CN101627297B - 测量凝集参数 - Google Patents
测量凝集参数 Download PDFInfo
- Publication number
- CN101627297B CN101627297B CN200780047032.5A CN200780047032A CN101627297B CN 101627297 B CN101627297 B CN 101627297B CN 200780047032 A CN200780047032 A CN 200780047032A CN 101627297 B CN101627297 B CN 101627297B
- Authority
- CN
- China
- Prior art keywords
- particle
- magnetic
- aggegation
- frequency
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0266—Investigating particle size or size distribution with electrical classification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/74—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
- G01N27/745—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids for detecting magnetic beads used in biochemical assays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54326—Magnetic particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
- G01R33/1269—Measuring magnetic properties of articles or specimens of solids or fluids of molecules labeled with magnetic beads
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Electrochemistry (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
描述了用来测量在反应腔中进行的采用一种或者多种磁性粒子的目标物-诱导的凝集分析中的凝集的方法和系统。在所述分析中提供能够结合到目标物(5)的磁性粒子(3,15)后,实施产生包括至少一种磁性粒子的凝集的粒子(100)的凝集过程。该方法还进一步包括对所述分析施加交变磁场(HAC),并测量所述HAC对未附着到任何表面的一种或者多种磁性粒子(3,15)的影响。所测量的影响指示一个或者多个凝集参数。
Description
技术领域
本发明涉及生物,化学或者生化传感领域。尤其地,本发明涉及在目标物一诱导的凝集分析(target-induced agglutination assay)中定量测量磁性标记物(magnetic labels)的一个或多个凝集参数的方法。本发明还涉及相应的试剂盒和相应的设备。
背景技术
近年来,人们在用于测量其中存在粒子的大量的混合物或者溶液中目标物的存在与否以及可能的话浓度水平的测量技术方面付出了很多努力。通常希望能够测量相对低浓度的特定有机化合物。在医药领域,例如,确定给定种类的分子(通常在溶液中)的浓度非常有用,这种分子或者天然存在于例如血液或者尿液的生理流体中,或者被引入生命系统中,如药物。
一种用来检测感兴趣的特定化合物的存在的主要方法是免疫测定技术(immunoassay technique),其中对给定分子物种(通常称为配体)的检测是通过利用特异地结合到所述感兴趣的配体的通常被称作反配体(antiligand)或者受体的第二分子物种实现的。这种感兴趣的配体的存在与否是通过例如光学方法通过直接地或间接地测量或者推断配体与反配体结合的程度来检测的。配体可以被认为是目标物或者分析物。
有很多种免疫测定的方式。所有都包括结合但不是所有都包括凝集。在非凝集的情况中,一个标记物通常附着到一个目标物。凝集分析快速并且易于检测,当需要方便地测量和需要立即得到结果时,例如在野外,通常使用它们。
基于大粒子的光学检测的定量测定只是中等灵敏的,因为其依赖于浊度的测量(通过样品投射光)或者散射测浊法(通过样品散射光),而这两者都要受到来自微粒物质的背景干扰的影响。因此,光学方法不适合用于未加工的样品如含有细胞的全血或者可能含有食物粒子的唾液。
相反地,由磁铁矿和惰性基质物质制成的磁性粒子长久以来已经应用于生化领域。它们的尺寸是直径从几个纳米到几个微米,并且可含有15%到100%的磁铁矿。它们经常被描述为超顺磁性粒子,或者,在尺寸比较大的情况下,描述为磁珠。通常的方法是用一些生物活性物质覆盖这些粒子的表面,其将使它们与感兴趣的特定的微观对象或者粒子如蛋白质、病毒、细胞或者DNA碎片强烈结合。这些磁性粒子可以被看作是“把手”,通过它们,利用通常由强永磁体提供的磁力梯度,可移动或者固定所述对象。
以前,这种磁性粒子主要应用于固定结合的对象,但是在最近的一些工作中,这种粒子被用来作为检测结合的络合物存在与否的标签(tags)。以前,对结合的络合物的检测以及定量是通过结合到感兴趣的络合物的放射性的、荧光、或者磷光分子来实现的。然而,这种现有技术的标签化技术存在着很多众所周知的缺点。
另一方面,因为从磁性粒子的微小体积中发出的信号非常的小,自然,研究者们已经尝试制造基于超导量子干涉仪(SQUID)的检测器,其众所周知在很多应用中是最灵敏的磁场检测器。超导量子干涉仪是很灵敏的检测设备,但是它尤其受到以下缺点的困扰,那就是该仪器必须冷却到大约深冷温度。
最近,本申请人已经公开了改良的磁性粒子传感器设备,特别是在国际专利申请WO2005/010542和WO2005/010543中,两者在此作为参考文献加以整体引述。这些磁性粒子传感器设备具有可以在大约室温下实施测量同时具有足够高的信噪比(SNR)的优点。
US6437563(授予Simmonds等人和Quantum Design,Inc.)最近公开了一种设备,用来定量测量磁性粒子与分析物的结合,将要测量分析物的数量或其他特性。所述磁性粒子与所要测定的分析物络合并在几百kHz的磁场内被激发。从而磁性粒子的磁化作用使其在激发频率下以偶极子的方式震荡,产生自己的场。这些场被诱导耦合至至少一个传感器,如以磁场梯度仪结构制作的传感线圈。传感线圈输出的信号被适当放大并处理用于提供关于磁性粒子的结合或者凝聚的有用输出指示。然而,在千赫兹震荡范围工作可能引起不必要的噪声影响,并且额外地移动的,特别是旋转的样品架的应用使设计变得复杂,因为当利用旋转对测量和激发去耦时,旋转样品架必须相对精确。另外,旋转样品架不能容易地便于在磁测量即将开始之前,期间,或在磁测量结束之后立刻处理样品。此外,Simmonds等所用的线圈技术不是很灵敏,因此检测需要相对大量的磁性材料,其因此增加对更大的样品体积的需要。最后,Simmonds等只测量了簇和单个粒子形式的磁性材料的总数量,实际上它们不能区分这两种形式,使得其不能用于测量凝集参数。
同样众所周知,磁性粒子可以在高达一定频率的旋转磁场中旋转,这个频率就是所谓的临界滑差频率(critical slipping frequency)。大于这个临界滑差频率,磁性粒子的物理旋转不能跟随所施加的磁场的旋转。
虽然有很多测量凝集参数的技术存在,但是仍然需要更有效的和/或更可靠的和/或更灵敏的方法。例如,在凝集分析中在很多非成簇物种的背景中测量低数量的成簇物种,和/或在很多成簇物种的背景中测量低数量的非成簇物种,都是挑战。
发明内容
本发明的目的是提供用于测量凝集参数的好的方法和系统。根据本发明的具体实施方式的优点是其单独地或以任何组合缓解,减轻或者消除现有技术中存在的如上所述的一个或多个缺点。上述目的通过本发明所述的方法和设备来实现。
本发明提供了一种在于反应腔内进行的目标物-诱导的凝集分析中测量一种或者多种粒子的凝集的方法,这种方法包括步骤:在分析物中提供磁性粒子,所述的磁性粒子能够结合到目标物,实施凝集过程,产生凝集的粒子,所述凝集的粒子包括至少一个所述磁性粒子。该方法进一步包括对反应腔中的分析施加交变磁场(HAC),并且利用所述至少一个传感器元件测量该HAC对没有附着到反应腔的任何表面的一种或者多种粒子的影响,其中所测量的影响指示一个或者多个凝集参数。根据本发明的具体实施方式的优点是可以获得高的处理量。根据本发明的具体实施方式的一个优点是可以获得高灵敏度。根据本发明的具体实施方式的一个优点是可以最小化非特异性的簇形成。所述分析物,或者其中可以保持所述分析物的反应腔可以在传感器传感器元件的附近。磁性粒子可以直接通过传感方法被测量,或者所述粒子可以在测量前被进一步处理。进一步处理的一个例子是加入材料,或者粒子的(生物)化学或物理性质被改变以利于测量。
所述方法进一步可以包括在传感器表面附近浓缩磁性粒子的步骤。所述浓缩可以通过将磁性粒子以链的形式吸引到传感器表面来实现。可以通过施加旋转场和通过例如光学成像来识别旋转的簇来对其实施测量。
所述方法进一步可以包括根据凝集的粒子的尺寸来实施分离过程的步骤。根据本发明的具体实施方式的一个优点是可以针对不同尺寸分别对粒子进行表征,从而减轻或者避免簇尺寸对分析的影响,并因此提供改进的准确度。根据本发明的具体实施方式的一个优点是可以设置很多传感器元件,每个元件都具有在所述分析物附近的传感器表面,来提供来自根据本发明实施方式的分离过程的定量凝集参数。特别地,关于所述凝集分析可以设置很多的传感器,用以测量由分离过程造成的凝集的粒子的不同尺寸的级分。
所述交变磁场HAC具有比单个磁性粒子的临界滑差频率高得多的频率以引起磁性粒子的物理旋转。该频率可以是该临界滑差频率的至少10倍、100倍或者1000倍。可选择地,分析可以在该临界滑差频率下或者接近该临界滑差频率进行。根据本发明的具体实施方式的一个优点是对于所施加的磁场该方法可以在宽频率范围内使用。
测量影响可以包括测量磁信号,光信号,或者电信号,或者是它们的结合中的至少之一。光信号如发光信号的测量可以是利用光学技术例如散射,渐逝场技术,宽视野成像显微技术,共焦激光扫描显微技术等测量粒子的光学特性。所述测量也可以是例如测量例如磁-光信号或者电-磁信号。
所述分析物可以位于所述至少一个传感器元件的表面附近。
产生的交变磁场HAC的方向可以是基本上平行于所述至少一个传感器元件的表面。基本平行从而可以是与传感器元件表面成0°到20°的角,例如与传感器元件表面成0°到10°的角。
磁传感器可以是任何基于检测粒子的磁性质的合适的传感器,例如线圈,导线(wire),磁阻传感器(magneto-resistive sensor),巨磁阻传感器,磁致伸缩传感器,霍尔传感器,平面霍尔传感器,磁通门传感器,SQUD,磁共振传感器等。
所述测量可以在距传感器元件表面小于10微米,优选5微米,更优选1微米的区域进行。所述分离过程可以在所述分析的基本上有限的体积内进行。有利地,利用传感器元件测量HAC对一中或者多中磁性标记物的磁性质的影响可在传感器元件附近的空间区域进行。因此,本发明可以不同于表面上的测量(on-surface measurement),但是也可以应用于表面上的测量。更特别地,测量可以在所述传感器元件附近10微米,特别是5微米,更特别是1微米的空间区域内进行。甚至可以使用在传感器表面附近200微米,特别是100微米,更特别是50微米的范围。
可以通过作用于所述分析中的磁性粒子的至少一部分上的磁力来实现所述分离过程,所述的磁力来源于非均匀的磁分离场(HSEP)。
用来实施分离作用的磁力(HSEP)可以与所述AC磁场是不同的。根据本发明的具体实施方式的一个优点是这有利于更特定的分离过程。
凝集加强磁场(HENH)可以用来加强凝集过程。凝集加强磁场(HENH)可以在磁分离场(HSEP)之前施加和/或与磁分离场(HSEP)同时施加。
交变磁场HAC的影响可以随时间被测量。交变磁场HAC对一种或者多种磁性粒子的影响可以衍生为终点测量,以及连续地或者间断地通过记录作为时间的函数的信号,从而获得时间上的测量。时间间隔可以从一秒到一个小时,一般是1到10分钟,特别是1到5分钟。当随时间测量HAC对一种或多种粒子的影响时,可以例如获得凝集的粒子的尺寸分布的指示,或者可获得凝集过程的动力学的指示。
该方法可以进一步包括测定凝集的粒子的尺寸分布的步骤。
该方法可以包括使用多个传感器测量得自所述分离的凝集的粒子的不同尺寸的级分。
所述分析可以是生化分析。
本发明还涉及试剂盒,用于根据上述方法在目标物一诱导的凝集分析中定量测量粒子的一个或多个凝集参数,其中该试剂盒包括至少一种能够与目标物结合的磁性粒子。
本发明还涉及在目标物-诱导的凝集分析中测量一个或多个凝集参数的设备,该设备包括实施形成包括至少一个磁性粒子的凝集的粒子的凝集过程的凝集器装置,该凝集的粒子不附着于任何表面,至少一个传感器元件和对所述分析施加AC磁场的磁场发生装置。传感器元件可以设置为用来在未附着的凝集的粒子上测量AC磁场对所述一种或多种磁性粒子的影响,所测量的影响指示一个或多个凝集参数。该AC磁场的影响可以是对一种或者多种磁性粒子的磁性质的影响。该设备可以具有非功能化的表面或者非分析特异性的功能化表面。
该设备进一步可包括浓缩和/或分离装置,用来实施传感器表面附近的粒子浓缩过程或者根据凝集的粒子的尺寸进行的分离过程。
该设备进一步可包括控制装置,用来控制所产生的交变磁场的频率显著高于单个磁性粒子的临界滑差频率,从而引起磁性粒子的物理旋转。所述频率最小是该临界滑差频率的10倍。
所述至少一个传感器元件可以是任何光学传感器元件、磁性传感器元件例如基于霍尔探针或者磁阻传感器、声学传感器元件、电传感器元件等。
本发明特别地,但并不是排它地,有利于得到这样的方法,该方法用于以比迄今为止所公开的方法相比更加定量的方式研究包括一种或多种磁性标记物或者磁性粒子的粒子的凝集。特别地,这得以实现是由于所使用的低噪声磁性测量技术,和/或在对一种或多种磁性粒子的特性的测量之前和/或在测量过程中对凝集的粒子的改进的分离,其提供了所需要的凝集参数的改进的灵敏性。关于灵敏性就可测量粒子的数量而言,已经实施的试验已经证明本发明与现有技术的设备相比具有最少超过一个数量级的灵敏度。
作为另一个优点,所述方法有利于测量未结合到表面但是存在于传感器元件附近例如传感器表面或其中可以容纳所述凝集分析的反应腔的任何表面附近的凝集的粒子的性质。粒子不结合到任何表面可以是特别有好处的,因为复杂的表面结构化(如表面图案化或者表面改性)可能是多余的,因此其会使传感设备例如磁性传感设备的制造明显地简化。
凝集参数可包括,但是不局限于,形成的凝集物的大小,包括超过一个单个磁粒子的凝集物形式的磁性材料的总量,凝集物的尺寸分布,形成凝集物的单个粒子的磁粒子数量分布,未凝集单个磁性粒子与凝集的单个粒子的比率,等等。
本发明所述的方法可用于多种类型的生化分析,例如结合/未结合分析,夹心分析,竞争分析,取代分析,酶分析,扩增分析(amplification assay)等等。
本发明所述方法可适于传感器多路技术(即不同的传感器和传感器表面的平行使用),标记物多路技术(即不同种类的标记物的平行使用)和腔多路技术(即不同反应腔的平行使用)。本发明所述的方法可用作用于小样品体积的快速,可靠,并且易于使用的现场(point-of-care)生化传感器,但是也可以应用于实验室设备。
根据本发明的具体实施方式的一个优点是试验中盛装样品的反应腔可以是将用于紧凑型读取器(compact reader)的一次性用品,该读取器包括一个或者多个磁场发生装置和一个或多个检测或者测量装置。此外,本发明所述方法可用于中央实验室的自动化高处理量试验。在这种情况下,反应腔可以是例如孔板或者小池(cuvette)等,适于自动化设备使用。
根据本发明的具体实施方式的一个优点是根据大小所做的分离过程,如果有这个过程的话,不需要在另外的样品容器或者不同的处理场所进行,而是可以在实施测量的场所进行。
根据本发明的具体实施方式的一个优点是在给定环境情况下所施加的交变磁场可以具有比给定种类的磁性粒子的临界滑差频率高的频率,如这里进一步说明的那样。临界滑差频率的值可以通过本领域人员众所周知的方法或者通过例如本文记载的方法获得。
根据本发明的具体实施方式的一个优点是实施该凝集分析所用的试剂包括磁性标记物可以在设备中以干燥形式存在。这些干燥的试剂任何可以通过添加流体样品来溶解和分散。这有利于设备的容易使用和储存。
随附的独立权利要求和从属权利要求记载了本发明的特定的和优选的方面。从属权利要求的特征可以合适地和独立权利要求的特征或者其他从属权利要求的特征组合,而不仅仅如权利要求中明确示出的那样。
与附图结合,本发明的上述的以及其他的特征,特点和优点通过如下的具体描述将变得显而易见,附图作为例子示出了本发明的基本原理。这些描述只是为了举例而给出,并不限制本发明的范围。下文中所引用的附图标记请参阅本文的附图。
附图说明
图1,2,和3是本发明的具体实施方式中可以使用的凝集分析的示意性反应,
图4是使用磁性传感器的传感器设备的截面图,其中没有磁性粒子存在,是根据本发明的一个实施方式的图示,
图5是使用磁性传感器的传感器设备的截面图,其中有磁性粒子存在,是根据本发明的一个实施方式的图示,
图6,7和8是本发明的传感器设备的三个实施方案的截面图,使用在与磁性传感器平面基本垂直的方向具有改进的分辨率的磁性传感器,
图9是根据本发明的一个实施方式的分离过程的示意图示,
图10是根据本发明的实施方式的分离过程的第一特定实施方式,
图11是根据本发明的实施方式的分离过程的第二特定实施方式,
图12是在可以应用于本发明的实施方式中的凝集动力学研究中测得的GMR信号,
图13是可以应用于本发明的实施方式中的在本发明的一个实施方式中取决于时间使用的不同的磁场的示意图示,
图14是根据本发明的一个实施方式的方法的流程图,
图15也是根据本发明的一个实施方式的分离过程的一个例子,其中H1和H2代表设置在凝集分析的相对侧的两个磁场产生装置,
图16a和图16b示出可用于根据本发明的具体实施方式的HAC的频率和振幅对永磁粒子的旋转速度所产生的影响,
图17a和图16b示出可用于根据本发明的具体实施方式的HAC的频率和振幅对非永磁粒子的旋转速度所产生的影响,
图18示出可用于根据本发明的具体实施方式的HAC的频率对磁性粒子的双珠簇的旋转速度所产生的影响,
图19是可以用于根据本发明的实施方式中的凝集分析的一个例子的示意图示,其中在单个珠存在的情况下对凝集进行测定。
在不同的附图中,相同的附图标记是指相同的或者类似的要素。
具体实施方式
本发明将关于特定具体实施方式以及参考特定的附图进行描述,但是本发明并不局限于此,而是只由权利要求决定。权利要求书中的任何附图标记都不得解释为对保护范围的限制。所描述的附图只是示意性的并不是限制性的。在附图中,为了目的目的,有些元件的尺寸可以被夸大而没有按比例绘制。
当在本申请的说明书和权利要求书中使用术语“包括(包含,含有)”时,不排除其它的要素或者步骤。当指代单数名词而使用定冠词或者不定冠词例如“a”,“an”或者“the”时,在没有特殊说明的情况下这也包括多个该名词。
进一步地,本申请中说明书和权利要求书中的术语第一,第二,第三等等,是用来区分类似的要素,而并不一定是用来描述时间,空间,排序或其他任何方式的顺序。可以理解,如此使用的术语在合适的环境下是可以互换的,本文描述的本发明中的实施方式可以以不同于本文描述的或者说明的顺序之外的其他顺序实施。
另外,在说明书和权利要求书中的术语“底部”,“顶部”等是用于描述的目的,并不一定是用于描述相对位置。可以理解,如此使用的术语在合适的环境下是可以互换的,本文描述的本发明中的实施方式能够以不同于本文描述的或说明的其他取向操作。
在整个说明书中提及“一个实施方式”或者“实施方式”是指关于所述实施方式描述的特定的特征,结构或者特性被包括在本发明的至少一个实施方式中。因此说明书中各个位置出现短语“在一个实施方式中”或者“在实施方式中”并不一定都是指同一个实施方式,但是也有可能是同一个实施方式。此外,所述特定特征,结构或者特性可以在一个或者多个实施方式中以任意合适的方式结合,如从本公开的内容本领域人员将会显而易见认识到的那样。
同样地,应该理解的是,在本发明的示例性实施方式的描述中,本发明中不同的特征有时一起组合在单一实施方式,附图,或者其描述中,目的是精简本公开并且有助于理解不同的发明方面中的一个或者多个。然而,这种公开方法,不能被解释为反应这样的意图:要求保护的发明需要比在每个权利要求中清楚记载的特征更多的特征。相反,如后面的权利要求中反映出的那样,创造性方面在于比单个前述公开的实施方式的全部特征更少的特征。因此,具体描述之后的权利要求被特意引入该详细描述中,每一个权利要求都依赖于其自己而作为本发明的单独的实施方式。
进一步地,虽然本说明书中的一些实施方式包括另外的实施方式中的一些特征而没有包括其它的特征,但是不同实施方式的特征的结合也意味着在本发明的范围之内,并形成不同的实施方式,如本领域技术人员将理解的那样。例如,在随后的权利要求中,任何要求保护的实施方式都可以以任意结合使用。
进一步地,一些实施方式在本文中被描述成可以通过计算机系统的处理器或者通过实施此功能的其他装置实施的方法或者方法要素的结合。因此,具有用于实现这种方法或者方法要素的必要指导的处理器形成用于实现该方法或者方法要素的装置。进一步地,本文描述的设备实施方式中的要素是为了实现本发明目的而用于实施由该要素实现的功能的装置的例子。
在本文提供的说明中,大量的具体细节被记载。然而,应该理解本发明中的实施方式可不需要这些具体的细节就能实施。在其他的情况中,众所周知的方法,结构和技术并没有仔细地示出,以防增加对所述说明理解的困难。
术语“发生装置”以及“发生器”是可以互换的。同样,术语“控制设备”和“控制器”也可以互换。同样,术语“传感器”和“传感器元件”也可以互换。
本文中使用的“时间的函数(in function of time)”和“随时间(over time)”是指以连续的和不连续的方式。在不连续的方式中,可以是预订的间隔,规律的隔开或者不规律的隔开。
为本发明目的,本发明中使用的术语“凝集”或者“成簇”,指的是通过最少两个分离的元素的结合形成块,群或者簇。术语“凝集”和“成簇”,以及还有术语“凝集的”和“成簇的”,在这种意义上是可以互换的。特别地,“凝集”涉及元素间由于特定的相互作用形成这样的块或者群。
基于本发明的目的,术语“磁性粒子”将要被广范地进行解释,从而包括任何种类的磁性粒子,如铁磁性的,顺磁性的,超顺磁性的等等,以及包括任何形式的粒子,如磁球,磁棒,磁性粒子串,或者复合粒子,如包含磁性物质和光学活性物质的粒子,或者在非磁基质中的磁性物质。任选地,磁性的或者可磁化的对象可以是铁磁粒子,其含有具有快磁驰豫时间的小铁磁颗粒,并且其因为粒子本身的磁特性而具有低聚集风险。本发明将通过是磁性粒子的磁性或者可磁化对象来描述。
为了本发明的目的而在本文中使用的术语“目标物”用来指在根据本发明的方法中要检测和/或定量的元素,即根据本发明的实施方式在聚集过程中在样品中起到诱导作用的元素。说明书中提供了本申请设想的目标物分子例子的非限制性列表。
这里使用的术语“反应腔”用来指可以作为容纳所述反应或者凝集分析的容器的任何产品。所述容器任选可以从用于实施本发明方法的仪器或者设备分离,即反应腔可以是仪器或者设备的整体部分,以及可以是可以放在仪器上面、里边或者附近并且再被移除的独立物品。
这里使用的术语“未附着”指的是这样的情况,其中物品与规定的其它物品或者表面没有任何形式的附着,连接或者相互作用,特别是其中物品没有任何形式的物品特异性的附着或者相互作用,例如没有被特定的化学或者生化键合或者相互作用附着。
在第一方面,本发明提供了一种在目标物-诱导的凝集分析中测量包括一种或者多种磁性粒子的凝集的方法。这样的分析可以在反应腔内进行。该方法包括在分析物中提供磁性粒子,其中磁性粒子能够与目标物结合。这种提供可以包括使分析物与磁性粒子互相接触。磁性粒子可以从货架得到或者可以已经置于设备中。它们在设备中可以以任何合适的形式存在。样品可以通过任何合适的方法得到,并以任何合适的方法引入反应腔,例如通过注射器,通过填充空腔,等等。根据本发明的实施方式的方法可以应用于多种分析类型,例如结合/未结合分析,夹心分析,竞争分析,取代分析,酶分析等等。该过程可涉及多种元素,包括不同种类的分子和生物实体(biological entities),例如DNA,RNA,蛋白质,小分子。除了分子分析,也可以检测或探查更大的部分,如细胞,病毒或者细胞或者病毒的碎片,组织或者组织提取物等等。分子目标物经常决定如细胞,病毒,细胞或者病毒或者细菌的碎片,组织提取物等更大的部分的浓度和/或存在。磁性粒子可以具有小的尺寸,例如是纳米粒子。纳米粒子意味着粒子最少一个尺寸在0.1nm到10000nm,优选在3nm到3000nm,更优选10nm到1000nm。磁性粒子可以由于施加的磁场而获得磁矩(如它们可以是顺磁性的)或者它们可以具有永久磁矩。磁性粒子可以是复合物,例如由一个或者多个小磁性粒子在非磁材料中或者与非磁材料结合构成。只要粒子响应于交变磁场的频率产生非零的响应,即当它们产生磁化率或者导磁率,它们就能被使用。可以使用不同形状的磁性粒子,例如球状,棒状,双珠簇。磁性粒子可以显示其它的特性,如光学特性,如荧光性。磁性粒子的这些不同的特性可以用于分析中的多路化。可产生标记物多路化,通过在同一类传感器对不同粒子使用可区分的特性,例如不同的磁性材料产生磁性传感器元件可区分的信号,或者通过使用选自不同传感器种类的特性,例如使用磁和光标记物的结合,其将各自分别被磁性传感器元件和光学传感器元件选择性测量。
所述方法进一步包括使用导致凝集的粒子的磁性粒子来对分析实施凝集过程。凝集的粒子包括至少一个磁性粒子。簇形成或者凝集可以作为样品中目标物存在的度量,其中目标物诱导凝集。在本发明的实施方式中实施磁性粒子和分析粒子的凝集。为了易于关联传感器信号与目标物存在,二粒子成簇可能比多粒子簇更加有利。为了有利于二粒子簇而不是多粒子簇,例如可以使用远远超过最终的目标物浓度的粒子浓缩或者粒子上的捕获分子的浓缩。而且,可以使用以原理上不允许形成超过两个单元的簇的生物化学。例如,使用夹心式分析模式,在一侧是具有特定抗体的磁性粒子,在另一侧是每个标记物只具有一个抗体的荧光标记物。
根据本发明的具体实施方式,凝集在本体溶液(bulk solution)中发生,不需要与表面结合。这对于分析的简化,分析速度,加工的简化以及降低成本都可能是有利的。
特别是在快速分析中以及在低目标物浓度的分析中,需要检测很低数量的事件(events)。根据本发明的实施方式,在很多非成簇物种的背景中快速而且准确地测量低数量的簇,和/或在高数量的簇的背景中测量低数量的非成簇物种变得可能。
所述方法可任选包括,在实施所述凝集过程之后和在测量之前,施加浓缩和/或分离过程。
分离过程可以根据凝集的粒子的尺寸来实施。可以通过施加用于分离粒子的磁场来实施分离过程,例如非均匀的磁场。分离过程的其它例子将在下文中详述。可选择地,也可以不实施分离过程。
特别地,浓缩过程可以具有在传感器表面附近浓缩待测量的粒子的作用。这个特定实施方式可具有提高检测所述粒子的方法的灵敏性的优点。
所述方法还包括对分析施加交变(AC)磁场(HAC)。所述分析因此可在用来测量影响的至少一个传感器元件附近。这样的交变磁场可以通过任意合适的方式产生,如使用导线,线圈,磁性物质,电磁铁等等。其可以是集成(on-chip)产生的或非集成(off-chip)产生的。集成指的是发生器集成在设备中,而非集成指的是发生器在设备外面或者独立于设备。在根据本发明的这个方面的实施方式中,测量目标物-诱导的凝集的方法利用了磁性粒子可以在交变测场中旋转这一发现。对于所施加的磁场的频率,磁性粒子在这样的旋转磁场中旋转直到处于特定频率的最大值,所谓的临界滑差频率。在临界滑差频率之上,磁性粒子的物理旋转不能跟随所施加的磁场的旋转。如将进一步说明的那样,已经出人意料地发现,对于明显高于临界滑差频率的频率,磁性粒子的物理旋转再次增加。换句话说,惊讶地发现明显高于临界滑差频率的频率也可以用来测定凝集参数。施加的交变磁场HAC的频率例如可以是临界滑差频率的10倍。HAC频率可以最小是临界滑差频率的10倍,或者最少100倍,或者最少1000倍。临界滑差频率典型地为几个Hz,而高于几KHz直至几MHz,由尼尔驰豫(neel relaxation)引起的旋转,也就是在显著更高的旋转磁场频率的旋转,开始占主导地位。为该实施方案的目的,施加的HAC频率在大约10Hz到大约10MHz,更特别地在大约100Hz到大约1MHz。实际需要的频率取决于所用的磁性粒子的大小/类型。为了获得最大的信号,关于施加的交变场的测量的效果,使用与第二最大值接近的频率是有利的(如图18所示)。对于在图18所示的试验中所用的珠来说,理想的频率在600kHz左右。取决于所述分析以及所用粒子的类型,因为尼尔驰豫时间强烈地依赖于例如所用磁性粒子的颗粒尺寸,所以该值可能会明显地更低/更高。临界滑差速度可以通过研究作为所施加磁场的旋转频率的函数的粒子旋转,利用光学方式或者磁方式进行测量。在本发明的框架中,对于临界滑差频率的测量有两种可选择的方法。第一选择是在凝集分析之前表征一批粒子,这样在珠被应用到实施分析的实际设备中之前或者在珠被应用于根据本发明的方法之前就已经知道临界滑差频率。可选择地,在其中也实施凝集分析的设备中测定临界滑差频率。可以通过在从0Hz直到远高于临界滑差频率的频率扫描场频率的同时,通过光学显微镜来观察旋转珠,而测定临界滑差频率。也可以通过在扫描施加的场的频率的同时,通过使用测量旋转珠的偶极场的磁场传感器来测定临界滑差频率。在所施加的场频率下,输出信号的同步检测给出传感器输出。一旦所述珠的永久磁矩不能跟随所施加的场(临界滑差频率),在该驱动频率的信号显示下降。
所施加的交变磁场HAC进行操作的频率因此可比临界滑差频率高。在较高的频率下工作可能比在临界滑差频率工作更加有利。在比临界滑差频率高得多的频率操作HAC会带来数个优点。高频率激发将磁性粒子之间的偶极-偶极相互作用最小化,这提高了传感器再现性。由于使用调制技信噪比和检测灵敏度很高。所产生的施加到分析例如在传感器11附近的交变磁场,使得能够对诱导所述一种或者多种磁性粒子15的磁特性的影响进行测定。这样的磁特性可以是被交变磁场影响的特性。
所述方法也包括使用至少一个传感器元件来测量HAC对一种或者多种未附着到反应腔的任何表面的磁性粒子的影响,其中测量的影响指示一个或者多个凝集参数。交变磁场可以作用于一种或者多种磁性粒子的磁特性。指示凝集的HAC影响的测量关于样品中是否有目标物存在提供信息。这种信息可以是定性的和定量的。对凝集的定性测量指示了样品中存在的一种或者多种目标物的本性或者身份。对凝集的定量测量指示了样品中一种或者多种目标物存在的数量。对HAC影响的测量可以是光学测量,声学测量,磁测量,电测量等等来测量这种影响,取决于这种影响的物理特性。例如,光学测量可以基于对渐逝辐射的检测,荧光辐射的检测,磷光的检测,散射光的检测等等。所测量的影响可以与磁性粒子的数量关联,并且如果实施了分离过程的话,粒子的数量可以转化成尺寸分布。
通过图示,根据本发明的在目标物-诱导的凝集分析中测量粒子的一个或者多个凝集参数的方法的流程图示于图14中,示出了该方法的标准的和可选择的步骤,但本发明不受该图的限制。因此,该方法包括步骤S1,S2,S4和S5,任选地包括步骤S3。步骤S1相当于提供磁性标记物3,15到分析中,所述的磁性标记物能够结合到目标物5。步骤2相当于实施产生包括一种或者多种磁性粒子的凝集的粒子100的凝集过程。任选的步骤S3相当于实施浓缩和/或分离过程。分离过程可以依赖于凝集的粒子的大小,例如通过施加分离力FSEP。步骤S4包括对分析物施加交变磁场HAC,其中分析物,并因而在测量过程中保持分析物的反应腔,在至少一个传感器元件11附近,这样诱导的影响将可以被该至少一个传感器元件11测量。步骤S5包括使用传感器元件测量HAC对没有结合到反应腔的任何表面的一种或者多种磁性际记物或者粒子3,15的影响,其中该测量的HAC的影响指示一个或者多个凝集参数。
通过图示,本发明并不限制于此,更详细地描述了一些粒子以及本发明方法的一些标准的或者任选的步骤,本发明并不限制与此。
在第一例子中,示出了凝集分析的一些示意性反应,其可以用于本发明的实施方式中。图1描绘了凝集分析,其中磁性粒子或者标记物15通过由被分别结合到粒子15和15b的结合部分2和2b结合的目标物5组成的夹心结构,变得结合到磁性粒子15b。当目标物有至少两个结合位置时可以使用这种模式,典型地如具有多个抗体结合部位的蛋白质或者肽抗原,核酸(DNA,RNA)和具有多个表位的抗体等,但是潜在地,所述目标物可以相对很小,例如半抗原,小分子药物,荷尔蒙,代谢物等。磁性粒子15通过由被分别结合到粒子15和15b的部分2和2b结合的目标物5组成的夹心结构,变得结合到磁性粒子15b,导致形成凝集的粒子100。两个结合部位可以是可区分的,在这种情况下结合部分2和2b是不同的。可选择地,两个结合部位是相同的,这时2和2b是相同的。结合部分2和2b可以直接附着到磁性粒子或者通过一些中间结合基团,如蛋白质G,抗生蛋白链菌素,生物素,蛋白质A,IgG抗体等连接,本发明并不局限于此。一结合部分2和2b中之一或者两者可以已经附着于粒子而存在,或者独立于粒子,这种情况下所述结合部分和粒子两者在它们上必须具有允许粒子结合到结合部分2和2b的中间结合部分。因此,本发明中磁性粒子15与目标物5的结合可以是间接的。对于很小而且只有一个结合位置的目标物5(如小分子,半抗原,药物,荷尔蒙和代谢物),可选择地可以使用抑制或者竞争模式。
图2描述了这样的分析,其中磁性粒子3通过附着到3的部分4与粒子3b聚集,其可以通过结合到粒子3b的结合部分4b结合。部分4可以是目标物同系物,当加入目标物时,它与部分4b结合并抑制粒子的聚集。在聚集开始之前加入目标物是有利的,因为所述聚集可能是不可逆的或者聚集物难于分散。这可以通过在空间上分开部分4和4b并使目标物首先与4b反应来实现。与夹心模式类似,结合部分4b可以是独立于粒子的,并且在反应中通过中间结合部分而结合。所述结合部分被专门设计用来识别目标物并且可以是例如抗体,核酸,适体(aptamers),肽,蛋白质,和凝集素的分子。所述成分可以以任何顺序结合,虽然优选为了驱动目的在曝露于目标物之前已经将结合部分与目标物结合。粒子最大可以到2微米,优选粒子小于1微米,因为它们具有更大的表面积对体积比,其将引起更高的动态范围。凝集来源于多个粒子相互之间的结合,并形成凝集的粒子100。
图3描述了一种分析,其中部分4可以是目标物同系物,并且当加入目标物5时,它结合到部分4b并抑制粒子的聚集。从而,应该理解,在本发明的范围中,凝集过程有利地包括其中研究凝集的抑制的过程。
在第二特定组的例子中,说明了使用不同的测量技术对影响进行测量,但是本发明不局限于此。在一个例子中,辐射标记物,例如发光或者荧光标记物,被嵌入或者结合到所使用的磁性粒子。例如,抗原可以与荧光磁性粒子偶联或者与荧光和非荧光磁性粒子两者偶联。可以使用辐照源来激发荧光磁性粒子,例如通过允许对这种标记物进行光学检测的聚焦激光束或者渐逝场激发。检测可以通过任何合适的方式进行,如使用共焦检测,或者使用高NA透镜。使用荧光磁性粒子使得能够利用不同的荧光团实现多路化,这些不同的荧光团在激发和/或发射波长上是不同的。作为实施方式的另一个例子,可以利用荧光标记物(最初可以是自由状态,或者可以嵌入非磁性粒子或者结合在非磁性粒子上)与磁性粒子标记物结合,通过光学方法实现检测。在这个例子中,对凝集的测量可以不基于磁性粒子的簇形成,而是基于磁性粒子荧光的增加。例如,用荧光或者磁性粒子标记物标记的抗原,被混合,并其暴露于包含抗原特异性抗体的样品将导致荧光标记物与磁性粒子标记物结合。对于这个实施方式,磁性粒子可被驱使到非结合性传感器表面,并且可以进行荧光标记物的表面特异性检测。可以使用辐射源实现荧光团的表面特异性激发,例如使用聚焦激光束或者通过渐逝场。可以通过共焦检测(表面敏感检测)或者使用高NA光收集透镜(非表面敏感的)来实施检测。通过使用这种方法,来自过量标记物和样品流体自身的背景荧光可被降低或甚至减到最小。使用不同荧光标记物,可以容易地想象基于粒子的差异化标记的分析多路化。也可以通过表面增强共振拉曼光谱(SERRS)来实施光学检测。SERRS是一种通过被光学标记到胶体颗粒例如银颗粒上的分子或者物种的吸收来检测分子或者物种的超灵敏方法。光学标记物是合适的染料分子(例如若丹明),当胶体颗粒以可控制的方式成簇时,其引起胞质团(plasmon)与染料共振。已知存在具有金属涂层的磁性粒子。如果,例如抗原(目标物如抗体结合到其上)与这种银包覆的磁性粒子结合,同时抗原也与合适的染料结合,则抗原-特异性的抗体将导致染料与银包覆的磁性粒子的结合。磁驱动将引起簇/柱形成,其将引起染料共振。在渐逝场中在驱动到非结合性传感器表面后,可以检测SERRS。在这样的设置中,可以在单个腔中实现抗体的检测,省却流体洗涤步骤,因为检测是表面特异性的,不受溶液中未结合的染料的干扰。
在另一个例子中,可以使用磁性传感器,例如霍尔传感器,磁阻传感器如GMR,TMR或者AMR传感器。在一个特定例子中,磁性传感可以利用特定频率可以应用于施加的交变磁场的事实。在低频情况下,也就是在频率低于例如100Hz的情况下,磁性传感器元件的1/f噪声占优势。1/f噪声由电流的点对点的波动引起,并且与频率的倒数成比例。在磁阻传感器中,1/f噪声是由自由层中的磁波动引起的。当产生交变磁场的频率为100Hz或者更高时,占主导地位的1/f噪声与现有技术相比明显降低,产生经改进的信噪比(SNR)。当将交变磁场的频率进一步增加到其中热白(奈奎斯特)噪声水平超过1/f噪声水平而占据主导作用时的值时,是有利的。如WO2005/010542中记载的,超过特定转角频率fc≈50kHz,GMR传感器的热白噪声变得占据主导地位。白噪声水平限制了理论上能够达到的检测极限。
图4和图5是根据本发明的实施方式的示例性传感器设备的截面图,其中使用了磁性传感器,分别是没有和有磁性粒子15存在的情况。为了说明目的,在下文本发明将关于生物传感器进行解释。生物传感器检测样品中的磁性粒子,样品例如是流体,液体,气体,粘弹性介质,凝胶或者组织样品。设备可以包括基底10和电路例如集成电路。设备的测量表面在图4和图5中用点线代表。所述基底可以包括半导体材料,玻璃,塑料,陶瓷,玻璃上的硅,蓝宝石基底上的硅。所述电路可以包含磁阻传感器11作为传感器元件和导体12形式的磁场发生器。磁阻传感器11可以是例如GMR,AMR或者TMR类型的传感器。磁阻传感器11可以例如具有细长的形状,如长而且窄的长条几何形状,但是不局限于这种几何形状。传感器11和导体12可以设置成互相临近(图4),相隔很小的距离g。传感器11与导体12之间的距离g可以例如在1纳米到1毫米,如3微米。在图4和图5中,引入坐标系统来表示如果磁性传感器设备设置在xy平面中,则磁阻传感器11主要用于检测磁场的x分量,也就是说x方向是磁性传感器11的敏感方向。图4和5中的箭头13表示本发明中磁阻传感器11的敏感x方向。因为磁性传感器11在与传感器设备平面垂直的方向非常不敏感,在图中垂直方向或者z方向,所以由电流通过导体12产生的磁场14,在磁性纳米粒子15不存在的情况下不能被传感器11检测到。通过在磁性纳米粒子15不存在的情况下,施加电流到导体12,可以校准传感器11的信号。该校准优选在任何测之前进行。当磁性材料(其可以是例如磁性离子,分子,纳米粒子15,固体材料或者含有磁性成分的流体)在导体12附近时,它产生磁矩m,在图5中用场线16表示。磁矩m然后产生偶极杂散磁场(dipolar stray field),其在传感器11处具有平面内磁场分量17。从而,纳米粒子15使磁场14偏移到由箭头13所表示的传感器11的敏感x方向(图5)。在传感器11的敏感x方向的磁场Hx的x分量,被传感器11感测并且取决于磁性纳米粒子15的数量Nnp和导体电流Ic。
在第三特定例子中,描述了根据本发明实施方式的传感器单元和相关的感测方法,其在垂直于传感器平面的方向上有良好的分辨率。图6,7和8是在与传感器平面垂直的方向具有改进的分辨率的这种传感单元的三个实施方式的截面图。为了区分磁性粒子15的表面浓度和体积浓度,需要与传感器元件11的平面垂直的方向,其对应于图4中引入的坐标系的z方向的分辨率。如图6所示,与导体12a和12b的磁场14a和14b相比,导体12c和12d分别产生磁场14c和14d。通过合并来自四个导体12a,12b,12c,12d的传感器信号,可以得到关于磁性粒子15在x方向和z方向的浓度的信息。通过在与磁性传感器11的平面垂直的方向上,其如示出的那样是垂直方向或z方向,应用更多的导体,z分辨率还可进一步加强。这在图7的实施方式中示出。导体12a和12b设置在紧邻磁性传感器11的两侧,在与传感器元件11的平面垂直的方向上处于相同水平。导体12c,12d,12e和12f设置在基底10和传感器11之间,导体12c和12d相对于导体12e和12f处于不同的z位置。同样,来自不同的导体12a到12f的传感器信号的结合可以给出关于磁性粒子15的体积浓度,近表面浓度以及表面浓度的信息。在另外一个实施方式中,设置在基底10和磁性传感器11之间的水平处的导体12c和12d中的电流,具有相反的方向,如图8所示。通过这种方法,导体12c和12d可在x方向产生很强的场梯度。这个实施方式对加强空间分辨率可能是有利的。
在第四特定例子中,对根据凝集的磁性粒子的大小来实施分离过程的任选步骤给予了更加详细的说明。图9是可以用于根据本发明的实施方式中的分离过程的示意说明,其用于在目标物-诱导的凝集分析中定量测量磁性标记物15的一个或者多个凝集参数。这样的步骤可以在提供标记物和在实施凝集过程产生凝集的粒子100之后进行。在分离过程的一个例子中,可以在一个或者多个空间方向施加分离力FSEP,该分离力取决于凝集的粒子100的大小。该分离力FSEP有利地可以是施加到凝集的粒子100上的非均匀磁场,但是其它种类的分离方法也是可用的,例如旋转导致产生离心力来通过质量进行分离,水动压力的应用,静电分离的应用(需要凝集的粒子100带有静电),等等。除了应用所施加的用于分离的各种力以外,或者作为选择,也可以应用尺寸排阻过滤器。对于绝大多数凝集分析来说,可以假定加入到凝集的粒子100中的磁性粒子15的数量与凝集的粒子100的大小有很直接的依赖关系,例如成比例,虽然也许不总是这样。如果施加非均匀的磁场来进行分离,则可以用产生所述交变磁场的相同装置来产生该磁场,或者通过专用磁场产生装置产生,例如为了这个目的设置为靠近磁性传感器元件11。
图10是根据本发明的分离过程的一个实施方式,其中相对于分离的凝集的粒子100设置了许多传感器元件11以便于测量凝集的粒子的尺寸分布,如图10所示。该分离在一个空间方向上相对于不同的传感器元件11导致空间分离,但是相似地,该分离也可以在两个或者三个空间方向上进行。
图15也示出了可以应用在根据本发明方法的实施方式中的分离过程的实施方式。不同大小的磁性粒子,例如单个的与成簇的粒子,或者小尺寸的与大尺寸的簇,都可以使用磁泳(magnetophoretic)分离方法来分离,基于它们在磁场中的速度正比于它们对磁力的磁化率这一事实。磁性粒子簇例如由凝集产生,与单个的磁性粒子相比将具有增大的磁化率,因此磁泳技术可以用来将成簇的磁性粒子与单个的磁性粒子分离。一旦驱动或者沉降到非结合性表面如传感器表面或者反应腔表面,就可以及时监控传感器信号的改变。因为簇在磁场中将沉降得更快或者移动得更快,它们将在时间上更早地到达表面。非结合性表面附件或者在非结合性表面上按时间监控磁性粒子因此将是簇形成的指示,其中凝集参数的测量包括分离步骤。为了单个珠与成簇珠的可再现分离,可以利用磁泳粒子分离的原理,例如在现在发展用于GMR和FTIR检测的盒装置中。图15因此示出了该实施方式的示意说明,示出在传感器表面的下面和在反应腔顶部之上的相对位置都具有电磁线圈的反应腔,即顶部线圈和底部线圈,分别用H1和H2表示。通过打开顶部线圈,通过首先在反应腔顶部收集珠,可以实现分离。如果然后打开底部线圈,同时关闭顶部线圈,则磁性粒子将朝向传感器表面移动。在限定的时间内,当双珠簇超过顶部-传感器距离的一半而单个簇小于顶部-传感器距离的一半时,再次打开顶部线圈。双珠簇将继续向下移动到传感器表面,而单个珠将移动回到顶部。这种方法将允许磁性粒子簇的终点测量,并且不需要动力学检测。类似地,可以通过单个珠达到非结合性传感器表面而成簇的珠被收集到不同于传感器表面的地点的方法将单个磁性粒子与成簇的磁性粒子通过磁的方式分开。实现该方法的一种方式可以是通过利用与上文中所述同样的磁泳粒子分离,但是用相反方式:首先在传感器一侧收集珠,然后关闭底部线圈,打开顶部线圈。经过一定的时间,当双珠簇超过顶部-传感器距离的一半而单个簇小于顶部-传感器距离的一半时,再次打开底部线圈。双珠簇将继续向上移动到顶部,同时单个的珠将移动回到传感器。这个例子是“1-x分析”,因为目标物的存在将导致形成簇,其将引起在传感器一侧检测到减少的单个磁性粒子数量。由于这种分析方法固有的低灵敏度,这种模式或许不是优选的。该实施方式的优点将是多个簇形成并不影响定量,因为检测的不是凝集的粒子而是减少的单个磁性粒子。对于这个实例中的两个选择,不同尺寸的磁性粒子的磁泳分离也可以通过使用集成导线来实现。然后粒子分离在传感器表面的平面内发生。簇或者是单个珠,根据选择的试验的种类,可以在检测的位置被收集(使用GMR的情况下在检测导线之上,或者在使用FTIR的情况下在激光点之上),而单个的或者成簇的磁性粒子则分别在传感器表面的平面内的位置被收集,离检测侧足够大的距离。
图11是根据本发明的分离过程的另外一个实施方式,其中相对于所施加的分离力FSEP设置单一的传感器11,这样作为时间的函数的测量将显示,或者最少指示凝集的粒子100的尺寸分布。所述分离可以表征为时间上的分离。通过传感器11进行的与时间相关的测量也可以用来测定凝集动力学。图12是利用甲状旁腺激素分析的动力学研究的例子,其中4nM的待分析物首先被加入含有PTH抗体的粒子中。在类似于图11的设置中进行60分钟测量。粒子在目标物存在的情况下聚集(200nm),并且在弱磁驱动下比不包含待分析物的样品更快沉降,结果是显著更大的GMR信号。分离力FSEP通过交变(AC)磁场获得。
在第五个特定例子中,提供了如何可以任选地改进凝集过程。所述方法因此包括施加凝集加强磁场(HENH)。凝集加强磁场可以先于磁分离场施加或者与磁分离场同时施加。通过对整个分析物施加非均匀磁场(HENH),磁性粒子被驱动,并因此通过可逆的非特异性相互作用提高凝集。含有结合部分的粒子可以在磁驱动下在溶液中移动,从而与结合部分碰撞的目标物的数量增加。这可以用于增加分析的速度或者增强其灵敏性。虽然这可以在凝集过程中实施,但是优选在凝集过程之前实施驱动以便使尽可能多的结合部分暴露出来。这可以通过以下方式来实现:首先使目标物5曝露于粒子15-结合部分2络合物,驱动,然后使目标物曝露于粒子15b-结合部分2b络合物,反之亦然,参见图1。对于抑制模式,类似的方案是可行的。在一个可选择的实施方式中,在目标物5已经与结合部分2和2b结合之后通过加强磁性粒子15与其它磁性粒子15b的碰撞增强凝集物的形成,参见图1。对于该实施方式以及之前的增强实施方式所涉及的磁力不必一定相同,但是对于一些实施方式磁场可以相同。虽然两种类型的加强过程可以同时实施,但是优选实施第一种形式的加强,然后加入粒子15b,然后实施第二种形式的加强。粒子的磁化对于驱动是必须的。在外部场下这可引起粒子的可逆聚集。高度优选在阻止所述簇非特异性地永久相互结合的缓冲液条件下实施所述分析。所述缓冲液可以包括至少1%阻止非特异性结合的蛋白质(清蛋白,球蛋白,明胶,酪蛋白等等)和/或最少0.05%的清洁剂(Triton X-100,吐温20或者80等)和/或聚合物(PVB,PEG等)。然后可以如上文所述通过对分析物施加磁场HSEP来进行分离。分离磁场HSEP和加强磁场HENH都必须附合以下条件:所述场不能太强或者具有太强的空间梯度以防止将会影响测试的非可逆的非特异性凝集的发生。对于300nm的磁性粒子,发明人发现1×104A/m,1×105A/m或者1×106A/m的磁场强度上限是合适的,而梯度的上限可以是1×107A/m2,1×108A/m2或者1×109A/m2。典型地,分离磁场HSEP的大小将低于这些上限。图13是根据本发明的实施方式根据时间t顺序使用不同磁场的示意图示。只示出了磁场的数值,因为三个磁场可以彼此具有不同的方向。首先,施加磁场来加强凝集过程。接着施加用来根据大小来分离磁性粒子的磁场。最后,施加HAC。磁场HSEP和磁场HENH图示为随时间是不变的,但是它们也可以随着时间改变的,和方向交替变化,如同用于测量对一个或者多个凝集参数的磁场HAC。
另一组特定例子示出了关于施加到分析物的交变磁场的任选特征。图16A到图18作为例子示出了其中直到给定频率(称为滑差频率)和在远高于该滑差频率的频率得到粒子旋转的现象,本发明并不限制于此。图16A示出了作为所施加的旋转磁场的角频率的函数的单个磁性粒子的旋转频率。箭头表示临界滑差频率。图16A,16B,17A和17B的例子中示出的数据是使用2.8微米直径的磁性粒子获得的,具有大非永久性磁化能力和小永久性磁化。在图16A的例子中,产生旋转磁场的最小电流(I最小)是0.046安培(A)。图16B示出了作为施加到产生旋转磁场的电流线的电流的函数的临界滑差频率。在这个例子中,100mA的电流对应于磁性粒子所处的位置处2mT的场。该线性行为说明磁矩是由磁性粒子中的永久磁化产生的。图17A示出了作为所施加的旋转磁场的角频率的函数的单个磁性粒子通过光学方式测量的旋转频率,在很宽的频率范围内,在x轴以对数坐标表示。永久磁化的效果在低频率范围内是可见的(低于大约10Hz),非永久磁化的效果在较高的频率范围内(最高大约10MHz)是可见的。图17B示出作为施加到电流线的电流的函数的磁性粒子的旋转频率,其中频率为40kHz。磁性粒子在旋转磁场中的二次行为说明磁矩来源于磁性粒子的磁化率,即非永久磁化。图17和图18示出令人意外的发现,其中在比临界滑差频率高的频率,对于单个磁性粒子和两个磁性粒子的簇,粒子的旋转频率分别增大。图18中的双箭头表明在操作于比临界滑差频率高的多的频率的这种AC磁场的影响下,磁性粒子的旋转频率增加到最大值,该最大值比在临界滑差频率下的旋转频率高。后者依赖于电流,其中在低频率下旋转频率随着所施加的场强线性增加,而在高频率下,旋转频率随着所施加的磁强二次增加。所以高于一定场强,临界滑差频率低于所能达到的最大频率。优选地,凝集的粒子或者磁性粒子簇绕着旋转轴旋转,该旋转轴不与以磁性方式形成的磁性粒子链的占主导作用的轴一致(参见图19)。以这种方式,即使在存在单个粒子的链的情况下也能够鉴别所述簇。
在没有结合到表面的情况下,簇和单个粒子可以在磁泳分离和检测之后被重新分散在本体溶液中。本发明的这个特征给本发明的方法提供了实时监控所述分析的潜力,这在例如实时核酸扩增反应例如PCR中是很有意义的。簇在本体溶液中的重新分散和溶解PCR产物使得能够重新使用粒子上的引物,这对于PCR中的指数扩增是需要的。
根据本发明的实施方式的一个优点是这些可以利用磁性粒子作为标记物以及在非结合性传感器表面附近的特异性检测,其使得可以实现对具有低亲和力的目标物的检测,例如低亲和力结合抗体,省略流体洗涤步骤。
利用这种磁性粒子的实施方式的一个优点是可以在未加工的样品中进行检测。根据本发明,使用磁性粒子的实施方式的一个优点是,不需要流体洗涤步骤,其除了增加速度和容易性外,还可以提高分析的灵敏度。使用磁性粒子的实施方式的另外一个优点是可以提供驱动步骤来增加结合的机会。
根据本发明的实施方式的一个优点是不需要与传感器表面结合,因此不需要特定的传感器表面改性或者衍生化。
本发明的另一方面是提供试剂盒,用于实施如上文所述的测量凝集的方法。这样的试剂盒包括一种或者多种在特定目标物存在的情况下实施凝集分析的磁性粒子。该试剂盒可以进一步包括在其中实施凝集分析的反应腔。该试剂盒还可以进一步包括分析添加剂,例如所述分析在其中进行的液体。特别地,在该试剂盒中一种或者多种磁性粒子3,15和所述液体可以事先混合,并容纳于反应腔中。该特定实施方式具有只需要加入需要测试目标物存在的样品就可以开始测试的优点。不需要其它的处理,这可以提高分析的速度,并且可以导致更高的灵敏度和/或分析可重复性。
该发明的的另一个方面是提供在目标物物-诱导的凝集分析中测量一个或者多个凝集参数的设备。该设备包括实施凝集过程的凝集器装置,形成不附着于反应腔的任何表面的凝集的粒子100,其中在测量的整个过程中所述分析都被保持在该反应腔中。凝集的粒子包括一个或者多个磁性粒子。该设备进一步包括用来对分析施加交变磁场的磁场发生装置。这样的磁场可以施加到所述分析保持于其中的反应腔,从而其被分析物感受到。所述分析物,并因而在测量过程中分析物保持于其中的反应腔,可以在至少一个传感器元件的附近,借助于该传感器元件,将感测所施加的磁场的影响。该至少一个传感器元件可以基于用来检测交变磁场对凝集的粒子100所产生的影响的任何合适的技术。例如其可以是测量光学影响的光学检测器,测量磁影响的磁检测器,测量电影响的电检测器或者测量声音影响的声学检测器。如果使用磁检测器,则检测器可以是霍尔探针或者磁阻检测器元件,例如GMR,AMR或者TMR。设置该至少一个传感器元件用于测量交变磁场对未附着的凝集的粒子所产生的影响,其中所测量的影响指示一个或者多个凝集参数。本发明的该方面的一个实施方式中,该设备进一步包括根据凝集的粒子的大小来实施分离过程的分离装置。在一个特定实施方式中,分离装置可以是适于产生非均匀磁分离场HSEP的磁场发生器。该分离装置可以是具有如上文所述的不同分离过程的功能的部件。在另一个特定实施方式中,该设备进一步可包括控制装置,用于控制所产生的交变测场的频率以在比单个磁性粒子的滑差频率高的多的频率下运行。该施加的交变磁场的频率可以至少是10倍,或者至少是100倍,或者至少是1000倍。
本发明的实施方式的方法可以以任何合适的形式实现,包括硬件,软件,固件,或者它们的任意组合。本发明或者本发明的一些特征可以作为运行于一个或者多个数据处理器和/或数字信号处理器上的计算机软件来实现。本发明的实施方式的要素和组成部分可以以任何合适的方式物理地,功能地和逻辑地实现。事实上,功能性可以在单一单元中,在很多个单元中或者作为其它功能单元的一部分实现。如此,本发明可在单一单元中实现,或者可以是物理地和功能地分配在不同的单元和处理器之间。
本发明的实施方式的设备,方法和系统适于传感器多路技术(也就是不同的传感器和传感器表面的平行使用),标记物多路技术(也就是不同种类的标记物的平行使用)和反应腔多路技术(也就是不同反应腔的平行使用)。
本发明的实施方式中记载的设备,方法和系统可用作用于小样品体积的快速,可靠,并且易于使用的现场生化传感器。反应腔可以是将用于紧凑型读取器的一次性用品,该读取器包括一个或者多个磁场发生装置和一个或多个检测装置。此外本发明的设备,方法和系统可以应用于自动化高处理量测试中。在这种情况下,反应腔可以是例如孔板或者小池,适于自动化设备使用。
本发明的实施方式中记载的凝集分析很适合高处理量系统,例如带有微量滴定板或者小瓶的系统,和流动系统(如同在流式细胞术中)。进一步地,簇分析具有实时监控所述分析的潜力,这例如对实时PCR是很有意义的。
进一步地,本发明的实施方式的设备和方法适用于对簇的高平行检测。对很多簇的检测可以平行进行,这使该技术适合于快速和准确的测量。
应该明白,虽然已经关于根据本发明的设备在本文中讨论了优选的实施方式,特定的结构和构造,以及材料,但是可以在不超出本发明由后附的权利要求所限定的保护范围的情况下对本发明作出形式和细节上的各种变化或修正。
Claims (14)
1.一种在于反应腔中进行的目标物-诱导的凝集分析中测定一种或者多种粒子(3,15)的凝集的方法,该方法包括如下步骤:
-在分析中提供磁性粒子(3,15),所述磁性粒子能够结合到目标物(5),
-实施凝集过程产生凝集的粒子(100),其包括所述一种或者多种磁性粒子(3,15)中的至少一种,
-对所述反应腔中的所述分析施加交变磁场HAC,该交变磁场HAC具有明显大于单个磁性粒子的临界滑差频率的频率,以引起磁性粒子的物理旋转,和
-使用至少一个传感器元件测量所述交变磁场HAC对未附着到所述反应腔的任何表面上的所述一种或者多种磁性粒子(3,15)的影响,其中所测量的影响指示一个或者多个凝集参数。
2.根据权利要求1所述的方法,进一步包括在实施所述凝集过程之后和在测量之前在传感器表面附近浓缩磁性粒子的步骤。
3.根据权利要求1所述的方法,进一步包括在实施所述凝集过程之后和在测量之前根据凝集的粒子的大小进行分离过程的步骤。
4.根据上述任一权利要求所述的方法,其中测量影响包括测量磁信号,光信号或电信号,或者它们的组合中的至少之一。
5.根据权利要求1-3任意一项所述的方法,其中产生的交变磁场HAC的方向基本上平行于所述至少一个传感器元件的表面。
6.根据权利要求3所述的方法,其中所述分离过程通过作用于所述分析中所述一种或者多种磁性粒子的至少一部分上的磁力来实施,所述磁力由非均匀的磁分离场HSEP产生。
7.根据权利要求6所述的方法,其中所施加的用于分离的磁分离场HSEP不同于所述交变磁场HAC。
8.根据权利要求1-3任意一项所述的方法,其中施加凝集加强磁场HENH来加强所述凝集过程。
9.根据权利要求1-3任意一项所述的方法,其中随时间测量交变磁场HAC的影响。
10.根据权利要求1-3任意一项所述的方法,进一步包括测量所述凝集的粒子(100)的尺寸分布的步骤。
11.根据权利要求3、6和7中任意一项所述的方法,所述方法包括利用很多的传感器测量由所述分离产生的所述凝集的粒子的不同尺寸的级分。
12.根据权利要求1-3任意一项所述的方法,其中所述分析是生化分析。
13.在目标物-诱导的凝集分析中测量粒子(3,15)的一个或者多个凝集参数的设备,该设备包括:
-用于实施产生凝集的粒子(100)的凝集过程的凝集器装置,所述凝集的粒子(100)包括至少一种磁性粒子,所述凝集的粒子不附着于任何表面,
-用于对所述分析施加交变磁场HAC的磁场发生装置(12),
-控制装置,用于控制产生的交变磁场HAC的频率明显大于单个磁性粒子的临界滑差频率以引起磁性粒子的物理旋转,和
-至少一个传感器元件(11),所述传感器元件(11)被设置用于在所述未附着的凝集的粒子上测量所述交变磁场HAC对所述至少一种磁性粒子(3,15)的影响,所测量的影响指示所述一个或者多个凝集参数。
14.根据权利要求13所述的设备,所述设备进一步包括浓缩和/或分离装置(12),用来在所述传感器表面附近实施粒子的浓缩过程或者根据凝集的粒子的大小实施分离过程。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06126507.0 | 2006-12-19 | ||
EP06126507A EP1936350A1 (en) | 2006-12-19 | 2006-12-19 | A method for quantitatively measuring agglutination parameters |
EP061265070 | 2006-12-19 | ||
EP07116951 | 2007-09-21 | ||
EP071169510 | 2007-09-21 | ||
EP07116951.0 | 2007-09-21 | ||
PCT/IB2007/055195 WO2008075285A1 (en) | 2006-12-19 | 2007-12-18 | Measuring agglutination parameters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101627297A CN101627297A (zh) | 2010-01-13 |
CN101627297B true CN101627297B (zh) | 2013-10-30 |
Family
ID=38015565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200780047032.5A Active CN101627297B (zh) | 2006-12-19 | 2007-12-18 | 测量凝集参数 |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1936350A1 (zh) |
CN (1) | CN101627297B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2720798B1 (en) * | 2011-06-15 | 2020-01-01 | Koninklijke Philips N.V. | Processing of biological sample components |
AP2015008879A0 (en) * | 2013-05-16 | 2015-11-30 | Univ Pretoria | A method of diagnosing tuberculosis |
JP6258076B2 (ja) * | 2014-02-28 | 2018-01-10 | 株式会社日立製作所 | 磁気信号測定装置及び磁気信号測定方法 |
CN107796865B (zh) | 2016-09-05 | 2021-05-25 | 财团法人工业技术研究院 | 生物分子磁传感器 |
AU2019309512A1 (en) | 2018-07-27 | 2021-02-04 | Zepto Life Technology, LLC | System and method for processing analyte signals in GMR-based detection of biomarkers |
US20230085052A1 (en) * | 2020-01-17 | 2023-03-16 | Zepto Life Technology, LLC | Systems and methods for sensing analytes in gmr-based detection of biomarkers |
FR3130994A1 (fr) * | 2021-12-21 | 2023-06-23 | Horiba Abx Sas | Procédé de dosage |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1685418A2 (en) * | 2003-07-30 | 2006-08-02 | Koninklijke Philips Electronics N.V. | On-chip magnetic particle sensor with improved snr |
US7892817B2 (en) * | 2004-05-18 | 2011-02-22 | Koninklijke Philips Electronics, N.V. | Magnetic rotation to improve signal-over-background in biosensing |
-
2006
- 2006-12-19 EP EP06126507A patent/EP1936350A1/en not_active Ceased
-
2007
- 2007-12-18 CN CN200780047032.5A patent/CN101627297B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN101627297A (zh) | 2010-01-13 |
EP1936350A1 (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2460058C2 (ru) | Измерение параметров агглютинации | |
US20230160985A1 (en) | Superparamagnetic particle imaging and its applications in quantitative multiplex stationary phase diagnostic assays | |
JP5628784B2 (ja) | 磁性粒子によるアッセイ用カートリッジ | |
US7892817B2 (en) | Magnetic rotation to improve signal-over-background in biosensing | |
CN101802614B (zh) | 具有高频交流磁场的传感器及描述流体样本特征的方法 | |
JP5311445B2 (ja) | 高速かつ高感度バイオセンシング | |
JP7249281B2 (ja) | 磁気式多ビーズアッセイのための方法および装置 | |
US11224874B2 (en) | Apparatus for automatic sampling of biological species employing disk microfluidics system | |
CN101627297B (zh) | 测量凝集参数 | |
CN101375166B (zh) | 用于分析流体的装置 | |
EP2467722B1 (en) | Detection of different target components by cluster formation | |
CN102439448A (zh) | 具有高动态范围的用于磁性颗粒的传感器设备 | |
WO2009083856A2 (en) | Concentrated unbound magnetic particle assay for biosensors | |
CN101027558A (zh) | 确定流体中感兴趣物质的存在和/或浓度的方法 | |
JP2021067687A (ja) | 磁場センサ及び磁性粒子を使用して関心分析対象を検出する方法とシステム | |
US12023674B2 (en) | Apparatus for automatic sampling of biological species employing disk microfluidics system | |
EP1972927A1 (en) | Microelectronic sensor device for detecting label particles | |
Van Ommering | Dynamics of individual magnetic particles near a biosensor surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |