CN101621072A - Semiconductor device and method for manufacturing the same - Google Patents
Semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- CN101621072A CN101621072A CN200810127254A CN200810127254A CN101621072A CN 101621072 A CN101621072 A CN 101621072A CN 200810127254 A CN200810127254 A CN 200810127254A CN 200810127254 A CN200810127254 A CN 200810127254A CN 101621072 A CN101621072 A CN 101621072A
- Authority
- CN
- China
- Prior art keywords
- conductivity
- matrix area
- trap
- area
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract 10
- 238000004519 manufacturing process Methods 0.000 title claims abstract 3
- 238000000034 method Methods 0.000 title claims 10
- 239000000758 substrate Substances 0.000 claims abstract 17
- 238000002955 isolation Methods 0.000 claims abstract 11
- 239000011159 matrix material Substances 0.000 claims 29
- 239000002019 doping agent Substances 0.000 claims 8
- 239000000463 material Substances 0.000 claims 8
- 238000005530 etching Methods 0.000 claims 2
- 238000009499 grossing Methods 0.000 claims 2
- 238000000059 patterning Methods 0.000 claims 2
- 238000005468 ion implantation Methods 0.000 claims 1
- 210000000746 body region Anatomy 0.000 abstract 3
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明是关于集成电路制作,且特别是关于一种适用于高电压操作的半导体装置及其制造方法。The present invention relates to integrated circuit fabrication, and more particularly to a semiconductor device suitable for high voltage operation and its fabrication method.
背景技术 Background technique
近年来,随着半导体集成电路制造技术的发展,对于形成于单一芯片上的控制器、存储器、低电压操作电路以及高电压操作电路等构件的需求也随之增加,藉以制作出更高集成度的单一芯片系统。In recent years, with the development of semiconductor integrated circuit manufacturing technology, the demand for components such as controllers, memories, low-voltage operating circuits, and high-voltage operating circuits formed on a single chip has also increased, so as to produce higher integrated circuits. single chip system.
于单一芯片系统内,通常采用了如双扩散金属氧化物半导体(double-diffused metal oxide semiconductor,DMOS)装置以及功率半导体器件(IGBT)等高电压构件,以改善功率转换效率并减少电量的损耗。DMOS装置具有低功率损耗及高速操作等优点,因而成为高电压构件应用选择之一。In a system-on-a-chip, high-voltage components such as double-diffused metal oxide semiconductor (DMOS) devices and power semiconductor devices (IGBTs) are usually used to improve power conversion efficiency and reduce power loss. DMOS devices have the advantages of low power loss and high-speed operation, making them one of the choices for high-voltage device applications.
DMOS装置大体分类为横向型DMOS(lateral DMOS,LDMOS)装置以及垂直型DMOS(vertical DMOS,VDMOS)装置等两类。VDMOS装置的制备通常牵涉到外延工艺的使用,而LDMOS装置的制备则不一定需要使用外延工艺可采用标准互补型金属氧化物半导体(CMOS)工艺,因此具有较佳的工艺整合性。然而,相较于VDMOS装置,LDMOS装置具有较高的导通电阻(Rds_on)以及需要较大的器件间距(pitch)。因此随着单一芯片系统尺寸的缩小趋势,便需要针对LDMOS装置的高导通电阻及器件间距进行改善,以提升其应用性。The DMOS devices are roughly classified into two types: a lateral DMOS (lateral DMOS, LDMOS) device and a vertical DMOS (vertical DMOS, VDMOS) device. The fabrication of VDMOS devices usually involves the use of epitaxial processes, while the fabrication of LDMOS devices does not necessarily require the use of epitaxial processes and can use standard complementary metal-oxide-semiconductor (CMOS) processes, so it has better process integration. However, compared to VDMOS devices, LDMOS devices have higher on-resistance (Rds_on) and require larger device pitches. Therefore, with the shrinking trend of single chip system size, it is necessary to improve the high on-resistance and device pitch of the LDMOS device to enhance its applicability.
请参照图1,显示了一种已知水平型双扩散金属氧化物半导体(LDMOS)装置的剖面情形。Please refer to FIG. 1 , which shows a cross-section of a known horizontal double-diffused metal-oxide-semiconductor (LDMOS) device.
如图1所示,LDMOS装置主要包括一P型硅衬底100,其一部分内设置有一N型阱102。于N型阱102与P型硅衬底100交接处的表面则分别设置有一场氧化物(field oxide,FOX)104,因而藉由这些场氧化物104而大体定义了设置LDMOS装置的主动区。这些场氧化物104是藉由已知场氧化物法所形成。位于场氧化物104间内的N型阱102内则设置有一P型基体(body)区106,其是形成于N型阱102的一部分内且大体邻近位相对左侧的场氧化物104。于P型基体区106内另外设置有一N-区113、一N+区114S以及一P+区116,其中N-区113是为一浅掺杂区(lightly doped region),而P+区116是相邻于N+区114S且此二区域是为P型基体区106表面所露出以作为源极和基体的接触区。于P型基体区106与右侧的场氧化物104间的N型阱102内则另外设置有一N+区114D,以作为漏极。介于场氧化物104的N型阱102的表面的一部分上则形成有一栅堆叠物G,以作为一栅极之用,其包括依序堆叠于N型阱102表面上的栅介电层110、栅电极108。于栅堆叠物G内的栅介电层110与栅电极108的对称侧边上则设置有间隔物112。栅堆叠物G在此部分覆盖P型基体区106且覆盖了N-区113。As shown in FIG. 1 , the LDMOS device mainly includes a P-
在此,于图1所示的LDMOS装置中,标号L显示了通道长度(channellength),是定义为N-区113至位于栅堆叠物G下方的P型基体区106一侧的距离。另外标号P显示器件间距(pitch),是定义为N+区114S与P+区116交接处至另一N+区114D的中点间的距离。然而,如此水平地设置于P型衬底100上表面上的栅堆叠物G恐不利于器件间距P的缩减,因此亦不利于LDMOS装置的导通电阻(Rds_on)的降低。Herein, in the LDMOS device shown in FIG. 1 , the symbol L indicates the channel length, which is defined as the distance from the N-
发明内容 Contents of the invention
本发明提供了一种半导体装置及其制造方法,适合于高电压构件的应用与制备。The invention provides a semiconductor device and its manufacturing method, which are suitable for the application and preparation of high-voltage components.
依据一实施例,本发明的半导体装置,包括:According to an embodiment, the semiconductor device of the present invention includes:
一衬底,具有一第一导电性;多个隔离结构,设置于所述衬底的表面;一阱,设置于所述隔离结构间的所述衬底内,具有相反于所述第一导电性的一第二导电性以及一露出表面;一基体区,设置于所述阱的一部分中,具有相同于所述衬底的所述第一导电性以及一凹表面;一栅堆叠物,设置于所述衬底的一部分上,部分覆盖所述阱的所述露出表面与所述基体区的所述凹表面;一漏极区,设置于所述阱的另一部分中且未为所述栅堆叠物所覆盖,具有所述第二导电性;一源极区,设置于所述基体区的一部分中,具有所述第二导电性;以及一基体接触区,设置于所述基体区的另一部分中,具有所述第一导电性且邻近所述源极区。a substrate having a first conductivity; a plurality of isolation structures arranged on the surface of the substrate; a well arranged in the substrate between the isolation structures and having a conductivity opposite to that of the first conductivity a second conductivity and an exposed surface; a body region disposed in a portion of the well having the same first conductivity as the substrate and a concave surface; a gate stack disposed on a portion of the substrate partially covering the exposed surface of the well and the concave surface of the base region; a drain region disposed in another portion of the well and not being the gate covered by the stack, having the second conductivity; a source region, disposed in a portion of the body region, having the second conductivity; and a body contact region, disposed in another portion of the body region A portion has the first conductivity and is adjacent to the source region.
依据另一实施例,本发明的半导体装置的制造方法,包括:According to another embodiment, the method for manufacturing a semiconductor device of the present invention includes:
提供一半导体衬底,其内设置有一阱,其中所述半导体衬底具有一第一导电性,而所述阱具有相反于所述第一导电性的一第二导电性与一露出表面;于所述半导体衬底的表面上形成多个隔离结构,其中所述隔离结构之一是形成于所述阱内的所述半导体衬底之上;形成图案化的一屏蔽层于所述半导体衬底上,以露出位于所述阱内的所述隔离结构;执行一离子注入步骤,以所述屏蔽层作为刻蚀掩膜,以于所述阱内的所述隔离结构的下方形成一基体区,所述基体区具有一第一导电性;执行一刻蚀步骤,以所述屏蔽层作为刻蚀掩膜,刻蚀去除所述阱内的所述隔离结构,以露出所述基体区,其中所述基体区具有低于邻近的所述半导体衬底的一凹表面;去除所述屏蔽层;形成图案化的一栅堆叠物,部分覆盖所述基体区的所述凹表面以及邻近所述基体区的所述阱的表面;于所述基体区的一部分内以及所述阱的一部分内分别形成一源极区与一漏极区,其中所述源极区与所述漏极区并未为所述栅堆叠物所覆盖且具有所述第二导电性;以及于所述基体区的另一部分内形成一基体接触区,所述基体接触区相邻于所述源极区且未为所述栅堆叠物所覆盖并具有所述第一导电性。providing a semiconductor substrate having a well disposed therein, wherein the semiconductor substrate has a first conductivity, and the well has a second conductivity opposite to the first conductivity and an exposed surface; at A plurality of isolation structures are formed on the surface of the semiconductor substrate, wherein one of the isolation structures is formed on the semiconductor substrate in the well; a patterned shielding layer is formed on the semiconductor substrate to expose the isolation structure located in the well; perform an ion implantation step, using the shielding layer as an etching mask to form a base region under the isolation structure in the well, The base region has a first conductivity; performing an etching step, using the shielding layer as an etching mask, etching and removing the isolation structure in the well to expose the base region, wherein the a base region having a concave surface lower than the adjacent semiconductor substrate; removing the shielding layer; forming a patterned gate stack partially covering the concave surface of the base region and The surface of the well; a source region and a drain region are respectively formed in a part of the base region and a part of the well, wherein the source region and the drain region are not the a gate stack covering and having the second conductivity; and forming a body contact region in another portion of the body region, the body contact region being adjacent to the source region and not being the gate stack covered by an object and have the first conductivity.
本发明所述方案,有利于器件间距P的缩减,因此亦有利于LDMOS装置的导通电阻(Rds_on)的降低。The solution of the present invention is beneficial to the reduction of the device pitch P, and therefore also beneficial to the reduction of the on-resistance (Rds_on) of the LDMOS device.
附图说明 Description of drawings
图1显示了已知的水平型双扩散金属氧化物半导体(LDMOS)装置的剖面情形;以及Figure 1 shows a cross-sectional view of a known horizontal double-diffused metal-oxide-semiconductor (LDMOS) device; and
图2~图7为一系列示意图,分别显示了依据本发明一实施例的水平型双扩散金属氧化物半导体(LDMOS)装置于不同制作步骤中的剖面情形。2 to 7 are a series of schematic diagrams respectively showing the cross-sections of a horizontal double-diffused metal-oxide-semiconductor (LDMOS) device in different manufacturing steps according to an embodiment of the present invention.
具体实施方式 Detailed ways
为了让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举一较佳实施例,并配合所附图示,作详细说明如下:In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is specifically cited below, together with the accompanying drawings, and is described in detail as follows:
请参照图2~图7所示的一系列示意图,分别显示了依据本发明一实施例的水平型双扩散金属氧化物半导体(LDMOS)装置的制作情形,藉以制备出具有较低导通电阻的LDMOS装置。Please refer to a series of schematic diagrams shown in FIGS. 2 to 7, respectively showing the fabrication of a horizontal double-diffused metal-oxide-semiconductor (LDMOS) device according to an embodiment of the present invention, so as to prepare a device with a lower on-resistance. LDMOS devices.
请参照图2,首先提供一半导体衬底200,其内设置有一阱202,阱202的导电性相异于衬底200的导电性,其掺杂浓度例如介于1012~1013原子/每平方公分。在此,半导体衬底200例如为外延层衬底一绝缘层上覆硅(SOI)衬底或块状硅衬底。半导体衬底200具有一第一导电性,例如为P型或N型导电性,且较佳地为P型导电性,其掺杂浓度例如介于1011~1013原子/每平方公分。阱202可藉由已知离子注入方法并采用适当的遮罩(未显示)所形成。接着,于半导体衬底200上坦覆地形成一垫氧化物层204以及一垫氮化物层206,其依序堆叠于半导体衬底200上。接着藉由一光刻与刻蚀步骤(皆未显示),以于垫氧化物层204与垫氮化物层206内形成数个开口,以分别部分露出其下方的半导体衬底200。在此,开口是绘示为位于两侧的开口OP1以及居中的开口OP2,其中开口OP2的尺寸略大于开口OP1的尺寸,但并不以此为限,开口OP2的尺寸亦可等同于或小于开口OP1的尺寸。开口OP1分别露出其下方的半导体衬底200及阱202的一部分,而开口OP2则仅露出阱202的一部分。上述垫氧化物层204的材质例如为二氧化硅,而垫氮化物层206的材质例如为氮化硅。Referring to FIG. 2 , a
请参照图3,接着于开口OP1与开口OP2内分别形成隔离结构208a与208b。而于形成隔离结构208a与208b之后,形成图案化的遮罩层210并露出隔离结构208b及其邻近的垫氮化物层206。接着执行一离子注入步骤212,以于隔离结构208b下方的阱202内形成一基体(body)区214,基体区214具有相同于衬底200的导电性,其掺杂浓度例如介于1012~1014原子/每平方公分。如图3所示,隔离结构208a与208b是绘示为场氧化物(field oxide,FOX),其是由热氧化法所形成,但隔离结构208a与208b并不以场氧化物加以限制,其亦可采用如浅沟槽隔离物(shallow trench isolation,STI)的其他隔离结构。基体区214亦可早于隔离结构208a与208b前先行形成,其可藉由搭配适当遮罩以及N型或P型离子的使用而形成。上述掩膜层210的材质例如为光致抗蚀剂材料。Referring to FIG. 3 ,
请参照图4,接着藉由一刻蚀步骤(未显示)以去除隔离结构208b后,接着刻蚀去除遮罩210、垫氮化物层206以及垫氧化物层204等膜层,进而露出了隔离结构208a以及基体区214的表面250。在此,基体区214的表面为低于半导体衬底200表面的一凹面250,此凹面250为圆滑化的表面,因而使得基体区214具有大体U型的一剖面情形。接着则于半导体衬底200上依序形成栅介电层216与一导电层218,藉以顺应地覆盖半导体衬底200、凹面250与隔离结构208a的表面。如图4所示,栅介电层216的形成方式例如为热氧化法,因此其材质可为氧化硅材质,且先前形成于第一阱202内的基体区214于栅介电层216形成时将进一步扩散而形成了一经扩散的基体区214′,而栅介电层216与导电层218则顺应地依序形成于半导体衬底200上而具有部分凹陷与部分凸起的表面。导电层218的材质则可为经掺杂的多晶硅或硅化钨的金属材料。Referring to FIG. 4, after removing the isolation structure 208b by an etching step (not shown), the mask 210, the
请参照图5,接着,形成一图案化的掩膜层(未显示)于导电层218上,并露出部分导电层218。接着执行一刻蚀步骤(未显示)以移除为此图案化的掩膜层所露出的导电层218与栅介电层216部分,进而分别于半导体衬底200的一部分上形成两分隔的栅堆叠物G1与G2,其分别部份覆盖基体区214′的一部分并露出栅堆叠物G1与G2间的基体区214′部分。接着形成一图案化的遮罩层220,以部分露出栅堆叠物G1与G2及其间的基体区214′。接着执行一离子注入步骤222,以掺杂具有相同于阱202导电性的掺质,以于基体区214′的一部分内形成浅掺杂区224。离子注入步骤222所采用的掺杂浓度例如介于1012~1013原子/每平方公分。Referring to FIG. 5 , then, a patterned mask layer (not shown) is formed on the conductive layer 218 to expose part of the conductive layer 218 . An etching step (not shown) is then performed to remove portions of the conductive layer 218 and the gate dielectric layer 216 exposed by the patterned mask layer, thereby forming two separated gate stacks on a portion of the
请参照图6,于去除图案化的掩膜层220后,接着于栅堆叠物G1与G2的对应侧壁上分别形成一间隔物226。接着藉由适当布植遮罩(未显示)的应用,以掺杂具有相同于阱202导电性的掺质于基体区214′与阱202内,以分别形成一源极区228s与一漏极区228d,所采用的掺杂浓度例如介于1014~1015原子/每平方公分。接着藉由另一适当布植遮罩(未显示)的应用,以掺杂具有相异于阱202导电性的掺质于基体区214′内,以形成一基体接触区230,其所采用的掺杂浓度例如介于1014~1015原子/每平方公分,且此基体接触区230大体位于两个源极区228s中间,而源极区228s分别邻近浅掺杂区224并接触之。Referring to FIG. 6 , after removing the patterned
如图6所示,在此LDMOS装置是绘示为具有两对应设置的LDMOS器件,其是相对基体接触物230而镜像对称地设置于半导体衬底200之上。在此,于图6所示的LDMOS装置中,标号L′显示了各LDMOS器件的通道长度(channel length),是定义为浅掺杂区224至位于栅堆叠物G1与G2下方的P型基体区214′的一侧的距离。另外标号P′则显示了各LDMOS器件的器件间距(pitch),是定义为基体接触区230与各源极区228s的交界处至漏极区228d的中点间的距离。因此,参照图6所示结果,由于基体区214′具有低于邻近半导体基板200表面的一凹面,因而使得后续形成的栅堆叠物G1与G2可部分地设置于上述凹面之上而非整体水平地座落于半导体衬底200之上,进而缩减了位于半导体基板200上的栅堆叠物G1与G2的水平长度。因此,相较于图1所示的LDMOS装置,如图6所示的LDMOS装置内的器件间距P可进一步获得缩减,如此可降低其导通电阻(Rds_on)。As shown in FIG. 6 , the LDMOS device is shown here as having two correspondingly disposed LDMOS devices, which are mirror-symmetrically disposed on the
再者,由于基体区214′是于栅堆叠物G1与G2形成之前先行形成,因此对于图6所示的LDMOS装置内的LDMOS器件的通道长度L′可藉由于定义栅堆叠物G1与G2的刻蚀步骤而控制,因此可较精准地控制其通道长度L′,且可藉由基体区214′内不同场氧化层宽度的调整而形成不同通道长度的器件。Moreover, since the body region 214' is formed before the formation of the gate stacks G1 and G2, the channel length L' of the LDMOS device in the LDMOS device shown in FIG. 6 can be defined by the gate stacks G1 and G2. Therefore, the channel length L' can be controlled more precisely, and devices with different channel lengths can be formed by adjusting the width of different field oxide layers in the base region 214'.
请继续参照图7,接着可坦覆地形成一层间介电层230于图6所示的结构上。接着于层间介电层230之内形成数个电性独立的导电接触物232d与232s,以分别接触各漏极228d、基体接触区230与各源极区228s。接着于层间介电层230上形成数条电性独立的导线234,这些导线234分别覆盖了导电接触物232d与232s,进而与其下方的LDMOS器件的一部分形成电连结关系。上述导电接触物232d与232s以及导线234可藉由已知接触物与导线的工艺所形成,其材质可为如经掺杂的多晶硅、钨或铝等导电材料。在此,导电接触物232s则同时接触了基体接触区230及相邻的源极228s。Please continue to refer to FIG. 7 , and then an interlayer dielectric layer 230 can be formed covering the structure shown in FIG. 6 . Then, a plurality of electrically independent conductive contacts 232d and 232s are formed in the interlayer dielectric layer 230 to respectively contact each
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟悉本领域相关人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视后附的权利要求的范围为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with the art may make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be determined by the scope of the appended claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810127254A CN101621072A (en) | 2008-06-30 | 2008-06-30 | Semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810127254A CN101621072A (en) | 2008-06-30 | 2008-06-30 | Semiconductor device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101621072A true CN101621072A (en) | 2010-01-06 |
Family
ID=41514207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810127254A Pending CN101621072A (en) | 2008-06-30 | 2008-06-30 | Semiconductor device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101621072A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102738215A (en) * | 2011-08-18 | 2012-10-17 | 成都芯源系统有限公司 | Lateral double diffused metal oxide semiconductor field effect transistor and its manufacturing method |
CN109545853A (en) * | 2017-09-21 | 2019-03-29 | 新唐科技股份有限公司 | semiconductor substrate structure and semiconductor device |
CN109599439A (en) * | 2017-12-28 | 2019-04-09 | 新唐科技股份有限公司 | Transverse diffusion metal oxide semiconductor field effect transistor |
-
2008
- 2008-06-30 CN CN200810127254A patent/CN101621072A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102738215A (en) * | 2011-08-18 | 2012-10-17 | 成都芯源系统有限公司 | Lateral double diffused metal oxide semiconductor field effect transistor and its manufacturing method |
CN102738215B (en) * | 2011-08-18 | 2015-07-29 | 成都芯源系统有限公司 | Lateral double diffused metal oxide semiconductor field effect transistor and its manufacturing method |
CN109545853A (en) * | 2017-09-21 | 2019-03-29 | 新唐科技股份有限公司 | semiconductor substrate structure and semiconductor device |
CN109599439A (en) * | 2017-12-28 | 2019-04-09 | 新唐科技股份有限公司 | Transverse diffusion metal oxide semiconductor field effect transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1941416B (en) | Ldmos device and method for manufacturing the same | |
US7345341B2 (en) | High voltage semiconductor devices and methods for fabricating the same | |
US8362558B2 (en) | Low on-resistance lateral double-diffused MOS device | |
JPH06333942A (en) | Transistor manufacturing method | |
JP4018780B2 (en) | Manufacturing method of DMOS transistor | |
CN104979390A (en) | High voltage metal oxide semiconductor transistor and manufacturing method thereof | |
US6780714B2 (en) | Semiconductor devices and their manufacture | |
CN101661955B (en) | Laterally diffused metal oxide semiconductor device and manufacturing method thereof | |
KR20100064556A (en) | A semiconductor device and method of manufacturing the same | |
CN101320752B (en) | LDMOS device with low on-resistance and method of manufacturing the same | |
TWI802048B (en) | Ldmos transistor and manufacturing method thereof | |
WO2007036793A2 (en) | Power mosfets and methods of making same | |
US7126197B2 (en) | Power MOSFET and methods of making same | |
CN112018187A (en) | LDMOS device and manufacturing method thereof | |
KR19990050418A (en) | Power Device with Double Field Plate Structure | |
TW200952176A (en) | Semiconductor devices and methods for fabricating the same | |
KR100790261B1 (en) | DMOS device manufacturing method | |
CN101621072A (en) | Semiconductor device and method for manufacturing the same | |
CN101807546B (en) | Trench type metal oxide semiconductor device and manufacturing method thereof | |
CN111863949B (en) | Semiconductor element and manufacturing method thereof | |
CN106469755A (en) | Lateral double-diffused metal oxide semiconductor element and manufacturing method thereof | |
TWI511284B (en) | Lateral double diffused metal-oxide-semiconductor device and method for forming the same | |
US6875658B2 (en) | High-voltage device with improved punch through voltage and process for same compatible with low-voltage device process | |
CN106992123B (en) | Lateral diffusion metal oxide semiconductor element and manufacturing method thereof | |
US6680231B1 (en) | High-voltage device process compatible with low-voltage device process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100106 |