CN101621490B - Method for modulation diversity joint codes of OFDM system - Google Patents
Method for modulation diversity joint codes of OFDM system Download PDFInfo
- Publication number
- CN101621490B CN101621490B CN 200910091163 CN200910091163A CN101621490B CN 101621490 B CN101621490 B CN 101621490B CN 200910091163 CN200910091163 CN 200910091163 CN 200910091163 A CN200910091163 A CN 200910091163A CN 101621490 B CN101621490 B CN 101621490B
- Authority
- CN
- China
- Prior art keywords
- ofdm
- symbol
- modulation
- ofdm symbol
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Radio Transmission System (AREA)
Abstract
一种用于OFDM系统的联合编码调制分集的方法,该方法通过调制星座图的旋转和分量交织引入信号调制分集,藉由旋转调制和分量交织,将准备传输的数据扩散分布到不同分量上,使不同分量的数据各自在信道上独立衰落,增加信号空间分集的优势;再选择最优旋转角度,获取传输性能的最大提升;同时,引入OFDM频率分集和时频交织分集,从而能够更有效地提高系统性能。本发明是申请人对以前的发明专利申请《一种OFDM系统的信号分集的方法》(申请号为:2008102264831)的改进。将原来通过二维旋转调制获得分集技术对传输性能的提升和改进,扩展到多维旋转调制,从而能够更好地利用调制分集,再结合时间分集、频域分集来提高系统的性能。
A method for joint coded modulation diversity for OFDM systems, the method introduces signal modulation diversity through rotation and component interleaving of modulation constellation diagrams, and diffuses and distributes data to be transmitted to different components by rotating modulation and component interleaving, Make the data of different components fade independently on the channel to increase the advantage of signal space diversity; then select the optimal rotation angle to obtain the maximum improvement of transmission performance; at the same time, introduce OFDM frequency diversity and time-frequency interleaving diversity, so that it can be more effectively Improve system performance. The present invention is an improvement of the applicant's previous invention patent application "A Method for Signal Diversity of OFDM System" (application number: 2008102264831). The enhancement and improvement of the transmission performance obtained by the diversity technology obtained through two-dimensional rotational modulation is extended to multi-dimensional rotational modulation, so that modulation diversity can be better utilized, and then combined with time diversity and frequency domain diversity to improve system performance.
Description
技术领域 technical field
本发明涉及一种用于OFDM系统的联合编码调制分集的方法,确切地说,涉及一种在OFDM系统中对信号综合采用多维旋转调制、信道编码和分集的方法,以便能很好地综合利用衰落信道下的时间分集、频率分集、调制分集和信道编码的增益,以降低系统的误帧率,属于数据通信中的分集技术领域。The present invention relates to a method for joint coding and modulation diversity in OFDM system, to be precise, relates to a method for comprehensively adopting multi-dimensional rotation modulation, channel coding and diversity to signal in OFDM system, so as to make good comprehensive utilization Time diversity, frequency diversity, modulation diversity and channel coding gain under fading channel to reduce the frame error rate of the system belong to the technical field of diversity in data communication.
背景技术 Background technique
1982年Ungerboeck提出网格编码调制TCM(Trellis Code Modulation)技术后,编码调制CM(Coded Modulation)技术始终是通信领域中的热门研究课题。TCM的基本思想是将编码器和调制器作为一个整体进行综合考虑和设计,使得编码器和调制器级联后产生的编码信号序列具有最大的欧氏距离。目前的理论和实践均已表明TCM在加性白高斯信道(AWGN Channel)中能够达到最佳性能。然而,将TCM用于移动衰落信道时发现:此时其性能变得很差。于是,如何在衰落信道中寻找最佳的编码调制方案就成为近年来的研究热点。Since Ungerboeck proposed Trellis Code Modulation (TCM) technology in 1982, Coded Modulation CM (Coded Modulation) technology has always been a hot research topic in the field of communication. The basic idea of TCM is to comprehensively consider and design the encoder and modulator as a whole, so that the encoded signal sequence generated by the cascaded encoder and modulator has the largest Euclidean distance. The current theory and practice have shown that TCM can achieve the best performance in the additive white Gaussian channel (AWGN Channel). However, when TCM is used in mobile fading channels, it is found that its performance becomes very poor. Therefore, how to find the best coding and modulation scheme in a fading channel has become a research hotspot in recent years.
TCM编码方法的优势是将编码信号序列的欧氏距离最大化,这在AWGN信道中能够起到良好的效果。但是对于衰落信道,性能的提高取决于增加分集数和增大积距离,这使得TCM编码方法在衰落信道传输中不存在性能优势。The advantage of the TCM coding method is to maximize the Euclidean distance of the coded signal sequence, which can play a good role in the AWGN channel. But for the fading channel, the improvement of the performance depends on increasing the number of diversity and increasing the product distance, which makes the TCM coding method have no performance advantage in the fading channel transmission.
1992年Zehavi最先提出比特交织编码调制算法BICM(Bit Interleave CodeModulation),该算法与传统的TCM相比较,在瑞利信道下的性能有显著提高。1996尼娜、G Caire等人在理想交织的情况下计算了BICM方案的容量,证明了具有Gray映射的大多数信号集的容量都与信号集的自身容量几乎相等。这样就从理论上说明了BICM可以获得与TCM相同的编码增益,而不仅仅是原先认为的一种次最佳的编码方案。In 1992, Zehavi first proposed the Bit Interleave Code Modulation algorithm BICM (Bit Interleave Code Modulation). Compared with the traditional TCM, the performance of this algorithm under the Rayleigh channel has been significantly improved. In 1996, Nina, G Caire and others calculated the capacity of the BICM scheme in the case of ideal interleaving, and proved that the capacity of most signal sets with Gray mapping is almost equal to the capacity of the signal set itself. In this way, it is theoretically explained that BICM can obtain the same coding gain as TCM, not just a sub-optimal coding scheme as originally thought.
在BICM算法中,起决定作用的比特交织技术增大了编码调制的时间分集度,然而,在高斯信道下,它的性能则又因最小欧氏距离的减小而恶化。In the BICM algorithm, the bit interleaving technique plays a decisive role in increasing the time diversity of coded modulation, however, in Gaussian channel, its performance deteriorates due to the decrease of the minimum Euclidean distance.
正交频分复用OFDM(Orthogonal Frequency Division Multiplexing)是一种宽带多载波技术。它是通过将高速传输的数据流转换为一组低速并行传输的数据流,使得系统对于多径衰落信道频率选择性的敏感度程度大大降低,从而具有良好的抗噪声和抗多径干扰的能力,适用于在频率选择性衰落信道中进行高速数据传输。因此,人们自然地就会想到:如果能够将OFDM与BICM方式相互结合,就会进一步提高通信质量。Orthogonal Frequency Division Multiplexing OFDM (Orthogonal Frequency Division Multiplexing) is a broadband multi-carrier technology. It converts the high-speed transmission data stream into a set of low-speed parallel transmission data streams, which greatly reduces the sensitivity of the system to the frequency selectivity of multipath fading channels, and thus has good anti-noise and anti-multipath interference capabilities. , suitable for high-speed data transmission in frequency-selective fading channels. Therefore, people naturally think that if OFDM and BICM can be combined, the communication quality will be further improved.
众所周知,在衰落信道中,“分集”的作用非常重要。在最佳分集情况下,错误概率会随着平均信噪比的增加而呈指数下降。在BICM算法中,虽然比特交织技术增大了编码调制的时间分集度;但是,由于最小欧氏距离的减小,又使该技术方案在高斯信道下的传输性能变得恶化。因此,如何解决这个技术难题,成为业内科技人员关注的热点。As we all know, in fading channels, the role of "diversity" is very important. In the optimal diversity case, the error probability decreases exponentially as the average SNR increases. In the BICM algorithm, although the bit interleaving technology increases the time diversity of coded modulation; however, the transmission performance of this technical scheme in Gaussian channel becomes worse due to the decrease of the minimum Euclidean distance. Therefore, how to solve this technical problem has become a focus of attention of technical personnel in the industry.
发明内容 Contents of the invention
有鉴于此,本发明的目的是提供一种用于OFDM系统的联合编码调制分集的方法,该方法通过改变调制星座图的旋转角度和分量交织引入信号调制分集,藉由旋转调制和分量交织,将准备传输的数据扩散分布到不同分量上,使不同分量的数据各自在信道上独立衰落,增加信号空间分集的优势;再选择最优旋转角度,获取传输性能的最大提升;同时,引入OFDM频率分集和时频交织分集,从而能够更有效地提高系统性能。In view of this, the object of the present invention is to provide a method for joint coding modulation diversity of OFDM system, the method introduces signal modulation diversity by changing the rotation angle and component interleaving of modulation constellation diagram, by rotating modulation and component interleaving, Diffusion and distribution of the data to be transmitted to different components, so that the data of different components fade independently on the channel, increasing the advantage of signal space diversity; then select the optimal rotation angle to obtain the maximum improvement in transmission performance; at the same time, introduce OFDM frequency Diversity and time-frequency interleaving diversity, which can improve system performance more effectively.
为了达到上述目的,本发明提供了一种用于OFDM系统的联合编码调制分集的方法,其特征在于,所述方法包括下列操作步骤:In order to achieve the above object, the present invention provides a method for joint coded modulation diversity of OFDM system, characterized in that, the method comprises the following steps:
(1)发送端对发送数据进行初始化处理:根据设定的编码和调制方式对每个用户的发送数据分别进行编码和调制,再依照设定的旋转角度对调制后的所有用户的符号矢量块的I路同相分量和Q路正交分量进行多维旋转调制,然后对旋转调制后的符号矢量块进行存储;(1) The sending end initializes the sending data: encode and modulate each user’s sending data according to the set encoding and modulation methods, and then perform modulation on the symbol vector blocks of all users according to the set rotation angle The I-way in-phase component and the Q-way quadrature component of the multi-dimensional rotation modulation are carried out, and then the symbol vector block after the rotation modulation is stored;
(2)发送端按照设定的OFDM模式对存储器中的所有用户的符号矢量块分配OFDM时频资源,将每个用户的符号矢量块依次平均分布到每个OFDM符号中,再对OFDM符号中的每个用户的符号矢量块进行Q路交织处理;(2) The sender allocates OFDM time-frequency resources to the symbol vector blocks of all users in the memory according to the set OFDM mode, distributes the symbol vector blocks of each user to each OFDM symbol in sequence, and then assigns the OFDM symbol vector blocks to each OFDM symbol The symbol vector block of each user of the Q-path interleaving process is carried out;
(3)发送端根据预设的OFDM调制长度和逆快速傅里叶变换IFFT运算长度,分别对每个OFDM符号中不足IFFT运算长度的位长补零,再对补零后的每个OFDM符号进行包括IFFT运算和添加循环前缀CP的OFDM处理,然后发送数据;(3) According to the preset OFDM modulation length and the inverse fast Fourier transform IFFT operation length, the sending end pads the bit length of each OFDM symbol that is less than the IFFT operation length with zeros, and then fills each OFDM symbol with zeros Perform OFDM processing including IFFT operation and adding cyclic prefix CP, and then send data;
(4)接收端接收数据后,先对该数据块符号进行去除CP和快速傅里叶变换FFT运算的解OFDM处理,再进行相位补偿和去零,然后对得到的OFDM符号依次进行Q路解交织、OFDM解时频资源分配、旋转解调和译码,得到所需的数据信息。(4) After the receiving end receives the data, first perform OFDM processing on the data block symbol by removing CP and fast Fourier transform FFT operation, then perform phase compensation and zero removal, and then perform Q-path solution on the obtained OFDM symbols in turn Interleaving, OFDM solution time-frequency resource allocation, rotation demodulation and decoding, to obtain the required data information.
本发明是一种用于OFDM系统的联合编码调制分集的方法,它是申请人去年的发明专利申请《一种OFDM系统的信号分集的方法》(申请号为:2008102264831)的扩展和改进。2008年的发明专利申请是通过二维旋转调制获得分集技术对传输性能的提升和改进,本发明将该专利技术扩展到多维旋转调制,能更好地利用调制分集,再结合时间分集、频域分集来提高系统的性能。The present invention is a method for joint coding and modulation diversity in OFDM systems, which is an extension and improvement of the applicant's patent application "A Method for Signal Diversity in OFDM Systems" (application number: 2008102264831) last year. The invention patent application in 2008 is to obtain the improvement and improvement of transmission performance by diversity technology through two-dimensional rotational modulation. This invention extends the patented technology to multi-dimensional rotational modulation, which can make better use of modulation diversity, combined with time diversity and frequency domain diversity to improve system performance.
本发明在技术上的创新点是:在调制过程中,综合采用OFDM技术和多维旋转调制技术,在旋转调制星座图引入信号分集增益,使得发送后的调制符号在传输过程中产生的同相分量(I路)和正交分量(Q路)彼此各自在衰落信道上独立传输,再将两个分量通过设定的分量交织器实现分量交织,以消除I路和Q路衰落系数的相关性,获取调制分集的增益;并通过选择最优旋转角度,获得性能上的最大提升。另外,还引入OFDM频率分集和交织分集,在衰落信道的传输中,能够有效提高通信系统的各项性能,在整体上获得优于BICM-OFDM系统的性能优势。而且,本发明方法的操作步骤简单、实用,效果明显,可适用于多种编码调制方案,特别适用于高码率和不同码长的码字,能很好地较低系统的误帧率,因此,本发明具有很好的推广应用前景。The technical innovation of the present invention is: in the modulation process, the OFDM technology and the multi-dimensional rotation modulation technology are adopted comprehensively, and the signal diversity gain is introduced into the rotation modulation constellation diagram, so that the in-phase component ( I-way) and orthogonal component (Q-way) are transmitted independently on the fading channel, and then the two components are interleaved through the set component interleaver to eliminate the correlation of the fading coefficients of the I-way and Q-way, and obtain Gain in modulation diversity; and by choosing the optimal rotation angle for maximum performance gain. In addition, OFDM frequency diversity and interleaving diversity are also introduced, which can effectively improve the performance of the communication system in the transmission of fading channels, and obtain performance advantages over the BICM-OFDM system as a whole. Moreover, the operation steps of the method of the present invention are simple and practical, and the effect is obvious, and can be applied to various coding and modulation schemes, especially for codewords with high code rates and different code lengths, and can well lower the frame error rate of the system, Therefore, the present invention has very good application prospects.
附图说明 Description of drawings
图1是本发明用于OFDM系统的联合编码调制分集的方法各个操作步骤流程图。Fig. 1 is a flow chart of each operation step of the method for joint coding and modulation diversity in an OFDM system according to the present invention.
图2(a)、(b)分别是四维旋转调制Q路交织中调制符号的时频交织规则示意图和Q路频域交织规则示意图。Figure 2 (a) and (b) are schematic diagrams of time-frequency interleaving rules and Q-way interleaving rules of modulation symbols in Q-way interleaving of four-dimensional rotational modulation, respectively.
图3(a)、(b)分别是QPSK星座图的二维坐标系及其旋转后的示意图。Fig. 3(a) and (b) are schematic diagrams of the two-dimensional coordinate system of the QPSK constellation diagram and its rotation, respectively.
图4是OFDM系统的时隙结构示意图。Fig. 4 is a schematic diagram of a time slot structure of an OFDM system.
图5(a)、(b)分别是OFDM帧结构中集中式和分布式的两种模式示意图。Figure 5(a) and (b) are schematic diagrams of two modes of centralized mode and distributed mode in the OFDM frame structure respectively.
图6是本发明的实施例中OFDM时频资源分配方式示意图。Fig. 6 is a schematic diagram of an OFDM time-frequency resource allocation method in an embodiment of the present invention.
图7是时频二维交织器的规则示意图。Fig. 7 is a schematic diagram of rules of a time-frequency two-dimensional interleaver.
图8是旋转星座图经过信道衰落后形成的星座图和解调示意图。Fig. 8 is a schematic diagram of a constellation diagram and demodulation formed after channel fading of the rotated constellation diagram.
图9(a)、(b)分别是本发明实施例与采用比特交织编码调制BICM OFDM方式在8/9码率下的两种传输性能曲线比较示意图。Fig. 9 (a) and (b) are schematic diagrams comparing two kinds of transmission performance curves of the embodiment of the present invention and the BICM OFDM mode under 8/9 code rate respectively.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面结合附图和实施例对本发明作进一步的详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
参见图1,介绍本发明用于OFDM系统的联合编码调制分集的方法的具体操作步骤,它是采用OFDM技术和多维旋转调制技术,通过旋转星座图、调制符号的分量交织,获取信号分集的增益,进而提高系统的性能。Referring to Fig. 1, the specific operation steps of the method for the joint coded modulation diversity of OFDM system are introduced in the present invention, it is to adopt OFDM technology and multi-dimensional rotational modulation technology, through the component interleaving of rotational constellation diagram, modulation symbol, obtain the gain of signal diversity , thereby improving the performance of the system.
步骤1、发送端对发送数据进行初始化处理:根据设定的编码和调制方式对每个用户的发送数据分别进行编码和调制,再依照设定的旋转角度对调制后的所有用户的符号矢量块的I路同相分量和Q路正交分量进行多维旋转调制,然后对旋转调制后的符号矢量块进行存储。该步骤1包括下述具体操作内容:
(11)发送端先计算每次传输过程中所有用户发送的调制符号的总数G:G=OFDM_Num×OFDM_Length,式中,OFDM_Num是每次OFDM传输过程中发送的OFDM符号数,OFDM_Length是设置在每个OFDM符号内的调制符号数;再计算每个用户发送的调制符号数S:
在实施例中,选择的OFDM帧结构是协议3GPP TS 36.211规定的TDD模式的帧结构,每个OFDM符号周期内包含的调制符号个数为:OFDM_Length=1200每次OFDM传输过程中OFDM符号的个数为:OFDM_Num=12,因此,每一次传输过程中所有用户的调制符号总数G=14400,发送端的用户数P=20,每个用户发送的调制符号数为:S=720。In an embodiment, the selected OFDM frame structure is the frame structure of the TDD mode stipulated in the protocol 3GPP TS 36.211, and the number of modulation symbols contained in each OFDM symbol period is: OFDM_Length=1200 The number of OFDM symbols in each OFDM transmission process The number is: OFDM_Num=12, therefore, the total number of modulation symbols of all users in each transmission process is G=14400, the number of users at the sending end is P=20, and the number of modulation symbols sent by each user is: S=720.
(12)根据调制阶数M计算每个调制符号是由m个比特映射组成,即M=2m,则m=log2M,计算每个用户的发送数据在编码后的码长N:N=S×m;再计算每个用户的发送数据在编码之前的信息比特位长K:K=r×N,式中,码率r是取值范围为(0,1]的实数;(12) Calculate according to the modulation order M that each modulation symbol is composed of m bit mappings, that is, M=2 m , then m=log 2 M, and calculate the code length N of each user's transmitted data after encoding: N =S × m; then calculate the information bit length K of the transmitted data of each user before encoding: K=r × N, in the formula, the code rate r is a real number whose value range is (0,1];
在实施例中,调制方式分别选用QPSK、16QAM和64QAM,因此调制阶数分别为4、16和64,每一个调制符号对应的信息比特数分别为2、4和6,从而计算出每个用户的发送数据编码后的码长N分别为1440、2880和4320。In the embodiment, QPSK, 16QAM and 64QAM are selected as the modulation methods respectively, so the modulation orders are 4, 16 and 64 respectively, and the information bits corresponding to each modulation symbol are 2, 4 and 6 respectively, thus calculating the The encoded code lengths N of the transmitted data are 1440, 2880 and 4320 respectively.
由于实施例的码率r为8/9,每个用户产生的信息比特长度K分别为1280、2560和3840;但是,因为本发明实施例中的编码方案采用的是协议3GPP TS36.212规定的Turbo编码,所以信息位比特长度K必须符合协议3GPP TS 36.212规定的Turbo编码的信息位比特长度。针对上述采用的信息位比特长度K,如果没有满足协议3GPP TS 36.212规定的Turbo编码的信息位比特长度,就选用协议中最接近的信息位比特长度,再在该数据的尾部补充零,达到上述计算出来的信息位比特长度K要求。Since the code rate r of the embodiment is 8/9, the information bit length K generated by each user is 1280, 2560 and 3840 respectively; but, because the encoding scheme in the embodiment of the present invention adopts the protocol 3GPP TS36.212 regulation Turbo encoding, so the information bit length K must conform to the information bit length of Turbo encoding stipulated in the protocol 3GPP TS 36.212. For the information bit length K adopted above, if the information bit length K of the Turbo encoding specified in the protocol 3GPP TS 36.212 is not satisfied, the closest information bit length in the protocol is selected, and then zeros are added at the end of the data to achieve the above The calculated information bit length K is required.
(13)对每个用户要发送的K比特信息进行编码,再将编码后的每个用户的码长N比特根据调制模式要求,确定对应的格雷映射星座图样后,进行对应的符号映射;并用符号矢量ui表示调制后的符号,则所有用户的发送数据在调制后的调制符号、即全部符号矢量组成的集合为u=(u1,u2,…,uG),并称其为调制符号矢量块,式中,下标G为所有用户准备发送的调制符号的总数;(13) Encode the K-bit information to be sent by each user, and then determine the corresponding Gray mapping constellation pattern according to the code length N bits of each user after encoding according to the modulation mode requirements, and then perform corresponding symbol mapping; and use The symbol vector u i represents the modulated symbol, then the set of the modulated modulation symbols of the transmitted data of all users, that is, all the symbol vectors is u=(u 1 , u 2 ,...,u G ), and it is called Modulation symbol vector block, where the subscript G is the total number of modulation symbols to be sent by all users;
本发明实施例采用的是Turbo信道编码。The embodiment of the present invention adopts Turbo channel coding.
(14)采用旋转矩阵RM对调制后的符号矢量块进行多维旋转调制,获取调制分集增益:设旋转调制后的符号矢量块x为:x=(x1,x2,…,xG),则该符号矢量块x中的每个符号矢量xi都满足下述公式:xi′=RM×ui′;式中,对于N维旋转调制,N为大于1的自然数,ui是N维的行向量,表示旋转调制处理前的调制符号,ui′是ui的转置列向量;xi是是N维的行向量,表示多维旋转调制后的调制符号,xi′是xi的转置列向量;RM是N阶的旋转矩阵,其每行或每列的平方和都为1,行向量或列向量之间满足正交性;(14) Use the rotation matrix RM to perform multi-dimensional rotation modulation on the modulated symbol vector block to obtain modulation diversity gain: set the symbol vector block x after rotation modulation as: x=(x 1 , x 2 , . . . , x G ), Then each symbol vector x i in the symbol vector block x satisfies the following formula: x i ′=RM×u i ′; where, for N-dimensional rotary modulation, N is a natural number greater than 1, and u i is N dimensional row vector, representing the modulation symbol before the rotation modulation process, u i ′ is the transposed column vector of u i ; x i is an N-dimensional row vector, representing the modulation symbol after multi-dimensional rotation modulation, xi ′ is x The transposed column vector of i ; RM is a rotation matrix of order N, the sum of the squares of each row or column is 1, and the row vector or column vector satisfies orthogonality;
本发明采用旋转矩阵RM对调制后的符号矢量块进行多维旋转调制的维数包括2维、4维、8维或更高的维数,但是,8维或更高维数的旋转调制的计算复杂,而优势不明显;故选择最多的是2维和4维;其具体方法为;The present invention uses the rotation matrix RM to perform multi-dimensional rotation modulation on the modulated symbol vector block. The dimensions include 2-dimensional, 4-dimensional, 8-dimensional or higher dimensions. Complicated, but the advantages are not obvious; therefore, 2-dimensional and 4-dimensional are the most chosen; the specific method is as follows;
选择二维旋转调制时,每个二维调制符号矢量是由一个调制符号的同相分量和正交分量所构成,即每次旋转调制处理一个调制符号矢量的同相分量和正交分量;因此,设二维旋转调制处理前的每个调制符号矢量为ui=A+Bj,其中,A是ui的同相分量,B是ui的正交分量;旋转矩阵
选择四维旋转调制时,每个四维调制符号是由相邻的两个调制符号矢量的同相分量和正交分量所构成,即每次旋转调制处理两个相邻调制符号矢量各自的同相分量和正交分量;故设四维旋转调制处理前的两个调制符号矢量分别为A+Bj和C+Dj,经过四维旋转调制后的这两个调制符号矢量对应的值分别为X+Yj和Z+Wj时,则
参见图3,以二维四相移相键控QPSK调制为例,介绍旋转调制前后星座图的比较情况。因为QPSK是将每2个比特映射为1个符号矢量,共有4种可能的比特组合和对应的符号矢量值,图3(a)所示为普通调制情况下格雷映射星座图,其中A、B分别为各星座点在实部轴与虚部轴上的投影,其数值分别为图3(b)为图3(a)经过θ度旋转调制后形成的星座图,其中X、Y分别为旋转调制后各星座点在实部轴与虚部轴上的投影,通过旋转调制运算后,X、Y所确定的星座点数值等价于图3(a)顺时针旋转θ度。本发明实施例中,二维四相移相键控QPSK调制的θ取值为
(15)将完成旋转调制处理后的符号矢量块x存入存储器。(15) Store the symbol vector block x after the rotational modulation processing into the memory.
步骤2、发送端按照设定的OFDM模式对存储器中的所有用户的符号矢量块分配OFDM时频资源,将每个用户的符号矢量块依次平均分布到每个OFDM符号中,再对OFDM符号中的每个用户的符号矢量块进行Q路交织处理。
该步骤2包括下列具体操作内容:This
(21)发送端对所有用户的符号矢量块x,按照设定的集中式或分布式的OFDM模式分配OFDM时频资源,其中,时间资源是OFDM符号依次发送的时隙,频率资源是发送每个OFDM符号所占用的子载波带宽;每个OFDM符号占据一个时隙,OFDM符号中的每个调制符号占据一个子载波,所以每个OFDM符号内包括的调制符号个数OFDM_Length,也是每个OFDM符号所占据的子载波个数;也就是将每个OFDM符号中所包括的每个用户的调制符号数量L设为:
参见图4,介绍本发明实施例中,
参见图5(a),介绍按照集中式OFDM模式将用户符号矢量块写入时隙结构的方法。图中底纹相同的方块表示同一用户的符号矢量块,将同一用户符号矢量块内的L=720个符号以
参见图5(b),介绍按照分布式OFDM模式将用户符号矢量块写入时隙结构的方法。先按上述同样方法将用户的符号矢量块以12个调制符号为一组进行分组后,依次将每个用户的60个分组块按行顺序排列,每个用户的符号矢量块化为1×60的矩阵,则20个用户的符号矢量块组成了20×60的矩阵,再按照箭头所示,按列顺序取出。即依次将每个用户的第一组取出后,再继续取每个用户的第二组,以此类推,直到取完20个用户的第60组。Referring to Fig. 5(b), the method of writing user symbol vector blocks into the time slot structure according to the distributed OFDM mode is introduced. First group the user's symbol vector blocks into groups of 12 modulation symbols according to the same method as above, and then arrange the 60 group blocks of each user in row order, and each user's symbol vector blocks are converted into 1×60 matrix, then the symbol vector blocks of 20 users form a 20×60 matrix, and then they are taken out in column order as shown by the arrow. That is, after taking out the first group of each user in turn, continue to take out the second group of each user, and so on, until the 60th group of 20 users is taken out.
(22)按照前述步骤所选择的多维旋转调制的维数,对OFDM符号中的每个用户的符号矢量块执行相应的Q路交织处理:调制符号矢量的时频交织、Q路频域交织和Q路时频二维交织器交织。(22) According to the dimensions of the multi-dimensional rotational modulation selected in the preceding steps, perform corresponding Q-way interleaving processing on each user's symbol vector block in the OFDM symbol: time-frequency interleaving of modulated symbol vectors, Q-way frequency-domain interleaving and Q channel time-frequency two-dimensional interleaver for interleaving.
当发送端按照集中式OFDM模式进行Q路交织时,若采用二维旋转调制,则所述步骤(22)中,不执行调制符号矢量的时频交织和Q路频域交织的操作,直接执行Q路时频二维交织器的交织操作;若采用四维或更高维数的旋转调制,则所述步骤(22)包括下列操作内容:When the sending end performs Q-way interleaving according to the centralized OFDM mode, if two-dimensional rotational modulation is used, then in step (22), the operations of time-frequency interleaving and Q-way frequency domain interleaving of the modulation symbol vector are not performed, and are directly performed The interleaving operation of the Q-way time-frequency two-dimensional interleaver; if four-dimensional or higher-dimensional rotational modulation is adopted, then the step (22) includes the following operations:
(221)发送端对每个OFDM符号周期内同一用户的旋转调制后的符号矢量进行时频交织处理,时频交织规则为:把每个用户的旋转调制后的符号矢量按照逐行写入方式存储在格式的交织器后,再按照逐列方式取出,以通过该符号矢量的时频交织变换,减小每次旋转调制中两个相邻符号矢量间的时域和频域的相关性,式中,D为多维旋转调制的维数。(221) The transmitting end performs time-frequency interleaving processing on the rotationally modulated symbol vector of the same user in each OFDM symbol period, and the time-frequency interleaving rule is: the rotationally modulated symbol vector of each user is written in a row-by-row manner save at After the interleaver of the format, it is taken out in a column-by-column manner, so as to reduce the time-domain and frequency-domain correlation between two adjacent symbol vectors in each rotational modulation through the time-frequency interleaving transformation of the symbol vector, where , D is the dimensionality of multi-dimensional rotation modulation.
实施例中,如果采用二维旋转调制时,则不执行步骤(221);如果采用四维旋转调制,则按照步骤(221)进行调制符号的时频交织,将一次四维旋转调制同时处理的两个符号分散放在相隔的两个频率上,使得这两个符号相隔30个符号的间隔,从而减小一次四维旋转调制处理中两个相邻符号间的时域和频域的相关性。In the embodiment, if two-dimensional rotational modulation is used, step (221) is not performed; if four-dimensional rotational modulation is adopted, time-frequency interleaving of modulation symbols is performed according to step (221), and two simultaneous processing of one four-dimensional rotational modulation is carried out. Symbols are scattered at intervals On the two frequencies, the two symbols are separated by an interval of 30 symbols, thereby reducing the time-domain and frequency-domain correlation between two adjacent symbols in a four-dimensional rotation modulation process.
(222)对每个OFDM符号周期内每个用户的时频交织后的符号矢量的Q路正交分量依序进行频域交织处理,频域交织规则是对每个OFDM符号内的属于同一用户的L个调制符号矢量一起处理:先将该L个符号矢量中、间隔为的D个符号矢量的Q路分量设为一组,共有组;再将每组内的Q路分量依序向右循环移动一位,即Qf移动至位置,而移动至位置,则移动至位置,相应地,最后一位Q路分量则移至Qf位置,也就是:Qf→Qf+L/D→Qf+2L/D→Qf+3L/D→…→Qf;然后再将I路同相分量和移位后的Q路正交分量合并组成新的符号矢量。(222) Perform frequency-domain interleaving processing on the Q-way orthogonal components of the time-frequency interleaved symbol vectors of each user in each OFDM symbol period in sequence, and the frequency-domain interleaving rule is for each OFDM symbol belonging to the same user The L modulation symbol vectors are processed together: firstly, among the L symbol vectors, the interval is The Q-path components of the D symbol vectors are set as a group, and there are group; and then move the Q-way components in each group to the right in order, that is, Q f moves to location, while move to Location, then move to Correspondingly, the last Q-way component is moved to the Q f position, that is: Q f →Q f+L/D →Q f+2L/D →Q f+3L/D →...→Q f ; Then, the in-phase component of the I channel and the quadrature component of the Q channel after shifting are combined to form a new symbol vector.
实施例中,如果采用二维旋转调制时,也不执行步骤(222);如果采用四维旋转调制,则进行Q路分量的频域交织。每个OFDM符号内同一用户的60个调制符号中,间隔为15个符号的四个调制符号的Q路分量取作一组,将这一组内的Q路分量依次右移循环移位,即:Q1→Q15→Q30→Q45→Q1,依次对其余每组进行相同的操作。In an embodiment, if two-dimensional rotational modulation is adopted, step (222) is not performed; if four-dimensional rotational modulation is adopted, frequency-domain interleaving of Q-path components is performed. Among the 60 modulation symbols of the same user in each OFDM symbol, the Q-path components of the four modulation symbols with an interval of 15 symbols are taken as a group, and the Q-path components in this group are sequentially shifted to the right, namely : Q 1 →Q 15 →Q 30 →Q 45 →Q 1 , and perform the same operation on each of the other groups in turn.
(223)按照设定的时频二维交织规则,对每个用户平均分布在各个OFDM符号内、每次发送的全部S个调制符号进行交织处理,使交织后的每个用户每次发送的该S个调制符号中的任何一个调制符号的正交分量与其同相分量在时间和频率上都尽可能地互不相关,即使正交分量与其同相分量的距离尽可能远。时域上,一个OFDM符号在时间上占用一个时隙,根据同一用户的S个符号占用的时频资源,在时域上处于位置间隔OFDM_Num个时隙、即间隔OFDM_Num个OFDM符号的两个频点之间的距离最远,相关性最弱;在频域上处于位置间隔L个子载波带宽、即间隔L个符号的两个信号点之间的距离最远,相关性最弱,但是,为了保证所有频点都能均匀地分步,选择同时满足时域上 个时隙和频域上个子载波带宽距离的符号。(223) According to the set time-frequency two-dimensional interleaving rule, each user is evenly distributed in each OFDM symbol and all S modulation symbols sent each time are interleaved, so that each user after interleaving sends The quadrature component and its in-phase component of any one of the S modulation symbols are as uncorrelated as possible in time and frequency, even if the distance between the quadrature component and its in-phase component is as far as possible. In the time domain, one OFDM symbol occupies one time slot in time, and according to the time-frequency resources occupied by the S symbols of the same user, in the time domain, the positions are separated by OFDM_Num time slots, that is, two frequency slots are separated by OFDM_Num OFDM symbols. The distance between the points is the farthest, and the correlation is the weakest; in the frequency domain, the distance between two signal points that are separated by L subcarrier bandwidths, that is, the distance between L symbols, is the farthest, and the correlation is the weakest. However, for Ensure that all frequency points can be evenly divided into steps, and the selection satisfies the time domain at the same time time slot and frequency domain symbols with a subcarrier bandwidth distance.
当发送端按照分布式OFDM模式进行Q路交织时,先按照上述集中式OFDM模式的操作规则计算出步骤(22)结果后,再对集中式的计算结果在频域上按照步骤(21)的分布式频点分配方式将结果均匀扩展开来,时域的位置不变,而且,频域的相对位置也不变,只是改变了子载波频点的绝对位置。When the sending end performs Q-way interleaving according to the distributed OFDM mode, first calculate the result of step (22) according to the operation rules of the above-mentioned centralized OFDM mode, and then perform the centralized calculation result in the frequency domain according to the step (21) The distributed frequency point allocation method spreads the results evenly, the position in the time domain remains unchanged, and the relative position in the frequency domain does not change, but the absolute position of the frequency point of the subcarrier is changed.
本发明的时频二维交织规则为:将该同一用户的、在频域上间隔W个子载波带宽的调制符号设为一组,再假设选取两个序号为f1、f2的子载波,其中,f2=f1+W,W为两个子载波频点f1和f2的带宽间隔;
参见图7,介绍本发明实施例在该步骤(223)中采用的时频二维交织规则,该图为其中Q路交织的示意,具体方法是:对每个用户平均分布在各个OFDM符号中的符号矢量块的Q路分量进行交织;实施例中每个用户的符号矢量块包括S=720个调制符号,根据时域资源平均分布在12个OFDM符号内,每个OFDM符号内包括每个用户的60个调制符号,即进行时频交织的Q路分量占据的频域资源是60个子载波,时域资源是12个OFDM符号;按照上述原则,将频域上间隔30个子载波带宽和时域上间隔≥5个OFDM符号的频点取作一组;取子载波带宽编号为f1,f2,其中f1=1...60,f2=(f1+30)mod 60;并令(f,t)表示该调制符号的Q路分量在频域上占据第f个子载波,在时域上占据第t个OFDM符号,t=1、2...12;则在时间和频率上,符号的虚部按照下列规则进行位置交换:(f1,1)→(f2,7),(f2,7)→(f1,2),(f1,2)→(f2,8),(f2,8)→(f1,3),(f1,3)→(f2,9),(f2,9)→(f1,4),(f1,4)→(f2,10),(f2,10)→(f1,5),(f1,5)→(f2,11),(f2,11)→(f1,6),(f1,6)→(f2,12),(f2,12)→(f1,1)。Referring to Fig. 7, the time-frequency two-dimensional interleaving rule that the embodiment of the present invention adopts in this step (223) is introduced, and this figure is wherein the schematic diagram of Q path interleaving, and the specific method is: each user is evenly distributed in each OFDM symbol The Q-path components of the symbol vector block are interleaved; in the embodiment, the symbol vector block of each user includes S=720 modulation symbols, which are evenly distributed in 12 OFDM symbols according to the time domain resources, and each OFDM symbol includes each The 60 modulation symbols of the user, that is, the frequency domain resource occupied by the Q-path component for time-frequency interleaving is 60 subcarriers, and the time domain resource is 12 OFDM symbols; The frequency points with an interval of ≥5 OFDM symbols in the domain are taken as a group; the subcarrier bandwidth numbers are f 1 , f 2 , where f 1 =1...60, f 2 =(f 1 +30)mod 60; And let (f, t) represent that the Q-path component of the modulation symbol occupies the fth subcarrier in the frequency domain, and occupies the tth OFDM symbol in the time domain, t=1, 2...12; then in the time and In terms of frequency, the imaginary part of the symbol is exchanged according to the following rules: (f 1 , 1)→(f 2 , 7), (f 2 , 7)→(f 1 , 2), (f 1 , 2)→( f 2 , 8), (f 2 , 8) → (f 1 , 3), (f 1 , 3) → (f 2 , 9), (f 2 , 9) → (f 1 , 4), (f 1 , 4) → (f 2 , 10), (f 2 , 10) → (f 1 , 5), (f 1 , 5) → (f 2 , 11), (f 2 , 11) → (f 1 , 6), (f 1 , 6) → (f 2 , 12), (f 2 , 12) → (f 1 , 1).
步骤3、发送端根据预设的OFDM调制长度和IFFT运算长度,分别对每个OFDM符号中不足IFFT运算长度的位长补零,再对补零后的每个OFDM符号进行包括IFFT运算和添加循环前缀CP的OFDM处理,然后发送数据。
该步骤3包括下列具体操作内容:This
(31)分别对每个OFDM符号中不足IFFT运算长度的位长补零后,再对补零后的每个OFDM符号分别按照下述公式进行IFFT运算:
参见图6,进一步介绍本发明实施例中分配OFDM时频资源情况:横轴表示OFDM符号在子载波带宽上的分配情况,纵轴表示OFDM符号在时隙上的分配情况。按照图4所示的每个OFDM符号长度为1200,每次OFDM传输过程处理12个OFDM符号,占用2048个OFDM子载波带宽;该实施例选取的FFT或IFFT的长度为2048,对重新分配后的每个OFDM符号中长度为1200个调制符号,要补充848个零,以使其长度等于IFFT的长度2048。Referring to FIG. 6 , the allocation of OFDM time-frequency resources in the embodiment of the present invention is further introduced: the horizontal axis represents the allocation of OFDM symbols on subcarrier bandwidth, and the vertical axis represents the allocation of OFDM symbols on time slots. The length of each OFDM symbol shown in Figure 4 is 1200, and each OFDM transmission process processes 12 OFDM symbols, occupying 2048 OFDM subcarrier bandwidths; the length of the FFT or IFFT selected by this embodiment is 2048, after reallocation The length of each OFDM symbol in is 1200 modulation symbols, and 848 zeros are added to make its length equal to the
(32)对每个经过IFFT运算后的OFDM符号分别添加CP,消除多径信道传输引起的符号间干扰;具体操作内容为:将每个OFDM符号尾部的μ个符号拷贝添加至该OFDM符号的前端,其中,μ是CP的长度。(32) Add CP to each OFDM symbol after the IFFT operation to eliminate inter-symbol interference caused by multipath channel transmission; the specific operation content is: add μ symbol copies at the end of each OFDM symbol to the OFDM symbol Front end, where μ is the length of the CP.
实施例中的CP长度μ为512,添加CP处理后的符号位长增至2560。The CP length μ in the embodiment is 512, and the symbol bit length after adding the CP processing is increased to 2560.
(33)依次发送每个OFDM符号。(33) Send each OFDM symbol in sequence.
步骤4、接收端接收数据后,先对该数据块符号进行去除CP和快速傅里叶变换FFT运算的解OFDM处理,再进行相位补偿和去零,然后对得到的OFDM符号依次进行Q路解交织、OFDM解时频资源分配、旋转解调和译码,得到所需的数据信息。该步骤4包括下述具体操作内容:
(41)接收端接收数据后,对其进行解OFDM处理:先对接收到的每个OFDM符号分别去除CP,即将接收到的每个OFDM符号分别删除其头部μ个符号;再对每个OFDM符号分别按照下述公式进行快速傅里叶变换FFT运算:
实施例中,将每次接收到的2560个符号头部的循环前缀512个都删除。In the embodiment, 512 cyclic prefixes of the headers of 2560 symbols received each time are deleted.
(42)对变换后的OFDM符号进行相位补偿,以便根据信道估计值消除多径传输对数据的影响;相位补偿公式为:
(43)对相位补偿后的每个OFDM符号进行除零,即删除步骤(31)为匹配IFFT运算长度的位长所添加的零,然后,将每个OFDM符号进行存储;(43) divide each OFDM symbol after the phase compensation by zero, that is, delete the zero added by the step (31) for matching the bit length of the IFFT operation length, and then store each OFDM symbol;
实施例中的该步骤是删除为了匹配IFFT长度而添加的848个零位。This step in the embodiment is to remove the 848 zero bits added to match the IFFT length.
(44)按照步骤(13)选择的多维旋转调制和步骤(21)选择的集中式或分布式的OFDM模式,对每个OFDM符号内的符号矢量进行相应的Q路解交织处理,即按照步骤(22)的对应规则进行逆向处理。(44) According to the multi-dimensional rotation modulation selected in step (13) and the centralized or distributed OFDM mode selected in step (21), carry out corresponding Q-path deinterleaving processing to the symbol vector in each OFDM symbol, that is, according to the steps The corresponding rules of (22) are reversed.
当接收端按照集中式OFDM模式进行Q路解交织时,若采用二维旋转调制,则所述步骤(44)中,只执行Q路时频二维交织器的解交织操作,不执行调制符号矢量的时频解交织和Q路频域解交织的操作;若采用四维或更高维数的旋转调制,则该步骤(44)包括下列操作内容:When the receiving end performs Q-way deinterleaving according to the centralized OFDM mode, if two-dimensional rotational modulation is used, then in the step (44), only the de-interleaving operation of the Q-way time-frequency two-dimensional interleaver is performed, and the modulation symbols are not performed. The operation of vector time-frequency deinterleaving and Q-way frequency domain deinterleaving; if four-dimensional or higher-dimensional rotation modulation is adopted, then this step (44) includes the following operations:
(441)按照步骤(223)的时频二维交织规则的逆向处理方法对符号矢量的Q路分量进行解交织:先顺序选取调制符号的Q路分量,即先选取第个OFDM符号内第f2个调制符号的Q路分量,再选取第2个OFDM符号内第f1个调制符号的Q路分量,接着选取第个OFDM符号内第f2个调制符号的Q路分量,再选取第3个OFDM符号内第f1个调制符号的Q路分量,继续选取第个OFDM符号内第f2个调制符号的Q路分量,然后选取第3个OFDM符号内第f1个调制符号的Q路分量,依次类推;在时域上按照从第个OFDM符号选起,再选择第2个OFDM符号,接着选择与它相隔个OFDM符号第个OFDM符号,再选择从第2个增加1个OFDM符号的第3个OFDM符号,然后选择与它相隔个OFDM符号第个OFDM符号,依次类推,选择到从第个OFDM符号,再选择与它相隔个OFDM符号的第(OFDM_Num)个OFDM符号,最后选取第1个OFDM符号;在频域上是f2、f1交替选择;这样,在交织前,每个OFDM符号中的各个调制符号的Q路分量的位置坐标分别为:(441) According to the reverse processing method of the time-frequency two-dimensional interleaving rule in step (223), deinterleave the Q-path components of the symbol vector: first select the Q-path components of the modulation symbols in order, that is, first select the first The Q component of the f 2th modulation symbol in the first OFDM symbol, and then select the Q component of the f 1th modulation symbol in the second OFDM symbol, and then select the Q component of the f 1st modulation symbol in the second OFDM symbol The Q-path component of the f2th modulation symbol in the first OFDM symbol, and then select the Q-path component of the f1th modulation symbol in the third OFDM symbol, and continue to select the first The Q-path component of the f2th modulation symbol in the first OFDM symbol, and then select the Q-path component of the f1th modulation symbol in the third OFDM symbol, and so on; Select the first OFDM symbol, then select the second OFDM symbol, and then select the distance from it OFDM symbol No. OFDM symbols, then select the third OFDM symbol that increases by 1 OFDM symbol from the second, and then select the distance from it OFDM symbol No. OFDM symbols, and so on, select from the first OFDM symbols, and then choose to be separated from it The (OFDM_Num)th OFDM symbol of the first OFDM symbol, finally select the first OFDM symbol; in the frequency domain, f 2 and f 1 are alternately selected; like this, before interleaving, the Q of each modulation symbol in each OFDM symbol The position coordinates of the road components are:
经过Q路分量的时频二维解交织后,其所占据的频域和时域的位置坐标恰好是原有OFDM符号的Q路分量依序向左循环移动一位的结果,即为:After the time-frequency two-dimensional deinterleaving of the Q-path component, the position coordinates of the frequency domain and time domain occupied by it are exactly the result of the Q-path component of the original OFDM symbol moving one bit to the left in sequence, which is:
使得Q路正交分量符号在时间和频率上都按照上述规则进行位置交换So that the quadrature component symbols of the Q path are exchanged according to the above rules in time and frequency
(f1,2)→(f2,OFDM_Num/2+1),(f2,OFDM_Num/2+1)→(f1,1)。(f 1 , 2)→(f 2 , OFDM_Num/2+1), (f 2 , OFDM_Num/2+1)→(f 1 , 1).
实施例中,按照步骤(451)解Q路时频二维交织是将原来属于同一调制符号的虚部和实部进行匹配还原,具体方法是:将频域上间隔30个子载波带宽和时域上间隔大于等于5个OFDM符号的频点取作一组;取子载波带宽编号为f1,f2,其中f1=1...60,f2=(f1+30)mod 60;并令(f,t)表示符号Q路分量在频域上占据第f个子载波,在时域上占据第t个OFDM符号,t=1、2、...、12;则在时间和频率上,符号虚部按照下列规则进行位置交换:(f1,1)→(f2,12),(f2,12)→(f1,6),(f1,6)→(f2,11),(f2,11)→(f1,5),(f1,5)→(f2,10),(f2,10)→(f1,4),(f1,4)→(f2,9),(f2,9)→(f1,3),(f1,3)→(f2,8),(f2,8)→(f1,2),(f1,2)→(f2,7),(f2,7)→(f1,1)。In the embodiment, according to the step (451) to solve the Q-way time-frequency two-dimensional interleaving is to match and restore the imaginary part and the real part originally belonging to the same modulation symbol. The frequency points whose upper interval is greater than or equal to 5 OFDM symbols are taken as a group; the subcarrier bandwidth numbers are f 1 , f 2 , where f 1 =1...60, f 2 =(f 1 +30)mod 60; And let (f, t) represent that the symbol Q component occupies the fth subcarrier in the frequency domain, and occupies the tth OFDM symbol in the time domain, t=1, 2, ..., 12; then in the time and frequency above, the imaginary part of the symbol is exchanged according to the following rules: (f 1 , 1)→(f 2 , 12), (f 2 , 12)→(f 1 , 6), (f 1 , 6)→(f 2 , 11), (f 2 , 11)→(f 1 , 5), (f 1 , 5)→(f 2 , 10), (f 2 , 10)→(f 1 , 4), (f 1 , 4) → (f 2 , 9), (f 2 , 9) → (f 1 , 3), (f 1 , 3) → (f 2 , 8), (f 2 , 8) → (f 1 , 2 ), (f 1 , 2) → (f 2 , 7), (f 2 , 7) → (f 1 , 1).
(442)按照步骤(222)的逆向处理方法对符号矢量的Q路分量进行解频域交织,其规则为:每个OFDM符号内同一用户的L个符号矢量中,间隔为的D个符号矢量的Q路分量设为一组,将该组内的Q路分量依次向左循环移动一位,则将原来属于同一符号矢量的虚部和实部进行匹配还原。(442) According to the reverse processing method of step (222), the Q path component of the symbol vector is de-frequency-domain interleaved, and its rule is: in each OFDM symbol, in the L symbol vectors of the same user, the interval is The Q-path components of the D symbol vectors in the group are set as a group, and the Q-path components in the group are sequentially shifted to the left by one bit, and then the imaginary part and the real part that originally belonged to the same symbol vector are matched and restored.
实施例中,如果采用二维旋转调制,不执行该步骤(452),如果采用四维旋转调制,则按照该步骤(452)解Q路频域交织的具体方法是:将一个OFDM符号内同一用户的符号矢量中的60个符号,间隔为15的四个符号的Q路分量取作一组,将这组内的Q路分量依次左移循环移位,则将原来属于同一符号的虚部和实部进行匹配还原,依次对其余各组的Q路分量进行相同的操作。In the embodiment, if two-dimensional rotational modulation is adopted, this step (452) is not performed; if four-dimensional rotational modulation is adopted, the specific method for solving the Q-way frequency domain interleaving according to this step (452) is: the same user in one OFDM symbol The 60 symbols in the symbol vector of , the Q-path components of four symbols with an interval of 15 are taken as a group, and the Q-path components in this group are shifted to the left in turn, and the imaginary part and The real part is matched and restored, and the same operation is performed on the Q-path components of the other groups in turn.
(443)按照步骤(221)的逆向处理方法对符号矢量进行时频解交织,其规则为:对每个用户的符号矢量按照逐列写入方式存储于以格式的交织器后,再按照逐行方式取出,这样,在符号矢量块内相隔的两个符号就被还原放在相邻位置,完成符号矢量的时频解交织变换。(443) Carry out time-frequency deinterleaving to the symbol vector according to the reverse processing method of step (221), the rule is: the symbol vector of each user is stored in the After the interleaver of the format, it is taken out in a row-by-row manner, so that the interval in the symbol vector block The two symbols of are restored and placed in adjacent positions to complete the time-frequency deinterleaving transformation of the symbol vector.
实施例中,如果采用二维旋转调制,不执行该步骤(453),如果采用四维旋转调制,则按照该步骤(453)解时频交织的具体方法是:将每个用户在一个OFDM符号中的60个调制符号内,分散在相隔30的两个符号放到相邻的位置,从而还原一次四维旋转调制处理前的四个分量的位置。In the embodiment, if two-dimensional rotational modulation is adopted, this step (453) is not performed, and if four-dimensional rotational modulation is adopted, the specific method for solving the time-frequency interleaving according to this step (453) is: each user in an OFDM symbol Within the 60 modulation symbols, the two symbols scattered at an interval of 30 are placed in adjacent positions, thereby restoring the positions of the four components before a four-dimensional rotational modulation process.
(45)继续进行OFDM解时频资源分配操作:将每个用户在步骤(21)分配在OFDM时频资源上的全部OFDM符号中的所有L×P个调制符号按照该步骤的逆向操作顺序,重新还原为串行的所有用户的符号矢量。(45) Continue to perform OFDM solution time-frequency resource allocation operation: all L×P modulation symbols in all OFDM symbols allocated to each user on the OFDM time-frequency resource in step (21) according to the reverse operation sequence of this step, Revert back to serial for all user's sign vectors.
(46)采用最大似然解调方式对OFDM解时频资源分配后的符号矢量进行旋转解调:以经过多径信道后的旋转星座图为解调参考星座图,计算接收到的符号矢量集合中的每个符号矢量与其参考星座图中各星座点的欧氏距离,分别得到映射成为每个符号矢量的各个比特的对数似然比,用于译码。(46) Use the maximum likelihood demodulation method to rotate and demodulate the symbol vector after OFDM solution time-frequency resource allocation: take the rotated constellation diagram after the multipath channel as the demodulation reference constellation diagram, and calculate the received symbol vector set The Euclidean distance between each symbol vector in and each constellation point in the reference constellation diagram is mapped to the log-likelihood ratio of each bit of each symbol vector for decoding.
参见图8,介绍使用旋转调制星座图经过衰落信道后形成的星座图及其解调方式。图中I路和Q路的信号分别有不同的信道衰落幅度畸变,设I路的信道衰落幅度系数为|h2|,Q路的信道衰落幅度系数为|h1|。其解调的方式是:首先计算接收点到各个星座点的距离,即图中所示的d1~d4,再计算该符号对应的每位比特的对数似然比。以第一个比特为例,根据该星座图,四个星座点中第1位为0的比特组合为00和01,其对应的距离是d1和d4,第1位为1的比特组合为10和11,其对应的距离是d2和d3;从而得到该比特的对数似然比为:Referring to FIG. 8 , it introduces the constellation diagram and its demodulation method formed after the fading channel is passed through the rotating modulation constellation diagram. In the figure, the signals of the I channel and the Q channel have different channel fading amplitude distortions respectively. Let the channel fading amplitude coefficient of the I channel be |h2|, and the channel fading amplitude coefficient of the Q channel be |h1|. The demodulation method is as follows: first calculate the distance from the receiving point to each constellation point, that is, d 1 ~ d 4 shown in the figure, and then calculate the logarithmic likelihood ratio of each bit corresponding to the symbol. Taking the first bit as an example, according to the constellation diagram, the combination of bits whose first bit is 0 among the four constellation points is 00 and 01, and the corresponding distances are d 1 and d 4 , and the bit combination whose first bit is 1 are 10 and 11, and the corresponding distances are d 2 and d 3 ; thus the log likelihood ratio of this bit is:
(47)根据编码方式选择相应的译码方式,将每组OFDM符号译码还原为K个位长的信息比特,全部流程结束。(47) Select a corresponding decoding method according to the coding method, decode and restore each group of OFDM symbols into information bits with a length of K bits, and the whole process ends.
申请人完成的本发明实施例试验采用Turbo作为其信道编码。该实施例的各个参数说明如下:码率是8/9,信道模型是TU;译码方式是Log-Map;最大迭代次数=8;IFFT长度或FFT长度为2048,CP长度是512;调制方式是在QPSK条件下,信息位长度1280;调制方式是在16QAM条件下,信息位长度2560;调制方式是在64QAM条件下,信息位长度3840。The test of the embodiment of the present invention completed by the applicant adopts Turbo as its channel coding. The various parameters of this embodiment are described as follows: the code rate is 8/9, the channel model is TU; the decoding method is Log-Map; the maximum number of iterations=8; the IFFT length or FFT length is 2048, and the CP length is 512; the modulation method Under the QPSK condition, the information bit length is 1280; the modulation mode is under the 16QAM condition, the information bit length is 2560; the modulation mode is under the 64QAM condition, the information bit length is 3840.
图9(a)、(b)分别是本发明实施例和目前常用的比特交织编码调制BICMOFDM方式的在码率为8/9时的传输性能曲线比较图,两者均采用Turbo编码。图9(a)是采用集中式QPSK模式帧结构下的性能曲线。对该图9(a)中的曲线进行比较,采用QPSK时,在误帧率为10E-2时,四维的旋转调制OFDM Turbo比比特交织编码调制OFDM Turbo的性能提升有近5个dB,二维的旋转调制OFDM Turbo比比特交织编码调制OFDM Turbo的性能提升也大于3.5个dB、即近4dB的提升。图9(b)是采用16QAM分布式QPSK模式帧结构下的性能曲线。对该图9(b)中的曲线进行比较,采用16QAM时,在误帧率为10E-2时,四维的旋转调制OFDM Turbo比比特交织编码调制OFDM Turbo的性能提升有近4dB,二维的旋转调制OFDM Turbo比比特交织编码调制OFDM Turbo的性能提升也有3dB。Figure 9(a) and (b) are the comparison diagrams of the transmission performance curves at
因此,本发明的试验是成功的,实现了发明目的。Therefore, test of the present invention is successful, has realized the purpose of the invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910091163 CN101621490B (en) | 2009-08-13 | 2009-08-13 | Method for modulation diversity joint codes of OFDM system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910091163 CN101621490B (en) | 2009-08-13 | 2009-08-13 | Method for modulation diversity joint codes of OFDM system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101621490A CN101621490A (en) | 2010-01-06 |
CN101621490B true CN101621490B (en) | 2013-03-20 |
Family
ID=41514539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910091163 Expired - Fee Related CN101621490B (en) | 2009-08-13 | 2009-08-13 | Method for modulation diversity joint codes of OFDM system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101621490B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102355446A (en) * | 2011-06-30 | 2012-02-15 | 北京交通大学 | One-dimensional-dirty paper coding (DPC)-system-based soft demodulation method and system |
CN102916926A (en) * | 2011-08-05 | 2013-02-06 | 中兴通讯股份有限公司 | Data sending method, data restoring method and device |
CN102571670B (en) * | 2012-01-12 | 2014-08-20 | 北京邮电大学 | Method and device for multidimensional coded modulation of orthogonal frequency division multiplexing (OFDM) system |
US8775892B2 (en) * | 2012-08-31 | 2014-07-08 | Tyco Electronics Subsea Communications Llc | System and method including modified bit-interleaved coded modulation with fractional secondary coding |
CN107465485A (en) * | 2014-09-02 | 2017-12-12 | 上海数字电视国家工程研究中心有限公司 | Code modulating method and information processing method |
US10171202B2 (en) * | 2014-11-11 | 2019-01-01 | Qualcomm Incorporated | Diversity repetition in mixed-rate wireless communication networks |
RU2668112C1 (en) * | 2014-12-22 | 2018-09-26 | Хуавэй Текнолоджиз Ко., Лтд. | Device and method of indication information transmission |
CN107079466B (en) * | 2014-12-22 | 2020-03-10 | 华为技术有限公司 | Method and device for transmitting indication information |
CN107113784B (en) | 2014-12-22 | 2020-12-15 | 华为技术有限公司 | Method and device for transmitting indication information |
CN105049398B (en) * | 2015-05-24 | 2018-11-30 | 浙江大学 | A kind of adjustable modulator approach of constellation point mapping mode based on the modulation of carrier wave label |
CN105207741B (en) * | 2015-08-18 | 2018-07-06 | 北京邮电大学 | A kind of network data transmission method |
CN107040487B (en) * | 2016-02-04 | 2021-06-15 | 中兴通讯股份有限公司 | Signal processing method and device |
WO2017139915A1 (en) * | 2016-02-15 | 2017-08-24 | 富士通株式会社 | Information transmission method, device and communication system suitable for non-orthogonal multiple access |
CN107370564B (en) * | 2016-05-13 | 2021-11-02 | 中兴通讯股份有限公司 | Polarization code processing method and device and node |
CN109150386B (en) * | 2017-06-28 | 2021-05-28 | 展讯通信(上海)有限公司 | User terminal, serving cell demodulation method, storage medium, and electronic device |
CN110412557B (en) * | 2019-08-13 | 2021-08-06 | 北京邮电大学 | A method and device for measuring speed and distance based on OFDM signal |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101394392A (en) * | 2008-11-12 | 2009-03-25 | 北京邮电大学 | A method of signal diversity in OFDM system |
-
2009
- 2009-08-13 CN CN 200910091163 patent/CN101621490B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101394392A (en) * | 2008-11-12 | 2009-03-25 | 北京邮电大学 | A method of signal diversity in OFDM system |
Non-Patent Citations (1)
Title |
---|
Wu Zhanji.Proposed Text of Coding-Rotated-Modulation OFDM System for the IEEE 802.16m Amendment.《IEEE C802.16m-09/0414》.2009,2-13. * |
Also Published As
Publication number | Publication date |
---|---|
CN101621490A (en) | 2010-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101621490B (en) | Method for modulation diversity joint codes of OFDM system | |
CN101394392B (en) | Signal diversifying method for OFDM system | |
CN101631003B (en) | Method for rotating modulation signals for MIMO-OFDM system | |
US9166741B2 (en) | OFDM transmitter with variable code block interleaver and method for OFDM communications with variable code block sizes | |
CN101984570B (en) | Codebook selection and modulation method being applied under MIMO-OFDM system to overcome weak scattering | |
CN101795257B (en) | Offset Modulation Orthogonal Frequency Division Multiplexing Transmission Method with Cyclic Prefix | |
CN101778078B (en) | Anti-jamming wireless multimedia broadcasting signal transmission method | |
WO2009146028A2 (en) | Multidimensional constellations for coded transmission | |
CN101702961B (en) | Apparatus and method for coded orthogonal frequency- division multiplexing | |
CN101431503B (en) | Space-frequency modulation method for digital television ground broadcasting transmitter | |
CN101778079B (en) | A method for anti-jamming transmission of multimedia broadcasting wireless signals | |
CN101383804B (en) | Digital television ground broadcast transmitter modulation method having time-domain training sequence and BICM | |
CN106533610A (en) | Data transmission method, device and system based on dual-carrier modulation (DCM) | |
CN101345733B (en) | Multi-user OFDM Modulation Method Based on Embedded Training Sequence and BICM | |
CN102571670B (en) | Method and device for multidimensional coded modulation of orthogonal frequency division multiplexing (OFDM) system | |
CN102255860B (en) | Anti-interference digital mobile broadcasting signal transmission method | |
CN101383808B (en) | Modulation Method of Digital TV Terrestrial Broadcasting Transmitter Based on Embedded Training Sequence and BICM | |
CN102281231B (en) | Multimedia broadcast mobile signal anti-interference framing modulation method | |
KR20060093224A (en) | MB-OPDM transceiver and signal processing method thereof | |
CN102263738A (en) | A digital broadcast wireless signal anti-interference transmission method | |
CN101383809A (en) | Space Frequency Modulation Method for Digital TV Terrestrial Broadcasting Transmitter Based on Embedded Training Sequence and BICM | |
CN102271113B (en) | Anti-interference transmission method for digital broadcast mobile signal | |
CN102263754B (en) | Anti-interference transmission method of mobile digital broadcast signals | |
Pooja et al. | Design and performance analysis of FEC schemes in OFDM communication system | |
CN103763273A (en) | Anti-interference framing modulation method for wireless signals of multimedia broadcast |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130320 Termination date: 20180813 |