放置1min,取200μl涂布于干燥的R2YE平板上,28℃培养略见菌苔(约16~35h)后,以50微克/ml阿普霉素溶液覆盖,28℃继续倒置培养3~5天,挑取转化子。将转化子斜面培养物接种于转化培养基[淀粉2.0%,葡萄糖2.0%,(NH4)2SO4 0.3%,酵母粉0.5%,黄豆饼粉1.0%,KH2PO4 0.05%,MgSO4.7H2O0.02%,CaCO3 0.5%],28℃培养30h后,加入200微克/毫升螺旋霉素,再培养2天,培养液过滤后调pH至8.0,用乙酸乙酯提取,浓缩后溶于甲醇进行HPLC分析,采用岛津LC-10ATvp液相色谱议,色谱柱为Kromasil C184.5×150mm,流动相为甲醇/1%磷酸二氢钠溶液(55/45),流速为1ml/min,检测波长为231nm。根据转化子将螺旋霉素转化为异戊酰螺旋霉素的比值,验证所构建ist串连基因在变铅青链霉菌表达异戊酰化酶的活性。以螺旋霉素和必特螺旋霉素中异戊酰化螺旋霉素的保留时间(RT)为标准,根据紫外吸收峰比值,计算转化子异戊酰螺旋霉素形成量和螺旋霉素残留量的比值,以此代表异戊酰化酶的活性,结果见表二。代表性的HPLC分析见图3。Take 100 μl of protoplasts, add 10 μl of plasmid DNA solution, flick the tube wall to mix, quickly add 400 μl of P buffer containing 25% PEG-1000, blow and aspirate to mix, leave at room temperature for 1 min, take 200 μl and spread it on a dry R2YE plate On the top, after culturing at 28°C for a slight bacterial lawn (about 16-35 hours), cover with 50 μg/ml apramycin solution, continue to invert culture at 28°C for 3-5 days, and pick transformants. Inoculate the slant culture of the transformants on the transformation medium [starch 2.0%, glucose 2.0%, (NH 4 ) 2 SO 4 0.3%, yeast powder 0.5%, soybean cake powder 1.0%, KH 2 PO4 0.05%, MgSO4.7H 2 O 0.02%, CaCO 3 0.5%], cultured at 28°C for 30 hours, added 200 μg/ml spiramycin, and cultured for another 2 days. After the culture solution was filtered, the pH was adjusted to 8.0, extracted with ethyl acetate, concentrated and dissolved Carry out HPLC analysis in methanol, adopt Shimadzu LC-10ATvp liquid chromatograph, chromatographic column is Kromasil C184.5 * 150mm, mobile phase is methanol/1% sodium dihydrogen phosphate solution (55/45), flow velocity is 1ml/min , The detection wavelength is 231nm. According to the ratio of transformants converting spiramycin to isovalerylspiramycin, the constructed ist tandem gene was verified to express the activity of isovalerylase in Streptomyces lividans. Using the retention time (RT) of isovalerylated spiramycin in spiramycin and bitspiramycin as a standard, calculate the amount of isovalerylated spiramycin and the amount of spiramycin residue in the transformant according to the ratio of the UV absorption peak The ratio represents the activity of isovalerylase, and the results are shown in Table II. A representative HPLC analysis is shown in Figure 3.

表二、变铅青链霉菌转化子异戊酰螺旋霉素形成量和螺旋霉素残留量的比值Table 2. The ratio of the amount of isovalerylspiramycin formed and the amount of spiramycin residue in the Streptomyces lividans transformant

  质粒plasmid   螺旋霉素残留量  (峰值%)Spiramycin residues (peak %)   异戊酰螺旋霉素形  成量(峰值%)Formation of isovalerylspiramycin (peak %)   异戊酰螺旋霉素形成量和螺旋霉素残  留量的比值The ratio of the amount of isovalerylspiramycin formed to the amount of spiramycin residue   pSET152-2pSET152-2   34.56834.568   3.843.84   11.011.0   pSET152-4pSET152-4   15.04615.046   12.56412.564   53.6%53.6%

由表中结果可见,利用ermEp强启动子串连表达ist基因可以明显提高螺旋霉素异戊酰化活性,使异戊酰螺旋霉素形成量和螺旋霉素残留量的比值提高138%。It can be seen from the results in the table that the tandem expression of the ist gene using the strong ermEp promoter can significantly increase the isovalerylation activity of spiramycin, and increase the ratio of the amount of isovalerylspiramycin formed to the amount of spiramycin residue by 138%.

<实施例7>:同源重组串连ist基因在螺旋霉素产生菌中提高异戊酰螺旋霉素组分的验证。<Example 7>: Verification that homologous recombination tandem ist gene increases isovalerylspiramycin component in spiramycin-producing bacteria.

分别将重组载体pKC1139-5和pSET152-4采用类似于实施例6原生质体转化的方法,导入至螺旋霉素产生菌S.spiramyceticus[中国普通微生物菌种保藏管理中心CGMCC4.118]中,获得抗性转化子。将pKC1139-5转化子在28℃加有Tsrr平板[黄豆 饼粉-淀粉培养基]上培养生长,经分离后在37℃无抗性的平板上传代,分离挑选在Tsrr平板生长但在Amr平板上不生长的菌株,获得ist基因整合到宿主染色体上的工程菌。pKC1139-5质粒与宿主菌染色体同源重组双交换见图1。以S.spiramyceticus原株和新构建的工程菌基因组总DNA为模板,用P1-P2为引物的PCR进行ist基因检测;用表一中所述的P13引物(H1同源片段外测序列的引物)和P12(H2同源片段的下游引物)为组合引物扩增全长为5片段基因产物,以验证双拷贝ist基因在宿主染色体中的整合(图4)。五株新构建的双拷贝ist基因菌株和原必特螺旋霉素基因工程菌经种子培养[葡萄糖1-3%,淀粉2-4%,黄豆饼粉1-3%,NaCl 0.4%,CaCO3 0.3-0.8%]和发酵培养[淀粉2-6%,鱼粉1-3%,玉米浆0.5-1.5%,NH4NO3 0.6%,KH2PO4 0.01-0.08%,MgSO4 0.1-0.2%,NaCl1-2%,CaCO3 0.3-0.7%]后,发酵液经乙酸乙酯提取,进行HPLC检测,计算发酵产物中异戊酰螺旋霉素组分比例,结果见表三。代表性的HPLC分析见图5。Respectively, the recombinant vectors pKC1139-5 and pSET152-4 were introduced into the spiramycin-producing strain S.spiramyceticus [CGMCC4.118 of China General Microorganism Culture Collection and Management Center] by a method similar to the protoplast transformation in Example 6 to obtain anti- sex transformants. The pKC1139-5 transformant was cultured and grown on Tsr r plate [soybean cake flour-starch medium] at 28°C, and passaged on a non-resistant plate at 37°C after isolation. For the strains that do not grow on the Am r plate, obtain the engineered bacteria in which the ist gene is integrated into the host chromosome. See Figure 1 for the homologous recombination double crossover between the pKC1139-5 plasmid and the host bacterial chromosome. With the original strain of S.spiramyceticus and the total genome DNA of the newly constructed engineering bacteria as templates, the PCR with P1-P2 as primers is used to detect the ist gene; ) and P12 (downstream primer of H 2 homologous fragment) were combined primers to amplify the full-length 5-segment gene product to verify the integration of the double-copy ist gene in the host chromosome (Figure 4). Five newly constructed double-copy ist gene strains and the original bitspiramycin genetically engineered bacteria were cultured by seeds [glucose 1-3%, starch 2-4%, soybean meal 1-3%, NaCl 0.4%, CaCO 3 0.3-0.8%] and fermentation culture [starch 2-6%, fish meal 1-3%, corn steep liquor 0.5-1.5%, NH 4 NO 3 0.6%, KH 2 PO 4 0.01-0.08%, MgSO 4 0.1-0.2% , NaCl 1-2%, CaCO 3 0.3-0.7%], the fermentation broth was extracted with ethyl acetate and detected by HPLC, and the proportion of the isovalerylspiramycin component in the fermentation product was calculated. The results are shown in Table 3. A representative HPLC analysis is shown in Figure 5.

表三、双拷贝ist基因工程菌发酵产生异戊酰螺旋霉素组分的比例Table 3, the proportion of isovalerylspiramycin components produced by fermentation of double-copy ist genetic engineering bacteria

注:表中结果为三次发酵的HPLC检测平均值Note: The results in the table are the average value of HPLC detection of three fermentations

由表中结果可见,同源重组双拷贝ist基因工程菌产生的异戊酰螺旋霉素主组分提高了62%。As can be seen from the results in the table, the main component of isovalerylspiramycin produced by the homologous recombination double-copy ist gene engineering bacteria has increased by 62%.

序列表 sequence listing

<110>中国医学科学院医药生物技术研究所 <110>Institute of Pharmaceutical Biotechnology, Chinese Academy of Medical Sciences

<120>一种提高基因工程异戊酰螺旋霉素主组分含量的基因串连技术 <120> A gene concatenation technology to increase the content of the main component of genetically engineered isovalerylspiramycin

<140>2009101487678 <140>2009101487678

<141>2009-07-03 <141>2009-07-03

<160>13 <160>13

<170> <170>

<210>1 <210>1

<211>28 <211>28

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>1 <400>1

cggggtaccg ccgtgcagcg gtgggaac   28 cggggtaccg ccgtgcagcg gtgggaac 28

<210>2 <210>2

<211>29 <211>29

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>2 <400>2

cgcggatcca actccacggg cgctgacgc  29 cgcggatcca actccacggg cgctgacgc 29

<210>3 <210>3

<211>28 <211>28

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>3 <400>3

cgcggatccg ccgtgcagcg gtgggaac  28 cgcggatccg ccgtgcagcg gtgggaac 28

<210>4 <210>4

<211>30 <211>30

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>4 <400>4

cgagtctaga aactccacgg gcgctgacgc  30 cgagtctaga aactccacgg gcgctgacgc 30

<210>5 <210>5

<211>28 <211>28

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>5 <400>5

cgcggatccg ccgtgcagcg gtgggaac    28 cgcggatccg ccgtgcagcg gtgggaac 28

<210>6 <210>6

<211>29 <211>29

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>6 <400>6

ctagtctaga gcaccggtcg tcccgcgtc   29 ctagtctaga gcaccggtcg tcccgcgtc 29

<210>7 <210>7

<211>29 <211>29

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>7 <400>7

ctagtctaga gccgtgcagc ggtgggaac   29 ctagtctaga gccgtgcagc ggtgggaac 29

<210>8 <210>8

<211>30 <211>30

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>8 <400>8

acgcgtcgac gatcacactc ttcgaggaac  30 acgcgtcgac gatcacactc ttcgaggaac 30

<210>9 <210>9

<211>28 <211>28

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>9 <400>9

ccggaattcc aggtcgcact cagggtcg    28 ccggaattcc aggtcgcact cagggtcg 28

<210>10 <210>10

<211>28 <211>28

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>10 <400>10

cggggtaccc ctcatcacgt cgggtcgc   28 cggggtaccc ctcatcacgt cgggtcgc 28

<210>11 <210>11

<211>27 <211>27

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>11 <400>11

acatgcatgc gggacgtgga gctaccg    27 acatgcatgc gggacgtgga gctaccg 27

<210>12 <210>12

<211>26 <211>26

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>12 <400>12

cccaagcttc cgcatagtgg tggcag     26 cccaagcttc cgcatagtgg tggcag 26

<210>13 <210>13

<211>27 <211>27

<212>DNA <212>DNA

<213>人工序列 <213> Artificial sequence

<220> <220>

<223> <223>

<400>13 <400>13

ccggaattct cctcgggacg ggtcagc    27 ccggaattct cctcgggacg ggtcagc 27

Claims (7)

1. gene polyphone technology that can improve gene engineering isovaleryl Spiramycin Base major constituent content is characterized in that said polyphone technology may further comprise the steps successively:
The polyphone of a, two copy ist genes;
B, employing streptomycete plasmid vector reach and the incoherent gene fragment of Spiramycin Base biosynthesizing makes up the two ist of copy dna homolog recombinant plasmids as homologous gene, or employing streptomycete integrative plasmid and the two copy of streptomycete strong promoter structure ist gene recombination plasmids;
C, change two copy ist dna homolog recombinant plasmids over to spiramycin-producing strain, or change the two copy of the integrated strong promoter of streptomycete ist gene recombination plasmids over to the allos muta lead mycillin;
D, two copy ist dna homolog recombinant plasmid improve isovaleryl Spiramycin Base major constituent content in spiramycin-producing strain, or the evaluation that heterogenous expression improves Spiramycin Base isoamyl acidylate in muta lead mycillin of the two copy of integrated strong promoter ist gene recombination plasmid.
2. the described gene of claim 1 polyphone technology, it is characterized in that, one of scheme of step a is two polyphones with the two copy of self promotor ist gene, frame initiator codon and self promotor upstream and terminator codon downstream sequence design primer are read according to the ist gene by system, and in design of primers, add corresponding restriction enzyme site sequence, with the plasmid that contains the ist gene is template, through pcr amplification, obtain two ist gene fragments, utilize corresponding restriction enzyme site, implement with the polyphone between the two copy of self promotor ist gene.
3. the described gene of claim 1 polyphone technology, it is characterized in that, two of the scheme of step a is pair structure that copy ist genes polyphone is transcribed, be first ist gene downstream primer design, be positioned at the terminator codon downstream but do not comprise its transcription termination sequence, second ist gene downstream primer design comprises transcription termination sequence, and in design of primers, add corresponding restriction enzyme site, with the plasmid that contains the ist gene is template, through pcr amplification, obtain two ist gene fragments, utilize corresponding restriction enzyme site, make second ist gene and first ist gene implement polyphone and consecutive transcription.
4. the described gene of claim 1 polyphone technology, it is characterized in that, one of scheme of step b is the structure of homologous recombination double exchange ist Gene Double copy plasmid, adopting design of primers and PCR method is template with spiramycin-producing strain karyomit(e), two and the incoherent gene fragment of Spiramycin Base biosynthesizing increase, and in design of primers, add corresponding restriction enzyme site, be connected to the both sides of the described polyphone of claim 2 ist gene fragment, simultaneously, add selected marker thiostrepton resistant gene, above-mentioned five fragment clonings to the streptomycete plasmid vector, are obtained can be used for homologous recombination double exchange ist Gene Double copy plasmid.
5. the described gene of claim 1 polyphone technology, it is characterized in that, two of the scheme of step b is the structure of the two copy of integrated strong promoter ist gene recombination plasmid, it utilizes streptomycete strong promoter fragment, transcribing fragment by the described two copy ist gene polyphones of corresponding restriction enzyme site and claim 3 is connected, and be cloned into streptomycete integrative plasmid carrier, obtain the two copy of integrated strong promoter ist gene recombination plasmid.
6. the described gene of claim 1 polyphone technology; it is characterized in that; one of scheme of step c and d is to change the two copy of the described integrated strong promoter of claim 5 ist gene recombination plasmid over to the allos streptomycete; analyze transformant with HPLC the Spiramycin Base that external source adds is converted into isovaleryl Spiramycin Base formation amount, improve the transformation efficiency of Spiramycin Base isoamyl acidylate to confirm the two copy of integrated strong promoter ist gene heterogenous expression.
7. the described gene of claim 1 polyphone technology, it is characterized in that, two of the scheme of step c and d is to change the described homologous recombination double exchange of claim 4 ist Gene Double copy plasmid over to spiramycin-producing strain, obtain transformant, after separating, on the non-resistant flat board, go down to posterity, obtain the engineering bacteria of ist gene integration to the host chromosome, through fermentation culture, extraction and product is carried out HPLC analyze, according to isovaleryl Spiramycin Base component concentration, identify the ratio of its raising.
CN 200910148767 2009-07-03 2009-07-03 Gene series technology for increasing main component content of gene engineering isovaleryl selectomycin Active CN101649325B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910148767 CN101649325B (en) 2009-07-03 2009-07-03 Gene series technology for increasing main component content of gene engineering isovaleryl selectomycin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910148767 CN101649325B (en) 2009-07-03 2009-07-03 Gene series technology for increasing main component content of gene engineering isovaleryl selectomycin

Publications (2)

Publication Number Publication Date
CN101649325A CN101649325A (en) 2010-02-17
CN101649325B true CN101649325B (en) 2011-09-07

Family

ID=41671651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910148767 Active CN101649325B (en) 2009-07-03 2009-07-03 Gene series technology for increasing main component content of gene engineering isovaleryl selectomycin

Country Status (1)

Country Link
CN (1) CN101649325B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2012MN02623A (en) * 2010-05-25 2015-06-12 Shenyang tonglian group co ltd
CA2800021C (en) * 2010-05-25 2016-03-22 Shenyang Tonglian Group Co., Ltd. Levoisovalerylspiramycin i, ii, iii and preparations, preparation methods and uses thereof
CN101914482B (en) 2010-07-23 2012-07-04 中国医学科学院医药生物技术研究所 Isovalerylspiramycin I component high-content high-yield genetic engineering bacteria
CN101914481B (en) * 2010-07-23 2013-06-05 中国医学科学院医药生物技术研究所 Gene engineering bacteria containing high isovaleryl spiramycin principal component
CN102443561B (en) * 2010-10-13 2014-08-27 上海医药工业研究院 Gene engineering bacterium for efficiently converting Echinocandin B and preparation method thereof
CN102443560A (en) * 2010-10-13 2012-05-09 上海医药工业研究院 Gene engineering bacterium for efficiently converting echinocandin B and preparation method thereof
CN107868789B (en) * 2015-12-31 2020-11-17 沈阳福洋医药科技有限公司 Colimycin biosynthesis gene cluster
EP3607952B1 (en) 2017-04-06 2022-07-06 Shenyang Fuyang Pharmaceutical Technology Co., Ltd. Use of carrimycin or pharmaceutically acceptable salt thereof for manufacture of medicament for treatment and/or prevention of tumors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062763A (en) * 1990-12-26 1992-07-15 中国医学科学院医药生物技术研究所 A method for producing propionyl and acetylspiramycin by gene recombination technology
CN1174238A (en) * 1997-06-03 1998-02-25 中国医学科学院医药生物技术研究所 Biomycin producing method utilizing gene engineering technology

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062763A (en) * 1990-12-26 1992-07-15 中国医学科学院医药生物技术研究所 A method for producing propionyl and acetylspiramycin by gene recombination technology
CN1174238A (en) * 1997-06-03 1998-02-25 中国医学科学院医药生物技术研究所 Biomycin producing method utilizing gene engineering technology

Also Published As

Publication number Publication date
CN101649325A (en) 2010-02-17

Similar Documents

Publication Publication Date Title
CN101649325B (en) Gene series technology for increasing main component content of gene engineering isovaleryl selectomycin
Hutchinson et al. Genetic engineering of doxorubicin production in Streptomyces peucetius: a review
Stutzman-Engwall et al. Multigene families for anthracycline antibiotic production in Streptomyces peucetius.
JP2000515390A (en) Novel polyketide derivative and recombinant method for producing the same
JP6882330B2 (en) Carrimycin biosynthetic gene cluster
KR101542243B1 (en) Genetically engineered strain wsj-ia for producing isovaleryl spiramycin i
CN101649326B (en) Gene recombination mediated by phiC312 and inheritance reformation for erythrocin producing bacterium
CN109486848B (en) Construction method and application of artificial gene cluster plasmid containing spinosyn multioperon
US5801032A (en) Vectors and process for producing high purity 6,12-dideoxyerythromycin A by fermentation
CN101613711B (en) Construction and application of multiple gene coexpression system containing angolosamine glycosylsynthetase and glycosyltransferase
CN103215281B (en) Biosynthetic gene cluster of grincamycin and P-1894B and application thereof
JP2005529579A (en) Overproduction host for polyketide biosynthesis
JP2003508050A (en) Nucleic acids encoding the enzyme activity of spinosyn biosynthesis
CN100487109C (en) Engineering bacterium of producing ivermectin, its constructing method and application
CN113846026A (en) Saccharomyces cerevisiae strain for synthesizing alfadenin and catechin and its application
CN101255413A (en) A kind of construction method of erythromycin C-producing erythromycetes saccharopolyspora mutant
CN101892186B (en) Genetic engineering bacterium of streptomyces coeruleorubidus for producing epidaunorubicin and preparation method thereof
CN101545000B (en) Method for improving yield of ECO-0501 produced by fermenting Amycolatopsis orientalis
CN101892185B (en) Genetically engineered strain of streptomyces coeruleorubidus producing epi-daunorubicin and preparing method thereof
CN113136382B (en) Method for synthesizing glyoxylic acid by utilizing corynebacterium glutamicum based on CRISPII regulation and control
EP1632569B1 (en) Strain belonging to the genus streptomyces and being capable of producing nemadictin and process for producing nemadictin using the strain
CN101914481B (en) Gene engineering bacteria containing high isovaleryl spiramycin principal component
CN109182240A (en) The B. licheniformis strain and construction method of knockout phoP gene and application
CN107881139A (en) Strengthen high yield ansamitocin bacterial strain of polyketide synthase gene transcriptional level and preparation method thereof
CN107541481A (en) A kind of genetic engineering bacterium for producing Epi-ADM and its application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: TONGLIAN GROUP CO., LTD., SHENYANG

Effective date: 20120320

Owner name: TONGLIAN GROUP CO., LTD., SHENYANG

Free format text: FORMER OWNER: BIOMEDICAL TECHNOLOGY INST., CHINESE ACADEMY OF MEDICAL SCIENCES

Effective date: 20120320

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 100050 CHONGWEN, BEIJING TO: 110122 SHENYANG, LIAONING PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20120320

Address after: 110122, Liaoning, Shenyang, Shenbei New Area tiger, Shitai Town, building three North Road

Patentee after: Tonglian Group Co., Ltd., Shenyang

Address before: 100050 No. 1, West Lane, Tiantan, Beijing, Chongwen

Co-patentee before: Tonglian Group Co., Ltd., Shenyang

Patentee before: Biomedical Technology Inst., Chinese Academy of Medical Sciences

PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Gene series technology for increasing main component content of gene engineering isovaleryl selectomycin

Effective date of registration: 20140113

Granted publication date: 20110907

Pledgee: Shengjing bank Yingkou branch of Limited by Share Ltd

Pledgor: Tonglian Group Co., Ltd., Shenyang

Registration number: 2014210000001

PLDC Enforcement, change and cancellation of contracts on pledge of patent right or utility model
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20150306

Granted publication date: 20110907

Pledgee: Shengjing bank Yingkou branch of Limited by Share Ltd

Pledgor: Tonglian Group Co., Ltd., Shenyang

Registration number: 2014210000001

PLDC Enforcement, change and cancellation of contracts on pledge of patent right or utility model
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Gene series technology for increasing main component content of gene engineering isovaleryl selectomycin

Effective date of registration: 20150318

Granted publication date: 20110907

Pledgee: Shengjing bank Yingkou branch of Limited by Share Ltd

Pledgor: Tonglian Group Co., Ltd., Shenyang

Registration number: 2015210000002

PLDC Enforcement, change and cancellation of contracts on pledge of patent right or utility model