CN101643876B - Super-pure smelting method for industrially producing Incone1690 alloy - Google Patents
Super-pure smelting method for industrially producing Incone1690 alloy Download PDFInfo
- Publication number
- CN101643876B CN101643876B CN2008100127312A CN200810012731A CN101643876B CN 101643876 B CN101643876 B CN 101643876B CN 2008100127312 A CN2008100127312 A CN 2008100127312A CN 200810012731 A CN200810012731 A CN 200810012731A CN 101643876 B CN101643876 B CN 101643876B
- Authority
- CN
- China
- Prior art keywords
- alloy
- deoxidation
- desulfurization
- period
- melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明属于真空感应熔炼技术领域,涉及对工业化生产Incone1690合金熔炼工艺的改进,具体说是一种工业化生产Incone1690合金的超纯净熔炼工艺方法,应用高纯度(CaO>98.5%)、热力学稳定性好的CaO耐火材料作为真空感应熔炼的坩埚材料;具体熔炼工艺为:装料→熔化期→精炼期→冷凝→脱氧、脱硫期→浇注;在精炼期通过提高精炼温度,强化脱氧、硫的热力学和动力学条件,在坩埚壁部和钢液表面进行有效脱氧、脱硫;在脱氧、脱硫期内加入强脱氧、脱硫剂,对合金进行终脱氧、脱硫,进一步降低合金中的氧、硫含量,使之都在10ppm.wt以下。本发明有效改善合金的高温塑性,提高合金的热加工性能,获得高质量合金。The invention belongs to the technical field of vacuum induction smelting, and relates to the improvement of the industrial production of Incone1690 alloy smelting process, specifically an ultra-pure smelting process for industrial production of Incone1690 alloy, which uses high purity (CaO>98.5%) and good thermodynamic stability The CaO refractory material is used as the crucible material for vacuum induction melting; the specific melting process is: charging → melting period → refining period → condensation → deoxidation, desulfurization period → pouring; in the refining period, by increasing the refining temperature, the thermodynamics and thermodynamics of deoxidation and sulfur are strengthened. Under dynamic conditions, effective deoxidation and desulfurization can be carried out on the crucible wall and molten steel surface; strong deoxidation and desulfurization agents are added during the deoxidation and desulfurization period to carry out final deoxidation and desulfurization of the alloy, further reducing the oxygen and sulfur content in the alloy, so that The capital is below 10ppm.wt. The invention effectively improves the high-temperature plasticity of the alloy, improves the thermal processing performance of the alloy, and obtains a high-quality alloy.
Description
技术领域technical field
本发明涉及真空感应熔炼领域,具体为一种工业化生产I-690合金的超纯净熔炼工艺方法。The invention relates to the field of vacuum induction smelting, in particular to an ultra-pure smelting process for industrial production of I-690 alloy.
背景技术Background technique
Inconel690合金是美国牌号,其主要成分范围如下:Inconel690 alloy is an American brand, and its main components range as follows:
通常工业化真空感应熔炼生产Inconel690合金所使用的是MgO或MgO-Al2O3为耐火材料的坩埚,无法实现精炼期高温脱氧、脱硫,熔炼末期也没有加入强脱氧、脱硫剂。一般生产出的合金氧、硫含量大约为20ppm.wt(重量)左右,无法达到超纯净。因此,合金的高温塑性较低,无法对合金进行理想的热加工,使合金的热加工成品率较低。Usually industrial vacuum induction smelting production of Inconel690 alloys uses MgO or MgO-Al 2 O 3 crucibles as refractory materials, which cannot achieve high-temperature deoxidation and desulfurization during the refining period, and no strong deoxidation and desulfurization agents are added at the end of the smelting period. The oxygen and sulfur content of the generally produced alloy is about 20ppm.wt (weight), which cannot be ultra-pure. Therefore, the high-temperature plasticity of the alloy is low, and ideal hot-working of the alloy cannot be carried out, so that the yield of the hot-working alloy is low.
发明内容Contents of the invention
本发明目的是提供一种工业化生产I-690合金的超纯净熔炼工艺方法,采用该方法可生产出氧、硫含量小于10ppm的超纯净Inconel690合金,提高了合金的高温塑性,改善合金的热加工性能。The purpose of the present invention is to provide a kind of ultra-pure smelting process for industrial production of I-690 alloy, which can produce ultra-pure Inconel 690 alloy with oxygen and sulfur content less than 10ppm, improves the high-temperature plasticity of the alloy, and improves the thermal processing of the alloy performance.
本发明的技术方案是:Technical scheme of the present invention is:
一种工业化生产Inconel690合金(以下简称I-690合金)的超纯净熔炼工艺方法,应用高纯度(CaO>98.5wt%)、热力学稳定性好的CaO耐火材料作为熔炼的坩埚材料;采用真空感应熔炼的方法,具体熔炼工艺为:装料→熔化期→精炼期→冷凝→脱氧、脱硫期→浇注;An ultra-pure smelting process method for industrialized production of Inconel690 alloy (hereinafter referred to as I-690 alloy), using high-purity (CaO>98.5wt%), CaO refractory material with good thermodynamic stability as the melting crucible material; vacuum induction melting The specific smelting process is: charging → melting period → refining period → condensation → deoxidation, desulfurization period → pouring;
精炼期:利用钙质坩埚自身的优势,有效提高精炼温度,可以在1650℃~1730℃进行精炼,保温10~30分钟,较传统的坩埚高出50℃~100℃,创造了更好的脱氧、脱硫的热力学和动力学条件,使I-690合金通过坩埚壁和钢液表面脱氧、脱硫。Refining period: take advantage of the advantages of the calcareous crucible to effectively increase the refining temperature. Refining can be carried out at 1650°C to 1730°C and kept for 10 to 30 minutes, which is 50°C to 100°C higher than the traditional crucible, creating better deoxidation 1. The thermodynamic and kinetic conditions of desulfurization make I-690 alloy deoxidize and desulfurize through the crucible wall and molten steel surface.
合金冷凝,将I-690合金降温至熔点,通过合金中氧、氮溶解度随着温度降低而减小的原理,冷凝过程中可实现一定的脱氧、脱氮效果。The alloy is condensed to cool down the I-690 alloy to the melting point. Through the principle that the solubility of oxygen and nitrogen in the alloy decreases with the decrease of temperature, a certain deoxidation and denitrification effect can be achieved during the condensation process.
脱氧、脱硫期,通过加入强脱氧、脱硫剂,对合金进行终脱氧脱硫,进一步降低合金中的氧、硫含量。In the deoxidation and desulfurization period, the final deoxidation and desulfurization of the alloy is carried out by adding strong deoxidation and desulfurization agents to further reduce the oxygen and sulfur content in the alloy.
本发明中,脱氧剂为Ni-Ca或Ni-Mg中间合金,脱硫剂为Ni-Ca中间合金。In the present invention, the deoxidizer is Ni-Ca or Ni-Mg master alloy, and the desulfurizer is Ni-Ca master alloy.
本发明提供的真空感应熔炼工艺方法中,工艺过程的机理如下:In the vacuum induction smelting process method provided by the present invention, the mechanism of the process is as follows:
(1)合金熔化期:在真空下熔炼主元素,通过此阶段良好的碳-氧反应,达到合金一定的脱氧、脱氮目的。(1) Alloy melting period: the main elements are smelted under vacuum, and through the good carbon-oxygen reaction in this stage, the purpose of deoxidation and denitrification of the alloy is achieved.
(2)合金精炼期:采用高温、高真空的精炼制度,利用感应熔炼良好的搅拌,增大钢液中氧、硫的扩散速度,强化脱氧、脱硫的热力学和动力学,通过坩埚壁和钢液表面脱氧、脱硫。(2) Alloy refining period: adopt high-temperature, high-vacuum refining system, use good stirring of induction melting, increase the diffusion rate of oxygen and sulfur in molten steel, strengthen the thermodynamics and kinetics of deoxidation and desulfurization, and pass through the crucible wall and steel Deoxidation and desulfurization of the liquid surface.
(3)合金冷凝期:随合金液温度的降低,合金中氧、氮的溶解度降低,实现一定的脱氧、脱氮效果。(3) Alloy condensation period: As the temperature of the alloy liquid decreases, the solubility of oxygen and nitrogen in the alloy decreases, achieving a certain deoxidation and denitrification effect.
(4)脱氧、脱硫期:在氩气保护性气氛下,向钢液中加入强脱氧、脱硫剂,进一步实现合金的强化脱氧、脱硫。(4) Deoxidation and desulfurization period: under the protective atmosphere of argon gas, strong deoxidation and desulfurization agents are added to the molten steel to further realize the enhanced deoxidation and desulfurization of the alloy.
本发明的优点:Advantages of the present invention:
1、本发明应用高纯度(CaO>98.5wt%)、热力学稳定性好的CaO耐火材料作为真空感应熔炼的坩埚材料,保证了超纯净化熔炼工艺得以实现。1. The present invention uses high-purity (CaO>98.5wt%) CaO refractory material with good thermodynamic stability as the crucible material for vacuum induction melting, which ensures the realization of ultra-purified melting process.
2、本发明通过精炼期和脱氧、脱硫期相结合的方法,有效降低了合金中的氧、硫含量,确保合金的超纯净。2. The present invention effectively reduces the content of oxygen and sulfur in the alloy by combining the refining period with the deoxidation and desulfurization period to ensure the super-purity of the alloy.
3、本发明的出现,有效的提高I-690合金的纯度,进而提高合金的高温塑性,改善了合金的热加工性能。3. The appearance of the present invention can effectively improve the purity of the I-690 alloy, further improve the high-temperature plasticity of the alloy, and improve the hot workability of the alloy.
具体实施方式Detailed ways
实施例1Example 1
采用高纯度、热力学稳定CaO耐火材料打结的坩埚,进行工业化生产I-690合金的熔炼,熔炼工艺包括:装料→熔化期→精炼期→冷凝→脱氧、脱硫期→浇注;其中,装料、熔化期、浇注为采用常规技术。具体过程为:A crucible knotted with high-purity, thermodynamically stable CaO refractory material is used to melt the I-690 alloy for industrial production. The melting process includes: charging → melting period → refining period → condensation → deoxidation and desulfurization period → pouring; among them, charging , melting period, and pouring are conventional techniques. The specific process is:
(1)熔炼的坩埚采用CaO打结500kg坩埚,CaO纯度≥98.5wt%;(1) The crucible for smelting is a 500kg crucible knotted with CaO, and the purity of CaO is ≥98.5wt%;
(2)合金原料:按照成分的要求,取Ni板、纯Fe、金属Cr、C等合金元素,脱氧、脱硫剂。(2) Alloy raw materials: According to the composition requirements, take Ni plate, pure Fe, metal Cr, C and other alloy elements, deoxidizer and desulfurizer.
此步骤中,脱氧剂为Ni-Ca中间合金:Ni 80wt%,Ca 20wt%;或者,脱氧剂为Ni-Mg中间合金:Ni 80wt%,Mg 20wt%;脱硫剂为Ni-Ca中间合金:Ni 80wt%,Ca 20wt%。In this step, the deoxidizer is a Ni-Ca master alloy: Ni 80wt%, Ca 20wt%; or, the deoxidizer is a Ni-Mg master alloy: Ni 80wt%, Mg 20wt%; the desulfurizer is a Ni-Ca master alloy: Ni 80wt%, Ca 20wt%.
(3)合金装炉:将主原料Ni、Cr、C、Fe装入坩埚,Ti、Al及脱氧、脱硫剂装入合金加料斗不同格中;(3) Alloy charging: put the main raw materials Ni, Cr, C, and Fe into the crucible, and put Ti, Al and deoxidizing and desulfurizing agents into different compartments of the alloy feeding hopper;
(4)合金熔化:合炉抽真空至小于0.8Pa开始送电,先在200KW下20分钟,后360KW至化清;(4) Alloy melting: Vacuumize the furnace to less than 0.8Pa and start power transmission, first at 200KW for 20 minutes, and then at 360KW to melt and clear;
(5)合金精炼:合金化清后,在360KW下5分钟升温至1710℃,保温20分钟精炼;(5) Alloy refining: After alloying and clearing, heat up to 1710°C for 5 minutes at 360KW, keep it warm for 20 minutes and refine;
(6)合金冷凝:精炼完停电冷冻至合金熔点以下(钢液表面凝固,翻动坩埚无钢液流动);(6) Alloy condensation: After refining, power off and freeze to below the melting point of the alloy (the surface of the molten steel solidifies, and there is no molten steel flow when the crucible is turned);
Ti、Al均在加入终脱氧剂、终脱硫剂之前加入,海绵钛以粒状形式加入,铝以块状形式加入。Both Ti and Al are added before adding the final deoxidizer and final desulfurizer, titanium sponge is added in granular form, and aluminum is added in block form.
(7)合金终脱氧、脱硫:关闭真空阀门,通入氩气保护,将冷冻的钢液送电360KW至化清,降功率至80KW加脱氧、脱硫剂,280KW搅拌一分钟,继续80KW保温,同时抽真空(真空度小于1Pa)10分钟,以去处多余的脱氧、脱硫剂(钢液表面氧化膜完全冲开,达到无膜状态)。(7) Final deoxidation and desulfurization of the alloy: close the vacuum valve, pass in argon protection, send the frozen molten steel to 360KW to Huaqing, reduce the power to 80KW and add deoxidation and desulfurization agents, stir at 280KW for one minute, continue to keep warm at 80KW, At the same time, vacuumize (vacuum degree less than 1Pa) for 10 minutes to remove excess deoxidizing and desulfurizing agents (the oxide film on the surface of the molten steel is completely washed away to reach a film-free state).
此步骤中,脱氧剂为Ni-Ca中间合金:Ni 80wt%,Ca 20wt%;或者,脱氧剂为Ni-Mg中间合金:Ni 80wt%,Mg 20wt%;脱硫剂为Ni-Ca中间合金:Ni 80wt%,Ca 20wt%。(8)合金浇注:停电降温,待钢液停止流动时送电360KW,调整温度浇注。本实施例熔炼的Inconel690合金成分见下表:In this step, the deoxidizer is a Ni-Ca master alloy: Ni 80wt%, Ca 20wt%; or, the deoxidizer is a Ni-Mg master alloy: Ni 80wt%, Mg 20wt%; the desulfurizer is a Ni-Ca master alloy: Ni 80wt%, Ca 20wt%. (8) Alloy pouring: power off to cool down, and when the molten steel stops flowing, power on 360KW to adjust the temperature for pouring. The Inconel690 alloy composition of present embodiment melting sees the following table:
表1真空感应熔炼Inconel690合金成分(wt%)Table 1 vacuum induction melting Inconel690 alloy composition (wt%)
可见,应用本发明熔炼的500公斤I-690合金锭型,氧、硫含量均小于10ppm,获得了高的纯净度。It can be seen that the content of oxygen and sulfur in the 500 kg I-690 alloy ingot smelted by the present invention is less than 10 ppm, and high purity is obtained.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100127312A CN101643876B (en) | 2008-08-08 | 2008-08-08 | Super-pure smelting method for industrially producing Incone1690 alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100127312A CN101643876B (en) | 2008-08-08 | 2008-08-08 | Super-pure smelting method for industrially producing Incone1690 alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101643876A CN101643876A (en) | 2010-02-10 |
CN101643876B true CN101643876B (en) | 2011-02-02 |
Family
ID=41655937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100127312A Active CN101643876B (en) | 2008-08-08 | 2008-08-08 | Super-pure smelting method for industrially producing Incone1690 alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101643876B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103014388B (en) * | 2012-12-26 | 2014-12-10 | 中国科学院金属研究所 | Large-tonnage low-cost ultraclean melting method of producing Inconel690 alloy |
CN106319255B (en) * | 2015-07-06 | 2018-09-21 | 中国科学院金属研究所 | The sublimate smelting process of nickel base superalloy |
CN108559860B (en) * | 2018-06-11 | 2019-08-27 | 江苏集萃先进金属材料研究所有限公司 | A kind of device and method for nickel-base alloy vacuum induction melting high-efficiency desulfurization |
CN108950307A (en) * | 2018-07-23 | 2018-12-07 | 江苏美特林科特殊合金股份有限公司 | A kind of nickel calcium intermediate alloy and the preparation method and application thereof |
CN110872653B (en) * | 2018-09-04 | 2021-08-10 | 中国科学院金属研究所 | Smelting method for controlling nitrogen content in Inconel690 alloy |
CN111074102A (en) * | 2020-02-16 | 2020-04-28 | 广东石油化工学院 | A kind of method for desulfurization of nickel-based superalloy |
CN111187929A (en) * | 2020-02-16 | 2020-05-22 | 广东石油化工学院 | Method for denitrifying nickel-based superalloy |
CN117385214B (en) * | 2023-12-11 | 2024-06-04 | 中国航发北京航空材料研究院 | Deoxidation and desulfurization method of nickel-based high-temperature alloy based on non-calcium refractory crucible |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86102879A (en) * | 1985-04-26 | 1986-11-05 | 三井造船株式会社 | Iron-cobalt that sulphur, oxygen and nitrogen content are low-and the production method of iron-based alloys |
CN1194961A (en) * | 1997-04-01 | 1998-10-07 | 中国科学院金属研究所 | Method for manufacturing high-purity crystallized wet-proof calcium oxide products |
CN1360071A (en) * | 2000-12-21 | 2002-07-24 | 中国科学院金属研究所 | High-temp vacuum induction smelting and desulfurizing technology for preparing super-purity alloy |
-
2008
- 2008-08-08 CN CN2008100127312A patent/CN101643876B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86102879A (en) * | 1985-04-26 | 1986-11-05 | 三井造船株式会社 | Iron-cobalt that sulphur, oxygen and nitrogen content are low-and the production method of iron-based alloys |
CN1194961A (en) * | 1997-04-01 | 1998-10-07 | 中国科学院金属研究所 | Method for manufacturing high-purity crystallized wet-proof calcium oxide products |
CN1360071A (en) * | 2000-12-21 | 2002-07-24 | 中国科学院金属研究所 | High-temp vacuum induction smelting and desulfurizing technology for preparing super-purity alloy |
Non-Patent Citations (1)
Title |
---|
牛建平等.镍基高温合金的脱氧与脱硫.《新技术新工艺》.2002,(第2期),第25-26页. * |
Also Published As
Publication number | Publication date |
---|---|
CN101643876A (en) | 2010-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101643876B (en) | Super-pure smelting method for industrially producing Incone1690 alloy | |
CN103014388B (en) | Large-tonnage low-cost ultraclean melting method of producing Inconel690 alloy | |
CN106521293B (en) | Rare earth metal is added in a kind of steel and puies forward high performance method | |
CN108330245B (en) | A kind of high-purity smelting method of stainless steel | |
CN102071287B (en) | Method for melting high-temperature-resistance and high-pressure-resistance alloy steel | |
CN110578073B (en) | Smelting method of GH4169 nickel-based alloy | |
CN103468965B (en) | Preparation method for electro-slag remelting refining slag efficiently utilizing return slag | |
CN102011059B (en) | A low-silicon and low-manganese ultra-pure rotor steel smelting process | |
CN104060157B (en) | A kind of hypereutectic high-chromium white cast iron and preparation method thereof | |
CN106319255B (en) | The sublimate smelting process of nickel base superalloy | |
CN102061423A (en) | Compound processing method of boron-containing high-speed steel roller material | |
CN102304641A (en) | Degassing and deoxidation process for cast aluminum bronze | |
CN102717035A (en) | Low Si-Mg ratio and low RE-Mg nodularizer | |
CN103243196B (en) | A kind of intermediate frequency furnace adds the method that rare earth sublimate is smelted | |
CN110318001B (en) | A kind of high carbon steel for diamond wire bus bar and its smelting method | |
CN103276231B (en) | Method for removing S and O from cast superalloy by vacuum induction smelting | |
CN102534122B (en) | Ultrapure smelting method of low-alloy high-strength steel | |
CN103555881B (en) | Manufacturing method of steel ingot for gas cylinder | |
CN104745845A (en) | Magnesium-contained nickel base alloy and preparation method of magnesium-contained nickel base alloy | |
CN110241342B (en) | High-manganese-content aluminum-manganese intermediate alloy and preparation method thereof | |
CN107287490A (en) | Boron-containing steel smelting process method for improving boron yield | |
CN106947844A (en) | A kind of Slag modification method | |
CN116377335A (en) | A large-scale seawater corrosion-resistant high-aluminum steel continuous casting slab and its production method | |
CN109972062B (en) | High-purity large electroslag ingot and production method thereof | |
CN104404361B (en) | A kind of D type Graphite Iron Cast and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |