[go: up one dir, main page]

CN101642369A - Autonomic nervous function biological feedback method and system - Google Patents

Autonomic nervous function biological feedback method and system Download PDF

Info

Publication number
CN101642369A
CN101642369A CN200810041378A CN200810041378A CN101642369A CN 101642369 A CN101642369 A CN 101642369A CN 200810041378 A CN200810041378 A CN 200810041378A CN 200810041378 A CN200810041378 A CN 200810041378A CN 101642369 A CN101642369 A CN 101642369A
Authority
CN
China
Prior art keywords
heart rate
rate data
signal
unit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810041378A
Other languages
Chinese (zh)
Other versions
CN101642369B (en
Inventor
宁新宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN2008100413780A priority Critical patent/CN101642369B/en
Publication of CN101642369A publication Critical patent/CN101642369A/en
Application granted granted Critical
Publication of CN101642369B publication Critical patent/CN101642369B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

自主神经功能生物反馈方法和系统在通过测试获得心率变异性生理参数值的基础上,将所获得的心率变异性生理参数所反映的自主神经功能状态,以易于察觉的提醒信号反馈输出,从而使得用户对自身的自主神经功能状况有形象的了解,进而可以辅助用户学会在一定范围内通过意识调控内脏器官的活动,纠正偏离正常范围的内脏活动,而且易于实施。

Figure 200810041378

The autonomic nervous function biofeedback method and system, on the basis of obtaining the heart rate variability physiological parameter value through the test, feedback and output the autonomic nervous function state reflected by the obtained heart rate variability physiological parameter with an easily detectable reminder signal, so that Users have a vivid understanding of their own autonomic nervous system, and then can assist users to learn to regulate the activities of internal organs through consciousness within a certain range, and correct internal organ activities that deviate from the normal range, and it is easy to implement.

Figure 200810041378

Description

自主神经功能生物反馈方法和系统 Autonomic nervous function biofeedback method and system

技术领域 technical field

本申请文件涉及自主神经功能生物反馈技术。This application document relates to autonomic nervous function biofeedback technology.

背景技术 Background technique

随着科学技术的发展,人类创造了许多行之有效的对付生理疾病的方法,相比之下,对付心理疾病的能力则相形见绌,如焦虑症、抑郁症等已对人类健康构成威胁。大量实践证明,对付这一类疾病,单靠药物、手术及基因等疗法,效果欠佳。With the development of science and technology, human beings have created many effective methods to deal with physical diseases. In contrast, the ability to deal with mental diseases pales in comparison, such as anxiety and depression, which have become threats to human health. A lot of practice has proved that to deal with this type of disease, the effect of medicine, surgery and gene therapy alone is not good.

人的心理状态不仅会从情绪上反映出来,也会反映在自主神经系统活动程度上。自主神经系统(ANS,Autonomic Nervous System)是指分配到心、肺、消化管和其它脏器的神经,包括交感神经和副交感神经。大部分脏器同时接受交感神经和副交感神经的控制。正常情况下,两者协调工作,调节内脏的日常运作和腺体的分泌,使体内环境,如血压、心率、体温等保持稳定。当ANS失调时,会引发很多问题,轻者会引起一些不是很严重的症状,例如肠胃失调、心悸、呼吸困难等,重者会引发各种急慢性病,例如心脏病、高血压等,严重的甚至会引发猝死等。A person's psychological state will not only be reflected in emotion, but also in the activity level of the autonomic nervous system. The autonomic nervous system (ANS, Autonomic Nervous System) refers to the nerves distributed to the heart, lungs, digestive tract and other organs, including sympathetic and parasympathetic nerves. Most organs are controlled by both sympathetic and parasympathetic nerves. Under normal circumstances, the two work in harmony to regulate the daily operation of internal organs and the secretion of glands, so as to maintain a stable internal environment, such as blood pressure, heart rate, and body temperature. When the ANS is out of balance, it will cause many problems. The mild ones will cause some not very serious symptoms, such as gastrointestinal disorders, heart palpitations, dyspnea, etc., and the severe ones will cause various acute and chronic diseases, such as heart disease, high blood pressure, etc., and serious ones It may even cause sudden death.

发明内容 Contents of the invention

自主神经功能生物反馈方法的实施方式,包括:根据生物电信号,获得心率变异性生理参数值;根据所述心率变异性生理参数值,输出对应的提醒信号。The implementation of the autonomic nervous function biofeedback method includes: obtaining the heart rate variability physiological parameter value according to the bioelectrical signal; and outputting a corresponding reminder signal according to the heart rate variability physiological parameter value.

自主神经功能生物反馈系统的实施方式,包括:测试单元,根据生物电信号,获得心率变异性生理参数值;反馈提醒单元,根据所述心率变异性生理参数值,输出对应的提醒信号。The embodiment of the autonomic nervous function biofeedback system includes: a test unit, which obtains the heart rate variability physiological parameter value according to the bioelectric signal; a feedback reminder unit, which outputs a corresponding reminder signal according to the heart rate variability physiological parameter value.

自主神经功能生物反馈系统的另一种实施方式,包括:数据获取单元,对检测到的生理电信号进行处理,获得预定时间间隔内的时域心率数据;处理设备,将所述时域心率数据转换为频域心率数据,基于对所述频域心率数据的频谱分析和计算,获得心率变异性生理参数值,并根据所述心率变异性生理参数值,输出对应的提醒信号;输出单元,输出所述提醒信号。Another embodiment of the autonomic nervous function biofeedback system includes: a data acquisition unit, which processes the detected physiological electrical signals, and obtains time-domain heart rate data within a predetermined time interval; a processing device, which converts the time-domain heart rate data Converting to frequency-domain heart rate data, based on spectrum analysis and calculation of the frequency-domain heart rate data, obtaining heart rate variability physiological parameter values, and outputting corresponding reminder signals according to the heart rate variability physiological parameter values; output unit, outputting The reminder signal.

上述实施方式在通过测试获得心率变异性生理参数值的基础上,根据所获得的心率变异性生理参数值所反映的自主神经功能状态信息,输出易于察觉的提醒信号,从而使得用户对自身的自主神经功能状况能够有形象的了解,进而可以辅助用户学会在一定范围内通过意识调控内脏器官的活动,纠正偏离正常范围的内脏活动,而且易于实施。On the basis of obtaining the heart rate variability physiological parameter value through the test, the above-mentioned embodiment outputs an easy-to-perceive reminder signal according to the autonomic nervous function status information reflected by the obtained heart rate variability physiological parameter value, so that the user is aware of his own autonomy. The state of neurological function can be clearly understood, and then it can assist users to learn to regulate the activities of internal organs through consciousness within a certain range, and correct internal organ activities that deviate from the normal range, and it is easy to implement.

附图说明 Description of drawings

图1是自主神经功能生物反馈方法实施方式的流程图;Fig. 1 is the flowchart of the embodiment of autonomic nervous function biofeedback method;

图2是正常心电图波形示意图;Figure 2 is a schematic diagram of a normal electrocardiogram waveform;

图3是图1所示D2中根据心率变异性生理参数值,输出对应的提醒信号具体实施方式的流程图;Fig. 3 is a flow chart of a specific embodiment of outputting a corresponding reminder signal according to the heart rate variability physiological parameter value in D2 shown in Fig. 1;

图4是图3所示中S21中心率变异性生理参数值与其正常值范围的示意图;Fig. 4 is a schematic diagram of the physiological parameter value of heart rate variability of S21 and its normal value range shown in Fig. 3;

图5(a)是性格外向的人心率变异性生理参数趋势图的示意图;Fig. 5 (a) is the schematic diagram of the trend chart of the physiological parameter of heart rate variability of the extrovert;

图5(b)是性格内向的人心率变异性生理参数趋势图的示意图;Fig. 5 (b) is a schematic diagram of the trend graph of physiological parameters of heart rate variability of introverted people;

图6(a)是正常人清醒安静时心率变异性生理参数趋势图的示意图;Fig. 6 (a) is a schematic diagram of the trend graph of heart rate variability physiological parameters when normal people are awake and quiet;

图6(b)是正常人情绪受到干扰时心率变异性生理参数趋势图的示意图;Figure 6(b) is a schematic diagram of the trend graph of the physiological parameters of heart rate variability when the mood of a normal person is disturbed;

图7是自主神经功能生物反馈系统实施方式的示意图;7 is a schematic diagram of an embodiment of an autonomic nervous function biofeedback system;

图8是图7所示测试单元N1具体实施方式的示意图;Fig. 8 is a schematic diagram of a specific embodiment of the test unit N1 shown in Fig. 7;

图9是图8所示数据获取单元M1具体实施方式的示意图;FIG. 9 is a schematic diagram of a specific implementation of the data acquisition unit M1 shown in FIG. 8;

图10是图9所示预处理单元M1b具体实施方式的示意图;Fig. 10 is a schematic diagram of a specific embodiment of the preprocessing unit M1b shown in Fig. 9;

图11是图10所示第一放大单元1101具体实施例的电路示意图;FIG. 11 is a schematic circuit diagram of a specific embodiment of the first amplifying unit 1101 shown in FIG. 10;

图12是图10所示第二放大单元1102具体实施例的电路示意图;FIG. 12 is a schematic circuit diagram of a specific embodiment of the second amplifying unit 1102 shown in FIG. 10;

图13是图10所示滤波放大单元1103具体实施例的电路示意图;FIG. 13 is a schematic circuit diagram of a specific embodiment of the filtering and amplifying unit 1103 shown in FIG. 10;

图14是图9所示检波整形单元具体实施例的电路示意图;Fig. 14 is a schematic circuit diagram of a specific embodiment of the detection and shaping unit shown in Fig. 9;

图15是图8所示生理参数计算单元具体实施方式的示意图;Fig. 15 is a schematic diagram of a specific embodiment of the physiological parameter calculation unit shown in Fig. 8;

图16是图7所示反馈提醒单元具体实施方式的示意图;Fig. 16 is a schematic diagram of a specific embodiment of the feedback reminding unit shown in Fig. 7;

图17是自主神经功能生物反馈系统另一种实施方式的示意图;Fig. 17 is a schematic diagram of another embodiment of the autonomic nervous function biofeedback system;

图18是图17所示具体实施例中反馈提醒信号和刺激信号的示意图。Fig. 18 is a schematic diagram of feedback reminder signals and stimulation signals in the specific embodiment shown in Fig. 17 .

图19是自主神经功能生物反馈系统实施方式的示意图。Figure 19 is a schematic diagram of an embodiment of an autonomic nervous function biofeedback system.

具体实施方式 Detailed ways

参考图1,自主神经功能生物反馈方法的实施方式包括:Referring to FIG. 1 , embodiments of the autonomic nervous function biofeedback method include:

步骤D1,根据生物电信号获得心率变异性生理参数值;步骤D2,根据所述心率变异性生理参数值,输出对应的提醒信号。Step D1, obtaining the heart rate variability physiological parameter value according to the bioelectrical signal; Step D2, outputting a corresponding reminder signal according to the heart rate variability physiological parameter value.

心率变异性(HRV,Heart Rate Variability)生理参数可以反映自主神经系统功能的信息,可给医生提供病人的心理情况,从而制定更为符合病情的治疗方案。The physiological parameters of heart rate variability (HRV, Heart Rate Variability) can reflect the information of the autonomic nervous system function, and can provide doctors with the patient's psychological condition, so as to formulate a treatment plan that is more in line with the disease.

人体的心率并不是绝对规则的,两次心跳间期之间有几十毫秒甚至超过一百毫秒的时间差别。正常情况下,健康人心跳间期的变化是由于交感神经和副交感神经随呼吸等因素而发生改变所引起的。心率变异性就是指逐次心跳间期之间的时间差异。心率变异性是反映心脏对外部或内部刺激进行自我调节能力的参数。HRV越高,表明心脏能越快地适应外部或内部的影响,交感和副交感神经系统之间有良好的相互作用;而HRV低则表示机体的适应能力差。通过测定正常心搏间期变化的大小和快慢可以反映出窦房结自律性受自主神经系统调节的作用。The heart rate of the human body is not absolutely regular, and there is a time difference of tens of milliseconds or even more than 100 milliseconds between two heartbeats. Under normal circumstances, the change of the interval between the heartbeats of healthy people is caused by the changes of the sympathetic and parasympathetic nerves with breathing and other factors. Heart rate variability is the difference in time between heartbeats. Heart rate variability is a parameter that reflects the ability of the heart to self-regulate to external or internal stimuli. A higher HRV indicates that the heart can adapt more quickly to external or internal influences, and that there is a good interaction between the sympathetic and parasympathetic nervous systems; while a low HRV indicates poor adaptability of the body. By measuring the size and speed of changes in the normal heartbeat interval, it can reflect that the autonomicity of the sinoatrial node is regulated by the autonomic nervous system.

总的HRV信号由许多单一频率组成,通过对这些频率的频谱进行分析,研究人员发现参数总频率功率(TP,Total frequency Power)、高频功率(HF,High Frequency Power)、低频功率(LF,Low Frequency Power)、极低和超低频功率(VLF,Very Low Frequency Power)以及低频功率和高频功率的比值(LF/HF)为反映自主神经功能的参数。其中,HF部分与动物的呼吸信号同步,HF或者TP可反映副交感神经的功能;LF、VLF以及LF/HF可以反映交感神经的活性。The total HRV signal is composed of many single frequencies. By analyzing the spectrum of these frequencies, the researchers found that the parameters total frequency power (TP, Total frequency Power), high frequency power (HF, High Frequency Power), low frequency power (LF, Low Frequency Power), very low and very low frequency power (VLF, Very Low Frequency Power), and the ratio of low frequency power to high frequency power (LF/HF) are parameters reflecting autonomic nervous function. Among them, the HF part is synchronized with the respiratory signal of the animal, and HF or TP can reflect the function of the parasympathetic nerve; LF, VLF and LF/HF can reflect the activity of the sympathetic nerve.

步骤D1根据生物电信号获得心率变异性生理参数值,在具体的实施方式中可以包括:Step D1 obtains the heart rate variability physiological parameter value according to the bioelectrical signal, which may include in a specific embodiment:

步骤S11,根据生物电信号,获得心率数据;具体地来说,包括对所检测到的生物电信号的放大、滤波、QRS波群检测及整形、模数转换以及心率数据的计算。Step S11, obtaining heart rate data according to the bioelectric signal; specifically, including amplification and filtering of the detected bioelectric signal, QRS complex detection and shaping, analog-to-digital conversion, and calculation of heart rate data.

生理信号一般可分为两类,一类是电信号以及电活动衍生的信号,例如心电信号和心磁信号等,可称之为生理电信号;另一类是非电信号,包括体温、血压、呼吸、心音、肌肉的收缩、二氧化碳分压、氧分压、PH值等。Physiological signals can generally be divided into two categories, one is electrical signals and signals derived from electrical activity, such as electrocardiographic signals and cardiomagnetic signals, which can be called physiological electrical signals; the other is non-electrical signals, including body temperature, blood pressure, etc. , respiration, heart sounds, muscle contraction, partial pressure of carbon dioxide, partial pressure of oxygen, PH value, etc.

心脏好比是人体内的电源,在每个心动周期中,起搏点、心房、心室相继兴奋。心脏周围具有导电性的组织和体液将无数心肌细胞电位变化的总和传导并反映到体表。人体体表分布的各点中,有些点之间的电位相等,有些点之间存在着电位差。在一个实施例中,对生理电信号的检测的过程可以包括:通过电极等传感器测量体表上非等电的点之间的电位差将心电信号记录下来。在其它的实施例中,也可以通过非接触式的SQUIT系统将心磁信号等转化成电信号记录下来,获得可供后续分析处理的所述生理电信号。The heart is like the power source in the human body. In each cardiac cycle, the pacemaker, atrium, and ventricle are excited one after another. The conductive tissue and body fluid around the heart conduct and reflect the sum of potential changes of countless cardiomyocytes to the body surface. Among the points distributed on the surface of the human body, some points have the same potential, and some points have potential differences. In one embodiment, the process of detecting the physiological electrical signal may include: measuring the potential difference between non-isoelectric points on the body surface through sensors such as electrodes to record the electrocardiographic signal. In other embodiments, the non-contact SQUIT system can also be used to convert cardiomagnetic signals into electrical signals and record them, so as to obtain the physiological electrical signals for subsequent analysis and processing.

所述放大,是指将检测到的生物电信号进行放大,使其与躯干信号等其它干扰信号区分开,提供幅度足够大的可供分析记录的信号数据,并且限制电流流入人体。The amplification refers to amplifying the detected bioelectrical signal to distinguish it from other interference signals such as torso signals, providing signal data with a sufficiently large amplitude for analysis and recording, and limiting current flow into the human body.

所述滤波,是指将放大的生物电信号进行过滤,保留一定频率范围的信号,其中包括高频滤波和低频滤波。The filtering refers to filtering the amplified bioelectrical signal to retain signals in a certain frequency range, including high-frequency filtering and low-frequency filtering.

所述QRS波群检测及整形,是指检测QRS波群,并对得到的QRS波形进行整形,得到R波信号。The QRS complex detection and shaping refers to detecting the QRS complex and shaping the obtained QRS waveform to obtain the R wave signal.

心电图中的波形是由统一的英文字母命名的,参考图2,正常的心电图包括P波、PR段、QRS波群、ST段和T波等。其中,P波是指首先出现的位于参考水平线以上的正向波,其起因是心房收缩之前的心房除极时的电位变化;PR段是指P波开始至QRS波群开始的持续时间,也就是心房除极开始至心室除极开始的间隔时间;QRS波群起因于心室收缩之前的心室除极时的电位变化;T波为心室复极时的电位变化;ST段为从QRS波群终末到T波开始之间的线段,此时心室全部处于除极状态,无电位差存在,所以正常时与基线平齐,称为等电位线。在QRS波群中,Q波是指第一个负向波,R波是指第一个正向波,S波是指R波之后的第一个负向波,QS波是指QRS波只有负向波。The waveforms in the electrocardiogram are named by unified English letters. Referring to Figure 2, a normal electrocardiogram includes P waves, PR segments, QRS complexes, ST segments, and T waves. Among them, the P wave refers to the first positive wave above the reference horizontal line, which is caused by the potential change of the atrial depolarization before the atrial contraction; the PR segment refers to the duration from the beginning of the P wave to the beginning of the QRS wave group. It is the interval time from the beginning of atrial depolarization to the beginning of ventricular depolarization; the QRS wave group is caused by the potential change of the ventricular depolarization before the ventricular contraction; the T wave is the potential change of the ventricular repolarization; the ST segment is the change from the end of the QRS wave group The line segment between the end and the beginning of the T wave, when the ventricles are all in a state of depolarization, and there is no potential difference, so it is normally level with the baseline, called the isoelectric line. In the QRS complex, the Q wave refers to the first negative wave, the R wave refers to the first positive wave, the S wave refers to the first negative wave after the R wave, and the QS wave refers to the only QRS wave. negative wave.

所述模数转换,是指将得到的R波信号以及所述放大过滤后的生理电信号,经过模数转换,转换为数字信号。The analog-to-digital conversion refers to converting the obtained R-wave signal and the amplified and filtered physiological electrical signal into digital signals through analog-to-digital conversion.

在计算心率数据的过程中,所述心率数据是指相邻两个R波波峰对应时间之间的间距,即RR间期,对心率数据的计算包括:根据R波信号模数转换时的采样频率,通过计算获得R波顶点之间的间期。具体可以是将数据点之间的时间间隔乘以相邻R波顶点之间的数据点数,得到RR间期。In the process of calculating the heart rate data, the heart rate data refers to the interval between the corresponding times of two adjacent R wave peaks, that is, the RR interval. The calculation of the heart rate data includes: sampling according to the R wave signal analog-to-digital conversion Frequency, the interval between R-wave apexes is obtained by calculation. Specifically, the RR interval can be obtained by multiplying the time interval between data points by the number of data points between adjacent R wave peaks.

在获得心率数据的基础上,就可以进行后续的处理和分析,以获得心率变异性生理参数值。On the basis of the obtained heart rate data, subsequent processing and analysis can be performed to obtain heart rate variability physiological parameter values.

需要说明的是,为使得后续的分析处理过程能取得较好的结果,对心率数据存在一定的要求。在实施例中,应获得一定时间间隔内的心率数据。通常,时间间隔可以为15-40分钟。低于15分钟,所采集的心率数据的数量不足;长于40分钟,容易使用户焦急,情绪受到影响,从而影响测试结果。It should be noted that, in order to obtain better results in the subsequent analysis and processing process, there are certain requirements for the heart rate data. In an embodiment, heart rate data should be obtained over a certain time interval. Typically, the time interval can be 15-40 minutes. If it is less than 15 minutes, the amount of heart rate data collected is insufficient; if it is longer than 40 minutes, it is easy to make the user anxious and emotionally affected, thereby affecting the test results.

步骤S12,对所获得的心率数据进行保存;具体地来说,可选择手动保存或者自动保存。Step S12, saving the obtained heart rate data; specifically, manual saving or automatic saving can be selected.

在自动保存的方式下,一旦时间间隔达到第一周期的整数倍时,自动对心率数据以及心率数据数量进行保存,进入步骤S13。其中,第一周期可为15至40分钟。In the automatic saving mode, once the time interval reaches an integral multiple of the first period, the heart rate data and the number of heart rate data are automatically saved, and step S13 is entered. Wherein, the first period may be 15 to 40 minutes.

在手动保存方式下,当时间间隔达到或超过第一设定值时,对所获得的心率数据以及心率数据数量进行保存;若未达到第一设定值,则对心率数据以及心率数据数量不予记录;其中,第一设定值小于第一周期,正常情况下,普通人从情绪波动到完全稳定的时间不大于3分钟,第一设定值应略大于从情绪波动到完全稳定的时间周期,以保证记录下至少一次的情绪波动。在具体的实施例中,第一设定值可为3至8分钟。In the manual saving mode, when the time interval reaches or exceeds the first set value, the obtained heart rate data and the number of heart rate data are saved; if the first set value is not reached, the heart rate data and the number of heart rate data are not saved. To record; wherein, the first set value is less than the first period, under normal circumstances, the time for ordinary people to go from mood swings to complete stability is not more than 3 minutes, and the first set value should be slightly longer than the time from mood swings to full stability cycle to ensure that at least one mood swing is recorded. In a specific embodiment, the first set value may be 3 to 8 minutes.

步骤S13,对所保存的心率数据进行分组。Step S13, grouping the stored heart rate data.

具体地来说,是指对步骤S12所保存的心率数据进行分组,使每组心率数据的数量为第二设定值;若最后一组心率数据的数量不足第二设定值,可用值为零的数据补充。其中,第二设定值由第一设定值确定,根据第一设定值的取值确定对应的第二设定值数值;具体地来说,当第一设定值为3分钟时,第二设定值为256;第一设定值为4至8分钟时,第二设定值可为256至540之间的任意整数。Specifically, it refers to grouping the heart rate data saved in step S12 so that the number of each group of heart rate data is the second set value; if the number of the last group of heart rate data is less than the second set value, the available value is Zero data supplementation. Wherein, the second set value is determined by the first set value, and the corresponding second set value value is determined according to the value of the first set value; specifically, when the first set value is 3 minutes, The second set value is 256; when the first set value is 4 to 8 minutes, the second set value can be any integer between 256 and 540.

分组的步长可为介于零与第二设定值的任意整数值。举个例子,对于步骤S13所保存的3分钟的心率数据,以128为步长进行分组,使每组心率数据数量为256,也就是说,第1个到第256个心率数据为第一组,第129个到第384个心率数据为第二组,以此类推,当最后一组心率数据数量不足第二设定值时,用值为零的数据补充。此处以一定的步长进行分组是为了对后续生理参数趋势图中各生理参数趋势曲线起到滤波平滑的作用。在分组时,若步长越接近于第二设定值,则运算量比较小,但平滑作用较弱;当步长减小时,平滑作用越好,但运算量相对也越大。The grouping step size can be any integer value between zero and the second set value. For example, for the 3-minute heart rate data saved in step S13, group them with a step size of 128, so that the number of heart rate data in each group is 256, that is, the first to 256th heart rate data are the first group , the 129th to 384th heart rate data is the second group, and so on, when the number of the last group of heart rate data is less than the second set value, it is supplemented with data with a value of zero. The purpose of grouping with a certain step size here is to filter and smooth the trend curves of the physiological parameters in the subsequent physiological parameter trend graphs. When grouping, if the step size is closer to the second set value, the calculation amount is smaller, but the smoothing effect is weaker; when the step size is reduced, the smoothing effect is better, but the calculation amount is relatively larger.

步骤S14,计算所得到的每一组心率数据的平均值。Step S14, calculating the average value of each set of heart rate data obtained.

具体地来说,包括:计算每一组心率数据之和;将所得到的心率数据之和除以该组心率数据的数量,即除以第二设定值。Specifically, it includes: calculating the sum of each set of heart rate data; dividing the obtained sum of heart rate data by the number of the set of heart rate data, that is, dividing by the second set value.

步骤S15,分别计算每一组中每个心率数据的值与该组心率数据平均值的差值。Step S15, calculating the difference between the value of each heart rate data in each group and the average value of the heart rate data in the group.

步骤S16,根据所得到的差值,获得频域心率数据。In step S16, frequency-domain heart rate data is obtained according to the obtained difference.

在一种具体的实施方式中,频域心率数据可以通过以下步骤获得:采用窗函数对所得到的差值进行数据截断,获得待分析的时域数据;根据待分析的时域数据,得到对应的频域数据。In a specific implementation, the frequency-domain heart rate data can be obtained through the following steps: use a window function to truncate the obtained difference to obtain the time-domain data to be analyzed; according to the time-domain data to be analyzed, obtain the corresponding frequency domain data.

其中,进行数据截断的原因在于:由于不可能对无限长的信号进行测量和运算,因此从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,在此基础上再对信号进行相关分析处理。Among them, the reason for data truncation is that since it is impossible to measure and calculate an infinitely long signal, a time segment is intercepted from the signal, and then the observed signal time segment is used for period extension processing to obtain a virtual infinitely long On this basis, the relevant analysis and processing of the signal is carried out.

所述窗函数可包含海明窗、汉宁窗、布莱德曼窗、高斯窗等。The window function may include a Hamming window, a Hanning window, a Bradman window, a Gaussian window, and the like.

在具体的实施例中,使用海明窗对差值进行处理。海明窗的第一旁瓣衰减为-42dB.其频谱由3个矩形时窗的频谱合成,其加权系数能使旁瓣达到更小。所用海明窗的时间函数表达式为:In a specific embodiment, the differences are processed using a Hamming window. The attenuation of the first side lobe of the Hamming window is -42dB. Its spectrum is synthesized from the spectrum of three rectangular time windows, and its weighting coefficient can make the side lobe smaller. The time function expression of the Hamming window used is:

ww (( tt )) == 11 TT (( 0.540.54 ++ 0.40.4 coscos πtπt TT )) || tt || ≤≤ TT 00 || tt || >> TT

其窗谱为:Its window spectrum is:

WW (( ωω )) == 1.081.08 sinsin ωTωT ωTωT ++ 0.460.46 [[ sinsin (( ωTω T ++ ππ )) ωTω T ++ ππ ++ sinsin (( ωTω T -- ππ )) ωTωT -- ππ ]]

其中T为海明窗时间周期,其长度需覆盖每组中的所有心率数据,在具体实施例中可为所述第二设定值;Wherein T is the Hamming window time period, and its length needs to cover all heart rate data in each group, which can be the second set value in a specific embodiment;

在此基础上,待分析的时域数据到频域数据的转换可以通过快速傅立叶变换(FFT)的方式来实现。On this basis, the conversion of the time-domain data to be analyzed to the frequency-domain data can be realized by way of fast Fourier transform (FFT).

在另一种具体的实施方式中,频域心率数据的获得可以包括步骤:通过自回归(AR)算法将所得到的差值转换为对应的频域心率数据。所采用的AR算法为常规方法,在此不再赘述。In another specific implementation manner, the obtaining of the frequency-domain heart rate data may include a step of converting the obtained difference into corresponding frequency-domain heart rate data through an autoregressive (AR) algorithm. The adopted AR algorithm is a conventional method, which will not be repeated here.

步骤S17,根据所得到的频域心率数据,计算心率变异性生理参数值。Step S17, calculating the heart rate variability physiological parameter value according to the obtained frequency domain heart rate data.

所述生理参数包括LFnorm(低频功率标化值)、HFnorm(高频功率标化值)、LF/HF(低频功率/高频功率)等。低频功率LF主要受心交感神经所支配,可以作为心交感传出活动水平的参数;而高频谱代表起源自迷走神经(副交感神经)的心率波动参数,所以,高频功率HF的大小可被作为定量观测心迷走传出活动的参数。LF/HF比值可用作于衡量交感神经-副交感神经均衡性。The physiological parameters include LFnorm (normalized value of low frequency power), HFnorm (normalized value of high frequency power), LF/HF (low frequency power/high frequency power) and the like. The low-frequency power LF is mainly dominated by the cardiac sympathetic nerve and can be used as a parameter of the cardiac sympathetic efferent activity level; while the high frequency spectrum represents the heart rate fluctuation parameter originating from the vagus nerve (parasympathetic nerve), so the high-frequency power HF can be used as a quantitative Observe parameters of vagal efferent activity. The LF/HF ratio can be used as a measure of sympathetic-parasympathetic balance.

心率变异性生理参数值的计算,具体地来说,包括:计算频率间隔;根据计算得到的频率间隔,计算频率功率;根据计算得到的频率功率,计算频率功率标化值以及频率比值。The calculation of the heart rate variability physiological parameter value specifically includes: calculating the frequency interval; calculating the frequency power according to the calculated frequency interval; and calculating the normalized value of the frequency power and the frequency ratio according to the calculated frequency power.

所述频率间隔为每组心率数据中,每个心率数据对应的频域数据之间的频率间隔。可通过每组心率数据对应的频域数据均值与该组心率数据数量的乘积的倒数,即每组心率数据对应的频域数据均值与第二设定值的乘积的倒数,获得所述频率间隔。The frequency interval is the frequency interval between the frequency domain data corresponding to each heart rate data in each set of heart rate data. The frequency interval can be obtained by the reciprocal of the product of the mean value of the frequency domain data corresponding to each set of heart rate data and the number of the set of heart rate data, that is, the reciprocal of the product of the mean value of the frequency domain data corresponding to each set of heart rate data and the second set value .

根据频率间隔,可以计算得到分别对应于心率变异性各频谱段的频率范围内所包含的心率数据的数目,将这些心率数据对应的所有频域数据的功率相加就得到对应的频率功率值。具体地来说,根据HRV频谱段的定义,极低频功率VLF为小于0.04Hz的频率的功率,低频功率LF为在0.04Hz至0.15Hz范围内频率的功率,高频功率HF为在0.15Hz至0.4Hz范围内频率的功率。因此,所述根据频率间隔,计算频率功率,包括,计算总频率功率TP、计算LF、计算HF以及计算VLF;其中,计算TP是指计算一定频率范围内,具体地来说,可以是指0.4Hz范围内,心率数据对应的所有频域数据的功率总和,即将与心率数据对应的每个频域数据的功率相加,获得总频率功率TP;计算LF可以是指计算在0.04Hz至0.15Hz范围内心率数据对应的所有频域数据的功率之和;计算HF可以是指计算在0.15Hz至0.4Hz范围内心率数据对应的所有频域数据的功率之和;计算VLF可以是指计算在0.04Hz范围内心率数据对应的频域数据的功率之和。According to the frequency interval, the number of heart rate data included in the frequency range corresponding to each spectrum segment of the heart rate variability can be calculated, and the corresponding frequency power value can be obtained by adding the powers of all frequency domain data corresponding to the heart rate data. Specifically, according to the definition of the HRV spectrum segment, the very low frequency power VLF is the power of frequencies less than 0.04Hz, the low frequency power LF is the power of frequencies in the range of 0.04Hz to 0.15Hz, and the high frequency power HF is the power of frequencies in the range of 0.15Hz to 0.15Hz. Power at frequencies in the 0.4Hz range. Therefore, the calculation of frequency power according to the frequency interval includes calculation of total frequency power TP, calculation of LF, calculation of HF and calculation of VLF; wherein, calculation of TP refers to calculation within a certain frequency range, specifically, it can refer to 0.4 In the Hz range, the sum of the power of all frequency domain data corresponding to the heart rate data is to add the power of each frequency domain data corresponding to the heart rate data to obtain the total frequency power TP; calculating LF can refer to calculating at 0.04Hz to 0.15Hz The sum of the power of all frequency domain data corresponding to the heart rate data in the range; calculating HF can refer to calculating the sum of the power of all frequency domain data corresponding to the heart rate data in the range of 0.15Hz to 0.4Hz; calculating VLF can refer to calculating at 0.04 The sum of the power of the frequency domain data corresponding to the heart rate data in the Hz range.

获得频率功率的值之后,计算频率功率标化值的过程,具体可以包括:根据计算频率功率所得到的LF、HF以及TP计算LFnorm、HFnorm和LF/HF。计算LF/HF是指计算LF和HF的比值。在一个实施例中,计算LFnorm、HFnorm的过程包括:将对应的LF、HF的值除以总功率与VLF的差值,再将结果乘以100,得到低频/高频功率标化值。After the value of the frequency power is obtained, the process of calculating the normalized value of the frequency power may specifically include: calculating LFnorm, HFnorm and LF/HF according to the LF, HF and TP obtained by calculating the frequency power. Calculating LF/HF refers to calculating the ratio of LF and HF. In one embodiment, the process of calculating LFnorm and HFnorm includes: dividing the corresponding LF and HF values by the difference between the total power and VLF, and then multiplying the result by 100 to obtain the low frequency/high frequency power normalization value.

接下来进入步骤D2。Then go to step D2.

参考图3,步骤D2根据所述心率变异性生理参数值,输出对应的提醒信号。在具体的实施方式中,可以包括:Referring to FIG. 3 , step D2 outputs a corresponding reminder signal according to the heart rate variability physiological parameter value. In a specific embodiment, it may include:

步骤S21,将心率变异性生理参数值,与其正常值范围进行比较,得到各参数随时间变化的趋势。Step S21, comparing the heart rate variability physiological parameter value with its normal value range to obtain the trend of each parameter over time.

在具体的实施例中,可将在50-58nU范围内的LFnorm的值、在26-32nU范围内的HFnorm的值以及在1.5~2.范围内的LF/HF的值定为正常范围。参考图4,参数趋势图中的B区即为设定的正常范围;当LFnorm或者LF/HF高于正常值,或者HFnorm低于正常值时,认为交感神经占主导,图4参数趋势图中的A区即为所述的交感神经主导区;当LFnorm或LF/HF低于正常值、或者HFnorm高于正常值时,认为副交感神经占主导,图4参数趋势图中的C区即为所述的副交感神经主导区。一般地,正常人睡眠时其LF、LF/HF低于正常值,趋势图曲线都在C区,如图4所示,这与生理学上处于睡眠状态时副交感神经起主导作用相吻合,并且曲线十分稳定。In a specific embodiment, the value of LFnorm in the range of 50-58nU, the value of HFnorm in the range of 26-32nU and the value of LF/HF in the range of 1.5-2. Referring to Figure 4, area B in the parameter trend graph is the set normal range; when LFnorm or LF/HF is higher than the normal value, or HFnorm is lower than the normal value, it is considered that the sympathetic nerve is dominant, as shown in the parameter trend graph in Figure 4 Area A of the above is the sympathetic nerve-dominated area; when the LFnorm or LF/HF is lower than the normal value, or the HFnorm is higher than the normal value, it is considered that the parasympathetic nerve is dominant, and the C area in the parameter trend diagram in Figure 4 is the sympathetic nerve. The parasympathetic dominance described above. Generally, when normal people sleep, their LF and LF/HF are lower than the normal value, and the trend graph curves are all in area C, as shown in Figure 4, which is consistent with the fact that the parasympathetic nerve plays a leading role in physiological sleep, and the curve Very stable.

用户的个性特征也会影响到LF、HF、LF/HF参数趋势分布位置。参考图5,图(a)为性格较为外向的人所得到的心率变异性生理参数趋势图,其曲线大部分在A区;参考图5,图(b)为性格较为内向的人所得到的心率变异性生理参数趋势图,其曲线大部分在C区;但是一般情况下,正常人的各心率变异性生理参数分布无论是偏向于A区或者偏向于C区,都是靠近B区,或者在B区附近浮动。The user's personality characteristics will also affect the trend distribution position of LF, HF, and LF/HF parameters. Referring to Figure 5, Figure (a) is the trend graph of heart rate variability physiological parameters obtained by people with a more extroverted personality, and most of the curves are in area A; with reference to Figure 5, Figure (b) is obtained by people with a more introverted personality The trend graph of heart rate variability physiological parameters, most of the curves are in area C; but in general, the distribution of various physiological parameters of heart rate variability in normal people is close to area B, whether it is biased towards area A or area C, or Floating around area B.

经大量实验发现,当正常人在清醒安静的状态下时,其LF、HF、LF/HF趋势曲线如图6(a)所示,比较平稳;但当情绪受到干扰时,如图6(b)所示,趋势曲线表现出较大波动。A large number of experiments have found that when normal people are awake and quiet, their LF, HF, and LF/HF trend curves are relatively stable as shown in Figure 6(a); ), the trend curve shows large fluctuations.

步骤S22,根据比较结果以及各参数随时间变化的趋势,得到所述自主神经功能状态。Step S22, according to the comparison result and the trend of each parameter over time, the autonomic nervous function state is obtained.

步骤S23,根据所述自主神经功能状态,输出对应的提醒信号。Step S23, outputting a corresponding reminder signal according to the autonomic nervous function state.

举个例子来说,当处于静息状态时,如果用户的LF、LF/HF明显高于正常值范围,则说明交感神经系统活动功能亢进,所述用户可能是焦虑症患者;又例如,当出现LF升高,或LF升高、HF降低,或LF/HF增大三种情况中的任一种或几种时,可认为用户存在焦虑障碍;当HF升高或LF/HF降低时,可认为用户存在抑郁障碍。For example, when in a resting state, if the user's LF and LF/HF are significantly higher than the normal range, it indicates hyperactivity of the sympathetic nervous system, and the user may be an anxiety patient; When LF increases, or when LF increases, HF decreases, or any one or more of the three situations of LF/HF increase, it can be considered that the user has an anxiety disorder; when HF increases or LF/HF decreases, The user may be considered to have a depressive disorder.

对应不同的自主神经功能状态,可将提醒信号设为具有与其相同数目的若干等级,对应输出。其中,提醒信号可以以图像或者声音或者图像与声音的组合的形式输出,对应不同等级的提醒信号设置不同图片、或者声音、或者图片与声音的组合。例如,对应于焦虑、正常、抑郁三种状态,提醒信号分为A、B、C三个等级,以皱眉、微笑和哭的三种卡通脸形图片作为提醒信号的输出形式。当提醒信号为A等级时,显示皱眉的卡通脸形图片;当提醒信号为B等级时,显示咧嘴笑的卡通脸形图片;当提醒信号为C等级时,显示哭的卡通脸形图片。Corresponding to different autonomic nervous function states, the reminder signal can be set to have several levels with the same number as the corresponding output. Wherein, the reminder signal can be output in the form of image or sound or a combination of image and sound, and different pictures, or sounds, or a combination of picture and sound are set corresponding to different levels of reminder signals. For example, corresponding to the three states of anxiety, normal, and depression, the reminder signal is divided into three levels: A, B, and C, and three cartoon face pictures of frowning, smiling and crying are used as the output form of the reminder signal. When the reminder signal is A level, a frowning cartoon face picture is displayed; when the reminder signal is B level, a grinning cartoon face picture is displayed; when the reminder signal is C level, a crying cartoon face picture is displayed.

上述自主神经功能生物反馈方法的另一个实施方式,还可以包括步骤:产生并持续输出具有设定频率范围的刺激信号。Another embodiment of the above autonomic nervous function biofeedback method may further include a step of: generating and continuously outputting stimulation signals with a set frequency range.

具体地来说,该刺激信号用于辅助稳定用户的情绪,使其感觉平静。所述设定频率范围可采用业界普遍认为能使人体觉得舒适和安定的频率范围,即不大于2Hz。在一个实施例中,可将刺激信号频率设定为0.25Hz、或0.5Hz、或0.75Hz、或1Hz、或2Hz。经过大量实验表明,在其它实验条件都相同的情况下,用户长时间注视设定频率的单摆,会使其情绪稳定。而且,采用何种图形作为该刺激信号的表现形式并不会对效果有所限制,例如,也可以采用移动的直棒,移动的圆球,节拍器等。Specifically, the stimulating signal is used to assist in stabilizing the user's mood, making him feel calm. The set frequency range can be a frequency range that is generally considered in the industry to make the human body feel comfortable and stable, that is, not greater than 2 Hz. In one embodiment, the stimulation signal frequency can be set to 0.25 Hz, or 0.5 Hz, or 0.75 Hz, or 1 Hz, or 2 Hz. After a lot of experiments, it has been shown that under the condition of other experimental conditions being the same, the user will be emotionally stable if he stares at the pendulum with the set frequency for a long time. Moreover, there is no limitation on the effect by which graphic is used as the expression form of the stimulation signal, for example, a moving stick, a moving ball, a metronome, etc. may also be used.

参考图7,自主神经功能生物反馈系统的实施方式,包括:With reference to Fig. 7, the embodiment of autonomic nervous function biofeedback system comprises:

测试单元N1,根据生物电信号,获得心率变异性生理参数值;反馈提醒单元N2,根据所述心率变异性生理参数值,输出不同等级的提醒信号。The test unit N1 obtains the heart rate variability physiological parameter value according to the bioelectric signal; the feedback reminder unit N2 outputs different levels of reminder signals according to the heart rate variability physiological parameter value.

参考图8,所述测试单元N1,在一种具体的实施方式中,包括:Referring to FIG. 8, the test unit N1, in a specific implementation manner, includes:

数据获取单元M1,根据生物电信号,获得心率数据;数据记录单元M2,对所得到的心率数据及心率数据数量进行保存;数据分组单元M3,对所保存的采集信号进行分组;均值单元M4,计算所得到的每一组心率数据的平均值;差值计算单元M5,计算每一组中每个心率数据的值与所得到的该组心率数据平均值的差值;频域数据计算单元M6,根据所得到的差值,获得频域心率数据;生理参数计算单元M7,根据所得到的频域心率数据,计算心率变异性生理参数值。The data acquisition unit M1 obtains heart rate data according to the bioelectrical signal; the data recording unit M2 saves the obtained heart rate data and the number of heart rate data; the data grouping unit M3 groups the saved collected signals; the mean value unit M4, Calculate the average value of each group of heart rate data obtained; the difference calculation unit M5 calculates the difference between the value of each heart rate data in each group and the obtained average value of the group of heart rate data; the frequency domain data calculation unit M6 , according to the obtained difference, to obtain the frequency-domain heart rate data; the physiological parameter calculation unit M7, according to the obtained frequency-domain heart rate data, calculates the heart rate variability physiological parameter value.

在一种具体实施方式中,参考图9,数据获取单元M1可以包括预处理单元M1b、检波整形单元M1c、模数转换单元M1d以及心率数据计算单元M1e。生物电信号检测单元M1a所检测到的生物电信号,经过预处理单元M1b、检波整形单元M1c、模数转换单元M1d以及心率数据计算单元M1e的处理,得到心率数据。In a specific implementation manner, referring to FIG. 9 , the data acquisition unit M1 may include a preprocessing unit M1b, a detection and shaping unit M1c, an analog-to-digital conversion unit M1d, and a heart rate data calculation unit M1e. The bioelectric signal detected by the bioelectric signal detection unit M1a is processed by the preprocessing unit M1b, the detection and shaping unit M1c, the analog-to-digital conversion unit M1d and the heart rate data calculation unit M1e to obtain heart rate data.

其中,生理电信号检测单元M1a检测人体的生理电信号,在一种具体的实施例中,包括与人体相连的电极,检测心电信号;在另一种具体的实施例中,包括可以将人体的心磁信号转化为电信号SQUIT系统。Wherein, the physiological electrical signal detection unit M1a detects the physiological electrical signal of the human body, and in a specific embodiment, it includes electrodes connected to the human body to detect the electrocardiographic signal; in another specific embodiment, it includes electrodes that can connect the human body The cardiomagnetic signal is converted into an electrical signal by the SQUIT system.

预处理单元M1b将所获得的生物电信号进行放大和过滤,在一实施例中,所述预处理单元M1b满足如下技术参数:放大倍数不小于1000;频响为0.05~100Hz;输入阻抗不小于3MΩ;共模抑制比不小于100dB;本机噪声不大于3μVppThe preprocessing unit M1b amplifies and filters the obtained bioelectrical signal. In one embodiment, the preprocessing unit M1b meets the following technical parameters: the amplification factor is not less than 1000; the frequency response is 0.05-100Hz; the input impedance is not less than 3MΩ; common mode rejection ratio not less than 100dB; local noise not greater than 3μV pp .

参考图10,预处理单元M1b包含第一放大单元1101、第二放大单元1102和滤波放大单元1103。其中,输入至预处理单元M1b的生物电信号由第一放大单元1101和第二放大单元1102进行放大,再经滤波放大单元1103进行过滤。Referring to FIG. 10 , the preprocessing unit M1b includes a first amplifying unit 1101 , a second amplifying unit 1102 and a filtering and amplifying unit 1103 . Wherein, the bioelectrical signal input to the preprocessing unit M1b is amplified by the first amplifying unit 1101 and the second amplifying unit 1102 , and then filtered by the filtering and amplifying unit 1103 .

在具体实施例中,参考图11,第一放大单元1101可以包括五个运算放大器1201、1202、1203、1204、1205,起到区分生理电信号与躯干信号等其它干扰信号,提供高输入阻抗,限制电流流入人体的作用,其中,信号A和A’为所接收的生理电信号,信号B和B’为输出的一级放大信号,信号B1为抑制信号,反馈输入给用户,限制电流流入人体。In a specific embodiment, referring to FIG. 11 , the first amplifying unit 1101 may include five operational amplifiers 1201, 1202, 1203, 1204, and 1205 to distinguish physiological electrical signals from other interference signals such as torso signals and provide high input impedance. The role of limiting the flow of current into the human body, where the signals A and A' are the received physiological electrical signals, the signals B and B' are the output amplified signals, and the signal B1 is the suppression signal, which is fed back to the user to limit the current inflow human body.

参考图12,第二放大电路1102将生物电信号进一步放大,以便于后续记录分析,可以包括放大器1301,其相当于三个运算放大器的等效电路,可以适应比较广的频域范围,其中,信号B和B’为所接收的一级放大信号,信号C为输出的二级放大信号。Referring to FIG. 12 , the second amplifying circuit 1102 further amplifies the bioelectrical signal for subsequent recording and analysis, and may include an amplifier 1301, which is equivalent to an equivalent circuit of three operational amplifiers, and can adapt to a relatively wide frequency range, wherein, Signals B and B' are received primary amplified signals, and signal C is an output secondary amplified signal.

参考图13,滤波放大单元1103对放大的生物电信号进行过滤,包括0.05Hz以下的低频滤波,以及100Hz以上的高频滤波。可包括由运算放大器1401构成的滤波放大电路,其中信号C为接收的二级放大信号,信号D为输出的过滤信号。Referring to FIG. 13 , the filtering and amplifying unit 1103 filters the amplified bioelectrical signal, including low-frequency filtering below 0.05 Hz and high-frequency filtering above 100 Hz. It may include a filter amplification circuit composed of an operational amplifier 1401, wherein the signal C is the received secondary amplified signal, and the signal D is the output filtered signal.

一个正常的心电波形包括P波、QSR波群以及T波,这些波按照窦房结产生的兴奋脉冲周期性重复,其中,R波相较于其他波形,具有较高的幅值,同时T波、P波、基线漂移等频带都在QRS波群频带的底端以外。因此可以通过检测并分离出QRS波群,在上述实施例中,通过所述检波整形单元M1c检测QRS波群,并对得到的QRS波形进行整形,可以获得较为明显的R波。A normal ECG waveform includes P wave, QSR wave group, and T wave. These waves are periodically repeated according to the excitation pulse generated by the sinoatrial node. Compared with other waveforms, the R wave has a higher amplitude, while the T wave Waves, P waves, baseline drift and other frequency bands are outside the bottom of the QRS complex frequency bands. Therefore, the QRS complex can be detected and separated. In the above embodiment, the detection and shaping unit M1c detects the QRS complex and shapes the obtained QRS waveform to obtain a more obvious R wave.

参考图14,检波整形单元M1c包括检波单元1501以及滤波单元1502;检波单元1501接收经预处理单元M1b输出的生物电信号,获得R波信号;滤波单元1502对所述获得的R波信号进行去噪,并突出R波。其中,所述检波单元1501包括微分电路111和全波检波电路112:所述全波检波电路212包括运算放大器、二极管D5和D6以及反馈电阻R19、R20、R21、R22、R23、R24和R25构成;所述滤波单元1502可以包括二阶低通滤波器。经预处理单元M1b输出的生物电信号,即信号D,经微分电路111和全波检波电路112整流之后,得到波形为单向多峰脉冲波形的信号,再经滤波单元1502低通滤波,对波形进行平滑处理,凸现R波波峰位置的形态波形,即R波信号。Referring to FIG. 14 , the detection and shaping unit M1c includes a detection unit 1501 and a filtering unit 1502; the detection unit 1501 receives the bioelectrical signal output by the preprocessing unit M1b, and obtains an R wave signal; the filtering unit 1502 removes the obtained R wave signal. Noise, and highlight the R wave. Wherein, the detection unit 1501 includes a differential circuit 111 and a full-wave detection circuit 112: the full-wave detection circuit 212 includes an operational amplifier, diodes D5 and D6, and feedback resistors R19, R20, R21, R22, R23, R24, and R25. ; The filtering unit 1502 may include a second-order low-pass filter. The bioelectrical signal output by the preprocessing unit M1b, that is, the signal D, is rectified by the differential circuit 111 and the full-wave detection circuit 112 to obtain a signal whose waveform is a unidirectional multi-peak pulse waveform, and then low-pass filtered by the filtering unit 1502. The waveform is smoothed to highlight the shape waveform of the R wave peak position, that is, the R wave signal.

模数转换单元M1d接收所述R波信号以及所述放大过滤后的生理电信号,进行模数转换,获得对应的数字信号。具体地,可通过模数转换电路实现。The analog-to-digital conversion unit M1d receives the R-wave signal and the amplified and filtered physiological electrical signal, performs analog-to-digital conversion, and obtains a corresponding digital signal. Specifically, it can be realized through an analog-to-digital conversion circuit.

心率数据计算单元M1e基于所述数字信号进行计算,获得RR间期,即心率数据。在一个实施例中,其具体工作过程可包括:接收所述模数转换单元M1d提供的数字信号,获得R波波峰位置对应的数字信号,根据该数字信号以及根据模数转换时的采样频率,获得相邻RR间数据点数,将所述数据点数与时间间隔相乘,得到RR间期。The heart rate data calculation unit M1e performs calculations based on the digital signal to obtain the RR interval, that is, the heart rate data. In one embodiment, its specific working process may include: receiving the digital signal provided by the analog-to-digital conversion unit M1d, obtaining a digital signal corresponding to the peak position of the R wave, and according to the digital signal and the sampling frequency during analog-to-digital conversion, The number of data points between adjacent RRs is obtained, and the number of data points is multiplied by the time interval to obtain the RR interval.

数据记录单元M2,在一种实施例中,包括保存方式选择单元和存储单元。其中,保存方式包括自动保存或者手动保存,存储单元可以存储时间间隔、心率数据和心率数据数量。The data recording unit M2, in one embodiment, includes a storage mode selection unit and a storage unit. Wherein, the saving method includes automatic saving or manual saving, and the storage unit can store the time interval, heart rate data and the number of heart rate data.

在一种实施例中,具体地来说,在自动保存的方式下,当时间间隔达到第一周期的整数倍时,自动将心率数据和心率数据数量保存至存储单元。在具体的实施例中,第一周期可为15至40分钟。在手动保存方式下,当时间间隔达到第一设定值时,分别将心率数据和心率数据数量保存至存储单元;若未达到第一设定值,则该时间间隔内的心率数据以及心率数据数量都不作记录;其中,第一设定值小于第一周期。正常情况下,普通人从情绪波动到完全稳定的时间不大于3分钟,第一设定值应略大于从情绪波动到完全稳定的时间周期,以保证记录下至少一次的情绪波动。在具体的实施例中,第一设定值可为3至8分钟。In one embodiment, specifically, in the automatic saving mode, when the time interval reaches an integer multiple of the first period, the heart rate data and the number of heart rate data are automatically saved to the storage unit. In a specific embodiment, the first period may be 15 to 40 minutes. In the manual saving mode, when the time interval reaches the first set value, the heart rate data and the number of heart rate data are respectively saved to the storage unit; if the first set value is not reached, the heart rate data and heart rate data in the time interval Quantities are not recorded; wherein, the first set value is less than the first period. Under normal circumstances, the time for ordinary people to go from mood swings to complete stabilization is no more than 3 minutes, and the first setting value should be slightly longer than the time period from mood swings to complete stabilization to ensure that at least one mood swing is recorded. In a specific embodiment, the first set value may be 3 to 8 minutes.

数据分组单元M3,其工作过程具体可以包括:对所保存的心率数据进行分组,使每组心率数据的数量为第二设定值;若最后一组心率数据的数量不足第二设定值,可用值为零的数据补充。其中,第二设定值由第一设定值确定,根据第一设定值的取值确定对应的第二设定值数值;具体地来说,当第一设定值为3分钟时,第二设定值为256;第一设定值为4至8分钟时,第二设定值可为256至540之间的任意整数。The working process of the data grouping unit M3 may specifically include: grouping the stored heart rate data so that the number of each group of heart rate data is the second set value; if the number of the last group of heart rate data is less than the second set value, A data complement with a value of zero is available. Wherein, the second set value is determined by the first set value, and the corresponding second set value value is determined according to the value of the first set value; specifically, when the first set value is 3 minutes, The second set value is 256; when the first set value is 4 to 8 minutes, the second set value can be any integer between 256 and 540.

均值单元M4,计算所得到的每一组心率数据的平均值。其工作过程具体可以包括:计算每一组心率数据之和;将所得到的心率数据之和除以该组对应的心率数据的数量,即除以第二设定值;The mean value unit M4 is used to calculate the mean value of each set of heart rate data obtained. The working process may specifically include: calculating the sum of each group of heart rate data; dividing the obtained sum of heart rate data by the number of corresponding heart rate data of the group, that is, dividing by the second set value;

差值计算单元M5,计算每一组中每个心率数据的值与所得到的该组心率数据平均值的差值。The difference calculation unit M5 calculates the difference between the value of each heart rate data in each group and the obtained average value of the group of heart rate data.

频域数据计算单元M6,根据所述差值,获得频域心率数据。其工作过程具体可以包括:产生窗函数,对所述差值进行数据截断,得到时域数据;实现FFT,将所述时域数据转换成对应的频域数据。The frequency domain data calculation unit M6 obtains the frequency domain heart rate data according to the difference. The working process may specifically include: generating a window function, performing data truncation on the difference to obtain time-domain data; implementing FFT, converting the time-domain data into corresponding frequency-domain data.

参考图15,在一种实施方式中,生理参数计算单元M7包括频率间隔计算单元M7a、频率功率计算单元M7b以及标化值计算单元M7c。Referring to FIG. 15 , in one embodiment, the physiological parameter calculation unit M7 includes a frequency interval calculation unit M7a, a frequency power calculation unit M7b, and a normalized value calculation unit M7c.

其中,频率间隔计算单元M7a计算所述频域心率数据的均值与该组心率数据数量的乘积的倒数,得到频率间隔。Wherein, the frequency interval calculation unit M7a calculates the reciprocal of the product of the mean value of the frequency-domain heart rate data and the number of heart rate data in the group to obtain the frequency interval.

频率功率计算单元M7b接收所述频率间隔,计算分别对应于心率变异性各频谱段的频率范围内所包含的心率数据的数目,将这些心率数据对应的所有频域数据的功率相加,从而得到对应的频率功率值。其工作过程具体可以包括:计算0.4Hz范围内心率数据对应的频域数据的功率之和,得到总频率功率;计算0.04Hz至0.15Hz范围内每个心率数据对应的频域数据的功率之和,得到低频功率;计算0.15Hz至0.4Hz范围内每个心率数据对应的频域数据的功率之和,得到高频功率;计算0.04Hz范围以内每个心率数据对应的频域数据的功率之和,得到极低频功率。The frequency power calculation unit M7b receives the frequency interval, calculates the number of heart rate data contained in the frequency range corresponding to each frequency spectrum segment of the heart rate variability, and adds the power of all frequency domain data corresponding to these heart rate data to obtain Corresponding frequency power value. Its working process can specifically include: calculating the sum of the power of the frequency domain data corresponding to the heart rate data in the range of 0.4Hz to obtain the total frequency power; calculating the sum of the power of the frequency domain data corresponding to each heart rate data in the range of 0.04Hz to 0.15Hz , to obtain the low-frequency power; calculate the sum of the power of the frequency-domain data corresponding to each heart rate data within the range of 0.15Hz to 0.4Hz to obtain the high-frequency power; calculate the sum of the power of the frequency-domain data corresponding to each heart rate data within the range of 0.04Hz , to obtain very low frequency power.

标化值计算单元M7c根据所述总频率功率、高频功率、低频功率以及极低频功率,计算高频功率标化值HFnorm、低频功率标化值LFnorm和高低频功率比值LF/HF。The normalized value calculation unit M7c calculates the high frequency power normalized value HFnorm, the low frequency power normalized value LFnorm and the ratio of high and low frequency power LF/HF according to the total frequency power, high frequency power, low frequency power and extremely low frequency power.

参考图16,所述反馈提醒单元N2在具体的实施方式中,包含:Referring to FIG. 16, in a specific implementation manner, the feedback reminding unit N2 includes:

状态分类单元M8,按照各个心率变异性生理参数值与正常值的大小关系以及各个生理参数随时间变化的趋势将所表示的自主神经功能状态分类。其工作过程具体可以包括:判断心率变异性生理参数值的值是否处于所设定的正常值范围;判断该心率变异性生理参数值随时间变化的趋势;根据判断结果,得到自主神经功能状态类别。The state classification unit M8 classifies the indicated autonomic nervous function states according to the relationship between each heart rate variability physiological parameter value and the normal value and the trend of each physiological parameter over time. The working process may specifically include: judging whether the value of the heart rate variability physiological parameter is within the set normal value range; judging the trend of the heart rate variability physiological parameter value over time; according to the judgment result, obtaining the autonomic nervous function state category .

反馈输出单元M9,根据所述自主神经功能状态类别,将其映射为相应的提醒信号,并将提醒信号按照图像、或声音、或图像和声音的组合的形式反馈输出,提醒用户其自主神经功能状况;在一个实施例中,可以包含显示器、或喇叭、或显示器和喇叭的组合。The feedback output unit M9 maps it to a corresponding reminder signal according to the state category of the autonomic nerve function, and feeds back and outputs the reminder signal in the form of an image, or sound, or a combination of image and sound, to remind the user of its autonomic nervous function. Status; in one embodiment, may include a display, or a speaker, or a combination of a display and a speaker.

参考图17,在自主神经功能生物反馈系统的另一种实施方式中,还包括刺激信号发生单元,产生并持续输出具有设定频率范围的刺激信号。Referring to FIG. 17 , in another embodiment of the biofeedback system for autonomic nervous function, it further includes a stimulation signal generation unit, which generates and continuously outputs stimulation signals with a set frequency range.

在一个实施例中,刺激信号发生单元可以包含信号发生设备。信号发生设备产生设定频率的信号,使单摆,或移动的直棒以该设定频率进行摆动,其中,所述设定频率可采用医学上公认可使人体感受到平静的频率范围,即不大于2Hz,具体的来说,可将刺激信号频率设定为0.25Hz、或0.5Hz、或0.75Hz、或1Hz、或2Hz。In one embodiment, the stimulation signal generating unit may comprise a signal generating device. The signal generating device generates a signal with a set frequency, so that the pendulum or the moving straight rod oscillates at the set frequency, wherein the set frequency can be a medically recognized frequency range that can make the human body feel calm, that is, Not greater than 2 Hz, specifically, the frequency of the stimulation signal can be set to 0.25 Hz, or 0.5 Hz, or 0.75 Hz, or 1 Hz, or 2 Hz.

在另一个实施例中,刺激信号发生单元还可以包含图像显示设备,将单摆或移动的直棒等,以图像形式,而不是实物形式表现出来,仍然使该图像形式的单摆或直棒按照设定频率进行摆动。所述刺激信号的表现形式不受为实物或者虚拟图像的限制,同样,也不限制于图像形式,可以令按设定频率运动的物体为节拍器,或者为移动圆球的形状。In another embodiment, the stimulation signal generation unit may also include an image display device, which displays the pendulum or the moving straight rod in the form of an image instead of the physical form, and still makes the pendulum or the straight rod in the form of the image Oscillate according to the set frequency. The form of expression of the stimulation signal is not limited to physical objects or virtual images, nor is it limited to image forms. The object moving at a set frequency can be a metronome or a moving ball.

参考图18,在具体的实施例中,提醒信号以笑脸的形式显示出来,刺激信号以单摆的图像形式显示出来。单摆处于频率固定的运动状态,提醒信号提示用户其当前自主神经功能的状况,实施过程中使用户一直保持注视着画面。当用户受到干扰时,提醒信号的笑脸转变为哭脸,提示用户受到了干扰。用户看到提示之后,保持注视单摆,并且在医生的指导下进行自我调整,从而使精神状态得到改善。Referring to FIG. 18 , in a specific embodiment, the reminder signal is displayed in the form of a smiling face, and the stimulation signal is displayed in the form of a pendulum image. The simple pendulum is in a motion state with a fixed frequency, and the reminder signal reminds the user of its current autonomic nervous function status, and the user keeps watching the screen during the implementation process. When the user is disturbed, the smiling face of the reminder signal changes to a sad face, indicating that the user is disturbed. After seeing the prompt, the user keeps looking at the pendulum and makes self-adjustment under the guidance of the doctor, so that the mental state can be improved.

参照图19,自主神经功能生物反馈系统的实施方式包括:Referring to Figure 19, embodiments of the autonomic nervous function biofeedback system include:

数据获取单元E1,对检测到的生理电信号进行处理,获得预定时间间隔内的时域心率数据。The data acquisition unit E1 processes the detected physiological electrical signals to obtain time-domain heart rate data within a predetermined time interval.

在一个实施例中,所述预定时间间隔可以是15至40分钟。In one embodiment, the predetermined time interval may be 15 to 40 minutes.

处理设备E2,将所述时域心率数据转换为频域心率数据,基于对所述频域心率数据的频谱分析和计算,获得心率变异性生理参数值,并根据所述心率变异性生理参数值,输出对应的提醒信号。The processing device E2 converts the time-domain heart rate data into frequency-domain heart rate data, obtains the heart rate variability physiological parameter value based on the frequency spectrum analysis and calculation of the frequency-domain heart rate data, and obtains the heart rate variability physiological parameter value according to the heart rate variability physiological parameter value , output the corresponding reminder signal.

在具体实现时,处理设备E2可以是具有数据处理能力的各类电子设备,例如计算机、服务器、单片机或者微控制器等。可包括存储器,对时域心率数据、频域心率数据以及各中间数据进行保存。In a specific implementation, the processing device E2 may be various electronic devices with data processing capabilities, such as computers, servers, single-chip microcomputers or microcontrollers. A memory may be included to store the time-domain heart rate data, the frequency-domain heart rate data and various intermediate data.

在一个实施例中,处理设备E2还包括刺激信号发生单元,产生并持续输出设定频率范围的刺激信号。所述刺激信号发生单元的具体实现可参照前述实施例的具体描述,此不赘述。In one embodiment, the processing device E2 further includes a stimulation signal generation unit, which generates and continuously outputs stimulation signals in a set frequency range. For the specific implementation of the stimulation signal generation unit, reference may be made to the specific descriptions of the foregoing embodiments, which will not be repeated here.

输出单元E3,输出所述提醒信号。The output unit E3 outputs the reminder signal.

在具体实现时,输出单元E3可以选择以图像、或者声音、或者图像和声音的组合的任一种方式将提醒信号输出。在一个实施例中,输出单元E3可包括显示器或者喇叭。During specific implementation, the output unit E3 may choose to output the reminder signal in any form of image, or sound, or a combination of image and sound. In one embodiment, the output unit E3 may include a display or a speaker.

数据获取单元E1的具体实现可以参考前述实施例的描述,此不赘述。For the specific implementation of the data acquisition unit E1, reference may be made to the descriptions of the foregoing embodiments, which will not be repeated here.

上述实施方式也可以通过下述方式实现:将所述步骤,包括对心率数据进行保存、对所保存的心率数据进行分组、计算每一组心率数据的平均值、分别计算每一组中每个心率数据的值与该组心率数据平均值的差值、根据所述差值获得频域心率数据、对所述频域心率数据进行频谱分析和计算获得心率变异性生理参数值、基于心率变异性生理参数值所反映的自主神经功能状态输出对应的提醒信号,以可执行程序代码进行描述,将存储有上述可执行程序代码的存储介质直接或者间接地提供给系统或设备,并且该系统或设备中的计算机或者中央处理单元(CPU)读出并执行上述程序代码。The above-mentioned embodiment can also be realized in the following way: the steps include saving the heart rate data, grouping the saved heart rate data, calculating the average value of each group of heart rate data, calculating the average value of each group in each group respectively The difference between the value of the heart rate data and the average value of the group of heart rate data, obtaining the frequency domain heart rate data according to the difference, performing spectrum analysis and calculation on the frequency domain heart rate data to obtain the heart rate variability physiological parameter value, based on the heart rate variability The autonomic nervous function state reflected by the physiological parameter value outputs a corresponding reminder signal, which is described in executable program code, and the storage medium storing the above-mentioned executable program code is directly or indirectly provided to the system or device, and the system or device The computer or central processing unit (CPU) in the computer reads out and executes the above-mentioned program codes.

此时,只要该系统或者设备具有执行程序的功能,则实施方式不局限于程序,并且该程序也可以是任意的形式,例如,目标程序、解释器执行的程序或者提供给操作系统的脚本程序等。At this time, as long as the system or device has the function of executing the program, the embodiment is not limited to the program, and the program may also be in any form, for example, an object program, a program executed by an interpreter, or a script program provided to the operating system wait.

上述这些机器可读存储介质包括但不限于:各种存储器和存储单元,半导体设备,磁盘单元例如光、磁和磁光盘,以及其它适于存储信息的介质等。另外,客户计算机通过连接到因特网上的相应网站,并且将计算机程序代码下载和安装到计算机中然后执行该程序,也可以实现上述过程。The above-mentioned machine-readable storage media include, but are not limited to: various memories and storage units, semiconductor devices, magnetic disk units such as optical, magnetic and magneto-optical disks, and other media suitable for storing information, and the like. In addition, the above process can also be realized by connecting a client computer to a corresponding website on the Internet, and downloading and installing computer program codes into the computer and then executing the program.

上述实施方式,在获得心率变异性生理参数的基础上,将所述心率变异性生理参数所反映的自主神经功能状态以易于察觉的提醒信号反馈输出,使得用户对自身的自主神经功能状况有形象的了解,从而辅助用户在有指导的情况下根据所反馈的提醒信息自我调整,而且易于实施。In the above embodiment, on the basis of obtaining the heart rate variability physiological parameters, the autonomic nervous function status reflected by the heart rate variability physiological parameters is fed back and output as an easy-to-perceive reminder signal, so that the user has a vivid image of his own autonomic nervous function status. understanding, so as to assist users to adjust themselves according to the feedback reminder information under guidance, and it is easy to implement.

Claims (23)

1.一种自主神经功能生物反馈方法,包括:1. A biofeedback method for autonomic nervous function, comprising: 根据生物电信号,获得心率变异性生理参数值;Obtain the heart rate variability physiological parameter value according to the bioelectrical signal; 根据所述心率变异性生理参数值,输出对应的提醒信号。According to the heart rate variability physiological parameter value, a corresponding reminder signal is output. 2.如权利要求1所述的生物反馈方法,其中,所述根据心率变异性生理参数值,输出对应的提醒信号包括:2. The biofeedback method according to claim 1, wherein, according to the heart rate variability physiological parameter value, outputting a corresponding reminder signal comprises: 将所述心率变异性生理参数值,与其正常值范围进行比较,得到各参数随时间变化的趋势;Comparing the heart rate variability physiological parameter value with its normal value range to obtain the trend of each parameter over time; 根据所述比较结果以及所述各参数趋势,得到自主神经功能状态;Obtain the autonomic nervous function state according to the comparison result and the trend of each parameter; 根据所述自主神经功能状态,输出对应的提醒信号。According to the autonomic nervous function state, a corresponding reminder signal is output. 3.如权利要求2所述的生物反馈方法,其中,所述提醒信号具有与所述自主神经功能的状态相同数目的等级数。3. The biofeedback method according to claim 2, wherein the reminder signal has the same number of grades as the state of the autonomic nervous function. 4.如权利要求1所述的生物反馈方法,其中,还包括持续输出具有设定频率范围的刺激信号。4. The biofeedback method according to claim 1, further comprising continuously outputting stimulation signals with a set frequency range. 5.如权利要求1所述的生物反馈方法,其中,根据生物电信号,获得心率变异性生理参数值,包括:5. The biofeedback method as claimed in claim 1, wherein, according to the bioelectrical signal, obtaining the heart rate variability physiological parameter value comprises: 根据生物电信号,获得心率数据;Obtain heart rate data based on bioelectrical signals; 对所述心率数据进行处理,获得频域心率数据;Processing the heart rate data to obtain frequency domain heart rate data; 根据所述频域心率数据,获得心率变异性生理参数值。According to the frequency-domain heart rate data, a heart rate variability physiological parameter value is obtained. 6.如权利要求5所述的生物反馈方法,其中,所述根据生物电信号,获得心率数据,包括:6. The biofeedback method as claimed in claim 5, wherein said obtaining heart rate data according to the bioelectrical signal comprises: 对生物电信号进行放大、滤波;Amplify and filter bioelectrical signals; 检测生物电信号中的QRS波群,对所获得的QRS波群进行波形整形以获得R波信号;Detect the QRS wave group in the bioelectrical signal, and perform waveform shaping on the obtained QRS wave group to obtain the R wave signal; 将经放大、滤波的生物电信号,以及经QRS波群检测及整形的R波信号,转换成数字信号。Convert the amplified and filtered bioelectrical signal, as well as the R-wave signal that has been detected and shaped by the QRS complex, into digital signals. 7.如权利要求5所述的生物反馈方法,其中,所述对心率数据进行处理,获得频域心率数据包括:7. biofeedback method as claimed in claim 5, wherein, described heart rate data is processed, and obtaining frequency domain heart rate data comprises: 对所述心率数据进行分组;grouping the heart rate data; 计算每一组心率数据的平均值;Calculate the average value of each group of heart rate data; 分别计算每一组中每个心率数据的值与所述该组心率数据平均值的差值;calculating the difference between the value of each heart rate data in each group and the average value of the group of heart rate data; 根据所述差值获得频域心率数据。Frequency-domain heart rate data is obtained according to the difference. 8.如权利要求7所述的生物反馈方法,其中,对所述心率数据进行分组,包括:使每组心率数据的数量为第二设定值;若心率数据的数量不足第二设定值时,用值为零的数据进行补充。8. The biofeedback method according to claim 7, wherein grouping the heart rate data comprises: making the number of each group of heart rate data a second set value; if the number of heart rate data is less than the second set value When , it is supplemented with data with a value of zero. 9.如权利要求5所述的生物反馈方法,其中,所述根据频域心率数据,获得心率变异性生理参数值,包括:9. biofeedback method as claimed in claim 5, wherein, described according to frequency domain heart rate data, obtain heart rate variability physiological parameter value, comprising: 计算频域心率数据之间的频率间隔;Calculate the frequency interval between frequency domain heart rate data; 根据所述频率间隔,分别计算心率变异性各生理参数值所在频谱段的频率功率;According to the frequency interval, calculate the frequency power of the spectrum segment where each physiological parameter value of the heart rate variability is located; 根据所述频率功率,计算频率功率标化值以及频率功率比值。According to the frequency power, a frequency power normalized value and a frequency power ratio are calculated. 10.如权利要求9所述的生物反馈方法,其中,所述心率变异性各生理参数值所在频谱段的频率功率,包括总频率功率、高频功率、低频功率以及极低频功率的值。10. The biofeedback method according to claim 9, wherein the frequency power of the spectrum segment where each physiological parameter value of the heart rate variability is located includes the values of total frequency power, high frequency power, low frequency power and extremely low frequency power. 11.一种自主神经功能生物反馈系统,包括:11. A biofeedback system for autonomic nervous function, comprising: 测试单元,根据生物电信号,获得心率变异性生理参数值;The test unit obtains the heart rate variability physiological parameter value according to the bioelectrical signal; 反馈提醒单元,根据所述心率变异性生理参数值,输出对应的提醒信号。The feedback reminder unit outputs a corresponding reminder signal according to the heart rate variability physiological parameter value. 12.如权利要求11所述的生物反馈系统,其中,所述反馈提醒单元,包括:12. The biofeedback system as claimed in claim 11, wherein the feedback reminder unit comprises: 状态分类单元,根据所述心率变异性生理参数值,将所表示的自主神经功能状态分类;The state classification unit classifies the indicated autonomic nervous function state according to the heart rate variability physiological parameter value; 反馈输出单元,根据所述状态类别,将其映射为相应的的提醒信号,反馈输出提醒信号。The feedback output unit, according to the state category, maps it to a corresponding reminder signal, and feedbacks and outputs the reminder signal. 13.如权利要求12所述的生物反馈系统,其中,所述状态分类单元判断心率变异性生理参数值的值是否处于所设定的正常值范围;判断该心率变异性生理参数值随时间变化的趋势;根据判断结果,得到自主神经功能状态类别。13. The biofeedback system as claimed in claim 12, wherein the state classification unit judges whether the value of the heart rate variability physiological parameter value is in the set normal value range; judges that the heart rate variability physiological parameter value changes with time According to the judgment result, the category of autonomic nervous function status is obtained. 14.如权利要求11所述的生物反馈系统,其中,还包括:刺激信号发生单元,产生并持续输出具有设定频率范围的刺激信号。14. The biofeedback system according to claim 11, further comprising: a stimulation signal generation unit, which generates and continuously outputs a stimulation signal with a set frequency range. 15.如权利要求11所述的生物反馈系统,其中,所述测试单元,包括:15. The biofeedback system as claimed in claim 11, wherein said testing unit comprises: 数据获取单元,根据生物电信号,获得心率数据;The data acquisition unit acquires heart rate data according to the bioelectrical signal; 处理单元,对所述心率数据进行处理,获得频域心率数据;a processing unit, processing the heart rate data to obtain frequency domain heart rate data; 生理参数计算单元,根据所述频域心率数据,计算心率变异性生理参数值。The physiological parameter calculation unit calculates the heart rate variability physiological parameter value according to the frequency domain heart rate data. 16.如权利要求15所述的生物反馈系统,其中,所述数据获取单元,包括:16. The biofeedback system as claimed in claim 15, wherein said data acquisition unit comprises: 预处理单元,放大和过滤所述生物电信号;a preprocessing unit, amplifying and filtering the bioelectric signal; 检波整形单元,检测所述生物电信号中的QRS波群,对QRS波群进行整形以获得R波信号;A detection and shaping unit, detecting the QRS wave group in the bioelectric signal, and shaping the QRS wave group to obtain an R wave signal; 模数转换单元,将所述R波信号以及经放大、过滤的生物电信号,进行模数转换,获得数字信号;The analog-to-digital conversion unit performs analog-to-digital conversion on the R wave signal and the amplified and filtered bioelectrical signal to obtain a digital signal; 心率数据计算单元,基于所述数字信号进行计算,获得心率数据。The heart rate data calculation unit performs calculation based on the digital signal to obtain heart rate data. 17.如权利要求16所述的反馈系统,其中,所述预处理单元包括至少一放大单元和滤波单元。17. The feedback system according to claim 16, wherein the pre-processing unit comprises at least one amplification unit and a filtering unit. 18.如权利要求16所述的反馈系统,其中,所述检波整形单元包括检波单元和滤波单元。18. The feedback system according to claim 16, wherein the detection and shaping unit comprises a detection unit and a filtering unit. 19.如权利要求18所述的反馈系统,其中,所述检波单元包括微分电路和全波检波电路。19. The feedback system according to claim 18, wherein the detection unit comprises a differential circuit and a full-wave detection circuit. 20.如权利要求15所述的反馈系统,其中,所述处理单元,包括:20. The feedback system as claimed in claim 15, wherein said processing unit comprises: 数据分组单元,对所述心率数据进行分组;a data grouping unit, for grouping the heart rate data; 均值单元,计算所得到的每一组心率数据的平均值;A mean value unit, which calculates the mean value of each set of heart rate data obtained; 差值计算单元,计算每一组中每个心率数据的值与所得到的该组心率数据平均值的差值;A difference calculation unit, which calculates the difference between the value of each heart rate data in each group and the obtained average value of the heart rate data of the group; 频域数据计算单元,根据所得到的差值,获得频域心率数据。The frequency domain data calculation unit obtains the frequency domain heart rate data according to the obtained difference. 21.如权利要求15所述的反馈系统,其中,所述生理参数计算单元,包括:21. The feedback system as claimed in claim 15, wherein the physiological parameter calculation unit comprises: 频率间隔计算单元,计算频域心率数据之间的频率间隔;A frequency interval calculation unit, which calculates the frequency interval between the heart rate data in the frequency domain; 频率功率计算单元,根据所述频率间隔,分别计算心率变异性各生理参数值所在频谱段的频率功率;The frequency power calculation unit calculates the frequency power of the spectrum segment where each physiological parameter value of the heart rate variability is located according to the frequency interval; 标化值计算单元,根据所述频率功率,计算频率功率标化值以及频率功率比值。The normalized value calculation unit calculates a frequency power normalized value and a frequency power ratio according to the frequency power. 22.一种自主神经功能生物反馈系统,包括:22. A biofeedback system for autonomic nervous function comprising: 数据获取单元,对检测到的生物电信号进行处理,获得预定时间间隔内的时域心率数据;The data acquisition unit processes the detected bioelectrical signal to obtain time-domain heart rate data within a predetermined time interval; 处理设备,将所述时域心率数据转换为频域心率数据,基于对所述频域心率数据的频谱分析和计算,获得心率变异性生理参数值,并根据所述心率变异性生理参数值,输出对应的提醒信号;A processing device that converts the time-domain heart rate data into frequency-domain heart rate data, obtains heart rate variability physiological parameter values based on spectrum analysis and calculation of the frequency-domain heart rate data, and according to the heart rate variability physiological parameter values, Output the corresponding reminder signal; 输出单元,输出所述提醒信号。an output unit, for outputting the reminder signal. 23.如权利要求22所述的生物反馈系统,其中,所述处理设备还包括刺激信号发生单元,产生并持续输出设定频率范围的刺激信号。23. The biofeedback system according to claim 22, wherein the processing device further comprises a stimulation signal generating unit, which generates and continuously outputs a stimulation signal in a set frequency range.
CN2008100413780A 2008-08-04 2008-08-04 Autonomic nervous function biofeedback method and system Expired - Fee Related CN101642369B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100413780A CN101642369B (en) 2008-08-04 2008-08-04 Autonomic nervous function biofeedback method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100413780A CN101642369B (en) 2008-08-04 2008-08-04 Autonomic nervous function biofeedback method and system

Publications (2)

Publication Number Publication Date
CN101642369A true CN101642369A (en) 2010-02-10
CN101642369B CN101642369B (en) 2012-10-31

Family

ID=41654540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100413780A Expired - Fee Related CN101642369B (en) 2008-08-04 2008-08-04 Autonomic nervous function biofeedback method and system

Country Status (1)

Country Link
CN (1) CN101642369B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155733B2 (en) 2009-05-15 2012-04-10 Nanjing University Lie detection method and system
CN104127194A (en) * 2014-07-14 2014-11-05 华南理工大学 Depression evaluating system and method based on heart rate variability analytical method
CN105455797A (en) * 2014-08-19 2016-04-06 吴健康 Method and device for measuring autonomic nerve heart regulation and control function
WO2016119654A1 (en) * 2015-01-26 2016-08-04 周常安 Physiological feedback system and light-emitting device
CN105916438A (en) * 2013-11-21 2016-08-31 美敦力公司 Method and apparatus for accurately determining heart rate variability and sympathetic reserve
CN106964069A (en) * 2017-03-23 2017-07-21 秦皇岛市惠斯安普医学系统股份有限公司 A kind of microcirculation repair system with biofeedback function
CN104665800B (en) * 2015-01-26 2018-08-31 周常安 Blood pressure management device and method
CN106096303B (en) * 2016-06-22 2018-12-18 深圳市是源医学科技有限公司 A kind of analysis method of autonomic nerves system, server and system
CN109157191A (en) * 2018-06-15 2019-01-08 南京宁康中科医疗技术有限公司 The measurement method and system of autonomic nerve cardiopulmonary metabolic system ability of regulation and control and regulation state
CN110464337A (en) * 2019-09-06 2019-11-19 江苏华康信息技术有限公司 A kind of heart rate variability signals analysis method based on extreme value Energy Decomposition method
CN110558959A (en) * 2019-09-06 2019-12-13 江苏华康信息技术有限公司 HRV signal analysis method for meditation training based on extreme value energy decomposition method
CN110840435A (en) * 2018-08-20 2020-02-28 远东新世纪股份有限公司 Heartbeat cycle analysis method, device and system
CN112842303A (en) * 2020-11-23 2021-05-28 南京市中医院 Autonomic nervous system screening method and system
CN113069116A (en) * 2021-03-29 2021-07-06 山东思正信息科技有限公司 Army official and soldier-oriented group psychology evaluation system, device and medium
CN114027852A (en) * 2021-11-11 2022-02-11 浙江智柔科技有限公司 Intrauterine fetal condition analysis device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1527235A (en) * 2003-09-22 2004-09-08 �Ϻ���ͨ��ѧ Methods for Obtaining Signals of Autonomic Nervous Function
CN1661617A (en) * 2004-02-23 2005-08-31 威今基因科技股份有限公司 Automatic diagnosis method and device for autonomic nerve
CN1954770A (en) * 2006-09-11 2007-05-02 中山大学 A digital medical monitoring system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155733B2 (en) 2009-05-15 2012-04-10 Nanjing University Lie detection method and system
US8543196B2 (en) 2009-05-15 2013-09-24 Nanjing University Lie detection based on heart rate variability
CN105916438A (en) * 2013-11-21 2016-08-31 美敦力公司 Method and apparatus for accurately determining heart rate variability and sympathetic reserve
CN104127194A (en) * 2014-07-14 2014-11-05 华南理工大学 Depression evaluating system and method based on heart rate variability analytical method
CN105455797A (en) * 2014-08-19 2016-04-06 吴健康 Method and device for measuring autonomic nerve heart regulation and control function
CN105455797B (en) * 2014-08-19 2020-01-07 南京茂森电子技术有限公司 Autonomic nerve heart regulation function measuring method and device
WO2016119654A1 (en) * 2015-01-26 2016-08-04 周常安 Physiological feedback system and light-emitting device
CN104665800B (en) * 2015-01-26 2018-08-31 周常安 Blood pressure management device and method
CN106096303B (en) * 2016-06-22 2018-12-18 深圳市是源医学科技有限公司 A kind of analysis method of autonomic nerves system, server and system
CN106964069A (en) * 2017-03-23 2017-07-21 秦皇岛市惠斯安普医学系统股份有限公司 A kind of microcirculation repair system with biofeedback function
CN109157191A (en) * 2018-06-15 2019-01-08 南京宁康中科医疗技术有限公司 The measurement method and system of autonomic nerve cardiopulmonary metabolic system ability of regulation and control and regulation state
CN109157191B (en) * 2018-06-15 2024-05-28 南京宁康中科医疗技术有限公司 Method and system for measuring regulation capacity and regulation state of autonomic nerve cardiopulmonary metabolic system
CN110840435A (en) * 2018-08-20 2020-02-28 远东新世纪股份有限公司 Heartbeat cycle analysis method, device and system
CN110464337A (en) * 2019-09-06 2019-11-19 江苏华康信息技术有限公司 A kind of heart rate variability signals analysis method based on extreme value Energy Decomposition method
CN110464337B (en) * 2019-09-06 2020-09-01 江苏华康信息技术有限公司 Heart rate variability signal analysis method based on extreme value energy decomposition method
CN110558959B (en) * 2019-09-06 2020-09-01 江苏华康信息技术有限公司 HRV signal analysis method for meditation training based on extreme value energy decomposition method
WO2021042591A1 (en) * 2019-09-06 2021-03-11 江苏华康信息技术有限公司 Heart rate variability signal analysis method based on extremum energy decomposition method
CN110558959A (en) * 2019-09-06 2019-12-13 江苏华康信息技术有限公司 HRV signal analysis method for meditation training based on extreme value energy decomposition method
CN112842303A (en) * 2020-11-23 2021-05-28 南京市中医院 Autonomic nervous system screening method and system
CN113069116A (en) * 2021-03-29 2021-07-06 山东思正信息科技有限公司 Army official and soldier-oriented group psychology evaluation system, device and medium
CN113069116B (en) * 2021-03-29 2022-11-29 山东齐鲁心理健康研究院有限公司 A group psychological assessment system, equipment and medium for officers and soldiers
CN114027852A (en) * 2021-11-11 2022-02-11 浙江智柔科技有限公司 Intrauterine fetal condition analysis device and method

Also Published As

Publication number Publication date
CN101642369B (en) 2012-10-31

Similar Documents

Publication Publication Date Title
CN101642369B (en) Autonomic nervous function biofeedback method and system
KR101656611B1 (en) Method for obtaining oxygen desaturation index using unconstrained measurement of bio-signals
JP5961235B2 (en) Sleep / wake state evaluation method and system
Wilhelm et al. The LifeShirt: an advanced system for ambulatory measurement of respiratory and cardiac function
US20220313098A1 (en) Wearable biometric waveform analysis systems and methods
US10278595B2 (en) Analysis and characterization of patient signals
CN109414204A (en) Method and apparatus for determining the respiration information for object
US20220022809A1 (en) Systems and methods to detect and treat obstructive sleep apnea and upper airway obstruction
CN106333652B (en) A kind of sleep state analysis method
CN101642368A (en) Method and device for processing autonomic nervous function signals and testing system
Blanco-Almazán et al. Combining bioimpedance and myographic signals for the assessment of COPD during loaded breathing
WO2016168979A1 (en) Vital sign analysis method and system
Cimr et al. Automatic detection of breathing disorder from ballistocardiography signals
US20250169747A1 (en) System and method for diagnosing sleep disorders
Ahmad et al. Multiparameter physiological analysis in obstructive sleep apnea simulated with Mueller maneuver
TW581671B (en) Method and device for detecting ""yin"" and ""yang""
Reilly et al. Respiratory sinus arrhythmia during speech production
Pirbhulal et al. Analysis of efficient biometric index using heart rate variability for remote monitoring of obstructive sleep apnea
JP2020513883A (en) Patient monitoring
Vandeput Heart rate variability: linear and nonlinear analysis with applications in human physiology
Xu et al. Toward a robust estimation of respiratory rate using cardiovascular biomarkers: Robustness analysis under pain stimulation
Lee et al. Monitoring obstructive sleep apnea with electrocardiography and 3-axis acceleration sensor
Kumar et al. Interpretation of Premature Ventricular Abnormality based on HRV Analysis
EP4280956B1 (en) Arterial blood oxygenation measurements
Bieber et al. Visual detection of short-wave blood pressure fluctuations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121031

Termination date: 20190804