CN101628242A - Molecular sieve catalyst for preparing low-carbon olefin and preparation method thereof - Google Patents
Molecular sieve catalyst for preparing low-carbon olefin and preparation method thereof Download PDFInfo
- Publication number
- CN101628242A CN101628242A CN200910090843A CN200910090843A CN101628242A CN 101628242 A CN101628242 A CN 101628242A CN 200910090843 A CN200910090843 A CN 200910090843A CN 200910090843 A CN200910090843 A CN 200910090843A CN 101628242 A CN101628242 A CN 101628242A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- acid
- parts
- precursor
- zeolite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明提供了一种制备低碳烯烃的分子筛催化剂,以重量份计,所述的催化剂由包含以下组分的原料制成:30-93.7份的钠型ZSM-5沸石、5-40份的粘合剂、0.1-10份的杂元素改性剂、1-15份的孔结构调节剂和0.1-5份的助挤剂,并且所述的杂元素改性剂为含有B、P、La、Ca、Mg、Sr、Zn、Cu、Mn、Cd、Ga和In中的一种或几种元素的可溶物。本发明还提供了所述催化剂的制备方法。在本发明中,采用助挤剂并添加适量的孔结构调节剂,改善产品的强度和孔结构,有效提高催化剂的扩散性能,从而提高低碳烯烃的选择性。本发明的催化剂具有合适的强度和高的水热稳定性,表现出高的活性和对丙烯的选择性。The invention provides a molecular sieve catalyst for preparing low-carbon olefins. In parts by weight, the catalyst is made of raw materials comprising the following components: 30-93.7 parts of sodium ZSM-5 zeolite, 5-40 parts of Adhesive, 0.1-10 parts of heteroelement modifier, 1-15 parts of pore structure modifier and 0.1-5 parts of extrusion aid, and the heteroelement modifier contains B, P, La , Ca, Mg, Sr, Zn, Cu, Mn, Cd, Ga and In the soluble matter of one or more elements. The invention also provides a preparation method of the catalyst. In the present invention, the extrusion aid is used and an appropriate amount of pore structure regulator is added to improve the strength and pore structure of the product, effectively improve the diffusion performance of the catalyst, and thereby increase the selectivity of low-carbon olefins. The catalyst of the invention has suitable strength and high hydrothermal stability, and exhibits high activity and selectivity to propylene.
Description
技术领域 technical field
本发明涉及一种制备低碳烯烃的分子筛催化剂以及这种催化剂的制备方法,具体地,本发明涉及一种由甲醇和/或二甲醚转化成低碳烯烃的成型分子筛催化剂以及这种催化剂的制备方法,属于煤化工领域。The invention relates to a molecular sieve catalyst for preparing low-carbon olefins and a preparation method of the catalyst, in particular, the present invention relates to a shaped molecular sieve catalyst for converting methanol and/or dimethyl ether into low-carbon olefins and the preparation of the catalyst The preparation method belongs to the field of coal chemical industry.
背景技术 Background technique
低碳烯烃是石油化工生产最基本的原料,是生产其它化工产品的基础。目前制取低碳烯烃主要为石油路线和非石油路线。由煤或天然气经甲醇和/或二甲醚制乙烯、丙烯等低碳烯烃(methanol-to-olefin,MTO)是最重要的非石油资源技术路线。近年来,由于石油价格不断上涨及丙烯需求量的迅速增长,致使以甲醇为原料的甲醇转化制丙烯工艺(methanol-to-propylene,MTP)引起了更为广泛关注。Low-carbon olefins are the most basic raw materials for petrochemical production and the basis for the production of other chemical products. At present, the production of low-carbon olefins is mainly based on petroleum routes and non-petroleum routes. The production of low-carbon olefins (methanol-to-olefins, MTO) such as ethylene and propylene from coal or natural gas via methanol and/or dimethyl ether is the most important non-petroleum resource technology route. In recent years, due to the rising oil price and the rapid growth of propylene demand, the conversion of methanol to propylene (methanol-to-propylene, MTP) using methanol as raw material has attracted more and more attention.
在现有技术中,公开了固定床MTP工艺和该工艺中的ZSM-5型催化剂,然而目前的这些催化剂普遍存在丙烯选择性低、催化剂稳定性差,成型后丙烯选择性下降等不足的缺点。In the prior art, the fixed-bed MTP process and the ZSM-5 catalyst in the process are disclosed. However, these current catalysts generally have the disadvantages of low propylene selectivity, poor catalyst stability, and decreased propylene selectivity after molding.
因此需要一种能够提高烯烃收率,同时具有稳定性的催化剂。Therefore, there is a need for a catalyst that can increase the yield of olefins and has stability.
发明内容 Contents of the invention
为有助于理解本发明,下面定义了一些术语。本文定义的术语具有本发明相关领域的普通技术人员通常理解的含义。To facilitate understanding of the present invention, some terms are defined below. Terms defined herein have meanings commonly understood by those of ordinary skill in the art to which the present invention pertains.
除非另外说明,本文中的“前躯体”指的是通过一些操作步骤或反应步骤以制成目标产品的前体。Unless otherwise stated, "precursor" herein refers to a precursor that undergoes some manipulation steps or reaction steps to produce the target product.
除非另外说明,本文中的“钠型ZSM-5沸石”指的是一种人工合成的具有三维孔结构的中孔五元环型沸石,即分子筛,是一种硅铝比可在较大范围内改变的粉末状多孔硅铝酸盐结晶材料,其晶胞组成可以表示为NanAlnSi96-nO192·16H2O,n<27。Unless otherwise specified, "sodium ZSM-5 zeolite" in this article refers to a synthetic mesoporous five-membered ring zeolite with a three-dimensional pore structure, that is, molecular sieve, which is a kind of silicon-aluminum ratio that can be used in a wide range. The internally modified powdery porous aluminosilicate crystalline material, the unit cell composition of which can be expressed as Na n Al n Si 96-n O 192 ·16H 2 O, n<27.
除非另外说明,本文中的“杂元素改性剂”指的是含有B、P、La、Ca、Mg、Sr、Zn、Cu、Mn、Cd、Ga和In中的一种或几种元素的可溶物,由于上述的这些元素是催化剂的钠型ZSM-5沸石中所不具有的,所以它可以起到改善催化剂性质的作用。Unless otherwise specified, the "heteroelement modifier" in this paper refers to the one or more elements containing B, P, La, Ca, Mg, Sr, Zn, Cu, Mn, Cd, Ga and In Soluble matter, because the above-mentioned elements do not exist in the sodium ZSM-5 zeolite of the catalyst, so it can play a role in improving the properties of the catalyst.
除非另外说明,本文中的“孔结构调节剂”指的是可以改善催化剂中孔结构的物质。Unless otherwise specified, the "pore structure modifier" herein refers to a substance that can improve the pore structure of a catalyst.
除非另外说明,本文中的“助挤剂”指的是在催化剂的制备中有助于催化剂原料通过成型操作所需要的原料物质。Unless otherwise specified, the "extrusion aid" herein refers to the raw material required to help the catalyst raw material pass through the molding operation in the preparation of the catalyst.
除非另外说明,本文中的“胶溶剂”指的是在催化剂的成形过程中需要加入的以增加原料物质粒子间的粘结性,达到提高催化剂强度和改善催化剂孔道结构的物质。Unless otherwise specified, the "peptizer" herein refers to a substance that needs to be added during the forming process of the catalyst to increase the cohesiveness between the particles of the raw material, so as to increase the strength of the catalyst and improve the pore structure of the catalyst.
本发明的一个目的是提供一种制备低碳烯烃的分子筛催化剂。该催化剂用于甲醇和/或二甲醚制备低碳烯烃的反应中,在该反应中,催化剂具有高机械强度、高热稳定性和高丙烯的选择性。An object of the present invention is to provide a molecular sieve catalyst for preparing light olefins. The catalyst is used in the reaction of preparing light olefins from methanol and/or dimethyl ether, and in the reaction, the catalyst has high mechanical strength, high thermal stability and high selectivity of propylene.
本发明的另一个目的还提供了这种催化剂的制备方法。Another object of the present invention is also to provide the preparation method of this catalyst.
针对以上目的,本发明一方面提供了一种制备低碳烯烃的分子筛催化剂,以重量份计,所述的催化剂由包含以下组分的原料制成:30-93.7份的钠型ZSM-5沸石、5-40份的粘合剂、0.1-10份的杂元素改性剂、1-15份的孔结构调节剂和0.1-5份的助挤剂,并且所述的杂元素改性剂为含有B、P、La、Ca、Mg、Sr、Zn、Cu、Mn、Cd、Ga和In中的一种或几种元素的可溶物。For the above purpose, the present invention provides a molecular sieve catalyst for preparing low-carbon olefins, in parts by weight, the catalyst is made of raw materials comprising the following components: 30-93.7 parts of sodium ZSM-5 zeolite , 5-40 parts of binder, 0.1-10 parts of heteroelement modifier, 1-15 parts of pore structure regulator and 0.1-5 parts of extrusion aid, and the heteroelement modifier is Soluble substances containing one or several elements of B, P, La, Ca, Mg, Sr, Zn, Cu, Mn, Cd, Ga and In.
优选地,以重量份计,所述原料中各组分为:46-87.2份的钠型ZSM-5沸石、10-30份的粘合剂、0.5-5份的杂元素改性剂、2-7份的孔结构调节剂和0.3-2份的助挤剂。Preferably, in parts by weight, each component in the raw material is: 46-87.2 parts of sodium ZSM-5 zeolite, 10-30 parts of binder, 0.5-5 parts of heteroelement modifier, 2 - 7 parts of pore structure regulator and 0.3-2 parts of extrusion aid.
优选地,其中所述的钠型ZSM-5沸石为硅铝摩尔比(silica aluminamolar ratio,SAR)为20-2000的钠型ZSM-5沸石。Preferably, the sodium ZSM-5 zeolite is a sodium ZSM-5 zeolite with a silica aluminum molar ratio (SAR) of 20-2000.
更优选地,其中所述的钠型ZSM-5沸石为粒径为0.1mm以下的硅铝摩尔比为200-1000的钠型ZSM-5沸石。More preferably, the sodium ZSM-5 zeolite is a sodium ZSM-5 zeolite with a particle size of 0.1 mm or less and a silicon-aluminum molar ratio of 200-1000.
优选地,其中所述的粘合剂选自粒径为0.1mm以下的氢氧化铝、活性氧化铝、薄水铝石、拟薄水铝石、硅溶胶和粘土中的一种或几种。Preferably, the binder is selected from one or more of aluminum hydroxide, activated alumina, boehmite, pseudo-boehmite, silica sol and clay with a particle size of less than 0.1 mm.
优选地,其中所述的粘合剂选自活性氧化铝、拟薄水铝石、硅溶胶和粘土中的一种或几种。Preferably, the binder is selected from one or more of activated alumina, pseudoboehmite, silica sol and clay.
优选地,其中所述的孔结构调节剂选自甲基纤维素、淀粉、聚乙烯醇、聚乙二醇、蔗糖和葡萄糖中的一种或几种。Preferably, the pore structure regulator is selected from one or more of methylcellulose, starch, polyvinyl alcohol, polyethylene glycol, sucrose and glucose.
优选地,所述的孔调节剂选自甲基纤维素、淀粉和蔗糖中的一种或几种。Preferably, the pore regulator is selected from one or more of methylcellulose, starch and sucrose.
优选地,所述的助挤剂选自石墨粉、田菁粉、草酸、酒石酸、柠檬酸、甘油和硬脂酸中的一种或几种。Preferably, the extrusion aid is selected from one or more of graphite powder, turnip powder, oxalic acid, tartaric acid, citric acid, glycerin and stearic acid.
优选地,所述的助挤剂为田菁粉、柠檬酸和甘油中的任意两种按质量比为1∶1组成的助挤剂。Preferably, the extrusion aid is an extrusion aid composed of any two of turnip powder, citric acid and glycerin in a mass ratio of 1:1.
优选地,所述的杂元素改性剂为含有P、Mg、La、Mn和Zn中的一种或几种元素的可溶物。Preferably, the heteroelement modifier is a soluble substance containing one or more elements among P, Mg, La, Mn and Zn.
本发明另一方面还提供一种制备所述的分子筛催化剂的方法,该方法包括以下步骤:The present invention also provides a kind of method for preparing described molecular sieve catalyst on the other hand, this method comprises the following steps:
a.将钠型ZSM-5沸石、孔结构调节剂、助挤剂、粘合剂、杂元素改性剂和胶溶剂混合均匀;a. mix sodium type ZSM-5 zeolite, pore structure regulator, extrusion aid, binder, heteroelement modifier and peptizer evenly;
b.将步骤a得到的混合物成型,干燥,煅烧后得到催化剂的前躯体I;b. molding the mixture obtained in step a, drying, and calcining to obtain the precursor I of the catalyst;
c.将步骤b得到的催化剂的前躯体I在1)选自盐酸、硫酸和硝酸中的一种或几种溶液或2)无机铵溶液中进行交换,烘干后得到催化剂前躯体II;c. exchange the precursor I of the catalyst obtained in step b in 1) one or more solutions selected from hydrochloric acid, sulfuric acid and nitric acid or 2) an inorganic ammonium solution, and obtain the catalyst precursor II after drying;
d.将步骤c得到的催化剂前躯体II用水蒸气和N2的混合气体处理,得到所述的催化剂。步骤b中的“成型”是在成型机中,将步骤a的混合物制成有一定形状和尺寸的成型催化剂。d. Treat the catalyst precursor II obtained in step c with a mixed gas of water vapor and N 2 to obtain the catalyst. "Shaping" in step b is to make the mixture in step a into a shaped catalyst with a certain shape and size in a molding machine.
优选地,在所述的步骤a中,首先将钠型ZSM-5沸石、孔结构调节剂及助挤剂混合,得到混合物,接着将杂元素改性剂和胶溶剂加入所述的混合物中。本发明方法中加入胶溶剂的目的是使成型过程中生成假铝溶胶,它能与干胶粘结起来,便于成型。Preferably, in the step a, the sodium ZSM-5 zeolite, the pore structure regulator and the extrusion aid are firstly mixed to obtain a mixture, and then the heteroelement modifier and the peptizing agent are added to the mixture. The purpose of adding the peptizer in the method of the present invention is to generate false aluminum sol in the molding process, which can be bonded with the dry glue to facilitate molding.
优选地,所述的胶溶剂选自硝酸、盐酸、磷酸、硫酸、甲酸、乙酸和丙二酸中的一种或几种。Preferably, the peptizer is selected from one or more of nitric acid, hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, acetic acid and malonic acid.
更优选地,所述的胶溶剂选自硝酸、乙酸和磷酸中的一种或几种。More preferably, the peptizer is selected from one or more of nitric acid, acetic acid and phosphoric acid.
优选地,其中当所述步骤a中的粘合剂为硅溶胶时,所述的步骤a为将钠型ZSM-5沸石、孔结构调节剂、助挤剂和杂元素改性剂混合均匀。Preferably, when the binder in step a is silica sol, step a is uniformly mixing sodium ZSM-5 zeolite, pore structure regulator, extrusion aid and heteroelement modifier.
优选地,其中在所述的步骤b中,将步骤a得到的混合物成型,在50-120℃干燥,在空气气氛下在500-700℃煅烧5-7小时,得到催化剂的前躯体I。Preferably, in said step b, the mixture obtained in step a is shaped, dried at 50-120°C, and calcined at 500-700°C for 5-7 hours in an air atmosphere to obtain catalyst precursor I.
更优选地,在所述的步骤b中,将步骤a得到的混合物成型,70-100℃干燥,在空气气氛下550-650℃煅烧5-6小时,得到催化剂的前躯体I。More preferably, in step b, the mixture obtained in step a is molded, dried at 70-100° C., and calcined at 550-650° C. for 5-6 hours in an air atmosphere to obtain catalyst precursor I.
最优选地,在所述的步骤b中,将步骤a得到的混合物成型,在80℃恒温干燥,在空气气氛下600℃煅烧5小时,得到催化剂的前躯体I。Most preferably, in step b, the mixture obtained in step a is molded, dried at a constant temperature of 80° C., and calcined at 600° C. for 5 hours in an air atmosphere to obtain catalyst precursor I.
优选地,其中在所述的步骤c中,将步骤b得到的催化剂的前躯体I在1)质量百分含量为0.1-5%的选自盐酸、硫酸和硝酸中的一种或几种溶液或2)质量百分含量为0.1-5%的选自硝酸铵、氯化铵和碳酸氢铵中的一种或几种溶液在20-90℃交换2-5次,每次1-6小时,再用去离子水洗涤交换后的催化剂的前躯体I,接着将催化剂的前躯体I在60-160℃烘干,得到催化剂前躯体II。Preferably, wherein in said step c, the precursor I of the catalyst obtained in step b is in 1) one or more solutions selected from hydrochloric acid, sulfuric acid and nitric acid with a mass percentage content of 0.1-5% Or 2) one or more solutions selected from ammonium nitrate, ammonium chloride and ammonium bicarbonate with a mass percentage of 0.1-5% are exchanged 2-5 times at 20-90°C, each time for 1-6 hours , and then wash the exchanged catalyst precursor I with deionized water, and then dry the catalyst precursor I at 60-160° C. to obtain the catalyst precursor II.
更优选地,将步骤b得到的催化剂的前躯体I在质量百分含量为0.8-4%的选自盐酸、硫酸和硝酸中的一种或几种溶液在40-70℃交换3-4次,每次2-5小时,再用去离子水洗涤交换后的催化剂的前躯体I,接着将催化剂的前躯体I在90-140℃烘干,得到催化剂的前躯体II。More preferably, the precursor I of the catalyst obtained in step b is exchanged 3-4 times at 40-70° C. in one or more solutions selected from hydrochloric acid, sulfuric acid and nitric acid with a mass percentage content of 0.8-4%. , each time for 2-5 hours, and then wash the exchanged catalyst precursor I with deionized water, and then dry the catalyst precursor I at 90-140° C. to obtain the catalyst precursor II.
最优选地,将步骤b得到的催化剂的前躯体I在质量百分含量为3%的选自盐酸、硫酸和硝酸中的一种或几种溶液在60℃交换3次,每次2小时,再用去离子水洗涤交换后的催化剂的前躯体I,接着将催化剂的前躯体I在120℃烘干,得到催化剂的前躯体II。Most preferably, the precursor I of the catalyst obtained in step b is exchanged 3 times at 60° C. for 2 hours each time in 3% by mass percent of one or more solutions selected from hydrochloric acid, sulfuric acid and nitric acid. The exchanged catalyst precursor I was washed with deionized water, and then the catalyst precursor I was dried at 120° C. to obtain the catalyst precursor II.
优选地,其中在所述的步骤d中,用水蒸气和N2的混合气体在400-700℃,处理5-10小时,并且水蒸气占混合气体体积的30-70%。Preferably, in said step d, the mixed gas of water vapor and N 2 is treated at 400-700°C for 5-10 hours, and the water vapor accounts for 30-70% of the volume of the mixed gas.
更选地,在所述的步骤d中,用水蒸气和N2的混合气体在500-600℃,处理5-8小时,并且水蒸气占混合气体体积的40-60%。More preferably, in said step d, the mixed gas of water vapor and N 2 is treated at 500-600° C. for 5-8 hours, and the water vapor accounts for 40-60% of the volume of the mixed gas.
最优选地,在所述的步骤d中,用水蒸气和N2的混合气体在600℃,处理8小时,并且水蒸气占混合气体体积的50%。Most preferably, in the step d, the mixed gas of water vapor and N 2 is treated at 600° C. for 8 hours, and the water vapor accounts for 50% of the volume of the mixed gas.
本发明的催化剂评价装置采用固定床流动反应器,每次评价的催化剂装填量为3.0g,以甲醇和/或二甲醚为原料,水为稀释剂,当以CH3OH或CH3OCH3为原料时,质量比CH3OH∶H2O=2∶1或CH3OCH3∶H2O=2∶1时;当以CH3OH和CH3OCH3为原料时,CH3OH和CH3OCH3的比例可以是任意的,但CH3OH和CH3OCH3质量之和与水的质量比仍为(CH3OH+CH3OHOCH3)∶H2O=2∶1,液时空速为1h-1,反应温度为480℃,系统总压小于0.05MPa,反应产物由氢火焰离子化检测器(FID)分析,产物选择性的计算以碳基产物的质量百分含量为准。Ca、Mg、Zn、Sr、Cu、Mn、Cd、Ga、In、La、B和P等杂原子进入分子筛结构或表面后能够明显抑制分子筛酸性或在催化剂表面产生酸-碱双功能位,可提高钠型ZSM-5沸石分子筛的抗结焦性、寿命以及对低级烯烃的选择性。引入杂元素改性剂的一般方法是先对钠型ZSM-5沸石原粉进行改性后再成型或将先将催化剂成型再进行改性,本发明中,杂元素改性剂的引入与催化剂的成型同步,从而简化了催化剂的生产步骤,有效地降低了工业催化剂的生产成本。此外,在本发明中,采用复合助挤剂并添加适量的孔结构调节剂,不但能使催化剂易于脱模,还能改善产品的强度和孔结构,有效提高催化剂的扩散性能,从而提高低碳烯烃的选择性。本发明的催化剂具有合适的强度和高的水热稳定性,在甲醇和/或二甲醚转化反应中表现出高的活性和对丙烯的选择性。The catalyst evaluation device of the present invention adopts a fixed-bed flow reactor, and the loading amount of catalyst for each evaluation is 3.0 g, with methanol and/or dimethyl ether as raw material, water as diluent, when CH 3 OH or CH 3 OCH 3 When used as raw materials, the mass ratio CH 3 OH: H 2 O = 2: 1 or CH 3 OCH 3 : H 2 O = 2: 1; when using CH 3 OH and CH 3 OCH 3 as raw materials, CH 3 OH and The ratio of CH 3 OCH 3 can be arbitrary, but the mass ratio of the sum of CH 3 OH and CH 3 OCH 3 to water is still (CH 3 OH+CH 3 OHOCH 3 ):H 2 O=2:1, liquid The hourly space velocity is 1h -1 , the reaction temperature is 480°C, and the total system pressure is less than 0.05MPa. The reaction product is analyzed by a hydrogen flame ionization detector (FID). The product selectivity is calculated based on the mass percentage of carbon-based products. . Heteroatoms such as Ca, Mg, Zn, Sr, Cu, Mn, Cd, Ga, In, La, B, and P can significantly inhibit the acidity of molecular sieves or generate acid-base bifunctional sites on the surface of catalysts after entering the structure or surface of molecular sieves. Improve the coking resistance, life and selectivity to lower olefins of sodium ZSM-5 zeolite molecular sieve. The general method of introducing the heteroelement modifier is to modify the former powder of sodium type ZSM-5 zeolite and then shape it or to modify the catalyst first. In the present invention, the introduction of the heteroelement modifier and the catalyst Synchronous molding of the catalyst simplifies the production steps of the catalyst and effectively reduces the production cost of the industrial catalyst. In addition, in the present invention, the use of composite extrusion aids and the addition of an appropriate amount of pore structure regulators can not only make the catalyst easy to demould, but also improve the strength and pore structure of the product, effectively improve the diffusion performance of the catalyst, thereby improving the low-carbon Alkene selectivity. The catalyst of the invention has suitable strength and high hydrothermal stability, and exhibits high activity and selectivity to propylene in methanol and/or dimethyl ether conversion reaction.
具体实施方式 Detailed ways
下面结合具体实施例,进一步阐述本发明,但这些实施例仅限于解释本发明,而不用于限制本发明。下面实施例中未注明的具体实验条件的实验方法,通常按照常规条件,或按照厂商所建议的条件,在以下实施例中技术方案的变化均在本发明的保护范围内。The present invention will be further described below in conjunction with specific examples, but these examples are only limited to explaining the present invention, and are not intended to limit the present invention. The experimental methods of the specific experimental conditions not indicated in the following examples are usually according to conventional conditions, or according to the conditions suggested by the manufacturer, and the changes in the technical solutions in the following examples are all within the protection scope of the present invention.
实施例1Example 1
取ZSM-5沸石原粉100g(SAR=200),向其中加入25g氧化铝、2g甲基纤维素和3g田菁粉,将上述原料混合均匀后,将液固比为1.5mL硝酸/2g沸石的质量百分含量为20%的硝酸溶液作为胶溶剂,再加入3.4gLa(NO3)3·6H2O的杂元素改性剂。其它制备步骤与比较例1相同,得到的催化剂标记为S-1,该催化剂以质量百分含量计含1%的La。将S-1进行破碎,筛分出20~40目的颗粒用于活性评价,反应以甲醇和水混合进料(质量比CH3OH∶H2O=2∶1),催化剂的活性评价结果如表1所示。催化剂的活性评价结果如表1所示。Take 100g of ZSM-5 zeolite raw powder (SAR=200), add 25g of alumina, 2g of methyl cellulose and 3g of scallop powder to it, mix the above raw materials evenly, and adjust the liquid-solid ratio to 1.5mL of nitric acid/2g of zeolite A nitric acid solution with a mass percent content of 20% was used as a peptizer, and 3.4 g of La(NO 3 ) 3 ·6H 2 O heteroelement modifier was added. Other preparation steps were the same as in Comparative Example 1, and the obtained catalyst was marked as S-1, and the catalyst contained 1% La by mass percentage. S-1 was crushed, and 20-40 mesh particles were screened out for activity evaluation. Methanol and water were used as feedstock for the reaction (mass ratio CH 3 OH:H 2 O=2:1), and the catalyst activity evaluation results were as follows: Table 1 shows. The results of catalyst activity evaluation are shown in Table 1.
如表1所示,在相同甲醇转化率的条件下,ZSM-5沸石的La改性有利于提高目标产物丙烯的选择性。与一般的杂元素改性剂的引入方法(即先对原粉进行改性后再成型或将先将催化剂成型再进行改性)相比,采用本发明杂元素改性与成型技术同步进行的催化剂制备技术,催化剂强度和对丙烯的选择性明显提高。As shown in Table 1, under the same methanol conversion rate, the La modification of ZSM-5 zeolite is beneficial to improve the selectivity of the target product propylene. Compared with the general method of introducing heteroelement modifiers (i.e. first modifying the original powder and then molding or molding the catalyst first and then modifying), the heteroelement modification and molding technology of the present invention are carried out simultaneously Catalyst preparation technology, catalyst strength and selectivity to propylene are significantly improved.
表1比较例1-3与实施例1的催化剂的强度及反应结果The intensity and the reaction result of the catalyst of Table 1 Comparative Example 1-3 and Embodiment 1
*为1-丁烯、2-丁烯和异丁烯之和 * is the sum of 1-butene, 2-butene and isobutene
实施例2-11Example 2-11
分别称取100g SAR为300、400、500、600和700的钠型ZSM-5沸石进行成型,加入一种或几种不同的粘合剂和孔结构调节剂,再加入胶溶剂和杂元素改性剂。胶溶剂为分别硝酸、硫酸、盐酸、磷酸、甲酸、乙酸或丙二酸,其加入量按液固比1.5mL/2g沸石投料,用于离子交换的酸的种类及浓度、水蒸气浓度及处理时间具体在表2中列出,杂元素改性剂为含有Mg、P、In、Zn、Cu、Mn、Ga、Sr和Ca的可溶性前躯体的一种或几种,具体的原料配比如表2所示,成型催化剂的其它制备步骤与实施例1相同。反应以二甲醚和水混合进料(质量比CH3OCH3∶H2O=2∶1),催化剂的活性评价结果如表2所示。Weigh 100g of sodium-type ZSM-5 zeolite with SAR of 300, 400, 500, 600 and 700 respectively for molding, add one or several different binders and pore structure regulators, and then add peptizer and heteroelement modification sex agent. The peptizers are respectively nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, formic acid, acetic acid or malonic acid, the amount of which is added according to the liquid-solid ratio of 1.5mL/2g zeolite, the type and concentration of acid used for ion exchange, water vapor concentration and treatment The time is listed in Table 2. The heteroelement modifier is one or more of the soluble precursors containing Mg, P, In, Zn, Cu, Mn, Ga, Sr and Ca. The specific raw material ratio is as shown in Table 2, the other preparation steps of the shaped catalyst are the same as in Example 1. The reaction was fed with mixed feed of dimethyl ether and water (mass ratio CH 3 OCH 3 :H 2 O=2:1), and the activity evaluation results of the catalyst are shown in Table 2.
表2实施例2-11的原料配比及制备条件Raw material ratio and preparation conditions of table 2 embodiment 2-11
实施例12Example 12
取ZSM-5钠型沸石原粉100g(SAR=1000),向其中加入2.0g田菁粉和2.0g淀粉,将上述原料混合均匀,形成混合物。将3.4g La(NO3)3·6H2O溶于75g质量百分含量为33.3%的硅溶胶溶液中形成混合液。将此混合液缓慢加入上述混合物中,混合均匀,挤成Φ2×5mm条状,于80℃下,在空气气氛下恒温干燥12h,600℃煅烧5h。按液固比为10mLHCl/1g沸石的用量,用质量百分含量为4%的HCl溶液在60℃交换3次,每次2h。用去离子水洗涤,于120℃下烘干,得到H-ZSM-5沸石。将上述氢型沸石用H2O体积百分含量为40%的H2O/N2气体于600℃下处理8h,得的催化剂进行破碎,反应以二甲醚和水混合进料(质量比CH3OCH3∶H2O=2∶1),筛分出20~40目的颗粒用于活性评价,催化剂的活性评价结果如表3所示。Take 100 g of ZSM-5 sodium zeolite raw powder (SAR=1000), add 2.0 g of turnip powder and 2.0 g of starch into it, and mix the above raw materials evenly to form a mixture. 3.4g La(NO 3 ) 3 ·6H 2 O was dissolved in 75g of 33.3% by mass silica sol solution to form a mixed solution. Slowly add this mixed solution into the above mixture, mix evenly, extrude into Φ2×5mm strips, dry at 80°C for 12 hours at a constant temperature in an air atmosphere, and calcinate at 600°C for 5 hours. According to the amount of liquid-solid ratio of 10mL HCl/1g zeolite, exchange 3 times with 4% HCl solution at 60° C. for 2 hours each time. Wash with deionized water and dry at 120°C to obtain H-ZSM-5 zeolite. The above-mentioned hydrogen-type zeolite was treated with H 2 O/N 2 gas with a H 2 O volume percentage of 40% at 600°C for 8 hours, and the obtained catalyst was crushed, and the reaction was mixed with dimethyl ether and water (mass ratio CH 3 OCH 3 :H 2 O=2:1), sieved out 20-40 mesh particles for activity evaluation, the catalyst activity evaluation results are shown in Table 3.
实施例13Example 13
以2.0g甘油替代实施例12中2.0g田菁粉,以2.0g甲基纤维素替代实施例12中2g淀粉作为孔结构调节剂,其余的制备条件与例12相同。反应以二甲醚和水混合进料(质量比CH3OCH3∶H2O=2∶1),催化剂的活性评价结果如表3所示。2.0 g of glycerin was used instead of 2.0 g of scallop powder in Example 12, and 2.0 g of methyl cellulose was used as a pore structure modifier instead of 2.0 g of starch in Example 12. The rest of the preparation conditions were the same as in Example 12. The reaction was fed with mixed feed of dimethyl ether and water (mass ratio CH 3 OCH 3 :H 2 O=2:1). The activity evaluation results of the catalyst are shown in Table 3.
实施例14Example 14
以质量百分含量为2%的硝酸铵溶液代替实施例1中的质量百分含量为2%的HCl溶液作为交换溶液,其余制备条件与例1相同。反应以二甲醚和水混合进料(质量比CH3OCH3∶H2O=2∶1),催化剂的活性评价结果如表3所示。The 2% by mass ammonium nitrate solution was used instead of the 2% by mass HCl solution in Example 1 as the exchange solution, and the rest of the preparation conditions were the same as in Example 1. The reaction was fed with mixed feed of dimethyl ether and water (mass ratio CH 3 OCH 3 :H 2 O=2:1). The activity evaluation results of the catalyst are shown in Table 3.
实施例15Example 15
以含质量百分含量为2%的氯化铵和1%的碳酸氢铵的溶液代替实施例14中的质量百分含量为2%的硝酸铵溶液作为交换溶液,其余制备条件与例14相同。反应以二甲醚和水混合进料(质量比CH3OCH3∶H2O=2∶1),催化剂的活性评价结果如表3所示。A solution containing 2% ammonium chloride and 1% ammonium bicarbonate to replace the 2% ammonium nitrate solution in Example 14 as an exchange solution, and all the other preparation conditions were the same as in Example 14. . The reaction was fed with mixed feed of dimethyl ether and water (mass ratio CH 3 OCH 3 :H 2 O=2:1). The activity evaluation results of the catalyst are shown in Table 3.
表3实施例2-13的催化剂强度及反应结果Catalyst intensity and reaction result of table 3 embodiment 2-13
*为1-丁烯、2-丁烯和异丁烯之和 * is the sum of 1-butene, 2-butene and isobutene
实施例16Example 16
将比较例2、3和实施例1、7、8、12制得催化剂用于以甲醇、二甲醚和水三者混合进料的反应,其中甲醇、二甲醚、水的质量比为1∶1∶1,评价结果如表4所示。Comparative example 2, 3 and embodiment 1, 7, 8, 12 are used for the reaction that the mixed feed of methanol, dimethyl ether and water three is used for, wherein the mass ratio of methanol, dimethyl ether, water is 1 : 1: 1, the evaluation results are shown in Table 4.
表4甲醇和二甲醚转化为低碳烯烃的反应结果Table 4 Methanol and dimethyl ether are converted into the reaction result of light olefin
*为1-丁烯、2-丁烯和异丁烯之和 * is the sum of 1-butene, 2-butene and isobutene
比较例1Comparative example 1
取ZSM-5沸石原粉100g(SAR=200),向其中加入25g氧化铝、2g甲基纤维素和3g田菁粉,将上述原料混合均匀后,将液固比为1.5mL硝酸/2g沸石的质量百分含量为20%的硝酸溶液,缓慢加入到上述混合原料中,混合均匀,挤成φ2×5mm条状,于80℃下恒温干燥12h,空气气氛下600℃煅烧5h,得到催化剂的前躯体,按液固比为10mL HCl/1g沸石的用量,用质量百分含量为2%的HCl溶液与催化剂的前躯体在60℃下交换3次,每次2h。用去离子水洗涤,于120℃下烘干,得到H-ZSM-5沸石。将上述氢型沸石用H2O体积百分含量为50%的H2O/N2的混合气体于550℃下处理8h,得催化剂标记为B-1。将B-1进行破碎,筛分出20-40目的颗粒用于活性评价,反应以甲醇和水混合进料(质量比CH3OH∶H2O=2∶1),催化剂的活性评价结果如表1所示。Take 100g of ZSM-5 zeolite raw powder (SAR=200), add 25g of alumina, 2g of methyl cellulose and 3g of scallop powder to it, mix the above raw materials evenly, and adjust the liquid-solid ratio to 1.5mL of nitric acid/2g of zeolite The nitric acid solution with a mass percent content of 20% is slowly added to the above mixed raw materials, mixed evenly, extruded into φ2×5mm strips, dried at a constant temperature of 80°C for 12h, and calcined at 600°C for 5h in an air atmosphere to obtain the catalyst. For the precursor, the liquid-solid ratio is 10 mL HCl/1 g zeolite, and the catalyst precursor is exchanged with 2% HCl solution by mass percentage at 60° C. for 3 times, each time for 2 hours. Wash with deionized water and dry at 120°C to obtain H-ZSM-5 zeolite. The above-mentioned hydrogen-type zeolite was treated with a mixed gas of H 2 O/N 2 with a H 2 O volume percentage of 50% at 550° C. for 8 hours to obtain a catalyst marked as B-1. B-1 was crushed, and 20-40 mesh particles were screened out for activity evaluation. The reaction was mixed with methanol and water (mass ratio CH 3 OH:H 2 O=2:1), and the catalyst activity evaluation results were as follows: Table 1 shows.
比较例2Comparative example 2
将0.343g La(NO3)3·6H2O溶于10mL去离子水中配成浸渍液。将比较例1制得B-1催化剂10g室温下浸渍12h,于80℃下恒温干燥12h,600℃煅烧5h。将上述氢型沸石用H2O体积百分含量为50%的H2O/N2气体于550℃下处理8h。如此制得催化剂以质量百分含量计含1%的La,催化剂标记为B-2,将B-2进行破碎,筛分出20-40目的颗粒用于活性评价,反应以甲醇和水混合进料(质量比CH3OH∶H2O=2∶1),催化剂的活性评价结果如表1所示。Dissolve 0.343g La(NO 3 ) 3 ·6H 2 O in 10mL deionized water to make an impregnation solution. 10 g of catalyst B-1 prepared in Comparative Example 1 was impregnated at room temperature for 12 hours, dried at 80° C. for 12 hours, and calcined at 600° C. for 5 hours. The above-mentioned hydrogen-type zeolite was treated with H 2 O/N 2 gas with a volume percentage of H 2 O of 50% at 550° C. for 8 hours. The catalyst obtained in this way contains 1% La in terms of mass percentage, the catalyst is marked as B-2, B-2 is broken, and 20-40 mesh particles are sieved for activity evaluation, and the reaction is mixed with methanol and water. Table 1 shows the catalyst activity evaluation results.
比较例3Comparative example 3
取ZSM-5沸石原粉100g(SAR=200),按液固比10mLHCl/1g沸石的用量,用质量百分含量为2%的HCl溶液交换3次,每次2h。用去离子水洗涤,于120℃下烘干,得催化剂前躯体I。将3.4g La(NO3)3·6H2O溶于100mL去离子水中配成浸渍液。将催化剂前躯体I室温下浸渍12h,于80℃下恒温干燥12h,600℃煅烧5h制得La改性的催化剂前躯体II;然后将催化剂前躯体II用于成型,其步骤如下:向催化剂前躯体II中加入25g氧化铝、2g甲基纤维素和3g田菁粉,将上述原料混合均匀后,按液固比为1.5mL硝酸/2g沸石,缓慢加入质量百分含量为20%的硝酸溶液,混合均匀,挤成2×5mm条状,于80℃下恒温干燥12h,600℃煅烧5h得催化剂前躯体III;将催化剂前躯体III用H2O体积百分含量为50%的H2O/N2气体于550℃下处理8h。得到的催化剂记为B-3,该催化剂以质量百分含量计含1%的La。将B-3进行破碎,筛分出20~40目的颗粒用于活性评价,反应以甲醇和水混合进料(质量比CH3OH∶H2O=2∶1),催化剂的活性评价结果如表1所示。催化剂的活性评价结果如表1所示。Take 100 g of ZSM-5 zeolite raw powder (SAR=200), and exchange it with 2% HCl solution by mass percentage for 3 times, each time for 2 hours, according to the liquid-solid ratio of 10 mL HCl/1 g zeolite. Wash with deionized water and dry at 120°C to obtain catalyst precursor I. Dissolve 3.4g La(NO 3 ) 3 ·6H 2 O in 100mL deionized water to make an impregnation solution. The catalyst precursor I was impregnated at room temperature for 12 hours, dried at a constant temperature at 80°C for 12 hours, and calcined at 600°C for 5 hours to obtain the La-modified catalyst precursor II; then the catalyst precursor II was used for molding, and the steps were as follows: Add 25g of alumina, 2g of methylcellulose and 3g of turnip powder to the body II, mix the above raw materials evenly, and slowly add the nitric acid solution with a mass percentage of 20% according to the liquid-solid ratio of 1.5mL of nitric acid/2g of zeolite , mix well, squeeze into 2×5mm strips, dried at 80°C for 12 hours, and calcined at 600°C for 5 hours to obtain catalyst precursor III ; ℃ for 8h. The obtained catalyst is denoted as B-3, and the catalyst contains 1% La by mass percentage. B-3 was crushed, and 20-40 mesh particles were sieved for activity evaluation. Methanol and water were used as feed mixture for the reaction (mass ratio CH3OH : H2O =2:1), and the activity evaluation results of the catalyst were as follows: Table 1 shows. The results of catalyst activity evaluation are shown in Table 1.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100908434A CN101628242B (en) | 2009-08-10 | 2009-08-10 | Molecular sieve catalyst for preparing low-carbon olefin and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100908434A CN101628242B (en) | 2009-08-10 | 2009-08-10 | Molecular sieve catalyst for preparing low-carbon olefin and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101628242A true CN101628242A (en) | 2010-01-20 |
CN101628242B CN101628242B (en) | 2011-12-14 |
Family
ID=41573621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100908434A Active CN101628242B (en) | 2009-08-10 | 2009-08-10 | Molecular sieve catalyst for preparing low-carbon olefin and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101628242B (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101954291A (en) * | 2010-09-26 | 2011-01-26 | 华中科技大学 | Zinc isomorphism-substituted nano molecular sieve catalyst and preparation method and application thereof |
CN102008939A (en) * | 2010-11-15 | 2011-04-13 | 西北农林科技大学 | Method for preparing aluminum-manganese composite oxide modified molecular sieve |
CN102211971A (en) * | 2010-04-09 | 2011-10-12 | 上海吴泾化工有限公司 | Process for preparing propylene from methanol |
CN102211036A (en) * | 2010-04-09 | 2011-10-12 | 上海吴泾化工有限公司 | Modified molecular sieve catalyst, and precursor and preparation method thereof |
CN102500411A (en) * | 2011-12-09 | 2012-06-20 | 上海中科高等研究院 | Catalyst used for synthesizing propylene and preparation method and application thereof |
CN102962092A (en) * | 2012-12-14 | 2013-03-13 | 南京工业大学 | Efficient catalyst for preparing methyl ethyl ketone by dehydrating 2, 3-butanediol |
CN102962093A (en) * | 2012-11-09 | 2013-03-13 | 南京工业大学 | Production process for preparing 2, 3-butanedione by one-step oxidation of 2, 3-butanediol and heterogeneous catalyst used in production process |
CN103030502A (en) * | 2011-09-29 | 2013-04-10 | 中国石油化工股份有限公司 | Method for preparing propylene through conversion of methanol |
CN103121899A (en) * | 2011-11-18 | 2013-05-29 | 中国石油化工股份有限公司 | Method for preparing propylene and ethylene from alcohol |
CN104069888A (en) * | 2013-03-29 | 2014-10-01 | 上海碧科清洁能源技术有限公司 | Modified ZSM-5 molecular sieve catalyst and preparation method and application thereof |
CN104107720A (en) * | 2013-04-16 | 2014-10-22 | 中国石油化工股份有限公司 | Metal element-containing compound molecular sieve catalyst, and preparation method and application thereof |
CN104437610A (en) * | 2013-09-24 | 2015-03-25 | 中国石油化工股份有限公司 | Binderless nano ZSM-5/beta symbiotic molecular sieve catalyst |
CN104437611A (en) * | 2013-09-24 | 2015-03-25 | 中国石油化工股份有限公司 | Binderless nano ZSM-5/beta symbiotic zeolite molecular sieve catalyst |
CN104437601A (en) * | 2014-12-15 | 2015-03-25 | 北京惠尔三吉绿色化学科技有限公司 | Preparation method and application of modified ZSM-5 molecular sieve based catalyst for preparing propylene from methanol |
CN104437614A (en) * | 2013-09-24 | 2015-03-25 | 中国石油化工股份有限公司 | Binder-free ZSM-5/beta co-crystallized molecular sieve catalyst and preparation method and use thereof |
CN104722328A (en) * | 2013-12-24 | 2015-06-24 | 高化学株式会社 | Catalyst system for preparing propylene through conversion of dimethyl ether as well as preparation method and application thereof, and method for preparing propylene through conversion of dimethyl ether |
CN104923285A (en) * | 2014-03-21 | 2015-09-23 | 中石化洛阳工程有限公司 | Catalyst for preparing hydrocarbons from oxygen-containing compounds, and preparation method and application thereof |
CN106563491A (en) * | 2016-11-08 | 2017-04-19 | 西南化工研究设计院有限公司 | Method for preparing high-strength molecular sieve composite catalyst |
CN106669784A (en) * | 2015-11-11 | 2017-05-17 | 中国石油化工股份有限公司 | Preparation method of hydrocracking catalyst |
CN106890667A (en) * | 2017-02-13 | 2017-06-27 | 大唐国际化工技术研究院有限公司 | A kind of catalyst for producing propylene with methanol and preparation method thereof |
CN109071378A (en) * | 2016-04-11 | 2018-12-21 | 旭化成株式会社 | The manufacturing method of light alkene |
CN109364987A (en) * | 2018-11-29 | 2019-02-22 | 北京惠尔三吉绿色化学科技有限公司 | A kind of preparation method and application of the catalyst for the low-temperature catalyzed reaction propylene co-production aromatic hydrocarbons processed of lighter hydrocarbons |
CN111760589A (en) * | 2020-07-10 | 2020-10-13 | 大唐国际化工技术研究院有限公司 | Molecular sieve catalyst, preparation method and application thereof |
CN111921553A (en) * | 2020-07-31 | 2020-11-13 | 江苏国瓷新材料科技股份有限公司 | Direct forming method of catalyst for preparing propylene from methanol |
CN112619686A (en) * | 2019-10-09 | 2021-04-09 | 中国石油化工股份有限公司 | Supported non-noble metal dehydrogenation catalyst and preparation method and application thereof |
US11697105B2 (en) | 2020-04-14 | 2023-07-11 | Kellogg Brown & Root Llc | Method for catalyst production for C5-C12 paraffins isomerization |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1039392C (en) * | 1992-09-22 | 1998-08-05 | 中国科学院大连化学物理研究所 | Catalyst for converting methanol into light olefines and its reaction process |
EP1153660A3 (en) * | 1997-06-18 | 2002-01-09 | ExxonMobil Chemical Patents Inc. | Conversion of synthesis gas to lower olefins using modified molecular sieves |
CN101172918B (en) * | 2006-11-02 | 2010-09-01 | 中国石油化工股份有限公司 | Method for producing propylene with methanol conversion |
CN101279283B (en) * | 2007-04-04 | 2011-04-27 | 中国石油化工股份有限公司 | Modified ZSM-5 molecular sieve catalyst for preparing propylene transformed from methanol and preparation thereof |
-
2009
- 2009-08-10 CN CN2009100908434A patent/CN101628242B/en active Active
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102211971A (en) * | 2010-04-09 | 2011-10-12 | 上海吴泾化工有限公司 | Process for preparing propylene from methanol |
CN102211036A (en) * | 2010-04-09 | 2011-10-12 | 上海吴泾化工有限公司 | Modified molecular sieve catalyst, and precursor and preparation method thereof |
CN102211971B (en) * | 2010-04-09 | 2015-08-05 | 上海华谊(集团)公司 | Process for preparing propylene from methanol |
CN102211036B (en) * | 2010-04-09 | 2015-08-05 | 上海华谊(集团)公司 | A kind of modified molecular sieve catalyst and its precursor and preparation method thereof |
CN101954291A (en) * | 2010-09-26 | 2011-01-26 | 华中科技大学 | Zinc isomorphism-substituted nano molecular sieve catalyst and preparation method and application thereof |
CN102008939A (en) * | 2010-11-15 | 2011-04-13 | 西北农林科技大学 | Method for preparing aluminum-manganese composite oxide modified molecular sieve |
CN102008939B (en) * | 2010-11-15 | 2012-07-25 | 西北农林科技大学 | Method for preparing aluminum-manganese composite oxide modified molecular sieve |
CN103030502B (en) * | 2011-09-29 | 2015-12-16 | 中国石油化工股份有限公司 | The method of propylene preparation through methanol conversion |
CN103030502A (en) * | 2011-09-29 | 2013-04-10 | 中国石油化工股份有限公司 | Method for preparing propylene through conversion of methanol |
CN103121899B (en) * | 2011-11-18 | 2015-02-11 | 中国石油化工股份有限公司 | Method for preparing propylene and ethylene from alcohol |
CN103121899A (en) * | 2011-11-18 | 2013-05-29 | 中国石油化工股份有限公司 | Method for preparing propylene and ethylene from alcohol |
CN102500411B (en) * | 2011-12-09 | 2014-01-08 | 上海中科高等研究院 | A kind of catalyst for synthesizing propylene and its preparation and application |
CN102500411A (en) * | 2011-12-09 | 2012-06-20 | 上海中科高等研究院 | Catalyst used for synthesizing propylene and preparation method and application thereof |
CN102962093A (en) * | 2012-11-09 | 2013-03-13 | 南京工业大学 | Production process for preparing 2, 3-butanedione by one-step oxidation of 2, 3-butanediol and heterogeneous catalyst used in production process |
CN102962092A (en) * | 2012-12-14 | 2013-03-13 | 南京工业大学 | Efficient catalyst for preparing methyl ethyl ketone by dehydrating 2, 3-butanediol |
CN104069888A (en) * | 2013-03-29 | 2014-10-01 | 上海碧科清洁能源技术有限公司 | Modified ZSM-5 molecular sieve catalyst and preparation method and application thereof |
CN104107720A (en) * | 2013-04-16 | 2014-10-22 | 中国石油化工股份有限公司 | Metal element-containing compound molecular sieve catalyst, and preparation method and application thereof |
CN104437610A (en) * | 2013-09-24 | 2015-03-25 | 中国石油化工股份有限公司 | Binderless nano ZSM-5/beta symbiotic molecular sieve catalyst |
CN104437611A (en) * | 2013-09-24 | 2015-03-25 | 中国石油化工股份有限公司 | Binderless nano ZSM-5/beta symbiotic zeolite molecular sieve catalyst |
CN104437614A (en) * | 2013-09-24 | 2015-03-25 | 中国石油化工股份有限公司 | Binder-free ZSM-5/beta co-crystallized molecular sieve catalyst and preparation method and use thereof |
CN104722328A (en) * | 2013-12-24 | 2015-06-24 | 高化学株式会社 | Catalyst system for preparing propylene through conversion of dimethyl ether as well as preparation method and application thereof, and method for preparing propylene through conversion of dimethyl ether |
CN104923285A (en) * | 2014-03-21 | 2015-09-23 | 中石化洛阳工程有限公司 | Catalyst for preparing hydrocarbons from oxygen-containing compounds, and preparation method and application thereof |
CN104437601B (en) * | 2014-12-15 | 2019-08-16 | 北京惠尔三吉绿色化学科技有限公司 | A kind of ZSM-5 Type Zeolites agent and its application for preparing propylene from methanol |
CN104437601A (en) * | 2014-12-15 | 2015-03-25 | 北京惠尔三吉绿色化学科技有限公司 | Preparation method and application of modified ZSM-5 molecular sieve based catalyst for preparing propylene from methanol |
CN106669784A (en) * | 2015-11-11 | 2017-05-17 | 中国石油化工股份有限公司 | Preparation method of hydrocracking catalyst |
CN106669784B (en) * | 2015-11-11 | 2019-01-25 | 中国石油化工股份有限公司 | A kind of preparation method of hydrocracking catalyst |
CN109071378A (en) * | 2016-04-11 | 2018-12-21 | 旭化成株式会社 | The manufacturing method of light alkene |
CN109071378B (en) * | 2016-04-11 | 2022-08-05 | 旭化成株式会社 | Process for producing lower olefin |
CN106563491A (en) * | 2016-11-08 | 2017-04-19 | 西南化工研究设计院有限公司 | Method for preparing high-strength molecular sieve composite catalyst |
CN106563491B (en) * | 2016-11-08 | 2019-06-28 | 西南化工研究设计院有限公司 | A method of preparing high-intensitive molecular sieve composite catalyst |
CN106890667A (en) * | 2017-02-13 | 2017-06-27 | 大唐国际化工技术研究院有限公司 | A kind of catalyst for producing propylene with methanol and preparation method thereof |
CN109364987B (en) * | 2018-11-29 | 2021-08-06 | 北京惠尔三吉绿色化学科技有限公司 | Preparation method and application of catalyst for preparing propylene and coproducing aromatic hydrocarbon through low-temperature catalytic reaction of light hydrocarbon |
CN109364987A (en) * | 2018-11-29 | 2019-02-22 | 北京惠尔三吉绿色化学科技有限公司 | A kind of preparation method and application of the catalyst for the low-temperature catalyzed reaction propylene co-production aromatic hydrocarbons processed of lighter hydrocarbons |
CN112619686A (en) * | 2019-10-09 | 2021-04-09 | 中国石油化工股份有限公司 | Supported non-noble metal dehydrogenation catalyst and preparation method and application thereof |
CN112619686B (en) * | 2019-10-09 | 2024-01-30 | 中国石油化工股份有限公司 | Supported non-noble metal dehydrogenation catalyst and preparation method and application thereof |
US11697105B2 (en) | 2020-04-14 | 2023-07-11 | Kellogg Brown & Root Llc | Method for catalyst production for C5-C12 paraffins isomerization |
CN111760589A (en) * | 2020-07-10 | 2020-10-13 | 大唐国际化工技术研究院有限公司 | Molecular sieve catalyst, preparation method and application thereof |
CN111921553A (en) * | 2020-07-31 | 2020-11-13 | 江苏国瓷新材料科技股份有限公司 | Direct forming method of catalyst for preparing propylene from methanol |
Also Published As
Publication number | Publication date |
---|---|
CN101628242B (en) | 2011-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101628242A (en) | Molecular sieve catalyst for preparing low-carbon olefin and preparation method thereof | |
CN106345514B (en) | A kind of catalyst and preparation method thereof of one step of synthesis gas conversion producing light olefins | |
CN104226360B (en) | Holocrystalline ZSM-5 molecular sieve catalyst and its production and use | |
CN104056652B (en) | A kind of hud typed ZSM-5 molecular sieve pellet catalyst | |
CN107107042B (en) | Catalyst for preparing glycol ether and preparation method and application thereof | |
CN101954291A (en) | Zinc isomorphism-substituted nano molecular sieve catalyst and preparation method and application thereof | |
CN101678338B (en) | Solid phosphoric acid with controlled porosity | |
CN112794338A (en) | ZSM-5 molecular sieve and preparation method and application thereof | |
CN103100418B (en) | Oil column forming method of TS-1 titanium silicalite molecular sieve catalyst | |
Hou et al. | Activated carbon aerogel supported copper catalysts for the hydrogenation of methyl acetate to ethanol: effect of KOH activation | |
CN104557396B (en) | A kind of method of n-butene catalytic cracking for producing propylene | |
CN105983440A (en) | Composite nanometer thin layer molecular sieve and preparation method and application | |
CN102989503A (en) | A kind of spray molding method of TS-1 titanium silicon molecular sieve catalyst | |
CN101940942B (en) | ZSM-5 molecular sieve catalyst for preparing propylene by conversion of methanol and preparation method thereof | |
CN103623859B (en) | Catalyst for producing propylene with methanol of high third second ratio and preparation method thereof is obtained under high-speed | |
CN101817731A (en) | Method for preparing polymethoxy dimethyl ether by converting methanol | |
US20150353446A1 (en) | Passivation of a zeolite catalyst in a fluidized bed | |
CN106140268B (en) | Preparing propylene by methanol transformation total silicon molecule sieve catalyst and preparation method thereof | |
CN116571270B (en) | A SSZ-13 zeolite catalyst and its preparation method and application | |
CN103787367B (en) | Preparation method of binder-free ZSM-5 molecular sieve forming product | |
CN104107720A (en) | Metal element-containing compound molecular sieve catalyst, and preparation method and application thereof | |
WO2021129760A1 (en) | Dlm-1 molecular sieve, manufacturing method therefor, and use thereof | |
CN104557397B (en) | Method for producing propylene from n-butene | |
CN107999141A (en) | The hydrated alumina composition and catalyst and preparation method and hydroisomerization process of the molecular sieve of type containing ZSM-48 | |
CN112007625B (en) | Alpha-alumina carrier, preparation method, silver catalyst and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Free format text: FORMER OWNER: FUDAN UNIVERSITY Effective date: 20130917 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20130917 Address after: 100070 No. 20, No. 12, 188 West Fourth Ring Road, Fengtai District, Beijing Patentee after: Datang International Chemical Technology Institute Co., Ltd. Address before: 100070 No. 20, No. 12, 188 West Fourth Ring Road, Fengtai District, Beijing Patentee before: Datang International Chemical Technology Institute Co., Ltd. Patentee before: Fudan University |