CN101600929B - Multichannel heat exchanger with dissimilar tube spacing - Google Patents
Multichannel heat exchanger with dissimilar tube spacing Download PDFInfo
- Publication number
- CN101600929B CN101600929B CN2007800502881A CN200780050288A CN101600929B CN 101600929 B CN101600929 B CN 101600929B CN 2007800502881 A CN2007800502881 A CN 2007800502881A CN 200780050288 A CN200780050288 A CN 200780050288A CN 101600929 B CN101600929 B CN 101600929B
- Authority
- CN
- China
- Prior art keywords
- pass
- manifold
- tubes
- heat exchanger
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims abstract description 14
- 238000005192 partition Methods 0.000 claims description 6
- 239000003507 refrigerant Substances 0.000 abstract description 110
- 238000010438 heat treatment Methods 0.000 abstract description 24
- 238000004378 air conditioning Methods 0.000 abstract description 14
- 238000005057 refrigeration Methods 0.000 abstract description 9
- 238000009423 ventilation Methods 0.000 abstract description 2
- 239000003570 air Substances 0.000 description 65
- 239000007788 liquid Substances 0.000 description 30
- 238000001816 cooling Methods 0.000 description 24
- 238000012546 transfer Methods 0.000 description 20
- 239000012071 phase Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0071—Evaporators
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
本发明提供了加热、通风、空调和制冷(HVAC&R)系统(10,44)和热交换器(16,22,50,52),其包括不同的管道间隔构造。热交换器(16,22,50,52)包括彼此流体连通的多套多通路管道(92)。一套多通路管道(92)具有以一种间隔(A)间隔开的多个管道(94),而另一套多通路管道具有以不同的间隔(B)间隔开的多个管道(96)。多通路管道(92)之间的不同间隔允许每套管道(94,96)构造为适合管道(94,96)中流动的制冷剂的性能。
The present invention provides heating, ventilation, air conditioning and refrigeration (HVAC&R) systems (10, 44) and heat exchangers (16, 22, 50, 52) that include different duct spacing configurations. The heat exchangers (16, 22, 50, 52) include sets of multi-pass tubing (92) in fluid communication with each other. A set of multipass tubing (92) has a plurality of tubing (94) spaced at one interval (A) and another set of multipass tubing has a plurality of tubing (96) spaced at a different interval (B) . The different spacing between the multi-pass tubes (92) allows each set of tubes (94, 96) to be configured to suit the properties of the refrigerant flowing in the tubes (94, 96).
Description
相关申请的交叉引用Cross References to Related Applications
本申请要求于2006年11月22日递交的名为“MICROCHANNEL HEATEXCHANGER APPLICATIONS”的美国临时申请No.60/867,043、于2006年12月27日递交的名为“MICROCHANNEL HEAT EXCHANGERAPPLICATIONS”的美国临时申请No.60/882,033和于2007年4月2日递交的名为“MICROCHANNEL COIL HEADER”的美国临时申请No.60/909,598的优先权,这些申请通过引用合并于此。This application claims U.S. Provisional Application No. 60/867,043, filed November 22, 2006, entitled "MICROCHANNEL HEATEXCHANGER APPLICATIONS," and U.S. Provisional Application No. 60/867,043, filed December 27, 2006, entitled "MICROCHANNEL HEAT EXCHANGER APPLICATIONS" .60/882,033 and priority to US Provisional Application No. 60/909,598, filed April 2, 2007, entitled "MICROCHANNEL COIL HEADER," which applications are hereby incorporated by reference.
技术领域 technical field
本申请一般涉及多通路热交换器。更具体地,本申请涉及用于多通路热交换器的旋管(coil)间隔构造。This application generally relates to multi-pass heat exchangers. More specifically, the present application relates to coil spacing configurations for multi-pass heat exchangers.
背景技术 Background technique
热交换器广泛地用于加热、通风、空调和制冷(HVAC&R)系统。多通路热交换器通常包括多通路管道,用于让制冷剂流过热交换器。每个多通路管道可具有多个独立的流动通路。鳍片位于管道之间,以有助于容纳在管道流动通路中的制冷剂与在管道周围经过的外部空气之间的热传递。多通路热交换器可用在小吨位系统中,如住宅系统,或大吨位系统中,如工业冷却系统。Heat exchangers are widely used in heating, ventilation, air conditioning and refrigeration (HVAC&R) systems. Multi-pass heat exchangers typically include multiple-pass tubing for the flow of refrigerant through the heat exchanger. Each multi-channel conduit may have multiple independent flow paths. Fins are located between the tubes to facilitate heat transfer between refrigerant contained in the tube flow paths and outside air passing around the tubes. Multi-pass heat exchangers can be used in small tonnage systems, such as residential systems, or large tonnage systems, such as industrial cooling systems.
通常,热交换器通过将制冷剂循环经过蒸发和冷凝循环来传递热。在许多系统中,制冷剂在流过热交换器时进行相变,在该热交换器中发生蒸发和冷凝。例如,制冷剂可作为液体进入蒸发热交换器而作为蒸气离开。类似地,制冷剂可作为蒸气进入冷凝热交换器并作为液体离开。这些相变导致流过热交换器流动通路的液体和蒸气制冷剂。具体地说,热交换器的一部分可容纳经历过热减温(de-superheat)的蒸气制冷剂而热交换器的另一部分容纳经历过冷(subcool)的液体。Typically, heat exchangers transfer heat by circulating a refrigerant through an evaporation and condensation cycle. In many systems, the refrigerant undergoes a phase change as it flows through a heat exchanger where evaporation and condensation occur. For example, refrigerant may enter an evaporative heat exchanger as a liquid and exit as a vapor. Similarly, refrigerant can enter a condensing heat exchanger as a vapor and exit as a liquid. These phase changes result in liquid and vapor refrigerant flowing through the heat exchanger flow paths. Specifically, one portion of the heat exchanger may contain vapor refrigerant undergoing de-superheat while another portion of the heat exchanger contains liquid undergoing subcooling.
制冷剂的相会影响热交换器的效率,因为制冷剂的不同相具有不同的热传递性能。例如,蒸气相的制冷剂会比液体相的制冷剂以更高的速度流过流动通路,使得容纳蒸气相制冷剂的管道发生更少的热传递。在另一例子中,采用用作冷凝器的热交换器,蒸气制冷剂会需要放出潜热和显热,以变为液态制冷剂,而液体制冷器仅放出显热,以经历过冷。The phase of the refrigerant affects the efficiency of the heat exchanger because different phases of the refrigerant have different heat transfer properties. For example, refrigerant in the vapor phase will flow through the flow passages at a higher velocity than refrigerant in the liquid phase, causing less heat transfer to occur in the tubes containing the refrigerant in the vapor phase. In another example, with a heat exchanger acting as a condenser, a vapor refrigerant would need to give up both latent and sensible heat to become a liquid refrigerant, whereas a liquid refrigerator only gives off sensible heat to undergo subcooling.
因此,需要能针对蒸气和液态制冷剂相而允许热传递性能得到改善的热交换器设计。在一些系统中,需要针对过热减温过程和过冷过程独立地改变热传递性能。这会针对制冷剂的每个相发生更多的热交换。Accordingly, there is a need for heat exchanger designs that allow for improved heat transfer performance for both vapor and liquid refrigerant phases. In some systems, it is desirable to vary the heat transfer performance independently for the desuperheating and subcooling processes. This results in more heat exchange for each phase of the refrigerant.
发明内容 Contents of the invention
本发明提供热交换器和HVAC&R系统,其具有管道构造,所述管道构造设计为能满足这种需要。所述管道构造可在许多热交换器中得到应用,但是具体说,能很好地适用于在住宅空调和热泵系统中使用的冷凝器。通常,热交换器具有两套多通路管道并将流体从一套管道循环流动到另一套。一套多通路管道具有以一种间隔而间隔开的多个管道,而另一套多通路管道具有以不同的间隔而间隔开的多个管道。The present invention provides heat exchangers and HVAC&R systems having piping configurations designed to meet this need. The described piping configuration finds application in many heat exchangers, but in particular is well suited for use in condensers used in residential air conditioning and heat pump systems. Typically, a heat exchanger has two sets of multi-pass tubes and circulates fluid from one set of tubes to the other. One set of multi-pass conduits has conduits spaced at one interval, and the other set of multi-pass conduits has conduits spaced at a different interval.
在下述的具体实施中,热交换器中的第一套多通路管道构造为使蒸气制冷剂经历过热减温。随着蒸气制冷剂流过第一套管道,蒸气冷凝成液体。第一套管道以为过热减温过程定制的一距离而间隔开。一旦制冷剂冷凝成液体,则制冷剂流过第二套多通路管道,该第二套多通路管道构造为使液态制冷剂过冷。第二套管道以为过冷过程定制的一距离而间隔开。由此,管道构造允许通过针对流过管道的制冷剂相而定制每一套管道,来改善热交换器的效率。In the implementation described below, the first set of multi-pass tubes in the heat exchanger is configured to subject the vapor refrigerant to desuperheating. As the vapor refrigerant flows through the first set of tubes, the vapor condenses into a liquid. The first set of tubes is spaced a distance customized for the desuperheating process. Once the refrigerant condenses into a liquid, the refrigerant flows through a second set of multi-pass tubing configured to subcool the liquid refrigerant. The second set of tubes is spaced a distance customized for the subcooling process. Thus, the tube configuration allows improving the efficiency of the heat exchanger by tailoring each set of tubes to the refrigerant phase flowing through the tubes.
附图说明 Description of drawings
本发明的这些和其他特点、方面和优点在结合所附附图来阅读以下详细说明时将得到更好的理解,在附图中,所有图中相同的标记代表相同的部件,其中:These and other features, aspects and advantages of the present invention will be better understood when read in the following detailed description when taken in conjunction with the accompanying drawings in which like numerals represent like parts throughout:
图1示出了可以采用依据本发明的技术制造或构造的热交换器的这类示例性住宅空调或热泵系统;Figure 1 shows an exemplary residential air conditioning or heat pump system of the type that may employ a heat exchanger manufactured or constructed in accordance with the techniques of the present invention;
图2为图1的系统的外部单元的部分分解视图,上部组件被提升以将某些系统部件暴露,包括热交换器;Figure 2 is a partially exploded view of the external unit of the system of Figure 1 with the upper assembly lifted to expose certain system components, including the heat exchanger;
图3示出了示例性商用或工业用HVAC&R系统,该系统采用冷却器和空气处理器来冷却建筑物且还可采用根据本发明的技术的热交换器;Figure 3 shows an exemplary commercial or industrial HVAC&R system employing chillers and air handlers to cool buildings and may also employ heat exchangers according to the techniques of the present invention;
图4为示例性空调系统的概略视图,该系统可以采用带有根据本发明一些方面的旋管间隔构造的一个或多个热交换器;4 is a schematic view of an exemplary air conditioning system that may employ one or more heat exchangers with coil spacing configurations in accordance with aspects of the present invention;
图5为示例性热泵系统的概略视图,该系统可以采用带有根据本发明一些方面的旋管间隔构造的一个或多个热交换器;5 is a schematic view of an exemplary heat pump system that may employ one or more heat exchangers with coil spacing configurations in accordance with aspects of the present invention;
图6为示例性热交换器的透视图,该热交换器具有根据本发明的一方面的旋管间隔构造;和6 is a perspective view of an exemplary heat exchanger having a coil spacing configuration according to an aspect of the present invention; and
图7为图6的热交换器的详细透视图,总管的一部分被切除。Figure 7 is a detailed perspective view of the heat exchanger of Figure 6 with a portion of the manifold cut away.
具体实施方式 Detailed ways
现转到附图,并首先参见图1-3,其显示了本发明一些方面的示例性应用。总的来说,本发明可用于大范围的装置,可用在HVAC&R领域和该领域之外的领域。但是,在目前可设想的应用中,本发明可用在住宅、商用、轻工业、重工业和任何其他应用场合,来加热或冷却一体积物或包围物,如住宅、建筑、结构等。而且,本发明可用在工业应用中,在合适时,用于各种流体的基本制冷和加热。图1所示的特定应用是用于住宅加热和冷却。通常,用字母R表示的住宅配备有室外单元,该单元可操作地联接到室内单元。室外单元通常位于住宅的侧面附近,且被壳罩覆盖以保护系统部件并防止树叶和其他污染物进入该单元。室内单元可位于杂物间、阁楼、地下室等。室外单元通过制冷剂管RC联接到室内单元,所述制冷剂管沿一个方向传送主要为液体的制冷剂并沿相反的方向传送主要为蒸气化的制冷剂。Turning now to the drawings, and referring first to FIGS. 1-3 , which illustrate exemplary applications of aspects of the present invention. In general, the invention can be used in a wide range of installations, both in the HVAC&R field and beyond. However, in currently conceivable applications, the present invention may be used in residential, commercial, light industrial, heavy industrial and any other application for heating or cooling a volume or enclosure such as a dwelling, building, structure, or the like. Furthermore, the invention can be used in industrial applications, where appropriate, for the basic refrigeration and heating of various fluids. The specific application shown in Figure 1 is for residential heating and cooling. Typically, dwellings designated by the letter R are equipped with an outdoor unit that is operatively coupled to an indoor unit. The outdoor unit is usually located near the side of the dwelling and is covered by an enclosure to protect system components and keep leaves and other contaminants from entering the unit. Indoor units can be located in utility rooms, attics, basements, etc. The outdoor unit is coupled to the indoor unit by a refrigerant pipe RC that conveys a predominantly liquid refrigerant in one direction and a predominantly vaporized refrigerant in the opposite direction.
在运行中,当图1所示的系统作为空调运行时,室外单元中的旋管用作冷凝器,用于将经由其中一个制冷剂管从室内单元IU流到室外单元OU的蒸气化制冷剂重新冷凝。在这些应用中,以附图标记IC标记的室内单元的旋管用作蒸发旋管。蒸发旋管接收液态制冷剂(其可通过下述的膨胀装置膨胀)并使制冷剂在返回到室外单元之前蒸发。In operation, when the system shown in Figure 1 is operating as an air conditioner, the coil in the outdoor unit acts as a condenser for regenerating vaporized refrigerant flowing from the indoor unit IU to the outdoor unit OU via one of the refrigerant pipes. condensation. In these applications, the coils of the indoor units marked with reference IC are used as evaporation coils. The evaporating coil receives liquid refrigerant (which can be expanded by an expansion device described below) and evaporates the refrigerant before returning to the outdoor unit.
在运行中,室外单元通过指向单元OU的侧面的箭头所示的侧面吸入环境空气,通过风扇(未示出)迫使空气流过外部单元旋管并按室外单元上方的箭头所示将空气排出。当作为空调运行时,空气被室外单元中的冷凝旋管加热且该空气以高于其进入侧面时的温度离开单元的顶部。相反,空气被吹过室内旋管IC,且随后通过管道结构D循环流过住宅,如图1的箭头所示。整个系统运行为保持由自动调温器T设定的期望温度。当在住宅内感知的温度高于在自动调温器上的设定值(加上一个小的量)时,空调将运行为冷却额外的空气,用于循环通过住宅。当温度到达设定值(减去一个小的量)时,单元将暂时停止制冷循环。In operation, the outdoor unit draws in ambient air through the side indicated by the arrow pointing to the side of the unit OU, is forced by a fan (not shown) through the outer unit coil and expels the air as indicated by the arrow above the outdoor unit. When operating as an air conditioner, the air is heated by the condensing coils in the outdoor unit and this air leaves the top of the unit at a higher temperature than it entered the side. Instead, the air is blown through the indoor coil IC and then circulated through the dwelling through the duct structure D, as indicated by the arrows in FIG. 1 . The entire system operates to maintain the desired temperature set by the thermostat T. When the temperature sensed within the dwelling is higher than the set point on the thermostat (plus a small amount), the air conditioner will operate to cool additional air for circulation through the dwelling. When the temperature reaches the set point (minus a small amount), the unit will temporarily stop the refrigeration cycle.
当图1的单元作为热泵运行时,旋管的角色简单地颠倒。即,室外单元的旋管将用作蒸发器,以将制冷剂蒸发并由此随着空气经过室外单元旋管周围而将进入室外单元的空气冷却。相反,室内旋管IC将接收在其周围吹过的空气流并通过将制冷剂冷凝来加热空气。When the unit of Figure 1 is operating as a heat pump, the roles of the coils are simply reversed. That is, the coils of the outdoor unit will act as an evaporator to evaporate the refrigerant and thereby cool the air entering the outdoor unit as it passes around the outdoor unit coils. Instead, the indoor coil IC will receive the flow of air blowing around it and heat the air by condensing the refrigerant.
图2显示了图1所示的其中一个单元的部分分解视图,在这种情况下该单元是室外单元OU。通常,该单元可被认为包括用壳罩、风扇组件、风扇驱动电机等构成的上部组件UA。在图2的显示中,风扇和风扇驱动电机不可见,因为它们被周围的壳罩隐藏。室外旋管OC容纳在该壳罩中且通常被设置为围绕或至少部分地围绕其他系统部件,如压缩机、膨胀装置、控制电路等,将在后文更完全地描述。Figure 2 shows a partially exploded view of one of the units shown in Figure 1, in this case the outdoor unit OU. In general, the unit may be considered to comprise an upper assembly UA constructed of a housing, fan assembly, fan drive motor, and the like. In the display in Figure 2, the fan and fan drive motor are not visible because they are hidden by the surrounding housing. The outdoor coil OC is housed in the enclosure and is generally positioned to surround, or at least partially surround, other system components, such as compressors, expansion devices, control circuits, etc., as will be described more fully hereinafter.
图3显示了用于本发明的另一示例性应用,在该情况下,是用于建立环境管理的HVAC&R系统。在图3所示的实施例中,建筑物BL被包括冷却器CH的系统冷却,该冷却器通常位于建筑物上或附近或者位于控制室或地下室。在图3所示的实施例中,冷却器CH为空气冷却装置,其采用制冷循环来冷却水。水通过水管WC循环流动到建筑物。水管通向建筑物各层或各部分处的空气处理器(air handler)AH。空气处理器还联接到管道结构(ductwork)DU,该管道结构适于从外部进口OL吹入空气。Figure 3 shows another exemplary application for the invention, in this case an HVAC&R system for establishing environmental management. In the embodiment shown in Figure 3, the building BL is cooled by a system comprising a chiller CH, typically located on or near the building or in a control room or basement. In the embodiment shown in Fig. 3, the cooler CH is an air cooling device which uses a refrigeration cycle to cool water. Water circulates through water pipes WC to the building. The water pipes lead to air handlers (AH) at each floor or section of the building. The air handler is also coupled to a ductwork DU adapted to blow in air from the external inlet OL.
在运行中,冷却器将循环流动到空气处理器的水冷却,该冷却器包括如上所述的用于使制冷剂蒸发和冷凝的热交换器。吹到接收空气处理器中的水的额外旋管周围的空气使水温度增加且使循环流动的空气温度降低。被冷却的空气随后经由额外的管道结构发送至建筑物的各个位置。最终,空气的分布发送至扩散器,该扩散器将冷却的空气输送到办公室、公寓、楼道和建筑物内的任何其他内部空间。在许多应用中,自动调温器或指挥装置(未在图3中示出)将用于控制通过各空气处理器和管道结构以及来自各空气处理器和管道结构的空气流,以保持结构中各个位置处的期望温度。In operation, the chiller cools water circulated to the air handler and includes a heat exchanger as described above for evaporating and condensing the refrigerant. The air blown around the additional coils receiving the water in the air handler increases the temperature of the water and decreases the temperature of the circulating air. The cooled air is then sent to various locations in the building via additional ductwork. Ultimately, the distribution of air is sent to diffusers that deliver the cooled air to offices, apartments, hallways and any other interior spaces within the building. In many applications, a thermostat or pilot (not shown in Figure 3) will be used to control air flow through and from each air handler and duct structure to maintain The desired temperature at each location.
图4显示了空调系统10,该系统使用多通路管道。制冷剂流过闭合的制冷环路12中的系统。制冷剂可以是吸热和放热的任何流体。例如,制冷剂可以是氢氟烃(hydrofluorocarbon:HFC)基的R-410A、R-407或R-134a,或其可以是二氧化碳(R-744a)或氨(R-717)。空调系统10包括控制装置14,其能使得系统10将环境冷却到规定的温度。Figure 4 shows an
系统10通过使制冷剂在闭合的制冷环路12中循环通过冷凝器16、压缩机18、膨胀装置20和蒸发器22而冷却环境。制冷剂作为高压高温蒸气进入到冷凝器16并流过冷凝器16的多通路管道。被电机26驱动的风扇24将空气吸入而跨过多通路管道。风扇24可将空气抽过或推过管道。热从制冷剂蒸气传递到空气,形成被加热的空气28并使得制冷剂蒸气冷凝成液体。液态制冷剂随后流入到膨胀装置20,在该处制冷剂膨胀以形成低压低温液体。通常,膨胀装置20是热膨胀阀(TXV);但是,在其他实施例中,膨胀装置可以是孔或毛细管。如本领域技术人员可以理解的,在制冷剂离开膨胀装置之后,除了液态制冷剂还会存在一些蒸气制冷剂。
从膨胀装置20,制冷剂进入蒸发器22并流过蒸发器多通路管道。被电机32驱动的风扇30将空气吸入而跨过多通路管道。热从空气传递到制冷剂液体,形成被冷却的空气34并使得制冷剂液体沸腾成蒸气。如本领域技术人员可以理解的,风扇可用将流体吸入而跨过多通路管道的泵替换。From the
制冷剂随后作为低温低压蒸气流到压缩机18。压缩机18减少可用于制冷剂蒸气的体积,由此增加蒸气制冷剂的压力和温度。压缩机可以是任何合适的压缩机,如螺旋式压缩机、往复式压缩机、旋转式压缩机、摆杆式压缩机(swing link compressor)、涡旋式压缩机(scroll compressor)或涡轮式压缩机。压缩机18被电机36驱动,该电机接收来自变速驱动器(VSD)或者直接式AC或DC电源的电力。在一个实施例中,电机36接收来自AC电源的固定线电压(line voltage)和频率,但是在一些应用中,电机可以被可变电压或频率驱动器驱动。电机可以是开关磁阻(switched reluctance:SR)电机、感应电机、电子整流永磁体电机(electronically commutated permanentmagnet motor:ECM),或任何其他合适的电机类型。制冷剂作为高温高压蒸气离开压缩机18,该蒸气准备好要进入冷凝器并再次开始制冷循环。The refrigerant then flows to
制冷循环的运转受到控制装置14的管理,该装置包括控制电路38、输入装置40和温度传感器42。控制电路38联接到电机26、32、36,所述电机分别驱动冷凝器风扇24、蒸发器风扇30和压缩机18。控制电路使用从输入装置40和传感器42接收的信息,以确定何时运行驱动空调系统的电机26、32、36。例如,在住宅空调系统中,输入装置40可以是可编程的24伏特自动调温器,该自动调温器向控制电路38提供温度设定值。传感器42确定周围空气温度并将该温度提供给控制电路38。控制电路38随后将从传感器接收的温度与从输入装置接收的温度设定值进行比较。如果温度高于设定值,则控制电路会打开电机26、32、36,以运行空调系统10。此外,控制电路可执行硬件或软件控制算法,以控制空调系统。在一些实施例中,控制电路38可包括模拟到数字(A/D)转换器、微处理器、非易失存储器和接口板。其他装置当然可包括在该系统中,诸如能对制冷剂、热交换器、入口和出口空气等的温度和压力进行传感的额外的压力和/或温度换能器或开关。The operation of the refrigeration cycle is managed by a
图5显示了使用多通路管道的热泵系统44。因为热泵系统可用于加热和冷却,所以制冷剂流过可逆制冷/加热环路46。制冷剂可以是吸热和放热的任何流体。此外,加热和冷却操作通过控制装置48来控制。Figure 5 shows a
热泵系统44包括外部旋管50和内部旋管52,二者都用作热交换器。如上所述,旋管可用作蒸发器或冷凝器,这取决于热泵的运行模式。例如,当热泵系统44运行在冷却(“AC”)模式时,外部旋管50用作冷凝器,向外部空气放热;而内部旋管52用作蒸发器,从内部空气吸热。相反,当热泵系统44运行在加热模式下时,外部旋管50用作蒸发器,从外部空气吸热,而内部旋管52用作冷凝器,向内部空气放热。换向阀54在旋管之间位于可逆环路46上,以控制制冷剂流的方向并由此将热泵在加热模式和冷却模式之间切换。The
热泵系统44还包括两个配量装置(metering device)56、58,用于在制冷剂进入蒸发器之前降低制冷剂的压力和温度。本领域技术人员应理解,配量装置也用于调节进入蒸发器的制冷剂流,以使得进入蒸发器的制冷剂的量等于离开蒸发器的制冷剂的量。取决于热泵运行模式来使用配量装置。例如,当热泵系统运行在冷却模式时,制冷剂通过旁路而流过(bypass)配量装置56并在进入用作蒸发器的内部旋管52之前流过配量装置58。类似地,当热泵系统运行在加热模式时,制冷剂通过旁路而流过配量装置58并在进入作为蒸发器的外部旋管50之前流过配量装置56。在其他实施例中,加热模式和冷却模式可使用一个配量装置。配量装置56、58通常为热膨胀阀(TXV),但也可以是孔或毛细管。The
制冷剂作为低温低压液体进入蒸发器,该蒸发器在加热模式下是外部旋管50而在冷却模式下是内部旋管52。本领域技术人员应理解,一些蒸气制冷剂也可以作为在配量装置56、58中发生的膨胀过程的结果而存在。制冷剂流过蒸发器中的多通路管道并从空气吸热,将制冷剂变为蒸气。在冷却模式下,在多通路管道周围经过的室内空气还可被除湿。来自空气的湿气在多通路管道的外表面上冷凝并因此从空气中去除。The refrigerant enters the evaporator as a low temperature, low pressure liquid which is the
在离开蒸发器之后,制冷剂流过换向阀54并进入压缩机60。压缩机60减少制冷剂蒸气的体积,因此,增加蒸气的温度和压力。再次,压缩机可以是任何合适的压缩机,如螺旋式压缩机、往复式压缩机、旋转式压缩机、摆杆式压缩机、涡旋式压缩机或涡轮式压缩机。After leaving the evaporator, the refrigerant flows through reversing
从压缩机,温度和压力增加的蒸气制冷剂流入冷凝器,该冷凝器的位置通过热泵模式确定。在冷却模式下,制冷剂流入到外部旋管50(用作冷凝器)。被电机64提供动力的风扇62将空气吸到容纳制冷剂蒸气的多通路管道周围。本领域技术人员应理解,风扇可被泵代替,该泵将流体吸入而跨过多通路管道。来自制冷剂的热被传递到外部空气,使得制冷剂冷凝成液体。在加热模式下,制冷剂流入到作为冷凝器的内部旋管52。被电机68提供动力的风扇66将空气吸到容纳制冷剂蒸气的多通路管道周围。来自制冷剂的热传递到内部空气,使得制冷剂冷凝成液体。From the compressor, the vapor refrigerant at increased temperature and pressure flows into the condenser, whose position is determined by the heat pump mode. In cooling mode, refrigerant flows into the outer coil 50 (which acts as a condenser). A
在离开冷凝器之后,制冷剂流过配量装置(在加热模式下为56而在冷却模式下为58)并返回到蒸发器(在加热模式下为外部旋管50而在冷却模式下为内部旋管52),在该处该过程再次开始。After leaving the condenser, the refrigerant flows through a dosing device (56 in heating mode and 58 in cooling mode) and returns to the evaporator (
在加热模式下和冷却模式下,电机70驱动压缩机60并将制冷剂循环流过可逆制冷/加热环路46。电机可接收直接来自AC或DC电源的电力或来自变速驱动器(VSD)的电力。如前例,电机可以是开关磁阻(SR)电机、感应电机、电子整流永磁体电机(ECM)或任何其他合适的电机类型。The
电机70的运行受到控制电路72的控制。控制电路72接收来自输入装置74和传感器76、78、80的信息并使用该信息来控制热泵系统44在冷却模式和加热模式下的运行。例如,在冷却模式下,输入装置向控制电路72提供温度设定值。传感器80测量周围室内空气温度并将其提供到控制电路72。控制电路72随后将空气温度与温度设定值比较,如果空气温度高于温度设定值,则该控制电路接合压缩机电机70以及风扇电机64和68,以运行冷却系统。同样,在加热模式下,控制电路72将来自传感器80的空气温度与来自输入装置74的温度设定值比较,如果空气温度低于温度设定值,则该控制电路接合电机64、68、70,以运行加热系统。The operation of the
控制电路72还使用从输入装置74接收的信息,以在加热模式和冷却模式之间切换热泵系统44。例如,如果输入装置设定至冷却模式,则控制电路72向螺线管82发送信号,以将换向阀54置于空调位置84。从而,制冷剂将如下流过可逆环路46:制冷剂离开压缩机60,在外部旋管50中冷凝,被配量装置58膨胀,被内部旋管52蒸发。同样,如果输入装置被设定至加热模式,则控制电路72向螺线管82发送信号,以将换向阀54置于热泵位置86。从而,制冷剂将如下流过可逆环路46:制冷剂离开压缩机60,在内部旋管52中冷凝,被配量装置56膨胀,被外部旋管50蒸发。The
控制电路72可执行硬件或软件控制算法,以控制热泵系统44。在一些实施例中,控制电路可包括,模拟到数字(A/D)转换器、微处理器、非易失存储器和接口板。
控制电路还可在系统44运行在加热模式下时起动除霜循环。当室外温度接近冰点(freezing)时,导向到外部旋管50周围的外部空气中的湿气可在旋管上冷凝并冻结。传感器76测量外部空气温度,且传感器78测量外部旋管50的温度。这些传感器将温度信息提供到控制电路,该控制电路确定何时起动除霜循环。例如,如果传感器76、78中的任一个向控制电路提供了低于冰点的温度,则系统44可处于除霜模式。在除霜模式下,螺线管82被致动,以将换向阀54置于空调位置84,且电机64关闭以断开流过多通路的空气流。系统44随后运行在冷却模式下,直到温度和压力增加的流过外部旋管的制冷剂使旋管50除霜。一旦传感器78检测到旋管50已被除霜,则控制电路72将换向阀54返回到热泵位置86。本领域技术人员应理解,除霜循环可被设置为按照多种不同的时间和温度组合来发生。The control circuit may also initiate a defrost cycle when the
图6为可用在空调系统10或热泵系统44中的示例性热交换器的透视图。该示例性热交换器可以是冷凝器16、蒸发器22、外部旋管50或内部旋管52,如图4和5所示。应注意,在类似的或其他系统中,该热交换器可以用作冷却器的一部分或用在任何其他交换应用中。热交换器包括总管88、90,该总管被多通路管道92连接。尽管30根管道被显示在图3中,但是管道的数量可以改变。总管和管道可以用铝或提供良好热传递的任何其他材料制造。制冷剂从总管88流过第一管道94到达总管90。制冷剂随后通过第二管道96返回到总管88。第一管道94可以具有与第二管道相同的构造,或第一管道可以与第二管道在性能上不同,如构造材料或形状。在一些实施例中,热交换器可以旋转大致90度,以使得多通路管道竖直地在顶部总管和底部总管之间延伸。此外,热交换器可相对于竖直方向以一角度倾斜。此外,尽管多通路管道被描述为具有矩圆形(oblong)形状,但是管道可以具有任何形状,如管道具有矩形、方形、圆形、卵形、椭圆形、三角形、梯形或平行四边形形式的横截面。在一些实施例中,管道可具有范围从0.5mm到3mm的直径。应注意,热交换器可设置在一个平面或板层中,或可具有弯曲部、角部、轮廓部(contour)等。FIG. 6 is a perspective view of an exemplary heat exchanger that may be used in
制冷剂通过入口98进入热交换器并通过出口110离开热交换器。尽管图6显示了在总管88顶部处的入口和在总管底部处的出口,但是入口和出口的位置可以互换,以使得流体在底部处进入并在顶部处离开。流体还可从位于总管的底表面、侧表面、或顶表面上的多个入口和出口进入和离开总管。隔板(baffle)102将总管88的入口98和出口100的部分分开。尽管显示了两个隔板102,但是任何数量的一个或多个隔板可以用于形成入口98和出口100分隔。Refrigerant enters the heat exchanger through
鳍片104位于多通路管道92之间,以促进管道92和环境之间的热传递。在一个实施例中,鳍片用铝制造,被钎焊或以其他方式连结到管道,且大致垂直于制冷剂流设置。但是,在其他实施例中,鳍片可用有助于热传递的其他材料制造,或者可平行于制冷剂流或相对于制冷剂流以变化的角度延伸。此外,鳍片可以是百叶窗状鳍片、褶皱状鳍片或任何合适类型的鳍片。
在典型的热交换器应用中,制冷剂可以一种相进入总管88并以另一种相离开总管88。例如,如果热交换器作为冷凝器运行,则制冷剂可作为蒸气(或蒸气和液体的混合物)进入入口98。随着蒸气经过第一多通路管道94,蒸气向外部环境放热,使得蒸气经历过热减温并冷凝成液体。随后,随着液态制冷剂经过第二多通路管道96,液体向外部环境放热,造成过冷。对于制冷剂的液体相和蒸气相二者来说,流过鳍片104且流过管道周围的空气有助于热传递。在一些实施例中,流过第一管道92的制冷剂可具有达到大约78℃(172°F)的温度,且流过第二管道96的制冷剂可具有大约41℃(106°F)的温度,但是这些温度可以随所使用的制冷剂和管道中起作用的压力而变化。In a typical heat exchanger application, refrigerant may enter
为了改善热交换器的热传递性能,管道92以不同的距离间隔开。容纳主要处于蒸气相的制冷剂的第一管道92具有较大的第一间隔A,且容纳主要处于液体相的制冷剂的第二管道96具有较小的第二间隔B。第一间隔A允许第一管道94之间具有比第二管道96之间的空气流112大的空气流110。管道部分之间空气流的这种差异能改善热传递性能。例如,在一个实施例中,其中,热交换器用作冷凝器,流过第一管道的蒸气制冷剂可具有比空气温度高得多的温度。增加的空气流可以导致更多的热从制冷剂传递到空气,使得温度差异最大化。流过第二管道的液态制冷剂可具有略高于空气温度的温度。因此,需要较小量的空气流来将热从制冷剂传递到空气。To improve the heat transfer performance of the heat exchanger, the
本领域技术人员应理解,不同的间隔也会导致不同的鳍片高度,这种高度对改善管道部分之间的热传递有贡献。例如,第一间隔A比第二间隔B允许更高的鳍片。第一管道94之间的鳍片可以具有更大的表面面积,使得在第一管道与外部空气之间有更多的热传递。第二管道96之间的鳍片可具有更小的表面面积,使得在第二管道和外部空气之间有更少的热传递。Those skilled in the art will appreciate that different spacings also result in different fin heights, which contribute to improved heat transfer between tube sections. For example, the first interval A allows taller fins than the second interval B. The fins between the
在一些实施例中,第一间隔A可以大于第二间隔B,如图6所示。但是,在其他实施例中,第一间隔可以小于第二间隔。此外,第一间隔和第二间隔之间的差异可以基于热交换器的性能而变化,这些性能例如是所用的制冷剂、外部空气温度、容量和用于构造的材料。例如,在采用了具有铝管道的冷凝器的一实施例中,第一间隔可以是第二间隔的两倍。此外,第一管道和第二管道数量之间的比例可以基于各热交换器性能而变化。通过进一步的例子,可以有均等(even)数量的第一管道和第二管道,或第二管道是第一管道的三倍。在采用具有铝管道的冷凝器的一实施例中,第二管道可以是第一管道的四倍。而且,在目前所设想的实施例中,管道之间的间隔可以是从0.2”到0.6”的范围,较大间隔具有比较小间隔大的值,但是应理解,所述间隔可适应于为热交换器设计的特定热性能和传递。In some embodiments, the first interval A may be greater than the second interval B, as shown in FIG. 6 . However, in other embodiments, the first interval may be smaller than the second interval. Furthermore, the difference between the first compartment and the second compartment may vary based on the properties of the heat exchanger such as refrigerant used, outside air temperature, capacity and materials used for construction. For example, in an embodiment employing a condenser with aluminum tubing, the first spacing may be twice the second spacing. Furthermore, the ratio between the number of first and second tubes can vary based on the performance of each heat exchanger. By way of further example, there may be an even number of first and second conduits, or three times as many second conduits as first conduits. In an embodiment employing a condenser with aluminum tubes, the second tube may be four times the size of the first tube. Also, in the presently contemplated embodiment, the spacing between the ducts may range from 0.2" to 0.6", with larger spacings having greater values than smaller spacings, but it will be understood that the spacing may be adapted for thermal Specific thermal performance and transfer for exchanger design.
图7显示了图6所示的热交换器的透视图,总管88的一部分被切掉,以显示出总管内部。如图所示,制冷剂通过包含在第一管道94中的流动通路113离开总管88并通过包含在第二管道96中的流动通路113返回到总管88。在一些实施例中,流动通路可以彼此平行地布置。此外,管道中可以包含任何数量的流动通路。例如,在一个实施例中,管道每一个可包含18个流动通路。Figure 7 shows a perspective view of the heat exchanger shown in Figure 6 with a portion of the manifold 88 cut away to show the interior of the manifold. As shown, the refrigerant exits
隔板102将总管的第一管道部分与第二管道部分分开。如上所述,总管的第一管道部分中的制冷剂可以处于与第二管道部分中的制冷剂不同的相。隔板102被间隔开,以在总管中形成隔绝的体积114。此外,隔绝的管道116可位于隔板102之间,以在第一管道94和第二管道96之间提供分隔。隔绝的体积114和隔绝的管道可以在管道部分之间提供绝缘并允许各管道部分的热传递性能独立于彼此而得到改善。例如,在热交换器用作冷凝器的一实施例中,第一管道可容纳高温蒸气,而第二管道容纳低温液体。隔绝的空间和隔绝的管道在蒸气与液体部分之间提供隔热,因此,防止从蒸气制冷剂到液态制冷剂的热传递。结果,液态制冷剂可到达较低的温度,因为其较少地从蒸气制冷剂吸热。A
应注意,本说明书使用术语“多通路”管道或“多通路热交换器”来指代热传递管道在总管之间包括多个流动路径的装置,该总管将流动分配给管道或从管道收集流动。许多其他术语可在本领域中用于类似的装置。这些替换术语可包括“微通路”和“微端口(microport)”。术语“微通路”有时带有的含义是具有微米量级或更小的流体通道的管道。但是,在本说明书中,这些术语并不是要设定任何具体的更高或更低的尺寸限度。而是,本文中用于描述和使得实施例得到保护的术语“多通路”要覆盖所有这种尺寸。有时用在本领域中的其他术语包括“平行流”和“钎焊铝”。但是,所有这些装置和结构应包括在术语“多通路”的范围内。通常,“多通路”管道将包括沿大致平坦的平面管道的平面或沿宽度方向设置的流动路径,但是本发明并不是要限制任何具体的几何尺寸,除非在所附权利要求中另外说明。It should be noted that this specification uses the terms "multi-pass" piping or "multi-pass heat exchanger" to refer to devices in which heat transfer piping includes multiple flow paths between manifolds that distribute flow to or collect flow from the piping . Many other terms are used in the art for similar devices. These alternative terms may include "microchannel" and "microport". The term "microchannel" is sometimes taken to mean a conduit having fluid channels on the order of micrometers or smaller. However, in this specification, these terms are not intended to set any specific higher or lower size limits. Rather, the term "multi-pass" used herein to describe and enable embodiments to be claimed is intended to cover all such dimensions. Other terms sometimes used in the art include "parallel flow" and "brazed aluminum". However, all such devices and structures shall be included within the scope of the term "multi-path". Typically, a "multi-pass" conduit will include flow paths disposed either in the plane or across the width of a generally flat planar conduit, but the invention is not intended to be limited to any particular geometry unless otherwise stated in the appended claims.
尽管仅在本文中显示和描述了本发明的一些特征,但是本领域技术人员可想到许多修改和改变。因此,应理解,所附权利要求应覆盖落入本发明真实精神范围内的所有这种修改和改变。While only certain features of the invention have been shown and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are to cover all such modifications and changes as fall within the true spirit of the invention.
Claims (9)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86704306P | 2006-11-22 | 2006-11-22 | |
US60/867,043 | 2006-11-22 | ||
US88203306P | 2006-12-27 | 2006-12-27 | |
US60/882,033 | 2006-12-27 | ||
US90959807P | 2007-04-02 | 2007-04-02 | |
US60/909,598 | 2007-04-02 | ||
PCT/US2007/085271 WO2008064243A1 (en) | 2006-11-22 | 2007-11-20 | Multichannel heat exchanger with dissimilar tube spacing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101600929A CN101600929A (en) | 2009-12-09 |
CN101600929B true CN101600929B (en) | 2012-05-09 |
Family
ID=41421562
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800502881A Active CN101600929B (en) | 2006-11-22 | 2007-11-20 | Multichannel heat exchanger with dissimilar tube spacing |
CN2007800502788A Active CN101600919B (en) | 2006-11-22 | 2007-11-20 | Multi-pass heat exchanger with different multi-pass tubes |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800502788A Active CN101600919B (en) | 2006-11-22 | 2007-11-20 | Multi-pass heat exchanger with different multi-pass tubes |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN101600929B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2536935B1 (en) * | 2010-02-15 | 2018-01-03 | Donaldson Company, Inc. | Coil arrangements for air intake system for gas turbine and methods |
US9752803B2 (en) | 2011-02-16 | 2017-09-05 | Johnson Controls Technology Company | Heat pump system with a flow directing system |
WO2012112802A2 (en) * | 2011-02-16 | 2012-08-23 | Johnson Controls Technology Company | Heat pump system with a flow directing system |
US9671176B2 (en) * | 2012-05-18 | 2017-06-06 | Modine Manufacturing Company | Heat exchanger, and method for transferring heat |
DK3280967T3 (en) | 2015-04-10 | 2020-02-17 | Carrier Corp | INTEGRATED FAN HEAT EXCHANGE |
EP3173710B1 (en) * | 2015-11-25 | 2018-06-06 | Daikin Industries, Limited | Heat exchanger |
CN106679460B (en) * | 2016-11-18 | 2018-07-17 | 华北电力大学(保定) | A microchannel heat exchanger |
CN109595953A (en) * | 2017-09-30 | 2019-04-09 | 杭州三花家电热管理系统有限公司 | Heat exchanger and heat pump system with it |
CN108332588B (en) * | 2018-04-26 | 2023-09-22 | 江苏宝得换热设备股份有限公司 | Long-service-life multi-system plate heat exchanger and implementation method thereof |
TWI755078B (en) * | 2020-09-29 | 2022-02-11 | 台達電子工業股份有限公司 | Water cooling device and manifold thereof |
CN112880243A (en) * | 2021-02-03 | 2021-06-01 | 瀚润联合高科技发展(北京)有限公司 | Flat tube cascade condenser and air conditioning unit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5186248A (en) * | 1992-03-23 | 1993-02-16 | General Motors Corporation | Extruded tank condenser with integral manifold |
US6394176B1 (en) * | 1998-11-20 | 2002-05-28 | Valeo Thermique Moteur | Combined heat exchanger, particularly for a motor vehicle |
CN1851362A (en) * | 2005-04-22 | 2006-10-25 | 威斯通全球技术公司 | Heat exchanger having a distributer plate |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6161613A (en) * | 1996-11-21 | 2000-12-19 | Carrier Corporation | Low pressure drop heat exchanger |
US6745827B2 (en) * | 2001-09-29 | 2004-06-08 | Halla Climate Control Corporation | Heat exchanger |
GB0326443D0 (en) * | 2003-11-13 | 2003-12-17 | Calsonic Kansei Uk Ltd | Condenser |
-
2007
- 2007-11-20 CN CN2007800502881A patent/CN101600929B/en active Active
- 2007-11-20 CN CN2007800502788A patent/CN101600919B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5186248A (en) * | 1992-03-23 | 1993-02-16 | General Motors Corporation | Extruded tank condenser with integral manifold |
US6394176B1 (en) * | 1998-11-20 | 2002-05-28 | Valeo Thermique Moteur | Combined heat exchanger, particularly for a motor vehicle |
CN1851362A (en) * | 2005-04-22 | 2006-10-25 | 威斯通全球技术公司 | Heat exchanger having a distributer plate |
Also Published As
Publication number | Publication date |
---|---|
CN101600919B (en) | 2011-06-01 |
CN101600929A (en) | 2009-12-09 |
CN101600919A (en) | 2009-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7677057B2 (en) | Multichannel heat exchanger with dissimilar tube spacing | |
CN101600929B (en) | Multichannel heat exchanger with dissimilar tube spacing | |
US7832231B2 (en) | Multichannel evaporator with flow separating manifold | |
US8561427B2 (en) | Multi-slab multichannel heat exchanger | |
US8439104B2 (en) | Multichannel heat exchanger with improved flow distribution | |
US9752803B2 (en) | Heat pump system with a flow directing system | |
US9151540B2 (en) | Multichannel heat exchanger tubes with flow path inlet sections | |
US9267737B2 (en) | Multichannel heat exchangers employing flow distribution manifolds | |
WO2009018159A2 (en) | Multi-slab multichannel heat exchanger | |
WO2011005986A2 (en) | Multichannel heat exchanger with differing fin spacing | |
JP2010060274A (en) | Multichannel heat exchanger with dissimilar flow | |
US20080156014A1 (en) | Condenser refrigerant distribution | |
WO2012112802A2 (en) | Heat pump system with a flow directing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230426 Address after: Wisconsin Patentee after: Johnson Controls Technology Intellectual Property Holding limited liability partnership Address before: Michigan, USA Patentee before: JOHNSON CONTROLS TECHNOLOGY Co. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250122 Address after: Switzerland Rhine falls Neuhausen Patentee after: TYCO FIRE & SECURITY GmbH Country or region after: Switzerland Address before: Wisconsin Patentee before: Johnson Controls Technology Intellectual Property Holding limited liability partnership Country or region before: U.S.A. |
|
TR01 | Transfer of patent right |