CN101632943B - Porous material externally loaded TiO2-X/Csurf. composite and preparation process - Google Patents
Porous material externally loaded TiO2-X/Csurf. composite and preparation process Download PDFInfo
- Publication number
- CN101632943B CN101632943B CN2009100435233A CN200910043523A CN101632943B CN 101632943 B CN101632943 B CN 101632943B CN 2009100435233 A CN2009100435233 A CN 2009100435233A CN 200910043523 A CN200910043523 A CN 200910043523A CN 101632943 B CN101632943 B CN 101632943B
- Authority
- CN
- China
- Prior art keywords
- tio
- porous material
- surf
- sol
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 47
- 239000002131 composite material Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000003980 solgel method Methods 0.000 claims abstract description 17
- 239000012530 fluid Substances 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims abstract description 9
- 238000001556 precipitation Methods 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 239000002086 nanomaterial Substances 0.000 claims abstract description 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 105
- 238000010438 heat treatment Methods 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 23
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 claims description 22
- 239000002243 precursor Substances 0.000 claims description 22
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 13
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 13
- 239000012153 distilled water Substances 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 238000001354 calcination Methods 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 238000011068 loading method Methods 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 6
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 5
- 239000002738 chelating agent Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 3
- 230000008025 crystallization Effects 0.000 claims description 3
- 230000008014 freezing Effects 0.000 claims description 3
- 238000007710 freezing Methods 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims description 3
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- 239000012188 paraffin wax Substances 0.000 claims description 3
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000005345 coagulation Methods 0.000 claims description 2
- 230000015271 coagulation Effects 0.000 claims description 2
- 239000000084 colloidal system Substances 0.000 claims description 2
- 238000003837 high-temperature calcination Methods 0.000 claims description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 21
- 230000001699 photocatalysis Effects 0.000 abstract description 12
- 238000005516 engineering process Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 7
- 229910052723 transition metal Inorganic materials 0.000 abstract description 4
- 150000003624 transition metals Chemical class 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000011160 research Methods 0.000 abstract description 2
- 230000000704 physical effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 19
- 239000002105 nanoparticle Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000000243 solution Substances 0.000 description 13
- 239000013078 crystal Substances 0.000 description 11
- 230000007062 hydrolysis Effects 0.000 description 9
- 238000006460 hydrolysis reaction Methods 0.000 description 9
- 235000013162 Cocos nucifera Nutrition 0.000 description 8
- 244000060011 Cocos nucifera Species 0.000 description 8
- 238000006482 condensation reaction Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 239000011882 ultra-fine particle Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域 technical field
本发明涉及多孔材料外负载TiO2-X/Csurf.复合体及其制备工艺,属于功能材料领域。The invention relates to a TiO 2 -X/C surf. composite loaded on a porous material and a preparation process thereof, belonging to the field of functional materials.
背景技术 Background technique
TiO2因其生物惰性和化学惰性、不会发生光腐蚀和化学腐蚀,价格低廉等优点,而被证明是应用最为广泛的一种光催化剂。由于TiO2的电子分布特征在于其导带和价带之间有带隙的存在。当受到光照时,只要光子的能量等于或超过半导体的带隙能(hv≥Eg),就能使电子从价带跃迁到导带,从而产生导带电子和价带空穴。在空间电荷层的电场作用下,导带的自由电子迅速迁移到半导体微粒表面而转移给溶液中的氧化组分,从而光生电子与空穴经过一系列反应形成羟基自由基·OH,它可以氧化几乎所有的有机物。因此,其在环保领域(如废水废气处理)具有强大的应用前景。反应过程如下:TiO 2 has been proved to be the most widely used photocatalyst because of its biological and chemical inertness, no photocorrosion and chemical corrosion, and low price. Since the electronic distribution of TiO2 is characterized by the existence of a band gap between its conduction band and valence band. When illuminated, as long as the energy of the photon is equal to or exceeds the band gap energy of the semiconductor (hv≥E g ), electrons can transition from the valence band to the conduction band, thereby generating conduction band electrons and valence band holes. Under the action of the electric field of the space charge layer, the free electrons in the conduction band quickly migrate to the surface of the semiconductor particles and transfer to the oxidized components in the solution, so that the photogenerated electrons and holes undergo a series of reactions to form hydroxyl radicals OH, which can oxidize Almost all organic matter. Therefore, it has a strong application prospect in the field of environmental protection (such as waste water and waste gas treatment). The reaction process is as follows:
TiO2+hv→h++e- TiO 2 +hv→h + +e -
H2O+h+→·OH+H+ H 2 O+h + →·OH+H +
e-+O2→O2 -·e − +O 2 →O 2 − ·
H++O2 -·→HO2·H + +O 2 − →HO 2 ·
2HO2·→H2O2+O2 2HO 2 →H 2 O 2 +O 2
H2O2+O2 -·→·OH+OH-+O2 H 2 O 2 +O 2 - → OH+OH - +O 2
h++OH-→·OHh + +OH - → OH
h++org→中间体→CO2+H2Oh + +org → intermediate → CO 2 +H 2 O
·OH+org→中间体→CO2+H2O·OH+org→intermediate→CO 2 +H 2 O
然而,由于TiO2带隙较宽(约3.2eV),其吸收的阈值波长小于400nm,对太阳光的利用率不高;影响了TiO2多相光催化反应的实用化和产业化进程。研究发现,通过过渡金属掺杂或半导体氧化物复合可以提高TiO2光催化活性和可见光利用率。因此,纳米TiO2-X(X:过渡金属)掺杂光催化材料也就成为光催化领域的研究热点之一。但是,制备的TiO2-X纳米粉体、纳米纤维,由于颗粒细微,在水溶液中容易团聚、不易沉降,催化剂难以分离回收,催化剂活性成分损失大,不利于催化剂的再生和再利用;纳米薄膜由于其比表面积比较小,光催化活性和光催化效率不高,也影响和限制了其实际应用。为此,近年来对具有负载结构的掺杂氧化钛光催化剂的制备和光催化性能研究受到了人们的高度重视。多孔炭因具有化学性能稳定、价格低廉、吸附力适度等特性,在氧化钛负载化研究中成为一种理想的载体材料。但迄今为止,大量的工作还主要集中在氧化钛沉积于多孔材料制备方面。我们知道,TiO2只有在受到光照活化后才具有光催化活性,而紫外光的穿透能力弱。因此,炭孔隙内的TiO2是不具备光催化活性的;此外,TiO2沉积在孔隙里,使载体的比表面积下降,消弱了采用负载化提高比表面积来增强催化活性的效应,影响和制约了其工业化生产和实际应用。但值得关注的是,迄今还没有制备多孔材料(炭)外负载TiO2-X复合纳米光催化材料的有效方法。However, due to the wide band gap of TiO 2 (about 3.2eV), the threshold wavelength of its absorption is less than 400nm, and the utilization rate of sunlight is not high; it affects the practical and industrialization process of TiO 2 heterogeneous photocatalytic reaction. It is found that the photocatalytic activity and visible light utilization rate of TiO2 can be improved by transition metal doping or semiconductor oxide recombination. Therefore, nano-TiO 2 -X (X: transition metal) doped photocatalytic materials have become one of the research hotspots in the field of photocatalysis. However, the prepared TiO 2 -X nanopowders and nanofibers are easy to agglomerate and difficult to settle in aqueous solution due to their fine particles, and the catalyst is difficult to separate and recover, resulting in a large loss of active components of the catalyst, which is not conducive to the regeneration and reuse of the catalyst; Due to its relatively small specific surface area, the photocatalytic activity and photocatalytic efficiency are not high, which also affects and limits its practical application. For this reason, in recent years, the preparation and photocatalytic performance of doped titanium oxide photocatalysts with supported structures have received great attention. Porous carbon has become an ideal carrier material in the study of titanium oxide loading due to its stable chemical properties, low price, and moderate adsorption force. But so far, a lot of work has mainly focused on the preparation of titanium oxide deposited on porous materials. We know that TiO2 has photocatalytic activity only after it is activated by light, and the penetration ability of ultraviolet light is weak. Therefore, TiO 2 in the pores of carbon does not have photocatalytic activity; in addition, TiO 2 is deposited in the pores, which reduces the specific surface area of the carrier and weakens the effect of using loading to increase the specific surface area to enhance the catalytic activity, affecting and Restricted its industrial production and practical application. However, it is worth noting that so far there is no effective method for preparing porous materials (charcoal) to support TiO 2 -X composite nano-photocatalytic materials.
发明内容Contents of the invention
本发明所要解决的技术问题是:解决上述现有技术存在的问题,而提供一种抗菌性能好、无毒性、比表面积大、强度高、加工工艺性好、制备工艺简单、易于工业化生产的多孔材料外负载TiO2-X/Csurf.复合体及其制备工艺。The technical problem to be solved by the present invention is: to solve the problems of the above-mentioned prior art, and to provide a porous antimicrobial property, non-toxicity, large specific surface area, high strength, good processing technology, simple preparation process, and easy industrial production. TiO 2 -X/C surf. composite loaded on the outside of the material and its preparation process.
本发明采用的技术方案是:通过流体具有的超溶解性、强扩散性和独特传质性,使溶质溶解形成过饱和溶液,解临界条件导致其结晶沉淀;利用该方法以超临界CO2流体为溶剂,以多孔材料为模板,将低分子量有机溶液渗透到孔隙里,然后经凝结沉淀,实现对多孔材料孔隙封堵,制备多孔材料——低分子封堵载体;然后以此为双模板,采用溶胶——凝胶法制备出TiO2-X溶胶体负载在封堵载体表面,再通过低温热处理、高温焙烧合成多孔材料外负载TiO2-X/Csurf复合体。The technical scheme adopted in the present invention is: through the supersolubility, strong diffusibility and unique mass transfer property of the fluid, the solute is dissolved to form a supersaturated solution, and the critical condition is resolved to cause its crystallization and precipitation ; As a solvent, the porous material is used as a template to infiltrate the low-molecular-weight organic solution into the pores, and then through coagulation and precipitation, the pores of the porous material are blocked to prepare a porous material—a low-molecular-weight blocking carrier; and then use this as a double template, The TiO 2 -X sol was prepared by the sol-gel method and loaded on the surface of the plugging carrier, and then the TiO 2 -X/Csurf complex loaded on the porous material was synthesized by low temperature heat treatment and high temperature calcination.
上述技术方案中,具体制备工艺为:In the above technical scheme, the specific preparation process is:
(1)通过超临界流体沉淀过程、使低分子有机溶液渗透到多孔材料孔隙中,解除临界状态使其沉淀、制备多孔材料-低分子封堵载体;(1) Through the supercritical fluid precipitation process, the low-molecular organic solution penetrates into the pores of the porous material, and the critical state is released to make it precipitate, and the porous material-low-molecular plugging carrier is prepared;
(2)以钛酸丁酯为起始原料,以无水乙醇为溶剂、二乙醇胺为螯合剂,在蒸馏水、浓盐酸的相互作用下,合成TiO2-X胶体;(2) Using butyl titanate as a starting material, using absolute ethanol as a solvent, and diethanolamine as a chelating agent, under the interaction of distilled water and concentrated hydrochloric acid, synthesize TiO 2 -X colloid;
(3)通过溶胶-凝胶过程使TiO2或TiO2-X的前驱体溶胶涂覆在多孔材料-低分子封堵载体上,制备TiO2-X前驱体/Csurf.复合材料;(3) Coating the precursor sol of TiO 2 or TiO 2 -X on the porous material-low molecular plugging carrier through the sol-gel process to prepare the TiO 2 -X precursor/C surf.composite material;
(4)通过高温焙烧TiO2-X前驱体/Csurf.复合材料,获得TiO2/Csurf.、TiO2-Fe/Csurf.、TiO2-Ag/Csurf.、TiO2-Mn/Csurf.、TiO2-Cu/Csurf.、TiO2-Cr/Csurf.等TiO2-X/Csurf.复合纳米材料;(4) TiO 2 -X precursor/C surf. composite materials were calcined at high temperature to obtain TiO 2 /C surf. , TiO 2 -Fe/C surf. , TiO 2 -Ag/C surf. , TiO 2 -Mn/ C surf. , TiO 2 -Cu/C surf. , TiO 2 -Cr/C surf. and other TiO 2 -X/Csurf. composite nanomaterials;
上述式中X为过渡金属,Csurf为炭表面。In the above formula, X is a transition metal, and Csurf is a carbon surface.
上述技术方案中,所用试剂重量百分比为:钛酸丁酯,纯度>99.0,50-65%;二乙醇胺,纯度>99.9,1-5%;无水乙醇,纯度>99.9,25-35%;聚二乙醇,纯度>99.9,2-8%。In the above technical scheme, the weight percentages of reagents used are: butyl titanate, purity>99.0, 50-65%; diethanolamine, purity>99.9, 1-5%; absolute ethanol, purity>99.9, 25-35%; Polyethylene glycol, purity >99.9, 2-8%.
上述技术方案中,多孔材料为活性炭、氧化铝、氧化硅、沸石。In the above technical solution, the porous material is activated carbon, aluminum oxide, silicon oxide, and zeolite.
上述技术方案中,低分子化合物为异丁醇、硬脂酸、石蜡、环几烷。In the above technical scheme, the low-molecular compound is isobutanol, stearic acid, paraffin, cyclohexane.
上述技术方案中,超临界条件,升温速率2-4℃,温度34.1-300℃,压强7.1-50MPa。In the above technical solution, under supercritical conditions, the heating rate is 2-4°C, the temperature is 34.1-300°C, and the pressure is 7.1-50MPa.
上述技术方案中,解临界条件,首先停止加热,让超临界釜冷却,达到温度为低分子化合物凝固点以下温度。In the above technical scheme, to remove the critical condition, the heating is first stopped, and the supercritical tank is allowed to cool until the temperature reaches a temperature below the freezing point of the low-molecular compound.
上述技术方案中,X的无机物前驱体为硝酸铁、硝酸银、硝酸铈、硝酸铜、硝酸锆、硝酸锌、硝酸锰等。In the above technical solution, the inorganic precursors of X are iron nitrate, silver nitrate, cerium nitrate, copper nitrate, zirconium nitrate, zinc nitrate, manganese nitrate and the like.
上述技术方案中,TiO2或TiO2-X的前驱体溶胶涂覆在多孔材料-低分子封堵载体上为:将多孔材料-低分子封堵载体放入TiO2或TiO2-X溶胶体内,然后通过超声震动作用,使溶胶体涂覆在封堵载体表面上,涂覆次数1-8次,超声时间10-300min。In the above technical scheme, the precursor sol of TiO 2 or TiO 2 -X is coated on the porous material-low molecular plugging carrier: put the porous material-low molecular plugging carrier into the TiO 2 or TiO 2 -X sol , and then through ultrasonic vibration, the sol is coated on the surface of the blocking carrier, the number of times of coating is 1-8 times, and the ultrasonic time is 10-300min.
上述技术方案中,焙烧前,TiO2-X前驱体/Csurf.进行热处理的温度为100-300℃,时间1-3h,升温速率为0.5-3℃/min。In the above technical solution, before calcination, the TiO 2 -X precursor/C surf. is heat-treated at a temperature of 100-300° C. for 1-3 hours, and a heating rate of 0.5-3° C./min.
上述技术方案中,焙烧温度为300-1000℃,时间1-3h,升温速率为0.5-3℃/min之间。In the above technical solution, the calcination temperature is 300-1000° C., the time is 1-3 hours, and the heating rate is 0.5-3° C./min.
上述技术方案中,所述的模板由成分相同的一种物质构成,所述的双模板由成分不同的两种物质经过物理方法组合在一起构成。In the above technical solution, the template is composed of a substance with the same composition, and the double template is composed of two substances with different compositions combined through physical methods.
技术原理:Technical principle:
超临界流体具有两相(气相、液相)性质,因此,高溶解度的溶质在液相和气相中均匀分布,而气相的具有很强的流动性,是溶质分布更加均匀。当在一定的条件下超临界流体使溶液达到极高的过饱和度与过饱和速率,从而可快速沉淀出比常规方法得到的粒子尺寸更小的微粒,此外,通过调节操作参数,技术能够更准确地控制结晶过程,控制产品的粒度分布,形成平均粒径小且粒度分布。Supercritical fluid has a two-phase (gas phase, liquid phase) property. Therefore, the solute with high solubility is evenly distributed in the liquid phase and the gas phase, and the gas phase has strong fluidity, which makes the solute distribution more uniform. Under certain conditions, the supercritical fluid makes the solution reach a very high degree of supersaturation and supersaturation rate, so that particles with a smaller particle size than those obtained by conventional methods can be quickly precipitated. In addition, by adjusting operating parameters, the technology can be more efficient. Accurately control the crystallization process, control the particle size distribution of the product, and form a small average particle size and a particle size distribution.
超临界流体沉淀技术的特点:随着超细微粒特别是纳米粒子在高新技术领域的成功应用,超细微粒的制备已成为人们关注的热点。过去已发展形成了一些常规技术用于制备超细粒子。这些方法由于各自存在的缺点而制约着其应用。如喷雾干燥、超细碾磨的主要缺点是形成的粒子尺寸分布宽(0.5-25um)并且只有一小部分的粒子属于纳米范围。CO2超临界温度:34.1,压强:7.1MPaFeatures of supercritical fluid precipitation technology: With the successful application of ultrafine particles, especially nanoparticles, in the high-tech field, the preparation of ultrafine particles has become a hot spot of concern. Several conventional techniques have been developed in the past for the preparation of ultrafine particles. These methods restrict their application due to their respective shortcomings. Such as spray drying, the main disadvantage of ultrafine milling is that the size distribution of the formed particles is wide (0.5-25um) and only a small part of the particles belong to the nanometer range. CO2 supercritical temperature: 34.1, pressure: 7.1MPa
溶胶——凝胶过程:在常温或近似常温下把金属醇盐溶液加水分解,同时发生缩聚反应制成溶胶,再进一步反应形成凝胶并进而固化,然后经低温热处理而得到无机材料的方法。Sol-gel process: the metal alkoxide solution is decomposed with water at normal temperature or near normal temperature, and the polycondensation reaction occurs at the same time to form a sol, which is further reacted to form a gel and then solidified, and then undergoes low-temperature heat treatment to obtain an inorganic material.
优点:advantage:
①操作温度远低于玻璃熔融温度,节约能源,使得材料制备过程易于控制;①The operating temperature is much lower than the glass melting temperature, which saves energy and makes the material preparation process easy to control;
②制备的材料各组分间高度均匀、组成范围广且可以大幅度变化;②The components of the prepared material are highly uniform, with a wide range of composition and can be greatly changed;
③工艺简单,易于工业化,成本低,应用灵活;③Simple process, easy industrialization, low cost, flexible application;
④可提高生产效率;④ It can improve production efficiency;
⑤可保证最终产品的纯度;⑤ Can guarantee the purity of the final product;
⑥制备的气凝胶是一种结构可控的新型轻质纳米多孔非晶固态材料,具有许多特殊性质,因而蕴藏着广阔的应用前景。⑥ The prepared airgel is a new type of lightweight nanoporous amorphous solid material with controllable structure, which has many special properties, so it has broad application prospects.
因此,把TiO2外负载在多孔材料表面是解决光催化技术应用于污水降解处理最为有效的方法。利用TiO2-X/Csurf.复合材料具有的纳米微孔特性、高比表面积特性、协同催化特性,结合该掺杂体系的异质界面效应、以及低维纳米材料的量子尺寸效应、量子限域效应,外负载结构,获得具有高活性、容易分离和重复使用的新型光催化TiO2-X/Csurf.复合材料。同时,该工艺简单,易于工业化生产。Therefore, the external loading of TiO 2 on the surface of porous materials is the most effective method to solve the problem of photocatalytic technology applied to sewage degradation treatment. Utilizing the nano-microporous properties, high specific surface area properties, and synergistic catalytic properties of TiO 2 -X/C surf. Domain effect, external loading structure, and obtain a new type of photocatalytic TiO 2 -X/C surf. composite material with high activity, easy separation and reuse. At the same time, the process is simple and easy for industrial production.
本发明采用超临界预处理技术和溶胶-凝胶法,通过热处理和高温焙烧合成多孔材料外负载TiO2-X复合体。目前,我们利用该工艺制备出了TiO2/Csurf.、TiO2-Fe/Csurf.、TiO2-Ag/Csurf.、TiO2-Mn/Csurf.、TiO2-Cu/Csurf.、TiO2-Cr/Csurf.等复合纳米材料。多孔材料外负载TiO2-X复合体具有如下显著优点效果:(a)具有高的抗菌性能,无任何毒性;(b)比表面积大,孔隙结构可以调整,能进行定量化设计;(c)强度高,粘结力强,加工工艺性好;(d)烘烤温度低,制备工艺简单,生产成本低,易于工业化生产;(e)应用广泛,是解决光催化技术应用于污水降解处理最为有效的方法,节约了污水降解处理成本。The invention adopts a supercritical pretreatment technology and a sol-gel method, and synthesizes a TiO 2 -X complex supported on a porous material through heat treatment and high-temperature roasting. At present, we use this process to prepare TiO 2 /C surf. , TiO 2 -Fe/C surf. , TiO 2 -Ag/C surf. , TiO 2 -Mn/C surf. , TiO 2 -Cu/C surf . , TiO 2 -Cr/C surf. and other composite nanomaterials. Loading TiO 2 -X composites on the porous material has the following significant advantages and effects: (a) has high antibacterial properties without any toxicity; (b) has a large specific surface area, and the pore structure can be adjusted and can be quantitatively designed; (c) High strength, strong adhesion, good processing technology; (d) low baking temperature, simple preparation process, low production cost, easy industrial production; (e) wide application, it is the most suitable solution for the application of photocatalytic technology in sewage degradation treatment The effective method saves the cost of sewage degradation treatment.
TiO2-X/Csurf.复合体物理化学性能Physical and chemical properties of TiO 2 -X/C surf. complex
多孔材料外负载TiO2-X复合体经500℃热处理后,其晶型结构为锐钛矿,晶粒尺寸在20-60nm之间。在低倍电镜下,TiO2-X/Csurf.复合体表面形貌比较均匀,有孔洞,在高倍电镜下,TiO2-X/Csurf.表面缺陷少,只含有很少量的杂质;同时在380nm附近产生明显的紫外吸收拐角。TiO2纤维的光学吸收带边大约在380nm,在200nm-380nm之间的紫外光区域有强的吸收带,与TiO2原料粉体相比,TiO2纳米纤维的光学吸收带边没有明显改变。After the TiO 2 -X composite loaded on the porous material is heat-treated at 500°C, its crystal structure is anatase, and the grain size is between 20-60nm. Under the low-power electron microscope, the surface morphology of the TiO 2 -X/C surf. complex is relatively uniform, with holes; under the high-power electron microscope, the TiO 2 -X/C surf. has few surface defects and only contains a small amount of impurities; At the same time, there is an obvious ultraviolet absorption corner near 380nm. The optical absorption band edge of TiO 2 fiber is about 380nm, and there is a strong absorption band in the ultraviolet region between 200nm and 380nm. Compared with TiO 2 raw material powder, the optical absorption band edge of TiO 2 nanofiber has no obvious change.
TiO2-X/Csurf.复合体具有一定的强度,高的比表面积。经过500℃热处理的纤维,其有机物几乎分解完全,O-H键含量相对较高,这主要由于外负载复合体表面所吸收水分所致。TiO 2 -X/C surf. complex has certain strength and high specific surface area. After heat treatment at 500℃, the organic matter is almost completely decomposed, and the OH bond content is relatively high, which is mainly due to the moisture absorbed on the surface of the external load composite.
附图说明Description of drawings
图1为本发明制备工艺示意图Fig. 1 is a schematic diagram of the preparation process of the present invention
图2为TiO2/Csurf.复合体扫描电镜照片Figure 2 is the scanning electron microscope photo of TiO 2 /C surf. complex
图3为TiO2/Csurf.复合体在不同温度处理下的X射线衍射图Figure 3 is the X-ray diffraction pattern of the TiO 2 /C surf.composite treated at different temperatures
图4为TiO2/Csurf.复合体的红外图谱Figure 4 is the infrared spectrum of TiO 2 /C surf. complex
具体实施方式:Detailed ways:
1)TiO2溶胶制备方法为:以钛酸丁酯为起始原料,以无水乙醇为溶剂、二乙醇胺为螯合剂,在蒸馏水、浓盐酸的相互作用下,通过水解和缩聚反应合成出TiO2溶胶。二乙醇胺螯合剂与钛酸丁酯和稀释剂无水乙醇首先一起加入三口瓶中,而蒸馏水与盐酸和无水乙醇通过漏斗同时加入,两者的滴加速度一般控制在0.7-1.0ml·min-1之间。1) The preparation method of TiO 2 sol is as follows: using butyl titanate as the starting material, using absolute ethanol as the solvent and diethanolamine as the chelating agent, under the interaction of distilled water and concentrated hydrochloric acid, synthesize TiO by hydrolysis and polycondensation reaction 2 Sol. Diethanolamine chelating agent, butyl titanate and diluent absolute ethanol are first added into the three-necked flask together, while distilled water, hydrochloric acid and absolute ethanol are added through the funnel at the same time, and the dropping rate of the two is generally controlled at 0.7-1.0ml·min - between 1 .
2)按上述配方将X的无机物前驱体也加入到三口瓶中,采用溶胶-凝胶方法制备TiO2-X溶胶体;2) According to the above formula, the inorganic precursor of X is also added into the three-neck flask, and the TiO 2 -X sol is prepared by the sol-gel method;
3)将多孔材料放入一个两层带孔的框架内,然后置入超临界釜中,内盛有低分子量有机物如异丁醇、硬脂酸、石蜡、环几烷等,升温速率2-4℃,升到恰当的温度范围(34.1-300℃)和达到恰当的压强范围(7.1-50MPa)下,保持2-4h,使低分子量有机物完全沉积在多孔材料的孔隙里;3) Put the porous material into a two-layer frame with holes, and then put it into a supercritical kettle, which contains low molecular weight organic matter such as isobutanol, stearic acid, paraffin, cyclohexane, etc., and the heating rate is 2- 4°C, rise to the appropriate temperature range (34.1-300°C) and reach the appropriate pressure range (7.1-50MPa), keep for 2-4h, so that the low molecular weight organic matter is completely deposited in the pores of the porous material;
4)当低分子量有机物完全沉积在多孔材料的孔隙后,停止加热,让超临界釜冷却,达到温度为低分子化合物凝固点一下温度,如室温较高,可以采用冰浴冷却。然后拿出多孔材料-低分子封堵载体;4) After the low-molecular-weight organic matter is completely deposited in the pores of the porous material, stop heating, let the supercritical reactor cool down, and reach a temperature below the freezing point of the low-molecular-weight compound. If the room temperature is relatively high, an ice bath can be used for cooling. Then take out the porous material-low molecular blocking carrier;
5)将多孔材料-低分子封堵载体放入钛溶胶体内,然后通过超声震动作用,使溶胶体涂覆在封堵载体表面上,涂覆次数1-8次,超声时间10-300min。5) Put the porous material-low molecular plugging carrier into the titanium sol body, and then apply the sol body on the surface of the plugging carrier through ultrasonic vibration, the number of coating times is 1-8 times, and the ultrasonic time is 10-300min.
6)焙烧前,TiO2-X前驱体/Csurf.进行热处理,温度100-300℃,时间1-3h,升温速率为0.5-3℃/min;6) Before calcination, TiO 2 -X precursor/C surf. is subjected to heat treatment at a temperature of 100-300°C for 1-3 hours and a heating rate of 0.5-3°C/min;
7)对多孔材料外负载TiO2-X复合体进行高温焙烧,温度300-1000℃,时间1-3h,升温速率为0.5-3℃/min;7) Calcining the TiO 2 -X complex supported on the porous material at a high temperature at a temperature of 300-1000°C for 1-3 hours and a heating rate of 0.5-3°C/min;
8)对多孔材料外负载TiO2-X复合体比表面积、孔径、晶型、表面形貌、元素的化学形态等进行测试分析;8) Test and analyze the specific surface area, pore size, crystal form, surface morphology, chemical form of elements, etc. of the TiO 2 -X composite loaded on the porous material;
制备的多孔材料外负载TiO2-X复合体,在空气中经过500℃热处理1-2h后为纯锐钛矿晶型。The prepared porous material supports the TiO 2 -X complex on the outside, and after heat treatment at 500° C. for 1-2 hours in the air, it becomes pure anatase crystal form.
实施例1:首先15g椰子壳活性炭放入超临界釜内的架子里,高压釜内有异丁醇20ml,按照升温速率2℃/min升温到300℃,压强为7.1MPa后,保持2h;然后将超临界釜冷却到室温,获得多孔材料-低分子封堵载体。另外,采用溶胶-凝胶方法,将60g纯度为99.0%的钛酸丁酯、3g二乙醇胺和10g无水乙醇混合后,加入到三口瓶中,用GS122型电子恒速搅拌器搅匀。取20g的无水乙醇与4g蒸馏水混合,然后通过分液漏斗缓慢滴入三口瓶中。钛酸丁酯通过水解、缩合反应形成TiO2溶胶。其次,将获得的多孔材料-低分子封堵载体放入TiO2溶胶体内,在超声震动过程中将其涂覆在封堵载体表面,涂覆次数1次,超声时间10min。最后将TiO2前驱体/Csurf.进行热处理,温度100℃,时间3h,升温速率为0.5℃/min;然后再氮气保护下进行焙烧,温度300℃,时间3h。其晶型为锐钛矿,纳米颗粒的尺寸为30-50nm,比表面积为884m2/g,TiO2纳米颗粒负载在多孔材料表面。Example 1: First, put 15g of coconut shell activated carbon into the shelf in the supercritical kettle. There is 20ml of isobutanol in the autoclave, and the temperature is raised to 300℃ according to the heating rate of 2℃/min. After the pressure is 7.1MPa, keep it for 2h; then Cool the supercritical kettle to room temperature to obtain a porous material-low molecular plugging carrier. In addition, using the sol-gel method, mix 60g of butyl titanate with a purity of 99.0%, 3g of diethanolamine and 10g of absolute ethanol, add them into a three-necked flask, and use a GS122 electronic constant speed stirrer to stir evenly. Mix 20 g of absolute ethanol with 4 g of distilled water, and then slowly drop them into the three-necked flask through a separatory funnel. Butyl titanate forms TiO 2 sol through hydrolysis and condensation reactions. Secondly, put the obtained porous material-low molecular plugging carrier into the TiO 2 sol body, and coat it on the surface of the plugging carrier during the ultrasonic vibration process. The coating times are 1 time, and the ultrasonic time is 10 minutes. Finally, the TiO 2 precursor/C surf. was heat-treated at a temperature of 100°C for 3 hours at a heating rate of 0.5°C/min; then roasted under nitrogen protection at a temperature of 300°C for 3 hours. Its crystal form is anatase, the size of the nanoparticles is 30-50nm, the specific surface area is 884m 2 /g, and the TiO 2 nanoparticles are loaded on the surface of the porous material.
实施例2:首先15g椰子壳活性炭放入超临界釜内的架子里,高压釜内有异丁醇20ml,按照升温速率4℃/min升温到300℃,压强为12MPa后,保持2h;然后将超临界釜冷却到室温,获得多孔材料-低分子封堵载体。采用溶胶-凝胶方法,将60g纯度为99.0%的钛酸丁酯、3g二乙醇胺和10g无水乙醇和2g硝酸铁混合后,加入到三口瓶中,用GS122型电子恒速搅拌器搅匀。取20g的无水乙醇与4g蒸馏水混合,然后通过分液漏斗缓慢滴入三口瓶中。钛酸丁酯通过水解、缩合反应形成TiO2-Fe溶胶,其次,将获得的多孔材料-低分子封堵载体放入TiO2-Fe溶胶体内,在超声震动过程中将其涂覆在封堵载体表面,涂覆次数3次,超声时间10min。最后将TiO2-X前驱体/Csurf.进行热处理,温度300℃,时间1h,升温速率为3℃/min;然后再氮气保护下进行焙烧,温度1000℃,时间1h。其晶型为锐钛矿,纳米颗粒的尺寸为30-50nm,比表面积达到568m2/g,TiO2-Fe纳米颗粒负载在多孔材料表面。Example 2: First, put 15g of coconut shell activated carbon into the shelf in the supercritical kettle. There is 20ml of isobutanol in the autoclave, and the temperature is raised to 300℃ according to the heating rate of 4℃/min. After the pressure is 12MPa, keep it for 2h; then put The supercritical kettle is cooled to room temperature to obtain a porous material-low molecular plugging carrier. Using the sol-gel method, mix 60g of butyl titanate with a purity of 99.0%, 3g of diethanolamine, 10g of absolute ethanol and 2g of ferric nitrate, add them into a three-necked bottle, and stir well with a GS122 electronic constant speed stirrer . Mix 20 g of absolute ethanol with 4 g of distilled water, and then slowly drop them into the three-necked flask through a separatory funnel. Butyl titanate forms TiO 2 -Fe sol through hydrolysis and condensation reactions. Secondly, the obtained porous material-low molecular plugging carrier is put into the TiO 2 -Fe sol body, and it is coated on the plugging surface during ultrasonic vibration. On the surface of the carrier, the number of times of coating is 3 times, and the ultrasonic time is 10 minutes. Finally, the TiO 2 -X precursor/C surf. is heat-treated at a temperature of 300°C for 1 hour at a heating rate of 3°C/min; then roasted under nitrogen protection at a temperature of 1000°C for 1 hour. Its crystal form is anatase, the size of the nanoparticles is 30-50nm, the specific surface area reaches 568m 2 /g, and the TiO 2 -Fe nanoparticles are loaded on the surface of the porous material.
实施例3:首先15g椰子壳活性炭放入超临界釜内的架子里,高压釜内有异丁醇20ml,按照升温速率2℃/min升温到180℃,压强为15MPa后,保持2h;然后将超临界釜冷却到室温,获得多孔材料-低分子封堵载体。采用溶胶凝胶方法,将60g纯度为99.0%的钛酸丁酯、3g二乙醇胺和10g无水乙醇混合后,加入到三口瓶中,用GS122型电子恒速搅拌器搅匀。取20g的无水乙醇与10g蒸馏水和2g硝酸铜混合,然后通过分液漏斗缓慢滴入三口瓶中。钛酸丁酯通过水解、缩合反应形成TiO2-Cu溶胶,其次,将获得的“多孔材料-低分子”封堵载体放入TiO2-Cu溶胶体内,在超声震动过程中将其涂覆在封堵载体表面,涂覆次数1次,超声时间10min。最后将TiO2-X前驱体/Csurf.进行热处理,温度150℃,时间1h,升温速率为1℃/min;然后再氮气保护下进行焙烧,温度500℃,时间2h。其晶型为锐钛矿,纳米颗粒的尺寸为30-50nm,比表面积达到1128m2/g,TiO2-Cu纳米颗粒负载在多孔材料表面。Example 3: First, put 15g of coconut shell activated carbon into the shelf in the supercritical kettle. There is 20ml of isobutanol in the autoclave, and the temperature is raised to 180℃ according to the heating rate of 2℃/min. After the pressure is 15MPa, it is kept for 2h; then the The supercritical kettle is cooled to room temperature to obtain a porous material-low molecular plugging carrier. Using the sol-gel method, mix 60g of butyl titanate with a purity of 99.0%, 3g of diethanolamine and 10g of absolute ethanol, add it into a three-necked flask, and stir evenly with a GS122 electronic constant speed stirrer. Take 20g of absolute ethanol, mix with 10g of distilled water and 2g of copper nitrate, and then slowly drop them into the three-neck flask through the separatory funnel. Butyl titanate forms TiO 2 -Cu sol through hydrolysis and condensation reactions. Secondly, put the obtained "porous material-low molecular" plugging carrier into the TiO 2 -Cu sol, and coat it on the The surface of the carrier is blocked, the number of coatings is 1, and the ultrasonic time is 10 minutes. Finally, the TiO 2 -X precursor/C surf. was heat-treated at a temperature of 150°C for 1 hour at a heating rate of 1°C/min; then roasted under nitrogen protection at a temperature of 500°C for 2 hours. Its crystal form is anatase, the size of the nanoparticles is 30-50nm, the specific surface area reaches 1128m 2 /g, and the TiO 2 -Cu nanoparticles are loaded on the surface of the porous material.
实施例4:首先15g椰子壳活性炭放入超临界釜内的架子里,高压釜内有异丁醇20ml,按照升温速率2℃/min升温到34.1℃,压强为50MPa后,保持2h;然后将超临界釜冷却到室温,获得多孔材料-低分子封堵载体。采用溶胶凝胶方法,将60g纯度为99.0%的钛酸丁酯、3g二乙醇胺和10g无水乙醇混合后,加入到三口瓶中,用GS122型电子恒速搅拌器搅匀。取20g的无水乙醇与10g蒸馏水和硝酸锌混合,然后通过分液漏斗缓慢滴入三口瓶中。钛酸丁酯通过水解、缩合反应形成TiO2-Zn溶胶,其次,将获得的多孔材料-低分子封堵载体放入TiO2-Zn溶胶体内,在超声震动过程中将其涂覆在封堵载体表面,涂覆次数1次,超声时间10min。最后将TiO2-X前驱体/Csurf.进行热处理,温度150℃,时间2h,升温速率为1℃/min;然后再氮气保护下进行焙烧,温度800℃,时间2h。其晶型为锐钛矿,纳米颗粒的尺寸为30-50nm,比表面积达到938m2/g,TiO2-Zn纳米颗粒负载在多孔材料表面。Example 4: First, put 15g of coconut shell activated carbon into the shelf in the supercritical kettle. There is 20ml of isobutanol in the autoclave, and the temperature is raised to 34.1℃ according to the heating rate of 2℃/min. After the pressure is 50MPa, keep it for 2h; then put The supercritical kettle is cooled to room temperature to obtain a porous material-low molecular plugging carrier. Using the sol-gel method, mix 60g of butyl titanate with a purity of 99.0%, 3g of diethanolamine and 10g of absolute ethanol, add it into a three-necked flask, and stir evenly with a GS122 electronic constant speed stirrer. Take 20g of absolute ethanol, mix it with 10g of distilled water and zinc nitrate, and then slowly drop it into the three-necked flask through a separatory funnel. Butyl titanate forms TiO 2 -Zn sol through hydrolysis and condensation reactions. Secondly, the obtained porous material-low molecular plugging carrier is placed in the TiO 2 -Zn sol body, and it is coated on the plugging surface during ultrasonic vibration. On the surface of the carrier, the number of coating times is 1, and the ultrasonic time is 10 minutes. Finally, the TiO 2 -X precursor/C surf. was heat-treated at a temperature of 150°C for 2 hours at a heating rate of 1°C/min; then roasted under nitrogen protection at a temperature of 800°C for 2 hours. Its crystal form is anatase, the size of the nanoparticles is 30-50nm, the specific surface area reaches 938m 2 /g, and the TiO 2 -Zn nanoparticles are loaded on the surface of the porous material.
实施例5:首先15g椰子壳活性炭放入超临界釜内的架子里,高压釜内有异丁醇20ml,按照升温速率3℃/min升温到34.1℃,压强为8MPa后,保持2h;然后将超临界釜冷却到室温,获得多孔材料-低分子封堵载体。采用溶胶凝胶方法,将60g纯度为99.0%的钛酸丁酯、3g二乙醇胺和10g无水乙醇混合后,加入到三口瓶中,用GS122型电子恒速搅拌器搅匀。取20g的无水乙醇与10g蒸馏水和硝酸铬混合,然后通过分液漏斗缓慢滴入三口瓶中。钛酸丁酯通过水解、缩合反应形成TiO2-Cr溶胶,其次,将获得的多孔材料-低分子封堵载体放入TiO2-Cr溶胶体内,在超声震动过程中将其涂覆在封堵载体表面,涂覆次数1次,超声时间10min。最后将TiO2-X前驱体/Csurf.进行热处理,温度300℃,时间1h,升温速率为0.5℃/min;然后再氮气保护下进行焙烧,温度300℃,时间3h。其晶型为锐钛矿,纳米颗粒的尺寸为30-50nm,比表面积达到834m2/g,TiO2-Cr纳米颗粒负载在多孔材料表面。Example 5: First, put 15g of coconut shell activated carbon into the shelf in the supercritical kettle. There is 20ml of isobutanol in the autoclave, and the temperature is raised to 34.1℃ according to the heating rate of 3℃/min. After the pressure is 8MPa, keep it for 2h; then put The supercritical kettle is cooled to room temperature to obtain a porous material-low molecular plugging carrier. Using the sol-gel method, mix 60g of butyl titanate with a purity of 99.0%, 3g of diethanolamine and 10g of absolute ethanol, add it into a three-necked flask, and stir evenly with a GS122 electronic constant speed stirrer. Take 20g of absolute ethanol, mix with 10g of distilled water and chromium nitrate, and then slowly drop them into the three-necked flask through a separatory funnel. Butyl titanate forms TiO 2 -Cr sol through hydrolysis and condensation reactions. Secondly, the obtained porous material-low molecular plugging carrier is put into the TiO 2 -Cr sol body, and it is coated on the plugging surface during ultrasonic vibration. On the surface of the carrier, the number of coating times is 1, and the ultrasonic time is 10 minutes. Finally, the TiO 2 -X precursor/C surf. is heat-treated at a temperature of 300°C for 1 hour at a heating rate of 0.5°C/min; then roasted under nitrogen protection at a temperature of 300°C for 3 hours. Its crystal form is anatase, the size of the nanoparticles is 30-50nm, the specific surface area reaches 834m 2 /g, and the TiO 2 -Cr nanoparticles are loaded on the surface of the porous material.
实施例6:首先15g椰子壳活性炭放入超临界釜内的架子里,高压釜内有异丁醇20ml,按照升温速率2℃/min升温到300℃,压强为7.1MPa后,保持2h;然后将超临界釜冷却到室温,获得多孔材料-低分子封堵载体。采用溶胶凝胶方法,将60g纯度为99.0%的钛酸丁酯、3g二乙醇胺和10g无水乙醇混合后,加入到三口瓶中,用GS122型电子恒速搅拌器搅匀。取20g的无水乙醇与4g蒸馏水和硝酸铈混合,然后通过分液漏斗缓慢滴入三口瓶中。钛酸丁酯通过水解、缩合反应形成TiO2溶胶,其次,将获得的多孔材料-低分子封堵载体放入TiO2-Fe溶胶体内,在超声震动过程中将其涂覆在封堵载体表面,涂覆次数1次,超声时间10min。最后将TiO2-X前驱体/Csurf.进行热处理,温度300℃,时间1h,升温速率为1℃/min;然后再氮气保护下进行焙烧,温度1000℃,时间1h。其晶型为锐钛矿,纳米颗粒的尺寸为30-50nm,比表面积达到162m2/g,TiO2-Ce纳米颗粒负载在多孔材料表面。Example 6: First, put 15g of coconut shell activated carbon into the shelf in the supercritical kettle. There is 20ml of isobutanol in the autoclave, and the temperature is raised to 300℃ according to the heating rate of 2℃/min. After the pressure is 7.1MPa, keep it for 2h; then Cool the supercritical kettle to room temperature to obtain a porous material-low molecular plugging carrier. Using the sol-gel method, mix 60g of butyl titanate with a purity of 99.0%, 3g of diethanolamine and 10g of absolute ethanol, add it into a three-necked flask, and stir evenly with a GS122 electronic constant speed stirrer. Take 20g of absolute ethanol, mix with 4g of distilled water and cerium nitrate, and then slowly drop them into the three-necked flask through a separatory funnel. Butyl titanate forms TiO 2 sol through hydrolysis and condensation reactions. Secondly, the obtained porous material-low molecular plugging carrier is put into the TiO 2 -Fe sol body, and it is coated on the surface of the plugging carrier during ultrasonic vibration. , the number of coatings is 1 time, and the ultrasonic time is 10 minutes. Finally, the TiO 2 -X precursor/C surf. is heat-treated at a temperature of 300°C for 1 hour at a heating rate of 1°C/min; then roasted under nitrogen protection at a temperature of 1000°C for 1 hour. Its crystal form is anatase, the size of the nanoparticles is 30-50nm, the specific surface area reaches 162m 2 /g, and the TiO 2 -Ce nanoparticles are loaded on the surface of the porous material.
实施例7:首先15g椰子壳活性炭放入超临界釜内的架子里,高压釜内有异丁醇20ml,按照升温速率2℃/min升温到160℃,压强为13MPa后,保持2h;然后将超临界釜冷却到室温,获得多孔材料-低分子封堵载体。采用溶胶凝胶方法,将60g纯度为99.0%的钛酸丁酯、3g二乙醇胺和10g无水乙醇混合后,加入到三口瓶中,用GS122型电子恒速搅拌器搅匀。取20g的无水乙醇与12g蒸馏水和硝酸锰混合,然后通过分液漏斗缓慢滴入三口瓶中。钛酸丁酯通过水解、缩合反应形成TiO2-Mn溶胶,其次,将获得的多孔材料-低分子封堵载体放入TiO2-Mn溶胶体内,在超声震动过程中将其涂覆在封堵载体表面,涂覆次数5次,超声时间10min。最后将TiO2-X前驱体/Csurf.进行热处理,温度150℃,时间1h,升温速率为1℃/min;然后再氮气保护下进行焙烧,温度500℃,时间2h。其晶型为锐钛矿,纳米颗粒的尺寸为30-50nm,比表面积达到781m2/g,TiO2-Mn纳米颗粒负载在多孔材料表面。Example 7: First, put 15g of coconut shell activated carbon into the shelf in the supercritical kettle. There is 20ml of isobutanol in the autoclave, and the temperature is raised to 160℃ according to the heating rate of 2℃/min. After the pressure is 13MPa, keep it for 2h; then put The supercritical kettle is cooled to room temperature to obtain a porous material-low molecular plugging carrier. Using the sol-gel method, mix 60g of butyl titanate with a purity of 99.0%, 3g of diethanolamine and 10g of absolute ethanol, add it into a three-necked flask, and stir evenly with a GS122 electronic constant speed stirrer. Take 20g of absolute ethanol, mix with 12g of distilled water and manganese nitrate, and then slowly drop them into the three-necked flask through a separatory funnel. Butyl titanate forms TiO 2 -Mn sol through hydrolysis and condensation reactions. Secondly, put the obtained porous material-low molecular plugging carrier into the TiO 2 -Mn sol, and coat it on the plugging surface during ultrasonic vibration. On the surface of the carrier, the number of times of coating is 5 times, and the ultrasonic time is 10 minutes. Finally, the TiO 2 -X precursor/C surf. was heat-treated at a temperature of 150°C for 1 hour at a heating rate of 1°C/min; then roasted under nitrogen protection at a temperature of 500°C for 2 hours. Its crystal form is anatase, the size of the nanoparticles is 30-50nm, the specific surface area reaches 781m 2 /g, and the TiO 2 -Mn nanoparticles are loaded on the surface of the porous material.
实施例8:首先15g椰子壳活性炭放入超临界釜内的架子里,高压釜内有异丁醇20ml,按照升温速率2℃/min升温到130℃,压强为11MPa后,保持2h;然后将超临界釜冷却到室温,获得多孔材料-低分子封堵载体。采用溶胶凝胶方法,将60g纯度为99.0%的钛酸丁酯、3g二乙醇胺和10g无水乙醇混合后,加入到三口瓶中,用GS122型电子恒速搅拌器搅匀。取20g的无水乙醇与4g蒸馏水和3g硝酸银混合,然后通过分液漏斗缓慢滴入三口瓶中。钛酸丁酯通过水解、缩合反应形成TiO2-Ag溶胶,其次,将获得的多孔材料-低分子封堵载体放入TiO2-Ag溶胶体内,在超声震动过程中将其涂覆在封堵载体表面,涂覆次数1次,超声时间10min。最后将TiO2-X前驱体/Csurf.进行热处理,温度200℃,时间1h,升温速率为1℃/min;然后再氮气保护下进行焙烧,温度600℃,时间2h。其晶型为锐钛矿,纳米颗粒的尺寸为30-50nm,比表面积达到1268m2/g,TiO2-Ag纳米颗粒负载在多孔材料表面。Example 8: First, put 15g of coconut shell activated carbon into the shelf in the supercritical kettle. There is 20ml of isobutanol in the autoclave, and the temperature is raised to 130℃ according to the heating rate of 2℃/min. After the pressure is 11MPa, keep it for 2h; then put The supercritical kettle is cooled to room temperature to obtain a porous material-low molecular plugging carrier. Using the sol-gel method, mix 60g of butyl titanate with a purity of 99.0%, 3g of diethanolamine and 10g of absolute ethanol, add it into a three-necked flask, and stir evenly with a GS122 electronic constant speed stirrer. Take 20g of absolute ethanol, mix with 4g of distilled water and 3g of silver nitrate, and then slowly drop them into the three-necked flask through a separatory funnel. Butyl titanate forms TiO 2 -Ag sol through hydrolysis and condensation reactions. Secondly, put the obtained porous material-low molecular plugging carrier into the TiO 2 -Ag sol, and coat it on the plugging surface during ultrasonic vibration. On the surface of the carrier, the number of coating times is 1, and the ultrasonic time is 10 minutes. Finally, the TiO 2 -X precursor/C surf. is heat-treated at a temperature of 200°C for 1 hour, and the heating rate is 1°C/min; and then roasted under nitrogen protection at a temperature of 600°C for 2 hours. Its crystal form is anatase, the size of the nanoparticles is 30-50nm, the specific surface area reaches 1268m 2 /g, and the TiO 2 -Ag nanoparticles are loaded on the surface of the porous material.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100435233A CN101632943B (en) | 2009-05-27 | 2009-05-27 | Porous material externally loaded TiO2-X/Csurf. composite and preparation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100435233A CN101632943B (en) | 2009-05-27 | 2009-05-27 | Porous material externally loaded TiO2-X/Csurf. composite and preparation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101632943A CN101632943A (en) | 2010-01-27 |
CN101632943B true CN101632943B (en) | 2011-11-30 |
Family
ID=41592372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100435233A Expired - Fee Related CN101632943B (en) | 2009-05-27 | 2009-05-27 | Porous material externally loaded TiO2-X/Csurf. composite and preparation process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101632943B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102005302A (en) * | 2010-10-19 | 2011-04-06 | 吉首大学 | Dye-sensitized TiO2/(PPA-Pt)surf. Thin Film Electrode and Its Preparation Process |
CN104353411B (en) * | 2014-11-19 | 2016-06-08 | 上海电力学院 | The preparation method of the strong sorbent material of a kind of water treatment |
CN105080546B (en) * | 2015-07-13 | 2016-12-07 | 吉首大学 | Conductive carbon felt-supported iron-doped mesoporous titanium oxide gas diffusion photoelectrode and preparation method thereof |
CN107342407B (en) * | 2017-06-26 | 2019-12-10 | 合肥国轩高科动力能源有限公司 | A kind of porous carbon supported mesoporous SiOx/C composite negative electrode material and preparation method thereof |
CN108435176A (en) * | 2018-04-04 | 2018-08-24 | 安徽工程大学 | A kind of Fe2O3 doping TiO2Octahedron nanometer particle and preparation method thereof |
CN110280313B (en) * | 2019-07-11 | 2020-03-24 | 哈尔滨工业大学 | Three-dimensional structure loaded TiO2-xMethod for producing a material |
CN111202093A (en) * | 2020-01-15 | 2020-05-29 | 南宁师范大学 | Preparation method and application of zinc zeolite loaded antibacterial material |
-
2009
- 2009-05-27 CN CN2009100435233A patent/CN101632943B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101632943A (en) | 2010-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101632943B (en) | Porous material externally loaded TiO2-X/Csurf. composite and preparation process | |
CN106914264B (en) | Preparation method of composite visible light catalyst | |
CN106492854B (en) | There is the composite nano Ag of photocatalysis performance using two-step method preparation3PO4/TiO2Material and methods and applications | |
CN101670280B (en) | A kind of highly active surface titanium dioxide microsphere photocatalyst and preparation method thereof | |
CN105597728B (en) | Ultrasound-enhanced type photochemical catalyst of titanium dioxide/titanium acid bismuth and preparation method thereof | |
CN102489285A (en) | Preparation method of graphene-titanium dioxide composite photocatalyst | |
CN103212409B (en) | A porous carbon material loaded mesoporous TiO2-Ag composite and its preparation process | |
CN103979605B (en) | A kind of mesoporous titanium dioxide material and preparation method thereof | |
CN106799244A (en) | The preparation method and purposes of a kind of Three-element composite photocatalyst | |
CN101015792A (en) | Titanium dioxide perforated micro-pipe photocatalyst modified by silver and its prodn. method | |
CN105217676B (en) | Titania aerogel with nanometer sheet and nano-porous structure and preparation method thereof | |
CN104772149B (en) | A kind of Bi2O3/BiFeO3/TiO2 nano flower photocatalytic material and its preparation method | |
CN101214441A (en) | A kind of preparation method of titanium barium iron series photocatalyst | |
CN101966452A (en) | A Preparation Method of LaVO4 and TiO2 Composite Nanotubes Responsive to Visible Light | |
CN107522169A (en) | A kind of normal temperature prepares pure organic homogeneous precipitation method of nano-oxide | |
CN103143379A (en) | Method for preparing nitrogen-doped titanium dioxide inverse opal thin-film photocatalyst by using one-step method | |
WO2023272795A1 (en) | Preparation method for tio2-supported copper catalyst and application | |
CN102302940A (en) | Preparation method of a new photocatalyst S-doped SiO2/TiO2 composite material | |
CN100551829C (en) | A kind of preparation method of titanium dioxide hollow microsphere | |
Xie et al. | Photocatalytic performance of Bi2VO5. 5/Bi2O3 laminated composite films under simulated sunlight irradiation | |
CN104801308A (en) | A kind of NiFe2O4/TiO2/sepiolite composite photocatalyst and its preparation method | |
CN102616839A (en) | Supergravity preparation method for mesoporous titanium dioxide | |
CN103143356B (en) | A preparation process of ordered mesoporous TiO2-Cu nanocomposites and hydrothermal supercritical extraction | |
CN101337181A (en) | Preparation method of nano-titanium dioxide photocatalytic indoor purifier | |
CN101209857B (en) | Preparation method of mesoporous titanium dioxide powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111130 Termination date: 20120527 |