CN101616491A - Method for mapping uplink ACK/NACK channel - Google Patents
Method for mapping uplink ACK/NACK channel Download PDFInfo
- Publication number
- CN101616491A CN101616491A CN200810124889A CN200810124889A CN101616491A CN 101616491 A CN101616491 A CN 101616491A CN 200810124889 A CN200810124889 A CN 200810124889A CN 200810124889 A CN200810124889 A CN 200810124889A CN 101616491 A CN101616491 A CN 101616491A
- Authority
- CN
- China
- Prior art keywords
- cce
- ack
- index
- nack
- subframe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域 technical field
本发明涉及无线通信系统,更具体的说涉及在无线通信系统中的为下行数据传输分配上行ACK/NACK信道的方法。The present invention relates to a wireless communication system, more specifically to a method for allocating uplink ACK/NACK channels for downlink data transmission in the wireless communication system.
背景技术 Background technique
3GPP标准化组织正在对其现有系统规范进行长期的演进(LTE)。图2是LTE TDD系统的帧结构。每个长度为307200×Ts=10ms的无线帧等分为两个长度为153600×Ts=5ms的半帧。每个半帧包含8个长度为15360Ts=0.5ms的时隙和3个特殊域,即下行导频时隙(DwPTS)、保护间隔(GP)和上行导频时隙(UpPTS),这3个特殊域的长度的和是30720Ts=1ms。每个子帧由两个连续的时隙构成,即第k个子帧包含时隙2k和时隙2k+1。子帧1和子帧6包含上述的3个特殊域。The 3GPP standardization organization is conducting long-term evolution (LTE) of its existing system specifications. Fig. 2 is the frame structure of the LTE TDD system. Each radio frame with a length of 307200×T s =10 ms is equally divided into two half frames with a length of 153600×T s =5 ms. Each half-frame contains 8 time slots with a length of 15360T s =0.5ms and 3 special domains, namely downlink pilot time slot (DwPTS), guard interval (GP) and uplink pilot time slot (UpPTS). The sum of the lengths of the special domains is 30720T s =1 ms. Each subframe consists of two consecutive time slots, that is, the kth subframe includes time slot 2k and time slot 2k+1. Subframe 1 and subframe 6 include the above three special fields.
根据当前LTE的讨论结果,下行控制信道在每个下行子帧的前n个OFDM符号内传输。物理控制格式指示信道(PCFICH)用于传输上述n的值,从而在前n个OFDM符号内传输物理下行控制信道(PDCCH)。当系统带宽较大时,对一般的下行子帧,n等于1、2或3;对DwPTS,n等于1或2。当系统带宽较小时,对一般的下行子帧,n等于2、3或4;对DwPTS,目前还没有定义n是等于1或2,还是n只能等于2。这里,PCFICH是在每个子帧的第一个OFDM符号内传输,PDCCH是通过组合一个或者多个控制信道单元(CCE)得到。每个CCE包含固定数目的子载波。根据当前的结果,PDCCH包含的CCE的个数可以是1、2、4和8。According to the current discussion results of LTE, the downlink control channel is transmitted in the first n OFDM symbols of each downlink subframe. The physical control format indicator channel (PCFICH) is used to transmit the value of n above, so that the physical downlink control channel (PDCCH) is transmitted in the first n OFDM symbols. When the system bandwidth is large, n is equal to 1, 2 or 3 for general downlink subframes; n is equal to 1 or 2 for DwPTS. When the system bandwidth is small, n is equal to 2, 3 or 4 for general downlink subframes; for DwPTS, it is not yet defined whether n is equal to 1 or 2, or n can only be equal to 2. Here, PCFICH is transmitted in the first OFDM symbol of each subframe, and PDCCH is obtained by combining one or more control channel elements (CCE). Each CCE contains a fixed number of subcarriers. According to the current results, the number of CCEs included in the PDCCH can be 1, 2, 4 and 8.
根据当前LTE的讨论结果,物理时频资源划分为多个资源块(RB),RB是资源分配的最小粒度。每个资源块在频域上包含M个连续的子载波,同时在时间上包含N个连续的符号,对下行是OFDM符号,对上行是SCFDMA符号。According to the current discussion results of LTE, physical time-frequency resources are divided into multiple resource blocks (RB), and RB is the minimum granularity of resource allocation. Each resource block includes M consecutive subcarriers in the frequency domain and N consecutive symbols in time, which are OFDM symbols for downlink and SCFDMA symbols for uplink.
根据当前LTE中对基于混合自动重传请求(HARQ)传输下行数据的讨论结果,对动态调度,ACK/NACK信道的索引隐含地与组成PDCCH的CCE的最小索引绑定。每个下行子帧内实际可用的CCE的个数也是随PCFICH动态配置的,并且只有动态调度下行数据传输的CCE才需要实际绑定上行ACK/NACK信道,这导致实际需要的ACK/NACK的数目是动态变化的。然而,上行方向的ACK/NACK信道的数量是半静态配置的,这导致在一般情况下,只有一部分ACK/NACK信道被占用。当半静态配置用于传输ACK/NACK信息的一个或者多个RB内的所有的ACK/NACK信道都没有被占用时,为了充分利用系统资源,这些RB可以分配用于动态调度上行数据。According to the current discussion results of hybrid automatic repeat request (HARQ) based transmission of downlink data in LTE, for dynamic scheduling, the index of the ACK/NACK channel is implicitly bound to the minimum index of the CCEs that make up the PDCCH. The number of actually available CCEs in each downlink subframe is also dynamically configured with the PCFICH, and only the CCEs that are dynamically scheduled for downlink data transmission need to be actually bound to the uplink ACK/NACK channel, which results in the actual number of ACK/NACKs required is dynamic. However, the number of ACK/NACK channels in the uplink direction is configured semi-statically, which leads to the fact that only a part of ACK/NACK channels are occupied under normal circumstances. When all ACK/NACK channels in one or more RBs semi-statically configured for transmitting ACK/NACK information are not occupied, in order to fully utilize system resources, these RBs may be allocated for dynamic scheduling of uplink data.
在LTE TDD系统中,在为各个下行子帧内的数据传输绑定ACK/NACK信道时,有可能需要把多个下行子帧的CCE映射到同一个上行子帧的ACK/NACK信道。本发明提出一种映射CCE到ACK/NACK的方法,能够最大限度的降低需要的ACK/NACK信道的数目,从而节省出更多的控制信道的RB,可以用于动态调度上行数据。In the LTE TDD system, when binding ACK/NACK channels for data transmission in each downlink subframe, it may be necessary to map the CCEs of multiple downlink subframes to the ACK/NACK channel of the same uplink subframe. The present invention proposes a method for mapping CCEs to ACK/NACKs, which can minimize the number of required ACK/NACK channels, thereby saving more RBs of control channels, which can be used for dynamic scheduling of uplink data.
发明内容 Contents of the invention
本发明的目的是提供一种在无线通信系统中为下行数据传输分配上行ACK/NACK信道的方法。The purpose of the present invention is to provide a method for allocating uplink ACK/NACK channels for downlink data transmission in a wireless communication system.
为实现上述目的,一种映射CCE到ACK/NACK的方法,包括步骤:In order to achieve the above object, a method for mapping CCE to ACK/NACK comprises steps:
a)用户设备检测下行物理控制信道,并接收下行数据;a) The user equipment detects the downlink physical control channel and receives downlink data;
b)用户设备根据对每个子帧内的CCE进行分块的边界值、当前绑定窗口中是否包含DwPTS得到所述CCE在上行子帧内对应的ACK/NACK信道;b) The user equipment obtains the ACK/NACK channel corresponding to the CCE in the uplink subframe according to the boundary value for dividing the CCE in each subframe and whether the current binding window contains DwPTS;
c)用户设备发送所述ACK/NACK信号。c) The user equipment sends the ACK/NACK signal.
附图说明 Description of drawings
图1是LTE TDD的帧结构;Figure 1 is the frame structure of LTE TDD;
图2是分块交织映射ACK/NACK信道的示意图1;FIG. 2 is a schematic diagram 1 of block-interleaved mapping ACK/NACK channels;
图3是分块交织映射ACK/NACK信道的示意图2。FIG. 3 is a schematic diagram 2 of mapping ACK/NACK channels by block interleaving.
具体实施方式 Detailed ways
对TDD系统,在一些上下行配置比例的帧结构中,多个下行子帧对应的ACK/NACK信道需要在同一个上行子帧内传输。这里定义在同一个上行子帧内传输的ACK/NACK信道对应的多个下行子帧为绑定窗口。记绑定窗口内的下行子帧的个数为D。For a TDD system, in some frame structures with uplink and downlink configuration ratios, ACK/NACK channels corresponding to multiple downlink subframes need to be transmitted in the same uplink subframe. Here, multiple downlink subframes corresponding to ACK/NACK channels transmitted in the same uplink subframe are defined as bundling windows. Note that the number of downlink subframes in the binding window is D.
首先,在绑定窗口内定义唯一一组对CCE进行分块的边界值{Nk,k=0,1,2,...,kmax},这里N0固定等于0,从而按CCE的索引顺序把每个下行子帧内的CCE分为kmax个CCE块,其索引为k=0,1,2,...,kmax-1。第k=0个CCE块包含索引为0到N1-1的CCE;第k=1个CCE块包含索引为N1到N2-1的CCE,依此类推。这里,CCE块数kmax可以等于绑定窗口内的一般下行子帧的用于控制信道的OFDM符号的个数的可能取值的数目。另外,下行子帧内的CCE个数由当前子帧的用于控制信道的OFDM符号的个数和当前子帧是否包含PHICH决定,并且包含PHICH的下行子帧内的CCE数目小于等于不包含PHICH的下行子帧的CCE数目。这样,对下行子帧的用于控制信道的OFDM符号的个数的可能取值按从小到达的顺序索引为k=0,1,2,...,kmax-1,边界值Nk可以设置为当下行子帧的用于控制信道的OFDM符号的个数取第k-1个值时,绑定窗口内的各个下行子帧的CCE数目的最大值。Firstly, define a unique set of boundary values {N k , k=0, 1, 2, ..., k max } for CCE blocks in the binding window, where N 0 is fixed equal to 0, so that by CCE Divide the CCEs in each downlink subframe into k max CCE blocks with the index of k=0, 1, 2, . . . , k max -1. The k=0 th CCE block includes CCEs with indexes from 0 to N 1 -1; the k=1 th CCE block includes CCEs with indexes from N 1 to N 2 -1, and so on. Here, the number of CCE blocks k max may be equal to the number of possible values of the number of OFDM symbols used for control channels in a common downlink subframe within the bundling window. In addition, the number of CCEs in the downlink subframe is determined by the number of OFDM symbols used for the control channel in the current subframe and whether the current subframe contains PHICH, and the number of CCEs in the downlink subframe containing PHICH is less than or equal to not containing PHICH The number of CCEs in the downlink subframe of . In this way, the possible values of the number of OFDM symbols used for the control channel in the downlink subframe are indexed in order of arrival from small to k=0, 1, 2, ..., k max -1, and the boundary value N k can be It is set to be the maximum value of the number of CCEs of each downlink subframe in the bundling window when the number of OFDM symbols used for the control channel in the downlink subframe takes the k-1th value.
接下来,可以根据绑定窗口中是否包含DwPTS分别处理。Next, it can be processed separately according to whether the binding window contains DwPTS.
当绑定窗口内不包含DwPTS时,对绑定窗口中的所有下行子帧进行索引,记索引为d=0,1,2,...D-1。这里,一种索引的方法是按绑定窗口内的子帧的时间顺序进行索引;又一种索引的方法是为包含PHICH的下行子帧分配较大的索引,例如,当绑定窗口内包含一个包含PHICH的下行子帧时,其索引为D-1。然后,把各个下行子帧的CCE块进行交织,并依次计算其要映射到的ACK/NACK信道索引。具体地说,首先,按子帧的索引顺序依次为绑定窗口内的各个子帧的第k=0个CCE块映射ACK/NACK信道,即先为第d=0个子帧的第k=0个CCE块内的CCE映射ACK/NACK信道;接着为第d=1个子帧的第k=0个CCE块内的CCE映射ACK/NACK信道;依次类推,直到完成为第d=D-1个子帧的第k=0个CCE块内的CCE映射ACK/NACK信道。然后,按子帧的索引顺序依次为绑定窗口内的各个子帧的第k=1个CCE块映射ACK/NACK信道,依次类推,直到按子帧的索引顺序依次为绑定窗口内的各个子帧的第k=kmax-1个CCE块映射ACK/NACK信道。When the binding window does not contain the DwPTS, all downlink subframes in the binding window are indexed, and the index is d=0, 1, 2, . . . D-1. Here, one indexing method is to index according to the time order of the subframes in the binding window; another indexing method is to assign a larger index to the downlink subframes containing PHICH, for example, when the binding window contains When a downlink subframe includes PHICH, its index is D-1. Then, the CCE blocks of each downlink subframe are interleaved, and the ACK/NACK channel indexes to which they are mapped are sequentially calculated. Specifically, firstly, the ACK/NACK channel is mapped to the k=0th CCE block of each subframe in the bundling window in sequence according to the index order of the subframe, that is, the k=0th CCE block of the d=0th subframe is first The CCEs in the CCE block map the ACK/NACK channel; then map the ACK/NACK channel for the CCEs in the k=0th CCE block of the d=1th subframe; and so on until the completion of the d=D-1th subframe The CCEs in the k=0th CCE block of the frame are mapped to ACK/NACK channels. Then, map the ACK/NACK channel for the k=1th CCE block of each subframe in the binding window in sequence according to the index order of the subframe, and so on, until each The k=k max -1th CCE block of the subframe is mapped to the ACK/NACK channel.
当绑定窗口内包含DwPTS时,因为DwPTS内用于控制信道的OFDM符号的个数的可能取值的个数小于一般的下行子帧,记为kmax DwPTS,即
首先,为绑定窗口内的每个下行子帧的索引
然后,为绑定窗口内的每个下行子帧的索引
基于上面的分块映射CCE到ACK/NACK的方法,下面描述第一种根据CCE索引确定其映射的ACK/NACK信道的方法。对绑定窗口内一个下行子帧的索引为nCCE的CCE,首先判断这个CCE所在的CCE块,记它属于第k个CCE块,即满足Nk<nCCE<Nk+1。然后确定其映射的ACK/NACK信道。对LTE TDD系统,在对绑定窗口内的下行子帧进行索引时,根据目前对HARQ定时的定义,如果在一个绑定窗口内有包含PHICH的子帧,那么这个子帧一定位于绑定窗口的后部,所以可以对绑定窗口内的下行子帧按照时间顺序进行索引;类似地,在对绑定窗口内除DwPTS以外的下行子帧进行索引时,可以对绑定窗口内除DwPTS以外的下行子帧按照时间顺序进行索引。Based on the above method of mapping CCEs to ACK/NACK in blocks, the following describes the first method of determining the mapped ACK/NACK channel according to the CCE index. For a CCE whose index is n CCE in a downlink subframe in the binding window, first determine the CCE block where this CCE is located, and remember that it belongs to the kth CCE block, that is, satisfy N k <n CCE <N k+1 . Then determine its mapped ACK/NACK channel. For the LTE TDD system, when indexing the downlink subframes in the binding window, according to the current definition of HARQ timing, if there is a subframe containing PHICH in a binding window, then this subframe must be located in the binding window , so the downlink subframes in the binding window can be indexed in time order; similarly, when indexing the downlink subframes in the binding window except DwPTS, you can index the downlink subframes in the binding window except DwPTS The downlink subframes of are indexed in time order.
当绑定窗口内不包含DwPTS时,对绑定窗口中的所有下行子帧进行索引,记为d=0,1,2,...D-1。这样,对第d个下行子帧的索引为nCCE的CCE,它映射的ACKNACK信道的索引nPUCCH (1)可以通过下面的公式计算:When the DwPTS is not included in the binding window, all downlink subframes in the binding window are indexed, recorded as d=0, 1, 2, . . . D-1. In this way, for the CCE whose index is n CCE in the dth downlink subframe, the index n PUCCH (1) of the ACKNACK channel mapped by it can be calculated by the following formula:
当绑定窗口内包含DwPTS时,对
当
当
对TDD系统,因为需要把多个下行子帧的ACK/NACK在同一个上行子帧内传输,从而在这个上行子帧内的ACK/NACK信道的开销比较大,下面基于分块映射CCE到ACK/NACK的方法,描述一种降低上行子帧内ACK/NACK信道的开销的方法。这里,对下行子帧的每m个连续CCE,只为第一个CCE映射ACK/NACK信道;或者,可以使下行子帧的每m个连续CCE映射到相同的ACK/NACK信道。这里,可以限制用于下行调度的PDCCH只能占用每m个CCE中的索引最小的CCE开始的若干个CCE。而对用于上行调度的PDCCH,可以与用于上行调度的PDCCH一样,限制它只能占用每m个CCE中的索引最小的CCE开始的若干个CCE;或者,不做限制。例如,以LTE系统为例,可以配置m的取值是1、2、4和8。For the TDD system, because the ACK/NACK of multiple downlink subframes needs to be transmitted in the same uplink subframe, the overhead of the ACK/NACK channel in this uplink subframe is relatively large. The following is based on block mapping CCE to ACK The /NACK method describes a method for reducing the overhead of the ACK/NACK channel in the uplink subframe. Here, for every m consecutive CCEs in the downlink subframe, only the first CCE is mapped to the ACK/NACK channel; or, every m consecutive CCEs in the downlink subframe can be mapped to the same ACK/NACK channel. Here, the PDCCH used for downlink scheduling may be restricted to only occupy several CCEs starting from the CCE with the smallest index among the m CCEs. As for the PDCCH used for uplink scheduling, like the PDCCH used for uplink scheduling, it can be restricted to occupy only a few CCEs starting from the CCE with the smallest index among the m CCEs; or, there is no restriction. For example, taking the LTE system as an example, the values of m can be configured to be 1, 2, 4, and 8.
基于上面的分块映射CCE到ACK/NACK的方法,下面描述第二种根据CCE索引确定其映射的ACK/NACK信道的方法。对绑定窗口内一个下行子帧的索引为nCCE的CCE,首先判断这个CCE所在的CCE块,记它属于第k个CCE块,即满足Nk<nCCE<Nk+1。然后确定其映射的ACK/NACK信道。与第一种方法相同,在对绑定窗口内的下行子帧进行索引时,可以对绑定窗口内的下行子帧按照时间顺序进行索引;在对绑定窗口内除DwPTS以外的下行子帧进行索引时,可以对绑定窗口内除DwPTS以外的的下行子帧按照时间顺序进行索引。Based on the above method of mapping CCEs to ACK/NACK in blocks, the following describes the second method of determining the mapped ACK/NACK channel according to the CCE index. For a CCE whose index is n CCE in a downlink subframe in the binding window, first determine the CCE block where this CCE is located, and remember that it belongs to the kth CCE block, that is, satisfy N k <n CCE <N k+1 . Then determine its mapped ACK/NACK channel. Same as the first method, when indexing the downlink subframes in the binding window, the downlink subframes in the binding window can be indexed in time order; when indexing the downlink subframes in the binding window except DwPTS When indexing, the downlink subframes in the binding window other than the DwPTS may be indexed in time order.
当绑定窗口内不包含DwPTS时,对绑定窗口中的所有下行子帧进行索引,记为d=0,1,2,...D-1。这样,对第d个下行子帧的索引为nCCE的CCE,它映射的ACKNACK信道的索引nPUCCH (1)可以通过下面的公式计算:When the DwPTS is not included in the binding window, all downlink subframes in the binding window are indexed, recorded as d=0, 1, 2, . . . D-1. In this way, for the CCE whose index is n CCE in the dth downlink subframe, the index n PUCCH (1) of the ACKNACK channel mapped by it can be calculated by the following formula:
这里,NPUCCH (1)可以是半静态配置的参数。 Here, N PUCCH (1) may be a semi-statically configured parameter.
当绑定窗口内包含DwPTS时,对
当
这里,NPUCCH (1)可以是半静态配置的参数。 Here, N PUCCH (1) may be a semi-statically configured parameter.
当
这里,NPUCCH (1)可以是半静态配置的参数,NCCE,max DwPTS是在DwPTS中包含的CCE的最大数目。 Here, N PUCCH (1) may be a semi-statically configured parameter, N CCE, and max DwPTS is the maximum number of CCEs included in the DwPTS.
为了简化CCE映射ACK/NACK的公式,可以采用下面的对子帧的索引方法。记绑定窗口内的子帧数目为D,当绑定窗口内包含DwPTS时,固定为DwPTS分配最大的索引D-1,其他子帧的索引为d=0,1,2,...D-1。这里,可以直接按照时间顺序对DwPTS以外的子帧进行索引;另外,当DwPTS以外的某个子帧包含PHICH时,也可以为这个包含PHICH的子帧分配第二大的索引D-2,而对剩余的子帧按时间顺序索引为d=0,1,2,...D-3。当绑定窗口内不包含DwPTS时这里,可以直接按照时间顺序对各个子帧进行索引d=0,1,2,...D-1;另外,当某个子帧包含PHICH时,也可以为这个包含PHICH的子帧分配最大的索引D-1,而对剩余的子帧按时间顺序索引为d=0,1,2,...D-2。In order to simplify the formula for CCE mapping ACK/NACK, the following method for indexing subframes can be used. Note that the number of subframes in the binding window is D. When DwPTS is included in the binding window, the largest index D-1 is fixed for DwPTS, and the indexes of other subframes are d=0, 1, 2, ... D -1. Here, subframes other than DwPTS can be directly indexed in time order; in addition, when a subframe other than DwPTS contains PHICH, the second largest index D-2 can also be assigned to this subframe containing PHICH, and for The remaining subframes are indexed in time order as d=0, 1, 2, . . . D-3. When the binding window does not contain DwPTS, here, each subframe can be directly indexed in time order d=0, 1, 2, ... D-1; in addition, when a subframe contains PHICH, it can also be The subframe containing the PHICH is assigned the largest index D-1, and the remaining subframes are indexed in time order as d=0, 1, 2, . . . D-2.
接下来,把各个下行子帧的CCE块进行交织,并依次计算其要映射到的ACK/NACK信道索引。具体地说,首先,按子帧的索引顺序依次为绑定窗口内的各个子帧的第k=0个CCE块映射ACK/NACK信道,即先为第d=0个子帧的第k=0个CCE块内的CCE映射ACK/NACK信道;接着为第d=1个子帧的第k=0个CCE块内的CCE映射ACK/NACK信道;依次类推,直到完成为第d=D-1个子帧的第k=0个CCE块内的CCE映射ACK/NACK信道。然后,按子帧的索引顺序依次为绑定窗口内的各个子帧的第k=1个CCE块映射ACK/NACK信道,依次类推,直到按子帧的索引顺序依次为绑定窗口内的各个子帧的第k=kmax-1个CCE块映射ACK/NACK信道。Next, the CCE blocks of each downlink subframe are interleaved, and the ACK/NACK channel indexes to which they are mapped are sequentially calculated. Specifically, firstly, the ACK/NACK channel is mapped to the k=0th CCE block of each subframe in the bundling window in sequence according to the index order of the subframe, that is, the k=0th CCE block of the d=0th subframe is first The CCEs in the CCE block map the ACK/NACK channel; then map the ACK/NACK channel for the CCEs in the k=0th CCE block of the d=1th subframe; and so on until the completion of the d=D-1th subframe The CCEs in the k=0th CCE block of the frame are mapped to ACK/NACK channels. Then, map the ACK/NACK channel for the k=1th CCE block of each subframe in the binding window in sequence according to the index order of the subframe, and so on, until each The k=k max -1th CCE block of the subframe is mapped to the ACK/NACK channel.
基于这种分块映射CCE到ACK/NACK的方法,对绑定窗口内一个下行子帧的索引为nCCE的CCE,首先判断这个CCE所在的CCE块,记它属于第k个CCE块,即满足Nk<nCCE<Nk+1。对绑定窗口中的下行子帧进行索引,记为d=0,1,2,...D-1,这里当包含DwPTS时,DwPTS的索引为D-1。这样,对第d个下行子帧的索引为nCCE的CCE,它映射的ACKNACK信道的索引nPUCCH (1)可以通过下面的公式计算:Based on this method of mapping CCEs to ACK/NACKs in blocks, for a CCE whose index is n CCE in a downlink subframe in the binding window, first determine the CCE block where this CCE is located, and remember that it belongs to the kth CCE block, that is N k <n CCE <N k+1 is satisfied. The downlink subframes in the binding window are indexed as d=0, 1, 2, . . . D-1. Here, when DwPTS is included, the index of DwPTS is D-1. In this way, for the CCE whose index is n CCE in the dth downlink subframe, the index n PUCCH (1) of the ACKNACK channel mapped by it can be calculated by the following formula:
这里,NPUCCH (1)可以是半静态配置的参数,m是降低ACK/NACK开销的参数。 Here, N PUCCH (1) may be a parameter for semi-static configuration, and m is a parameter for reducing ACK/NACK overhead.
实施例Example
本部分给出了该发明的两个实施例,为了避免使本专利的描述过于冗长,在下面的说明中,略去了对公众熟知的功能或者装置等的详细描述。This section presents two embodiments of the invention. In order to avoid making the description of this patent too lengthy, in the following description, detailed descriptions of functions or devices that are well known to the public are omitted.
实施例一:Embodiment one:
本实施例以LTE TDD系统为例,描述系统带宽较大时,分块交织映射CCE到ACK/NACK的方法。对较大的带宽,一般子帧的用于控制信道的OFDM符号的个数可以是1、2或者3,而DwPTS中用于控制信道的OFDM符号的个数只能是1或者2。即kmax等于3,而kmax DwPTS等于2。定义一组边界值{N0,N1,N2,N3},从而对每个下行子帧内的CCE按其索引顺序进行分块。这里,N0等于0,N1是当用于控制信道的OFDM符号的个数等于1时,绑定窗口内的各个下行子帧的CCE数目的最大值;N2是当用于控制信道的OFDM符号的个数等于2时,绑定窗口内的各个下行子帧的CCE数目的最大值;N3是当用于控制信道的OFDM符号的个数等于3时,绑定窗口内的各个下行子帧的CCE数目的最大值。假设绑定窗口内包含4个子帧,前两个是不包含PHICH的下行子帧,下一个是DwPTS,最后一个是包含PHICH的下行子帧。这里,因为DwPTS中不包含PHICH,所以当用于控制信道的OFDM符号的个数是1或者2时,DwPTS中的CCE个数与一般的不包含PHICH的下行子帧相等。This embodiment takes the LTE TDD system as an example to describe a method for mapping CCEs to ACK/NACKs by block interleaving when the system bandwidth is relatively large. For a larger bandwidth, the number of OFDM symbols used for the control channel in a general subframe can be 1, 2 or 3, while the number of OFDM symbols used for the control channel in DwPTS can only be 1 or 2. That is, k max is equal to 3 and k max DwPTS is equal to 2. Define a set of boundary values {N 0 , N 1 , N 2 , N 3 }, so that the CCEs in each downlink subframe are divided into blocks according to their index order. Here, N 0 is equal to 0, N 1 is the maximum number of CCEs in each downlink subframe in the bundling window when the number of OFDM symbols used for the control channel is equal to 1; N 2 is the maximum number of CCEs used for the control channel When the number of OFDM symbols is equal to 2, the maximum number of CCEs in each downlink subframe in the bonding window; The maximum number of CCEs in a subframe. Assuming that the binding window contains 4 subframes, the first two are downlink subframes not including PHICH, the next one is DwPTS, and the last one is downlink subframe including PHICH. Here, because the DwPTS does not include the PHICH, when the number of OFDM symbols used for the control channel is 1 or 2, the number of CCEs in the DwPTS is equal to that of a general downlink subframe that does not include the PHICH.
图2是本发明中CCE到ACK/NACK映射的示意图。在示例一中,假设绑定窗口内DwPTS的用于控制信道的OFDM符号的个数等于2,而其他子帧的用于控制信道的OFDM符号的个数等于3。因为包含PHICH的子帧的CCE个数N3 PHICH小于其他下行子帧的CCE个数N3,所以包含PHICH的子帧的第k=2个CCE块的CCE数目少于其他下行子帧的第k=2个CCE块的CCE数目。包含PHICH的子帧的第k=2个CCE块映射到最后面的ACK/NACK信道,并且这些减少的N3-N3 PHICH个CCE不需要映射ACK/NACK,从而有可能空闲出更大的上行资源块。在示例二中,假设绑定窗口内所有子帧的用于控制信道的OFDM符号的个数等于2。因为包含PHICH的子帧的CCE个数N2 PHICH小于其他下行子帧的CCE个数N2,所以包含PHICH的子帧的第k=1个CCE块的CCE数目少于其他下行子帧的第k=1个CCE块的CCE数目。包含PHICH的子帧的第k=1个CCE块映射到最后面的ACK/NACK信道,这些减少的N2-N2 PHICH个CCE不需要映射ACK/NACK,从而有可能空闲出更大的上行资源块。在示例三中,假设绑定窗口内所有子帧的用于控制信道的OFDM符号的个数等于1。因为包含PHICH的子帧的CCE个数N1 PHICH小于其他下行子帧的CCE个数N1,所以包含PHICH的子帧的第k=0个CCE块的CCE数目少于其他下行子帧的第k=0个CCE块的CCE数目。包含PHICH的子帧的第k=0个CCE块映射到最后面的ACK/NACK信道,这些减少的N1-N1 PHICH个CCE不需要映射ACK/NACK,从而有可能空闲出更大的上行资源块。Fig. 2 is a schematic diagram of mapping from CCE to ACK/NACK in the present invention. In Example 1, it is assumed that the number of OFDM symbols used for the control channel of the DwPTS in the bundling window is equal to 2, and the number of OFDM symbols used for the control channel of other subframes is equal to 3. Because the number of CCEs N 3 of the subframe containing PHICH is smaller than the number of CCEs N 3 of other downlink subframes, the number of CCEs in the k=2th CCE block of the subframe containing PHICH is less than that of the other downlink subframes k=the number of CCEs of 2 CCE blocks. The k=2th CCE block of the subframe containing PHICH is mapped to the last ACK/NACK channel, and these reduced N 3 -N 3 PHICH CCEs do not need to map ACK/NACK, so it is possible to free up a larger Uplink resource block. In Example 2, it is assumed that the number of OFDM symbols used for the control channel in all subframes within the bundling window is equal to 2. Because the number of CCEs N 2 of the subframe containing PHICH is smaller than the number of CCEs N 2 of other downlink subframes, the number of CCEs in the k=1th CCE block of the subframe containing PHICH is less than that of other downlink subframes k=the number of CCEs in one CCE block. The k=1th CCE block of the subframe containing PHICH is mapped to the last ACK/NACK channel. These reduced N 2 -N 2 PHICH CCEs do not need to map ACK/NACK, so it is possible to free up a larger uplink resource blocks. In Example 3, it is assumed that the number of OFDM symbols used for the control channel in all subframes within the bundling window is equal to 1. Because the number of CCEs N 1 PHICH in the subframe containing PHICH is smaller than the number N 1 of CCEs in other downlink subframes, the number of CCEs in the k=0th CCE block of the subframe containing PHICH is less than that in other downlink subframes The number of CCEs of k=0 CCE blocks. The k=0th CCE block of the subframe containing PHICH is mapped to the last ACK/NACK channel. These reduced N 1 -N 1 PHICH CCEs do not need to map ACK/NACK, so it is possible to free up a larger uplink resource blocks.
实施例二:Embodiment two:
本实施例以LTE TDD系统为例,描述系统带宽较小时,分块交织映射CCE到ACK/NACK的方法。对较小的带宽,一般子帧的用于控制信道的OFDM符号的个数是2、3或者4,并假设DwPTS中用于控制信道的OFDM符号的个数只能是2。即kmax等于3,而kmax DwPTS等于1。定义一组边界值{N0,N1,N2,N3},从而对每个下行子帧内的CCE按其索引顺序进行分块。这里,N0等于0,N1是当用于控制信道的OFDM符号的个数等于2时,绑定窗口内的各个下行子帧的CCE数目的最大值;N2是当用于控制信道的OFDM符号的个数等于3时,绑定窗口内的各个下行子帧的CCE数目的最大值;N3是当用于控制信道的OFDM符号的个数等于4时,绑定窗口内的各个下行子帧的CCE数目的最大值。假设绑定窗口内包含4个子帧,前两个是不包含PHICH的下行子帧,下一个是DwPTS,最后一个是包含PHICH的下行子帧。这里,因为DwPTS中不包含PHICH,所以当用于控制信道的OFDM符号的个数是2时,DwPTS中的CCE个数与一般的不包含PHICH的下行子帧相等。This embodiment takes the LTE TDD system as an example to describe a method for mapping CCEs to ACK/NACKs by block interleaving when the system bandwidth is small. For a smaller bandwidth, the number of OFDM symbols used for the control channel in a general subframe is 2, 3 or 4, and it is assumed that the number of OFDM symbols used for the control channel in the DwPTS can only be 2. That is, k max is equal to 3, and k max DwPTS is equal to 1. Define a set of boundary values {N 0 , N 1 , N 2 , N 3 }, so that the CCEs in each downlink subframe are divided into blocks according to their index order. Here, N 0 is equal to 0, N 1 is the maximum number of CCEs in each downlink subframe in the bundling window when the number of OFDM symbols used for the control channel is equal to 2; N 2 is the maximum number of CCEs used for the control channel When the number of OFDM symbols is equal to 3 , the maximum number of CCEs in each downlink subframe in the bonding window; The maximum number of CCEs in a subframe. Assuming that the binding window contains 4 subframes, the first two are downlink subframes not including PHICH, the next one is DwPTS, and the last one is downlink subframe including PHICH. Here, because the DwPTS does not include the PHICH, when the number of OFDM symbols used for the control channel is 2, the number of CCEs in the DwPTS is equal to that of a general downlink subframe that does not include the PHICH.
图3是本发明中CCE到ACK/NACK映射的示意图。在示例一中,假设绑定窗口内DwPTS的用于控制信道的OFDM符号的个数等于2,而其他子帧的用于控制信道的OFDM符号的个数等于4。因为包含PHICH的子帧的CCE个数N3 PHICH小于其他下行子帧的CCE个数N3,所以包含PHICH的子帧的第k=2个CCE块的CCE数目少于其他下行子帧的第k=2个CCE块的CCE数目。包含PHICH的子帧的第k=2个CCE块映射到最后面的Fig. 3 is a schematic diagram of mapping from CCE to ACK/NACK in the present invention. In Example 1, it is assumed that the number of OFDM symbols used for the control channel of the DwPTS in the bundling window is equal to 2, and the number of OFDM symbols used for the control channel of other subframes is equal to 4. Because the number of CCEs N 3 of the subframe containing PHICH is smaller than the number of CCEs N 3 of other downlink subframes, the number of CCEs in the k=2th CCE block of the subframe containing PHICH is less than that of the other downlink subframes k=the number of CCEs of 2 CCE blocks. The k=2 CCE block of the subframe containing PHICH is mapped to the last
ACK/NACK信道,并且这些减少的N3-N3 PHICH个CCE不需要映射ACK/NACK,从而有可能空闲出更大的上行资源块。在示例二中,假设绑定窗口内DwPTS的用于控制信道的OFDM符号的个数等于2,而其他子帧的用于控制信道的OFDM符号的个数等于3。因为包含PHICH的子帧的CCE个数N2 PHICH小于其他下行子帧的CCE个数N2,所以包含PHICH的子帧的第k=1个CCE块的CCE数目少于其他下行子帧的第k=1个CCE块的CCE数目。包含PHICH的子帧的第k=1个CCE块映射到最后面的ACK/NACK信道,这些减少的N2-N2 PHICH个CCE不需要映射ACK/NACK,从而有可能空闲出更大的上行资源块。在示例三中,假设绑定窗口内所有子帧的用于控制信道的OFDM符号的个数等于2。因为包含PHICH的子帧的CCE个数N1 PHICH小于其他下行子帧的CCE个数N1,所以包含PHICH的子帧的第k=0个CCE块的CCE数目少于其他下行子帧的第k=0个CCE块的CCE数目。包含PHICH的子帧的第k=0个CCE块映射到最后面的ACK/NACK信道,这些减少的N1-N1 PHICH个CCE不需要映射ACK/NACK从而有可能空闲出更大的上行资源块。ACK/NACK channels, and these reduced N 3 -N 3 PHICH CCEs do not need to map ACK/NACK, so it is possible to free up larger uplink resource blocks. In Example 2, it is assumed that the number of OFDM symbols used for the control channel of the DwPTS in the bundling window is equal to 2, and the number of OFDM symbols used for the control channel of other subframes is equal to 3. Because the number of CCEs N 2 of the subframe containing PHICH is smaller than the number of CCEs N 2 of other downlink subframes, the number of CCEs in the k=1th CCE block of the subframe containing PHICH is less than that of other downlink subframes k=the number of CCEs in one CCE block. The k=1th CCE block of the subframe containing PHICH is mapped to the last ACK/NACK channel. These reduced N 2 -N 2 PHICH CCEs do not need to map ACK/NACK, so it is possible to free up a larger uplink resource blocks. In Example 3, it is assumed that the number of OFDM symbols used for the control channel in all subframes within the bundling window is equal to 2. Because the number of CCEs N 1 PHICH in the subframe containing PHICH is smaller than the number N 1 of CCEs in other downlink subframes, the number of CCEs in the k=0th CCE block of the subframe containing PHICH is less than that in other downlink subframes The number of CCEs of k=0 CCE blocks. The k=0th CCE block of the subframe containing PHICH is mapped to the last ACK/NACK channel, and these reduced N 1 -N 1 PHICH CCEs do not need to map ACK/NACK, which may free up more uplink resources piece.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810124889A CN101616491A (en) | 2008-06-25 | 2008-06-25 | Method for mapping uplink ACK/NACK channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810124889A CN101616491A (en) | 2008-06-25 | 2008-06-25 | Method for mapping uplink ACK/NACK channel |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101616491A true CN101616491A (en) | 2009-12-30 |
Family
ID=41495793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810124889A Pending CN101616491A (en) | 2008-06-25 | 2008-06-25 | Method for mapping uplink ACK/NACK channel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101616491A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102377475A (en) * | 2010-08-19 | 2012-03-14 | 大唐移动通信设备有限公司 | Method and device for determining numbers of control region symbols of downlink sub-frames |
CN103379076A (en) * | 2012-04-27 | 2013-10-30 | 电信科学技术研究院 | Method, system and equipment for uplink transmission |
CN107196742A (en) * | 2011-08-12 | 2017-09-22 | 太阳专利信托公司 | Terminal device and communication method |
CN107888338A (en) * | 2012-08-16 | 2018-04-06 | 谷歌有限责任公司 | The configuration and mapping of uplink control channel resource |
-
2008
- 2008-06-25 CN CN200810124889A patent/CN101616491A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102377475A (en) * | 2010-08-19 | 2012-03-14 | 大唐移动通信设备有限公司 | Method and device for determining numbers of control region symbols of downlink sub-frames |
CN102377475B (en) * | 2010-08-19 | 2014-03-12 | 大唐移动通信设备有限公司 | Method and device for determining numbers of control region symbols of downlink sub-frames |
CN107196742A (en) * | 2011-08-12 | 2017-09-22 | 太阳专利信托公司 | Terminal device and communication method |
CN103379076A (en) * | 2012-04-27 | 2013-10-30 | 电信科学技术研究院 | Method, system and equipment for uplink transmission |
CN107888338A (en) * | 2012-08-16 | 2018-04-06 | 谷歌有限责任公司 | The configuration and mapping of uplink control channel resource |
CN107888338B (en) * | 2012-08-16 | 2020-11-27 | 谷歌有限责任公司 | Method and apparatus for configuration and mapping of uplink control channel resources |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101505497A (en) | Method for allocating uplink ACK/NACK channel | |
AU2020205913B2 (en) | Method executed by user equipment, and user equipment | |
US9351292B2 (en) | Mobile communication system and channel transmission/reception method thereof | |
CN102783053B (en) | For defining the method and apparatus of the transmitting-receiving timing of physical channel in the tdd communication systems supporting intersection carrier dispatching | |
CN103563282B (en) | Harq method and apparatus for communication system | |
CN111096035B (en) | User equipment, base station and method for PDSCH downlink time slot aggregation based on RNTI | |
US8472368B2 (en) | Method and arrangements in a communication system | |
CN102946640B (en) | Control distribution method and the device of channel resource | |
TWI524708B (en) | Methods for dealing with HARQ collisions and PUSCH retransmission collisions in TDD | |
US20140161001A1 (en) | Resource Allocation for Flexible TDD Configuration | |
CN113748631A (en) | Apparatus and method for scheduling multi-TTI transmissions | |
WO2018045919A1 (en) | Method and apparatus for transmitting uplink control information | |
CN101771515A (en) | Method for transmitting hybrid automatic repeat request-acknowledgement character (HARQ-ACK) | |
US20200068556A1 (en) | Communication system | |
KR20090099500A (en) | Uplink data transmission method in a wireless communication system | |
KR101689596B1 (en) | A control information transmission method for performing harq process in wireless comunication system supporting multiple transmission bandwidth | |
JP6593488B2 (en) | PHICH resource allocation method, base station method and UE method | |
CN102316595A (en) | Resource determination method and device for physical uplink control channel (PUCCH) of large-band-width system | |
WO2015113214A1 (en) | Methods for enhanced harq mechanism | |
CN103795509A (en) | Method and device for transmitting hybrid automatic repeat request (HARQ) indication information | |
WO2012138197A2 (en) | Method and apparatus for transmitting / receiving signals with a terminal in tdd wireless communication system | |
US11877304B2 (en) | Base station, terminal, and communication method | |
CN107294897A (en) | Downlink information sending, receiving method and device | |
CN104284429A (en) | A method and user equipment for transmitting HARQ-ACK information | |
CN101547518A (en) | Equipment and method for allocating distributed channel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20091230 |