CN101623644B - Preparation for compound hollow sphere CdS-TiO* and application in photocatalytic hydrogen production by water decomposition - Google Patents
Preparation for compound hollow sphere CdS-TiO* and application in photocatalytic hydrogen production by water decomposition Download PDFInfo
- Publication number
- CN101623644B CN101623644B CN2009100235449A CN200910023544A CN101623644B CN 101623644 B CN101623644 B CN 101623644B CN 2009100235449 A CN2009100235449 A CN 2009100235449A CN 200910023544 A CN200910023544 A CN 200910023544A CN 101623644 B CN101623644 B CN 101623644B
- Authority
- CN
- China
- Prior art keywords
- cds
- tio
- hollow sphere
- preparation
- composite hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 27
- 239000001257 hydrogen Substances 0.000 title claims abstract description 27
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 230000001699 photocatalysis Effects 0.000 title abstract description 16
- 238000000354 decomposition reaction Methods 0.000 title abstract description 5
- 150000001875 compounds Chemical class 0.000 title description 2
- 239000002131 composite material Substances 0.000 claims abstract description 55
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000011941 photocatalyst Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000003980 solgel method Methods 0.000 claims abstract description 6
- 230000003197 catalytic effect Effects 0.000 claims abstract description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 30
- 239000002077 nanosphere Substances 0.000 claims description 29
- 229910052799 carbon Inorganic materials 0.000 claims description 28
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 18
- 239000002086 nanomaterial Substances 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 11
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims description 8
- 239000011258 core-shell material Substances 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 6
- 229910052724 xenon Inorganic materials 0.000 claims description 6
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 229930006000 Sucrose Natural products 0.000 claims description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 4
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000011858 nanopowder Substances 0.000 claims description 4
- 239000005720 sucrose Substances 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- 238000003421 catalytic decomposition reaction Methods 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 241001411320 Eriogonum inflatum Species 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 238000007598 dipping method Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims description 2
- 239000010936 titanium Substances 0.000 abstract description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052719 titanium Inorganic materials 0.000 abstract description 5
- 238000005470 impregnation Methods 0.000 abstract description 4
- 229910052793 cadmium Inorganic materials 0.000 abstract description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 abstract description 3
- 230000003595 spectral effect Effects 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- 239000011734 sodium Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000004005 microsphere Substances 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 4
- 229910004613 CdTe Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 229910021392 nanocarbon Inorganic materials 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AUIZLSZEDUYGDE-UHFFFAOYSA-L cadmium(2+);diacetate;dihydrate Chemical compound O.O.[Cd+2].CC([O-])=O.CC([O-])=O AUIZLSZEDUYGDE-UHFFFAOYSA-L 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000005285 chemical preparation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- YAFKGUAJYKXPDI-UHFFFAOYSA-J lead tetrafluoride Chemical compound F[Pb](F)(F)F YAFKGUAJYKXPDI-UHFFFAOYSA-J 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- 239000002063 nanoring Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- -1 rare earth fluoride Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229940035024 thioglycerol Drugs 0.000 description 1
- ZPEJZWGMHAKWNL-UHFFFAOYSA-L zinc;oxalate Chemical compound [Zn+2].[O-]C(=O)C([O-])=O ZPEJZWGMHAKWNL-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种复合空心球CdS-TiO2的制备及在光催化分解水制氢中的应用。该制备方法利用廉价的镉源和钛源,采用水热法,二步浸渍法,溶胶凝胶法制备复合空心球CdS-TiO2纳米材料,工艺过程简单易行,可实现规模化生产。将CdS与TiO2复合,拓宽了TiO2光谱响应范围,将制得的复合空心球CdS-TiO2作为用于太阳能可见光催化分解水制氢的光催化剂,与TiO2光催化剂相比,太阳能光能利用率大幅度增加,产氢速率显著提高。
The invention discloses the preparation of a composite hollow sphere CdS-TiO 2 and its application in photocatalytic decomposition of water to produce hydrogen. The preparation method utilizes cheap cadmium source and titanium source, adopts hydrothermal method, two-step impregnation method, and sol-gel method to prepare composite hollow sphere CdS-TiO 2 nanometer material, the process is simple and easy, and large-scale production can be realized. Combining CdS with TiO 2 broadens the spectral response range of TiO 2 , and the prepared composite hollow sphere CdS-TiO 2 is used as a photocatalyst for solar visible light catalytic water splitting to produce hydrogen. Compared with TiO 2 photocatalyst, solar light The energy utilization rate is greatly increased, and the hydrogen production rate is significantly increased.
Description
技术领域technical field
本发明属于纳米复合材料的制备及其在新能源领域的应用。具体涉及一种复合空心球CdS-TiO2纳米材料的制备方法及其该材料作为光催化剂在太阳能可见光分解水制氢中的应用。The invention belongs to the preparation of nano composite material and its application in the field of new energy. It specifically relates to a preparation method of a composite hollow sphere CdS-TiO 2 nanometer material and the application of the material as a photocatalyst in solar visible light splitting water to produce hydrogen.
背景技术Background technique
由于化石能源的长期无节制开采,近年来能源短缺已引起各国的高度重视,从而加快了人类探求新的可再生能源的步伐。氢能以其清洁燃烧、绿色环保,可再生无污染而成为国际社会关注的焦点。各国在积极探索获取氢能的诸多途径,利用太阳能光催化分解水制氢是循环经济,绿色制氢的最有效途径之一。Due to the long-term unrestrained exploitation of fossil energy, the energy shortage has attracted the attention of various countries in recent years, thus accelerating the pace of human exploration of new renewable energy. Hydrogen energy has become the focus of attention of the international community because of its clean combustion, green environmental protection, renewable and pollution-free. Countries are actively exploring many ways to obtain hydrogen energy. Using solar photocatalysis to split water to produce hydrogen is one of the most effective ways for circular economy and green hydrogen production.
利用太阳能光催化分解水制氢的关键技术是光催化剂,TiO2是近年来研究最为广泛的太阳能紫外光催化分解水制氢的光催化剂,然而,TiO2较宽的带隙(Eg=3.2eV)使它的光催化应用范围受到了一定的限制[1,2]。为了拓宽TiO2的光谱响应范围,将其与具有理想带隙(CdS,Eg=2.3eV),导带边比H+/H2电极电势更负的CdS偶联,是提高太阳能利用率的有效途径之一。有关CdS纳米粒子与TiO2纳米粒子(或纳米管)复合及其用于太阳能光催化分解水制氢有诸多报导[3-5]。而直接的空心球CdS-TiO2纳米复合材料的制备只有一篇文献报导,Hu等人[6]采用一种溶液反应的方法制备CdS-TiO2空心球,具体方法:将二水合醋酸镉与硫脲、硫代甘油溶于N,N-二甲基甲酰胺和水的混合溶液中,形成溶液1,然后将Ti(OBu)4和乙酰丙酮溶于丁醇中形成溶液2,将溶液1和溶液2混合搅拌,回流,后处理得到TiO2/CdS空心球复合结构。经对国内外专利的系统查新,检索到较多的有关制备纳米空心球的专利[7-52],而直接的纳米CdS-TiO2空心球制备的专利只有一项[53].本发明是采用模板法-浸渍法-溶胶凝胶法制备复合CdS-TiO2空心球,而文献[6]及专利[53]报导的是采用二种溶液反应的制备方法,故此,本发明就纳米CdS-TiO2空心球的制备方法与文献[6]及专利[53]报导的方法完全不同;将该纳米CdS-TiO2空心球用于太阳能光催化分解水制氢未见文献及专利报导。The key technology of using solar photocatalytic water splitting to produce hydrogen is photocatalyst. TiO 2 is the most widely studied photocatalyst for solar UV photocatalytic splitting water to produce hydrogen in recent years. However, TiO 2 has a wide band gap (Eg=3.2eV ) has limited its photocatalytic application range [1, 2]. In order to broaden the spectral response range of TiO 2 , coupling it with CdS which has an ideal band gap (CdS, Eg=2.3eV) and conduction band edge is more negative than the electrode potential of H + /H 2 is an effective way to improve the utilization rate of solar energy. one of the ways. There are many reports on the composite of CdS nanoparticles and TiO 2 nanoparticles (or nanotubes) and their application in solar photocatalytic water splitting for hydrogen production [3-5]. However, there is only one literature report on the preparation of direct hollow sphere CdS-TiO 2 nanocomposites. Hu et al. [6] used a solution reaction method to prepare CdS-TiO 2 hollow spheres. The specific method: dihydrate cadmium acetate and Thiourea and thioglycerol were dissolved in a mixed solution of N, N-dimethylformamide and water to form solution 1, and then Ti(OBu) 4 and acetylacetone were dissolved in butanol to form solution 2, and solution 1 Mix and stir with solution 2, reflux, and post-process to obtain a composite structure of TiO 2 /CdS hollow spheres. Through the systematic novelty search of domestic and foreign patents, many patents related to the preparation of nano-hollow spheres [7-52] were retrieved, but there was only one patent for the direct preparation of nano-CdS-TiO 2 hollow spheres [53]. The present invention The template method-dipping method-sol-gel method is used to prepare composite CdS- TiO2 hollow spheres, while the literature [6] and patent [53] report the preparation method using two kinds of solution reactions. Therefore, the present invention focuses on nano-CdS -The preparation method of TiO 2 hollow spheres is completely different from the method reported in literature [6] and patent [53]; the use of the nano-CdS-TiO 2 hollow spheres for solar photocatalytic water splitting to produce hydrogen has not been reported in literature or patents.
以下是发明人给出的参考文献:The following are the references given by the inventor:
[1]M Matsuoka,M.Kitano,M.Takeuchi,K.Tsujimaru,M.Anpo,J.M.Thomas,Photocatalysis for new energy production recentadvances in photocatalytic water splitting reactions forhydrogen production,Catalysis Today 122(2007)51-61;[1] M Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. M. Thomas, Photocatalysis for new energy production recent advances in photocatalytic water splitting reactions for hydrogen production, Catalysis Today 122(2007;) 51-6
[2]J.R.Bolton,Solar photoproduction of hydrogen:a review,SolarEnergy 57(1996)37-50。[2] J.R.Bolton, Solar photoproduction of hydrogen: a review, SolarEnergy 57(1996) 37-50.
[3]M.Ni,M.K.H.Leung,D.Y.C.Leung,K.Sumathy,A review and recentdevelopments in photocatalytic water-splitting using TiO2 forhydrogen production,Renewable and Sustainable Energy Reviews11(2007)401-425。[3] M.Ni, M.K.H.Leung, D.Y.C.Leung, K.Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 forhydrogen production, Renewable and Sustainable Energy Reviews11(2007)401-425.
[4]J.S.Jang,S.M.Ji,S.W.Bae,H.C.Son,J.S.Lee,Optimization ofCdS/TiO2 nano-bulk composite photocatalysts for hydrogenproduct ion from Na2S/Na2SO3 aqueous electrolyte solution undervisible light(λ≥420nm),Journal of Photochemistry andPhotobiology A:Chemistry 188(2007)112-119。[4] J.S.Jang, S.M.Ji, S.W.Bae, H.C.Son, J.S.Lee, Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen product ion from Na2S/Na2SO3 aqueous electrolyte solution undervisible light (λ≥A our Photomistry of 420nm), Jche : Chemistry 188 (2007) 112-119.
[5]Y.J.Zhang,W.Yan,Y.P.Wu,Z.H.Wang,Synthesis of TiO2 nanotubescoupled with CdS nanoparticles and production of hydrogen byphotocatalytic water decomposition,Materials Letters 62(2008)3846-3848.有关空心球CdS-TiO2纳米。[5] YJ Zhang, W. Yan, YP Wu, ZH Wang, Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen byphotocatalytic water decomposition, Materials Letters 62(2008) 3846-3848. About hollow sphere CdS-TiO 2 nanometers.
[6]J S Hu,Y G Guo,H P Liang et al.J.Phys.Chem.B,2004,108:9734~9738。[6] J S Hu, Y G Guo, H P Liang et al. J. Phys. Chem. B, 2004, 108: 9734~9738.
[7].李亚栋,彭卿,董亚杰,一种微米级硒化锌空心球的合成方法,公开号:CN1424248。[7]. Li Yadong, Peng Qing, Dong Yajie, a synthesis method of micron-sized zinc selenide hollow spheres, publication number: CN1424248.
[8].廖川平,顾明元,碳纳米空心球及其制备方法,公开号:CN1438174。[8]. Liao Chuanping, Gu Mingyuan, Hollow carbon nanospheres and their preparation method, publication number: CN1438174.
[9].刘会洲,羊彬,郭晨,十二烷基磺酸钠调控合成具有介孔孔道的二氧化硅空心球的方法,公开号:CN101143724。[9]. Liu Huizhou, Yang Bin, Guo Chen, A method for synthesizing hollow silica spheres with mesoporous channels controlled by sodium dodecylsulfonate, publication number: CN101143724.
[10].郭奋,庞利萍,一种纳米氧化铝空心球的制备方法,公开号:CN101134586。[10]. Guo Fen, Pang Liping, A preparation method of nano-alumina hollow spheres, publication number: CN101134586.
[11].刘小鹤,吴泓毅,邱冠周,导电聚吡咯纳米空心球的制备方法,公开号:CN101165092。[11]. Liu Xiaohe, Wu Hongyi, Qiu Guanzhou, Preparation method of conductive polypyrrole nano hollow spheres, publication number: CN101165092.
[12].李春忠,刘杰,胡彦杰,一种空心球结构二氧化钛的制备方法,公开号:CN101215004。[12]. Li Chunzhong, Liu Jie, Hu Yanjie, a preparation method of titanium dioxide with hollow sphere structure, publication number: CN101215004.
[13].王霞,杨光智,杨俊和,陈敏,徐日升,以聚甲基丙烯酸甲酯/聚丙烯腈核壳聚合物为前驱体制备炭纳米空心球的方法,公开号:CN101219785。[13]. Wang Xia, Yang Guangzhi, Yang Junhe, Chen Min, Xu Risheng, a method for preparing hollow carbon nanospheres using polymethyl methacrylate/polyacrylonitrile core-shell polymer as a precursor, publication number: CN101219785.
[14].谢荣国,李东升,杨德仁,制备单分散硫化镉空心球的方法,公开号:CN1559911。[14]. Xie Rongguo, Li Dongsheng, Yang Deren, Method for preparing monodisperse cadmium sulfide hollow spheres, publication number: CN1559911.
[15].寇华敏,王静,潘裕柏,郭景坤,一种以湿化学法为基础的氧化铝空心球的制备方法,公开号:CN1673085。[15]. Kou Huamin, Wang Jing, Pan Yubai, Guo Jingkun, a preparation method of alumina hollow spheres based on wet chemical method, publication number: CN1673085.
[16].贾殿赠,曹亚丽,刘浪,一种固相化学反应制备草酸锌纳米空心球及空心链的方法,公开号:CN1493559。[16]. Jia Dianzhu, Cao Yali, Liu Lang, A method for preparing zinc oxalate nano-hollow spheres and hollow chains by solid-phase chemical reaction, publication number: CN1493559.
[17].寇华敏,王静,潘裕柏,郭景坤,以锌粉为原料的氧化锌空心球的制备方法,公开号:CN1706774。[17]. Kou Huamin, Wang Jing, Pan Yubai, Guo Jingkun, Preparation method of zinc oxide hollow spheres using zinc powder as raw material, publication number: CN1706774.
[18].夏兴华,丁娅,碳纳米空心球负载金属纳米粒子催化剂的制备方法,公开号:CN1721075。[18]. Xia Xinghua, Ding Ya, Preparation method of metal nanoparticle catalyst supported by hollow carbon nanospheres, publication number: CN1721075.
[19].包建春,张杰,戴志晖,纳米级硫化镉空心球的制备方法,公开号:CN1792811。[19]. Bao Jianchun, Zhang Jie, Dai Zhihui, Preparation method of nanoscale cadmium sulfide hollow spheres, publication number: CN1792811.
[20].邱介山,孙天军,赵宗彬,氧化锌纳米/微米空心球的批量合成方法,公开号:CN1803624。[20]. Qiu Jieshan, Sun Tianjun, Zhao Zongbin, Batch Synthesis Method of Zinc Oxide Nano/Micro Hollow Spheres, Publication Number: CN1803624.
[21].俞书宏,万勇,一种二氧化硅空心球的制备方法,公开号:CN1931718[21]. Yu Shuhong, Wan Yong, A preparation method of silica hollow spheres, publication number: CN1931718
[22].俞书宏,闵宇霖,一种内含贵金属纳米颗粒的二氧化硅空心球的合成方法,公开号:CN1943927。[22]. Yu Shuhong, Min Yulin, a synthesis method of hollow silica spheres containing noble metal nanoparticles, publication number: CN1943927.
[23].曹艳霞,王经武,王万杰,二氧化锡空心球的制备方法,公开号:CN101012067。[23]. Cao Yanxia, Wang Jingwu, Wang Wanjie, Preparation method of tin dioxide hollow spheres, publication number: CN101012067.
[24].朱俊杰,缪建军,姜立萍,一种CdTe纳米空心球或CdTe纳米管的制备方法,公开号:CN101049916。[24]. Zhu Junjie, Miao Jianjun, Jiang Liping, A method for preparing CdTe hollow nanospheres or CdTe nanotubes, publication number: CN101049916.
[25].朱海涛,王继鑫,张灿英,一种硫化铜空心球的制备方法,公开号:CN101054197。[25]. Zhu Haitao, Wang Jixin, Zhang Canying, a preparation method of copper sulfide hollow spheres, publication number: CN101054197.
[26].李村,吴振玉,徐洪耀,一种纳米硫化镉空心球的液相制备方法,公开号:CN101058437。[26]. Li Cun, Wu Zhenyu, Xu Hongyao, a liquid-phase preparation method of nano-cadmium sulfide hollow spheres, publication number: CN101058437.
[27].高濂,陈志涛,一种通过碱腐蚀反应制备氧化锌纳米空心球的方法,公开号:CN101254939。[27]. Gao Lian, Chen Zhitao, a method for preparing zinc oxide nano-hollow spheres by alkaline corrosion reaction, publication number: CN101254939.
[28].孙予罕,高恋,徐耀,一种双孔道介孔氧化硅空心球的制备方法,公开号:CN101264892。[28]. Sun Yuhan, Gao Lian, Xu Yao, a preparation method of double-channel mesoporous silica hollow spheres, publication number: CN101264892.
[29].陆安慧,农谷珍,钱华光,一步合成空心炭壳的方法,公开号:CN101314467。[29]. Lu Anhui, Nong Guzhen, Qian Huaguang, One-step method for synthesizing hollow carbon shells, publication number: CN101314467.
[30].祝华云,张孝彬,糜裕宏,周胜名,周丽娜,牛强,谭俊军,崔白雪,程继鹏,刘芙,许国良,一种制备空心球状硫化镉纳米晶的方法,公开号:CN101319404。[30]. Zhu Huayun, Zhang Xiaobin, Mi Yuhong, Zhou Shengming, Zhou Lina, Niu Qiang, Tan Junjun, Cui Baixue, Cheng Jipeng, Liu Fu, Xu Guoliang, A method for preparing hollow spherical cadmium sulfide nanocrystals, publication number: CN101319404.
[31].邓勇辉,刘嘉,刘,赵东元,一种磁性无机空心复合微球及其制备方法,公开号:CN101345112。[31]. Deng Yonghui, Liu Jia, Liu , Zhao Dongyuan, a magnetic inorganic hollow composite microsphere and its preparation method, publication number: CN101345112.
[32].曹霞,制备金属镍纳米空心球的方法,公开号:CN101417341。[32]. Xia Cao, Method for preparing hollow metal nickel nanospheres, publication number: CN101417341.
[33].高濂,宋雪峰,无需模板的氧化镍空心微球的湿化学制备方法,公开号:CN101417823。[33]. Gao Lian, Song Xuefeng, Wet chemical preparation method of nickel oxide hollow microspheres without template, publication number: CN101417823.
[34].王晗,吴爱军,耿可明,朱德先,张涛,胡飘,谭清华,石鹏坤,一种含氧化镁的氧化铝空心球制品,公开号:CN101429044。[34]. Wang Han, Wu Aijun, Geng Keming, Zhu Dexian, Zhang Tao, Hu Piao, Tan Qinghua, Shi Pengkun, A hollow alumina sphere product containing magnesium oxide, publication number: CN101429044.
[35].S.Roland,B.Alexander,S.Guenter,B.Frank,Publicationnumber:DE10160640(A1)。[35]. S. Roland, B. Alexander, S. Guenter, B. Frank, Publication number: DE10160640 (A1).
[36].N.Takayuki,Expanded hollow micro sphere composite beads andmethod for their production,Publication number:US 6225361(B1)。[36]. N. Takayuki, Expanded hollow micro sphere composite beads and method for their production, Publication number: US 6225361 (B1).
[37].K.Koji,M.Kuniteru,S.Yoshimasa,Producion of hollow fine metalsphere,Publication number:JP2305970(A)。[37].K.Koji, M.Kuniteru, S.Yoshimasa, Production of hollow fine metalsphere, Publication number: JP2305970(A).
[38].俞书宏,闵宇霖,一种内含金纳米颗粒的二氧化钛空心球的制备方法,公开号:CN101085465。[38]. Yu Shuhong, Min Yulin, a preparation method of titanium dioxide hollow spheres containing gold nanoparticles, publication number: CN101085465.
[39].朱俊杰,缪建军,姜立萍,CdS、CdSe或CdTe空心纳米环及其制法,公开号:CN101049958。[39]. Zhu Junjie, Miao Jianjun, Jiang Liping, CdS, CdSe or CdTe Hollow Nanoring and Its Preparation Method, Publication Number: CN101049958.
[40].王昭群,孔璇凤,李云兴,吴倩,纳米级交联聚苯乙烯中空微球的制备方法,公开号:CN101125903。[40]. Wang Zhaoqun, Kong Xuanfeng, Li Yunxing, Wu Qian, Preparation method of nanoscale cross-linked polystyrene hollow microspheres, publication number: CN101125903.
[41].宋立民,张淑娟,陈斌,氟化铅中空纳米球的溶剂热合成方法,公开号:CN101391805。[41]. Song Limin, Zhang Shujuan, Chen Bin, Solvothermal Synthesis of Lead Fluoride Hollow Nanospheres, Publication No.: CN101391805.
[42].王志林,陈志明,一种制备复合稀土氟化物纳米空心球的方法,公开号:CN101386422。[42]. Wang Zhilin, Chen Zhiming, A method for preparing composite rare earth fluoride nano hollow spheres, publication number: CN101386422.
[43].余承忠,唐嘉伟,朱杰,王韵华,一种纳米二氧化硅空心球材料及其制备方法,公开号:CN101343065。[43]. Yu Chengzhong, Tang Jiawei, Zhu Jie, Wang Yunhua, A nano-silica hollow sphere material and its preparation method, publication number: CN101343065.
[44].张帆,吴强,马延文,胡征,一种制备AlN纳米空心球的原位模板方法,公开号:CN101279723。[44]. Zhang Fan, Wu Qiang, Ma Yanwen, Hu Zheng, an in-situ template method for preparing AlN hollow nanospheres, publication number: CN101279723.
[45].白玉俊,庞林林,朱慧灵,亓永新,毕见强,一种制备纳米空心碳球的通用技术,公开号:CN101264878。[45]. Bai Yujun, Pang Linlin, Zhu Huiling, Qi Yongxin, Bi Jianqiang, A general technique for preparing nano-hollow carbon spheres, publication number: CN101264878.
[46].杨正龙,秦深,周光斌,浦鸿汀,袁俊杰,纳米中空二氧化硅微球/聚氨酯复合水性涂料及其制备方法,公开号:CN101250374。[46]. Yang Zhenglong, Qin Shen, Zhou Guangbin, Pu Hongting, Yuan Junjie, Nano Hollow Silica Microsphere/Polyurethane Composite Waterborne Coating and Its Preparation Method, Publication Number: CN101250374.
[47].李辉,徐烨,李和兴,一种中空非晶态合金纳米球催化剂及其制备方法和应用,公开号:CN101380577。[47]. Li Hui, Xu Ye, Li Hexing, A hollow amorphous alloy nanosphere catalyst and its preparation method and application, publication number: CN101380577.
[48].杨德仁,杜宁,张辉,一种制备金属氧化物空心纳米球的方法,公开号:CN101310851。[48]. Yang Deren, Du Ning, Zhang Hui, A method for preparing metal oxide hollow nanospheres, publication number: CN101310851.
[49].王茗,曹雪丽,方明,张立德,网状纳米孔氧化锌微米空心球及其制备方法,公开号:CN101311119。[49]. Wang Ming, Cao Xueli, Fang Ming, Zhang Lide, Reticular nanoporous zinc oxide micron hollow spheres and their preparation method, publication number: CN101311119.
[50].李春忠,胡彦杰,顾峰,姜海波,一种纳米氧化铝空心球结构的制备方法,公开号:CN1884083。[50]. Li Chunzhong, Hu Yanjie, Gu Feng, Jiang Haibo, a preparation method of nano-alumina hollow sphere structure, publication number: CN1884083.
[51].高濂,陈名海,一种通过置换反应制备银纳米空心球的方法,公开号:CN1762622。[51]. Gao Lian, Chen Minghai, A method for preparing silver nano hollow spheres by displacement reaction, publication number: CN1762622.
[52].梁汉璞,万立骏,白春礼,一种纳米金属和双金属空心球的制备方法,公开号:CN1616165。[52]. Liang Hanpu, Wan Lijun, Bai Chunli, A preparation method of nano-metal and bimetallic hollow spheres, publication number: CN1616165.
[53].胡劲松,万立骏,白春礼,一种无机半导体复合纳米级空心球及制备方法,公开号:CN1600674。[53]. Hu Jinsong, Wan Lijun, Bai Chunli, Inorganic semiconductor composite nanoscale hollow sphere and its preparation method, publication number: CN1600674.
发明内容Contents of the invention
为了提高太阳能的利用效率以及光催化分解水制备氢气的产率,本发明的目的之一是,提供一种复合空心球CdS-TiO2纳米材料的制备方法,该方法采用模板法-浸渍法-溶胶凝胶法制备复合空心球CdS-TiO2纳米材料。本发明的另一个目的是,将制备的复合空心球CdS-TiO2纳米材料作为光催化剂用于太阳能可见光催化分解水制氢的新能源领域的探索性应用研究。In order to improve the utilization efficiency of solar energy and the production rate of hydrogen produced by photocatalytic decomposition of water, one of the purposes of the present invention is to provide a method for preparing composite hollow sphere CdS- TiO2 nanomaterials, which uses template method-impregnation method- Composite hollow sphere CdS-TiO 2 nanomaterials prepared by sol-gel method. Another object of the present invention is to use the prepared composite hollow sphere CdS- TiO2 nanomaterial as a photocatalyst for exploratory application research in the new energy field of solar visible light catalytic decomposition of water to produce hydrogen.
为了实现上述任务,本发明的复合空心球的CdS-TiO2的制备方法采取如下的技术解决方案:In order to achieve the above tasks, the preparation method of the CdS- TiO of the composite hollow sphere of the present invention takes the following technical solutions:
一种复合空心球CdS-TiO2的制备方法,其特征在于,该方法依次采用水热法,二步浸渍法,溶胶凝胶法制备复合空心球CdS-TiO2,具体包括下列步骤:A method for preparing composite hollow spheres CdS-TiO 2 is characterized in that the method sequentially adopts a hydrothermal method, a two-step impregnation method, and a sol-gel method to prepare composite hollow spheres CdS-TiO 2 , specifically comprising the following steps:
1)称取适量蔗糖配制成蔗糖水溶液,放入高压反应釜中,在适宜的温度下水热合成纳米碳球,作为硬模板剂;1) Weighing an appropriate amount of sucrose to prepare an aqueous sucrose solution, putting it into a high-pressure reactor, and hydrothermally synthesizing nano-carbon spheres at a suitable temperature as a hard template;
2)称取适量Cd(NO3)2·4H2O配制成水溶液;2) Weigh an appropriate amount of Cd(NO 3 ) 2 ·4H 2 O to prepare an aqueous solution;
3)称取适量Na2S·9H2O配制成水溶液;3) Weigh an appropriate amount of Na 2 S·9H 2 O to prepare an aqueous solution;
4)在室温下,将步骤1)的碳纳米球分散在无水乙醇中,进行超声波分散,烘干;将步骤2)中的Cd(NO3)2·4H2O的水溶液浸渍于步骤1)所制备的碳纳米球中,室温晾干,制得镉离子包裹的碳纳米球C-Cd2+,其中,碳纳米球用量5mol,Cd(NO3)2·4H2O的用量介于0.079mol~0.14mol之间;4) At room temperature, disperse the carbon nanospheres in step 1) in absolute ethanol, perform ultrasonic dispersion, and dry; soak the aqueous solution of Cd(NO 3 ) 2 ·4H 2 O in step 2) in step 1 ) in the carbon nanospheres prepared by drying at room temperature to obtain carbon nanospheres C-Cd 2+ wrapped with cadmium ions, wherein the amount of carbon nanospheres is 5 mol, and the amount of Cd(NO 3 ) 2 ·4H 2 O is between Between 0.079mol~0.14mol;
5)在室温下,将步骤3)中的Na2S·9H2O水溶液缓慢滴加至步骤4)所制备的碳纳米球C-Cd2+中,所述的Na2S·9H2O用量介于0.0936mol~0.168mol之间,浸渍过夜,烘干,得到硫化镉包裹的碳纳米球C-CdS;5) At room temperature, slowly drop the Na 2 S·9H 2 O aqueous solution in step 3) to the carbon nanosphere C-Cd 2+ prepared in step 4), the Na 2 S·9H 2 O The dosage is between 0.0936mol and 0.168mol, impregnated overnight, and dried to obtain carbon nanospheres C-CdS wrapped with cadmium sulfide;
6)称取适量的TiCl4配制成乙醇溶液;6) Weigh an appropriate amount of TiCl 4 to be mixed with an ethanol solution;
7)将步骤5)制得的碳纳米球C-CdS放入带有搅拌的三口烧瓶中,再将步骤6)的TiCl4乙醇溶液加入,进行搅拌,所述的TiCl4用量0.06mol;7) Put the carbon nanosphere C-CdS prepared in step 5) into a three-necked flask with stirring, then add the TiCl 4 ethanol solution in step 6), and stir, the amount of TiCl 4 is 0.06mol;
8)在不断搅拌下,将适量的氨水溶液缓慢滴入步骤7)的三口烧瓶溶液中,调节pH值为7-8,过滤,洗涤,即制得碳核上依次包裹有硫化镉和TiO2的核壳结构C-CdS-TiO2复合材料;8) Under continuous stirring, slowly drop an appropriate amount of ammonia solution into the three-necked flask solution in step 7), adjust the pH value to 7-8, filter and wash, and the carbon core is coated with cadmium sulfide and TiO in turn. The core-shell structure C-CdS-TiO 2 composite material;
9)将步骤8)所制备的核壳结构C-CdS-TiO2复合材料,在马弗炉中于400℃焙烧2h,得到复合空心球CdS-TiO2纳米材料。9) Calcining the core-shell structure C-CdS-TiO 2 composite material prepared in step 8) in a muffle furnace at 400° C. for 2 hours to obtain a composite hollow sphere CdS-TiO 2 nanomaterial.
本发明制备的复合空心球CdS-TiO2纳米材料作为光催化剂用于太阳能可见光催化分解水制氢的应用研究。以氙灯作为模拟太阳能光源,采用滤光片滤掉紫外光,评价太阳能可见光催化分解水制氢产率。具体包括下列步骤:The composite hollow sphere CdS-TiO nanometer material prepared by the present invention is used as a photocatalyst for the application research of solar visible light catalytic decomposition of water for hydrogen production. A xenon lamp was used as a simulated solar light source, and an optical filter was used to filter out ultraviolet light, and the yield of hydrogen production by solar visible light catalytic water splitting was evaluated. Specifically include the following steps:
1)分别定量称取空穴牺牲剂Na2S和Na2SO3溶入盛有50mL蒸馏水的100mL光照一侧为平面的Prex玻璃平底反应瓶中,称取适量的复合空心球CdS-TiO2纳米粉体加入至反应瓶中;1) Quantitatively weigh the hole sacrificial agents Na 2 S and Na 2 SO 3 into 100 mL of Prex glass flat-bottomed reaction flask with 50 mL of distilled water, and weigh an appropriate amount of composite hollow spheres CdS-TiO 2 Nano powder is added into the reaction flask;
2)将反应瓶放在磁力搅拌器上,将三通进样玻璃瓶塞插入反应瓶中,打开氙灯稳流电源,用滤光片滤去λ<420nm的紫外光,光源透过滤光片后照射至反应瓶侧面;2) Put the reaction bottle on the magnetic stirrer, insert the three-way sampling glass stopper into the reaction bottle, turn on the xenon lamp constant current power supply, filter out the ultraviolet light of λ<420nm with a filter, and the light source passes through the filter Then irradiate to the side of the reaction bottle;
3)采用气相色谱仪配备的TCD检测器,TDX-01填充柱对生成的气相产物进行检测,评价太阳能可见光催化分解水制氢产率。3) The TCD detector equipped with the gas chromatograph and the TDX-01 packed column were used to detect the generated gas phase products, and the yield of hydrogen production from solar visible light catalytic water splitting was evaluated.
本发明制备的复合空心球CdS-TiO2纳米材料及其在太阳能光催化分解水制氢中的应用带来的技术效果是:The technical effects brought by the composite hollow sphere CdS- TiO2 nanomaterial prepared by the present invention and its application in solar photocatalytic water splitting to produce hydrogen are:
(1)能够利用廉价的镉源和钛源制备复合空心球CdS-TiO2纳米材料,工艺过程简单易行,可实现规模化制备。(1) Composite hollow sphere CdS-TiO 2 nanomaterials can be prepared using cheap cadmium and titanium sources, the process is simple and easy, and large-scale preparation can be realized.
(2)复合空心球CdS-TiO2是性能优良的新型光催化剂,CdS与TiO2复合,拓宽了TiO2光谱相应范围,使太阳能光能利用效率大幅度提高,产氢效率明显提高。(2) Composite hollow sphere CdS-TiO 2 is a new type of photocatalyst with excellent performance. The combination of CdS and TiO 2 broadens the corresponding range of TiO 2 spectrum, greatly improves the efficiency of solar light energy utilization and hydrogen production efficiency.
本发明的创新之处在于:The innovation of the present invention is:
(1)提出了利用廉价的镉源和钛源制备复合空心球CdS-TiO2纳米材料的新方法。(1) A new method for the preparation of composite hollow sphere CdS- TiO2 nanomaterials using cheap cadmium and titanium sources is proposed.
(2)提出了将复合空心球CdS-TiO2作为光催化剂用于太阳能光催化分解水制氢,提高了产氢速率。(2) The composite hollow sphere CdS-TiO 2 was proposed as a photocatalyst for solar photocatalytic water splitting to produce hydrogen, which improved the hydrogen production rate.
(3)CdS包覆于TiO2之中,以及采用Na2S-Na2SO3牺牲剂体系,避免了CdS光腐蚀现象的发生,提高了复合空心球CdS-TiO2光催化剂的寿命及活性。(3) CdS is coated in TiO 2 and the Na 2 S-Na 2 SO 3 sacrificial agent system is used to avoid the occurrence of CdS photocorrosion phenomenon and improve the life and activity of the composite hollow sphere CdS-TiO 2 photocatalyst .
附图说明Description of drawings
图1.制备C-CdS的方框图;Figure 1. Block diagram for the preparation of C-CdS;
图2.制备复合空心球CdS-TiO2方框图;Figure 2. Block diagram of preparing composite hollow spheres CdS-TiO 2 ;
图3.核壳结构C-CdS-TiO2复合材料的SEM照片;Figure 3. SEM photo of the core-shell structure C-CdS- TiO composite;
图4.复合空心球CdS-TiO2纳米材料SEM照片;Figure 4. SEM photos of composite hollow sphere CdS- TiO2 nanomaterials;
图5.复合空心球CdS-TiO2纳米材料的TEM照片;Figure 5. TEM photo of composite hollow sphere CdS- TiO nanomaterials;
以下结合附图和发明人给出的实施例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and the embodiments given by the inventor.
具体实施方式Detailed ways
本发明的复合空心球CdS-TiO2纳米材料的制备方法,采用水热法合成的纳米碳球作为硬模板法,依次采用二步浸渍法,溶胶凝胶法及焙烧等技术路线制备出复合空心球CdS-TiO2纳米材料。在合成过程中,纳米碳球用量为5mol;Cd(NO3)2·4H2O用量介于0.079mol~0.14mol之间;Na2S·9H2O用量介于0.0936mol~0.168mol之间;TiCl4用量为0.06mol。The preparation method of the composite hollow sphere CdS- TiO2 nanomaterial of the present invention adopts the nano-carbon sphere synthesized by the hydrothermal method as the hard template method, and adopts two-step impregnation method, sol-gel method and roasting and other technical routes to prepare the composite hollow sphere. Spherical CdS-TiO 2 nanomaterials. During the synthesis process, the dosage of carbon nanospheres is 5 mol; the dosage of Cd(NO 3 ) 2 ·4H 2 O is between 0.079mol and 0.14mol; the dosage of Na 2 S·9H 2 O is between 0.0936mol and 0.168mol ; TiCl 4 consumption is 0.06mol.
制备C-CdS的技术路线如图1所示,制备复合空心球CdS-TiO2纳米材料技术路线如图2所示。The technical route for preparing C-CdS is shown in Figure 1, and the technical route for preparing composite hollow sphere CdS-TiO 2 nanomaterials is shown in Figure 2.
以下是发明人给出的实施例,需要说明的是,这些实施例仅为了更好的诠释本发明,本发明不限于这些实施例。实施例中涉及的化学试剂均为分析纯试剂。The following are examples given by the inventors. It should be noted that these examples are only for better explaining the present invention, and the present invention is not limited to these examples. The chemical reagents involved in the examples are analytical reagents.
实施例1:Example 1:
称取15g的葡萄糖固体粉末,量取150mL去离子水,将葡萄糖固体粉末溶于去离子水中,均匀搅拌10min。Weigh 15g of glucose solid powder, measure 150mL of deionized water, dissolve the glucose solid powder in deionized water, and stir evenly for 10min.
将形成的均匀溶液倒入聚四氟乙烯内衬的高压反应釜(容积为200mL)中,放入电热箱中加热至165℃,保温反应5h,取出自然冷却至室温。过滤,分别用去离子水和无水乙醇洗涤三遍,固体放入干燥箱中于60℃条件下干燥5h,制得棕色碳纳米球。Pour the formed homogeneous solution into a polytetrafluoroethylene-lined autoclave (volume 200mL), put it in an electric heating box and heat it to 165°C, keep it warm for 5h, take it out and let it cool down to room temperature naturally. Filter, wash with deionized water and absolute ethanol three times respectively, and put the solid in a drying oven at 60° C. for 5 hours to obtain brown carbon nanospheres.
称取制备的棕色碳纳米球60g(5mol),放入无水乙醇的烧杯中,在频率为31Hz条件下超声波超声30min,50℃烘干。称取42g(0.14mol)Cd(NO3)2·4H2O固体,加入到80mL去离子水中,配制成水溶液。将该溶液浸渍于60g碳纳米球中,浸渍2h,室温晾干,制得碳纳米球包裹镉离子的复合物(C-Cd2+)。Weigh 60 g (5 mol) of the prepared brown carbon nanospheres, put them into a beaker of absolute ethanol, ultrasonicate for 30 min at a frequency of 31 Hz, and dry at 50° C. Weigh 42 g (0.14 mol) of Cd(NO 3 ) 2 ·4H 2 O solid, add it into 80 mL of deionized water, and prepare an aqueous solution. The solution was immersed in 60 g of carbon nanospheres for 2 hours, and dried at room temperature to obtain a composite (C—Cd 2+ ) in which carbon nanospheres encapsulated cadmium ions.
称取40.32g(0.168mol)的Na2S·9H2O固体,加入到80mL去离子水中,配制成水溶液。用滴管吸取该溶液缓慢滴加至碳球包裹镉离子的复合物(C-Cd2+)样品表面(滴加过程中应避免光源直射),浸渍2h,过滤,洗涤,放入干燥箱60℃恒温干燥,制得碳球包裹的硫化镉复合材料样品(C-CdS)。Weigh 40.32 g (0.168 mol) of Na 2 S·9H 2 O solid, add it into 80 mL of deionized water, and prepare an aqueous solution. Take the solution with a dropper and slowly add it dropwise to the surface of the sample surface of the compound (C-Cd 2+ ) coated with cadmium ions in carbon spheres (direct light source should be avoided during the dropping process), soak for 2 hours, filter, wash, and put it in a drying box for 60 ℃ constant temperature drying to prepare the carbon sphere-wrapped cadmium sulfide composite sample (C-CdS).
用干燥量筒量取6.6mL(0.06mol)TiCl4,用滴管缓慢滴入盛有100mL无水乙醇的烧杯中,制备钛溶胶;Measure 6.6mL (0.06mol) TiCl 4 with a dry graduated cylinder, and slowly drop it into a beaker containing 100mL of absolute ethanol with a dropper to prepare titanium sol;
将制得碳球包裹的硫化镉复合材料样品(C-CdS)放入盛有150mL无水乙醇的三口瓶中;在快速搅拌下,将制成的钛溶胶加入三口瓶中。Put the obtained carbon sphere-wrapped cadmium sulfide composite material sample (C-CdS) into a three-necked flask filled with 150mL of absolute ethanol; under rapid stirring, add the prepared titanium sol into the three-necked flask.
在不断搅拌下,将氨水溶液(NH3·H2O∶H2O=1∶5)缓慢滴入三口瓶中,调节溶液的p H值为7-8,有大量TiO2凝胶出现,室温反应2h;然后经过滤,洗涤,即可制得C(核)包裹CdS(次壳)再包裹TiO2(外壳)的核壳结构的C-CdS-TiO2复合材料,扫描电子显微镜(SEM)照片如图3所示。Under continuous stirring, the ammonia solution (NH 3 ·H 2 O: H 2 O=1:5) was slowly dropped into the three-necked flask, and the pH value of the solution was adjusted to 7-8, and a large amount of TiO 2 gel appeared, React at room temperature for 2 hours; then filter and wash to obtain a C-CdS-TiO 2 composite material with a core-shell structure in which C (core) wraps CdS (subshell) and then wraps TiO 2 (shell). Scanning electron microscope (SEM ) photos as shown in Figure 3.
将所制备的核壳结构C-CdS-TiO2复合材料,在马弗炉中,于400℃条件下焙烧2h,制得TiO2包裹CdS的复合空心球CdS-TiO2纳米材料。复合空心球CdS-TiO2纳米材料的扫描电子显微镜(SEM)照片如图4所示;透射电子显微镜(TEM)照片如图5所示。The prepared core-shell structure C-CdS-TiO 2 composite material was calcined in a muffle furnace at 400°C for 2h to obtain a composite hollow sphere CdS-TiO 2 nanomaterial with TiO 2 wrapped CdS. The scanning electron microscope (SEM) photo of the composite hollow sphere CdS-TiO 2 nanomaterial is shown in Figure 4; the transmission electron microscope (TEM) photo is shown in Figure 5.
实施例2:Example 2:
分别称取牺牲剂1.25g的Na2S和0.25g的Na2SO3溶入盛有50mL蒸馏水的100mL光照一侧为平面的Prex玻璃平底反应瓶中。称取实施例1制备的复合空心球CdS-TiO2纳米粉体0.10g加入反应瓶中。Weigh 1.25g of Na 2 S and 0.25g of Na 2 SO 3 as sacrificial agents and dissolve them into a 100mL Prex glass flat-bottom reaction bottle filled with 50mL of distilled water. Weigh 0.10 g of the composite hollow sphere CdS-TiO 2 nanopowder prepared in Example 1 and add it into the reaction flask.
将反应瓶放在磁力搅拌器上搅拌,将三通进样玻璃瓶塞插入反应瓶中,以氙灯作为模拟太阳光源,打开氙灯稳流电源,滤光片滤去λ<420nm的紫外光,光源经滤光片滤光后照射至反应瓶侧面,检测可见光照射6h的复合空心球CdS-TiO2催化剂的光催化分解水制氢活性。氢气的检测采用气相色谱仪装配的TCD检测器,TDX-01填充柱。太阳能可见光催化分解水产H2结果如表1所示。Put the reaction bottle on the magnetic stirrer to stir, insert the three-way sampling glass bottle stopper into the reaction bottle, use the xenon lamp as the simulated sun light source, turn on the xenon lamp constant current power supply, and filter out the ultraviolet light of λ<420nm, the light source After being filtered by a filter, it was irradiated to the side of the reaction bottle, and the photocatalytic hydrogen production activity of the composite hollow sphere CdS-TiO 2 catalyst irradiated with visible light for 6 hours was detected. The detection of hydrogen adopts TCD detector equipped with gas chromatograph and TDX-01 packed column. Table 1 shows the results of solar visible light photocatalytic splitting of water to produce H 2 .
表1:复合空心球CdS-TiO2太阳能可见光催化分解水产H2结果Table 1: Results of composite hollow sphere CdS-TiO 2 solar visible light photocatalytic decomposition of water to produce H 2
实施例3:Example 3:
整个实施步骤相同于实施例1,所不同的是:(1)称取24g(0.78mol)Cd(NO3)2·4H2O固体,加入到80mL去离子水中,配制成水溶液;(2)称取22.46g(0.0936mol)Na2S·9H2O固体,去离子水中,配制成水溶液。The entire implementation steps are the same as in Example 1, the difference is: (1) Weigh 24g (0.78mol) Cd(NO 3 ) 2 ·4H 2 O solid, add it to 80mL deionized water, and prepare an aqueous solution; (2) Weigh 22.46 g (0.0936 mol) of Na 2 S·9H 2 O solid, add deionized water, and prepare an aqueous solution.
实施例4:Example 4:
整个实施步骤相同于实施例2,所不同的是称取实施例3制备的复合空心球CdS-TiO2纳米粉体0.10g放入反应瓶中。太阳能可见光催化分解水产H2结果如表2所示。The entire implementation steps are the same as in Example 2, except that 0.10 g of the composite hollow sphere CdS-TiO 2 nanopowder prepared in Example 3 is weighed and put into a reaction bottle. Table 2 shows the results of solar visible light photocatalytic splitting of water to produce H 2 .
表2.复合空心球CdS-TiO2太阳能可见光催化分解水产H2结果Table 2. Results of composite hollow spheres CdS-TiO 2 solar visible light photocatalytic decomposition of water to produce H 2
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100235449A CN101623644B (en) | 2009-08-10 | 2009-08-10 | Preparation for compound hollow sphere CdS-TiO* and application in photocatalytic hydrogen production by water decomposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100235449A CN101623644B (en) | 2009-08-10 | 2009-08-10 | Preparation for compound hollow sphere CdS-TiO* and application in photocatalytic hydrogen production by water decomposition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101623644A CN101623644A (en) | 2010-01-13 |
CN101623644B true CN101623644B (en) | 2011-01-26 |
Family
ID=41519725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100235449A Expired - Fee Related CN101623644B (en) | 2009-08-10 | 2009-08-10 | Preparation for compound hollow sphere CdS-TiO* and application in photocatalytic hydrogen production by water decomposition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101623644B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101759146B (en) * | 2010-01-20 | 2013-04-17 | 浙江师范大学 | A method for preparing ZnO/ZnFe2O4 composite nano hollow spheres |
CN102989443A (en) * | 2011-09-16 | 2013-03-27 | 天津城市建设学院 | A method for preparing highly active ZnO/SnO2 core-shell composite photocatalyst |
CN102744067B (en) * | 2012-06-01 | 2014-10-22 | 中国科学院理化技术研究所 | Hollow magnetic nano composite catalytic material and preparation method thereof |
FR3009427B1 (en) * | 2013-07-30 | 2016-11-11 | Ifp Energies Now | METHOD OF PHOTOCATALYTIC CONVERSION BY TRANSFORMATION OF SOLAR IRRADIATION IN IRRADIATION SUITED TO ACTIVATION OF THE PHOTOCATALYST. |
CN103566952B (en) * | 2013-11-22 | 2015-09-30 | 武汉理工大学 | CdS/Cd 2ge 2o 6the preparation method of composite photo-catalyst |
CN104492460B (en) * | 2014-12-11 | 2016-12-07 | 浙江大学 | A kind of metal-oxide/nano metal sulfide hollow ball and its production and use |
CN105797752A (en) * | 2016-04-01 | 2016-07-27 | 上海师范大学 | Fullerene modified graphene/cadmium sulfide catalyst as well as preparation method and application thereof |
CN105854904B (en) * | 2016-04-08 | 2018-08-21 | 江苏大学 | A kind of CdSe/Al2TiO5Composite photo-catalyst and its preparation method and application |
CN107175114A (en) * | 2017-05-12 | 2017-09-19 | 华南理工大学 | A kind of cadmium sulfide nano-stick array outsourcing titanium deoxid film composite and preparation method thereof |
CN108421551A (en) * | 2018-02-07 | 2018-08-21 | 江苏大学 | A kind of CdIn2S4Nano dot hydridization TiO2Hollow ball composite photo-catalyst and its preparation method and application |
CN108579716B (en) * | 2018-04-12 | 2021-04-09 | 河海大学 | Hollow photocatalytic dirt-removing particle with porous water-permeable surface and preparation method thereof |
CN108579766B (en) * | 2018-04-17 | 2020-10-20 | 华东理工大学 | Preparation method of cadmium sulfide-based composite catalyst capable of treating industrial wastewater |
CN110237675B (en) * | 2019-07-17 | 2021-06-11 | 烟台大学 | Preparation method and application of high-activity fluorine fixing agent |
CN110586001B (en) * | 2019-09-19 | 2022-04-19 | 天津大学 | A kind of preparation method and application of chitosan-based cadmium sulfide gel ball with millimeter particle size |
JP7355720B2 (en) * | 2020-10-11 | 2023-10-03 | トヨタ自動車株式会社 | Hydrogen gas production device using photocatalyst |
CN112915989A (en) * | 2021-01-27 | 2021-06-08 | 中国建筑材料科学研究总院有限公司 | SiO (silicon dioxide)2@TiO2Nano composite material and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1600416A (en) * | 2004-08-30 | 2005-03-30 | 中国科学院上海硅酸盐研究所 | Nano-titanium oxide photocatalyst modified by cadmium selenide and preparation method thereof |
CN1600674A (en) * | 2003-09-28 | 2005-03-30 | 中国科学院化学研究所 | A kind of inorganic semiconductor composite nanoscale hollow sphere and its preparation method |
US20060283701A1 (en) * | 2005-06-10 | 2006-12-21 | Wei Li | Photocatalyst and use thereof |
-
2009
- 2009-08-10 CN CN2009100235449A patent/CN101623644B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1600674A (en) * | 2003-09-28 | 2005-03-30 | 中国科学院化学研究所 | A kind of inorganic semiconductor composite nanoscale hollow sphere and its preparation method |
CN1600416A (en) * | 2004-08-30 | 2005-03-30 | 中国科学院上海硅酸盐研究所 | Nano-titanium oxide photocatalyst modified by cadmium selenide and preparation method thereof |
US20060283701A1 (en) * | 2005-06-10 | 2006-12-21 | Wei Li | Photocatalyst and use thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101623644A (en) | 2010-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101623644B (en) | Preparation for compound hollow sphere CdS-TiO* and application in photocatalytic hydrogen production by water decomposition | |
Wu et al. | Formation of NiCo alloy nanoparticles on Co doped Al2O3 leads to high fuel production rate, large light‐to‐fuel efficiency, and excellent durability for photothermocatalytic CO2 reduction | |
Wang et al. | An anti-symmetric dual (ASD) Z-scheme photocatalytic system:(ZnIn2S4/Er3+: Y3Al5O12@ ZnTiO3/CaIn2S4) for organic pollutants degradation with simultaneous hydrogen evolution | |
Li et al. | Synthesis of TiO 2@ ZnIn 2 S 4 hollow nanospheres with enhanced photocatalytic hydrogen evolution | |
Sahoo et al. | Black titania an emerging photocatalyst: review highlighting the synthesis techniques and photocatalytic activity for hydrogen generation | |
CN101623645B (en) | Preparation of a p-n junction hollow sphere and its application in photocatalytic water splitting for hydrogen production | |
CN101347725B (en) | Carbon nanotube/titanium dioxide nanocomposite photocatalyst and its application | |
CN105214656B (en) | Gold nano cluster golden nanometer particle titanium dioxide composite photocatalyst and application | |
CN104324733B (en) | The preparation method of non precious metal high activity photolytic hydrogen production catalyst | |
Fu et al. | Boron-based materials modified on the surface of TiO2 nanorods via electroless plating toward high-efficient solar-driven water splitting | |
CN104549500B (en) | A kind of method for preparing B-doped g-C3N4 photocatalyst by non-metallic liquid phase doping | |
CN103265065B (en) | Preparation method of graded zinc stannate macroporous materials | |
CN104923264B (en) | Preparation method and application of a noble metal-modified CdS nanorod photocatalyst | |
Wang et al. | Controllable synthesis of porous TiO 2 with a hierarchical nanostructure for efficient photocatalytic hydrogen evolution | |
Sadrieyeh et al. | Photocatalytic performance of plasmonic Au/Ag-TiO2 aerogel nanocomposites | |
CN101817562A (en) | Method for preparing hollow spherical Alpha-Fe2O3 by carbon-sugar microsphere template method | |
Zheng et al. | Hollow titania spheres loaded with noble metal nanoparticles for photocatalytic water oxidation | |
CN107349943A (en) | The preparation method of bismuth stannate/silver-colored silver chlorate plasma nano composite photocatalyst material | |
CN106410214A (en) | A kind of preparation method of NiS2 catalyst with high specific surface area | |
Li et al. | Solar energy storage by a microfluidic all-vanadium photoelectrochemical flow cell with self-doped TiO2 photoanode | |
CN106268902A (en) | A preparation method of g-C3N4 quantum dots and Ag quantum dots sensitized BiVO4 photocatalyst | |
CN105833860A (en) | A kind of CQDs/Bi2WO6 composite photocatalyst and its preparation method | |
Hariri et al. | Promoting the photo-induced charge separation and photoelectrocatalytic hydrogen generation: Z-scheme configuration of WO3 quantum nanodots-decorated immobilized Ti/TiO2 nanorods | |
CN107952423A (en) | A kind of titanium dioxide high-efficiency photocatalysis material of 2D and preparation method thereof | |
CN103191708B (en) | A kind of quantum dot TiO2 loaded SiO2 photocatalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110126 Termination date: 20110810 |