CN101591014B - Method for realizing large-scale preparation of monolayer oxidized graphene - Google Patents
Method for realizing large-scale preparation of monolayer oxidized graphene Download PDFInfo
- Publication number
- CN101591014B CN101591014B CN2009100628698A CN200910062869A CN101591014B CN 101591014 B CN101591014 B CN 101591014B CN 2009100628698 A CN2009100628698 A CN 2009100628698A CN 200910062869 A CN200910062869 A CN 200910062869A CN 101591014 B CN101591014 B CN 101591014B
- Authority
- CN
- China
- Prior art keywords
- graphene
- oxidized graphene
- graphite
- monolayer
- graphene oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 104
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 75
- 238000002360 preparation method Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000002356 single layer Substances 0.000 title claims abstract description 13
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 27
- 239000010439 graphite Substances 0.000 claims abstract description 27
- 239000007864 aqueous solution Substances 0.000 claims abstract description 12
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 5
- 239000006185 dispersion Substances 0.000 claims abstract description 4
- 230000003311 flocculating effect Effects 0.000 claims abstract 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 229910017604 nitric acid Inorganic materials 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 9
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 9
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 8
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- 239000012286 potassium permanganate Substances 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 6
- 238000005189 flocculation Methods 0.000 claims description 6
- 230000016615 flocculation Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 claims description 5
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 4
- 239000000706 filtrate Substances 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 3
- 239000004567 concrete Substances 0.000 claims description 2
- 239000012065 filter cake Substances 0.000 claims description 2
- 235000007715 potassium iodide Nutrition 0.000 claims description 2
- 238000000967 suction filtration Methods 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 5
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims 4
- 238000006396 nitration reaction Methods 0.000 claims 2
- 239000003921 oil Substances 0.000 claims 2
- 239000004159 Potassium persulphate Substances 0.000 claims 1
- DPDMMXDBJGCCQC-UHFFFAOYSA-N [Na].[Cl] Chemical compound [Na].[Cl] DPDMMXDBJGCCQC-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 229960004839 potassium iodide Drugs 0.000 claims 1
- 235000019394 potassium persulphate Nutrition 0.000 claims 1
- ZNRSXPDDVNZGEN-UHFFFAOYSA-K trisodium;chloride;sulfate Chemical compound [Na+].[Na+].[Na+].[Cl-].[O-]S([O-])(=O)=O ZNRSXPDDVNZGEN-UHFFFAOYSA-K 0.000 claims 1
- 239000007800 oxidant agent Substances 0.000 abstract description 11
- 239000000243 solution Substances 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 5
- 238000001914 filtration Methods 0.000 abstract description 4
- 230000001590 oxidative effect Effects 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 3
- 230000004888 barrier function Effects 0.000 abstract description 2
- 230000005669 field effect Effects 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- 239000008394 flocculating agent Substances 0.000 abstract 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 239000002253 acid Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000033116 oxidation-reduction process Effects 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910014033 C-OH Inorganic materials 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种大规模制备单层氧化石墨烯的方法。 The invention relates to a method for large-scale preparation of single-layer graphene oxide. the
背景技术Background technique
2004年,英国曼彻斯特大学的物理学教授Geim等用一种极为简单的方法剥离并观测到了单层石墨烯晶体(Geim,A.K.et al.Scienc,306,666(2004)),引起了科学界新一轮的“碳”热潮。石墨烯的理论比表面积高达2600m2/g(Chae,H.K.etal.Nature,427,523(2004)),具有突出的导热性能(3000W/(m·K))和力学性能(1060GPa)(Schadler,L.S.et al.Appl Phys Lett,73,3842(1998)),以及室温下高速的电子迁移率(15000cm2/(V·s))(Zhang,Y.et al.Nature,438,201(2005))。石墨烯的特殊结构,使其具有完美的量子隧道效应、半整数的量子霍尔效应和从不消失的电导率等一系列性质(Novoselov,K.S.et al.Nature,38,197(2005))。这些独特的性能使其在材料科学和电子学等领域具有广阔的应用前景。 In 2004, Geim, a professor of physics at the University of Manchester in the United Kingdom, peeled off and observed a single-layer graphene crystal (Geim, A.K.et al.Science, 306, 666 (2004)) with a very simple method, which has aroused new interest in the scientific community. A round of "carbon" craze. The theoretical specific surface area of graphene is as high as 2600m2/g (Chae, H.K.etal.Nature, 427,523 (2004)), has outstanding thermal conductivity (3000W/(m K)) and mechanical properties (1060GPa) (Schadler, L.S. et al.Appl Phys Lett, 73, 3842(1998)), and high-speed electron mobility (15000cm2/(V s)) at room temperature (Zhang, Y.et al.Nature, 438, 201(2005)). The special structure of graphene makes it have a series of properties such as perfect quantum tunneling effect, half-integer quantum Hall effect and never-disappearing electrical conductivity (Novoselov, K.S. et al. Nature, 38, 197 (2005)). These unique properties make it have broad application prospects in the fields of materials science and electronics. the
目前,石墨烯的制备方法有:机械剥离法,化学气相沉积法,插层法和氧化-还原法。其中前两种方法得到的石墨烯产量低,而插层法的产物中含有大量多层的石墨烯,这些都在一定程度上限制了其在各领域,特别是在复合材料方面的应用。氧化-还原法是以天然鳞片石墨为原料,从制备氧化石墨烯为出发点来制备石墨烯。而全世界的石墨矿产丰富,我国也是石墨高产国。因此该方法从原料方面就为石墨烯的大规模制备奠定了基础。所以从石墨制备氧化石墨烯是大规模合成石墨烯的战略起点。而且与昂贵的富勒烯和碳纳米管相比,氧化石墨烯价格低廉,原料易得;氧化石墨烯上还含有大量的-OH与-COOH基团,可以很容易地进行各种化学改性,有望成为聚合物纳米复合材料的优质填料。 At present, the preparation methods of graphene include: mechanical exfoliation method, chemical vapor deposition method, intercalation method and oxidation-reduction method. Among them, the yield of graphene obtained by the first two methods is low, and the product of the intercalation method contains a large number of multilayer graphene, which to a certain extent limits its application in various fields, especially in composite materials. The oxidation-reduction method uses natural flake graphite as a raw material to prepare graphene starting from the preparation of graphene oxide. The world is rich in graphite minerals, and my country is also a country with high graphite production. Therefore, this method has laid the foundation for the large-scale preparation of graphene from the aspect of raw materials. Therefore, the preparation of graphene oxide from graphite is a strategic starting point for large-scale graphene synthesis. Moreover, compared with expensive fullerenes and carbon nanotubes, graphene oxide is cheap and easy to obtain raw materials; graphene oxide also contains a large number of -OH and -COOH groups, which can be easily modified chemically , is expected to be a high-quality filler for polymer nanocomposites. the
氧化-还原法主要是利用强氧化剂对天然鳞片石墨进行氧化后得到氧化石墨烯,再经还原得到石墨烯。然而该方法所得到的氧化石墨烯是一种二维薄片状结构,成膜性好,在水中分散性好,采用普通的抽滤、离心沉降、蒸发等方法难以将氧化石墨烯从其水溶液中分离出来。特别是对大规模工业制备与处理,这些方法成本高、效率低、 不宜推广应用。因此探索一种简单适用、经济高效的制备大量氧化石墨烯的方法,从而解决石墨烯的大规模制备,对实现石墨烯的广泛应用具有十分重要的价值。 The oxidation-reduction method mainly uses a strong oxidant to oxidize natural flake graphite to obtain graphene oxide, and then reduces to obtain graphene. However, the graphene oxide obtained by this method is a two-dimensional sheet-like structure with good film-forming properties and good dispersibility in water. separate from. Especially for large-scale industrial preparation and treatment, these methods have high cost and low efficiency, and are not suitable for popularization and application. Therefore, exploring a simple, applicable, cost-effective method for preparing a large amount of graphene oxide, so as to solve the large-scale preparation of graphene, is of great value to realize the wide application of graphene. the
发明内容Contents of the invention
本发明的目的是针对上述现状,旨在提供一种原料成本低廉易得、操作容易、工艺简单、重现性好,可大规模工业化的制备单层氧化石墨烯的方法。 The object of the present invention is to aim at the above-mentioned present situation, and aims to provide a method for preparing single-layer graphene oxide with low raw material cost, easy operation, simple process, good reproducibility, and large-scale industrialization. the
本发明目的的实现方式为,一种大规模制备单层氧化石墨烯的方法,具体步骤如下: The realization mode of the object of the present invention is, a kind of method for preparing monolayer graphene oxide on a large scale, concrete steps are as follows:
①石墨氧化:以2克-500克天然鳞片石墨为原料,用氧化剂氧化,氧化72小时-100小时后,氧化物用1升去离子水洗涤抽滤,洗至中性,干燥后得到氧化石墨, ① Graphite Oxidation: Use 2g-500g of natural flake graphite as raw material, oxidize with an oxidizing agent, after oxidizing for 72-100 hours, wash and filter the oxide with 1 liter of deionized water, wash until neutral, and dry to obtain graphite oxide ,
所述的氧化剂为35毫升浓硫酸和18毫升浓硝酸的混酸和其它试剂的组合物,其它试剂为氯酸钾、高锰酸钾、五氧化二磷、过硫酸钾、双氧水中的一种或几种的组合,其它试剂的加量为10克-22克, Described oxidizing agent is the composition of the mixed acid of 35 milliliters of concentrated sulfuric acid and 18 milliliters of concentrated nitric acid and other reagents, and other reagents are potassium chlorate, potassium permanganate, phosphorus pentoxide, potassium persulfate, one or more in hydrogen peroxide The combination, the addition amount of other reagents is 10 grams -22 grams,
②分散剥离:将脱酸洗涤后的氧化石墨固体立即加入到去离子水中稀释至浓度为0.5克/升,用超声波进行分散剥离0.5小时至10小时,然后过滤未反应的石墨,收集滤液,得到氧化石墨烯的水溶液,未反应的石墨重复步骤①②操作, ② Dispersion and stripping: Add the graphite oxide solid after deacidification and washing to deionized water immediately to dilute to a concentration of 0.5 g/L, use ultrasonic waves to disperse and strip for 0.5 hours to 10 hours, then filter unreacted graphite, collect the filtrate, and obtain Aqueous solution of graphene oxide, unreacted graphite repeat steps ① and ② operation,
③絮凝沉降:在氧化石墨烯的水溶液中按5克至50克/升氧化石墨烯水溶液的量加入絮凝剂,使氧化石墨烯沉降下来,然后进行过滤,滤饼冷冻干燥后得到氧化石墨烯固体, ③Flocculation and sedimentation: add flocculant in the graphene oxide aqueous solution according to the amount of 5 g to 50 g/L graphene oxide aqueous solution to make the graphene oxide settle down, then filter, freeze-dry the filter cake to obtain graphene oxide solid ,
所述的絮凝剂为氢氧化钾、氢氧化钠、盐酸、硫酸、硝酸、氯化钾、氯化钠、硫酸钠、碘化钾或聚丙烯酰胺中的一种或几种的组合。 The flocculant is one or a combination of potassium hydroxide, sodium hydroxide, hydrochloric acid, sulfuric acid, nitric acid, potassium chloride, sodium chloride, sodium sulfate, potassium iodide or polyacrylamide. the
本发明通过絮凝沉降能将氧化石墨烯固体很容易地从其水分散液中分离出来,从而实现了石墨烯的大规模制备;原料成本低廉易得、操作容易、工艺简单、重现性好,可进行大规模工业化生产。 The present invention can easily separate the graphene oxide solid from its aqueous dispersion through flocculation and sedimentation, thereby realizing the large-scale preparation of graphene; the raw material cost is cheap and easy to obtain, the operation is easy, the process is simple, and the reproducibility is good. Large-scale industrial production is possible. the
用本发明制备的单原子氧化石墨烯,可作为复合材料的片状增强相,制备具有高的力学性能和阻隔性能的材料;可用来制作指纹采集材料等。其还原产物-石墨烯,可用于构筑纳米级的计算机芯片、太阳能电池电极和场效应晶体管等二维光电子元器件,具有极其重要的实际应用价值。 The monoatomic graphene oxide prepared by the present invention can be used as a flaky reinforcing phase of composite materials to prepare materials with high mechanical properties and barrier properties; it can be used to make fingerprint collection materials and the like. Its reduction product - graphene, can be used to construct two-dimensional optoelectronic components such as nanoscale computer chips, solar cell electrodes and field effect transistors, and has extremely important practical application value. the
附图说明Description of drawings
图1是大规模制备氧化石墨烯的工艺流程示意图, Figure 1 is a schematic diagram of the process flow for large-scale preparation of graphene oxide,
图2是制备氧化石墨烯工艺中絮凝步骤的照片,其中a为氧化石墨烯的水溶液;b为加入絮凝剂后氧化石墨烯沉降的照片;c为抽滤洗涤后的氧化石墨烯固体,c中插入的图片为得到的氧化石墨烯固体分散于水中, Fig. 2 is the photo of flocculation step in the preparation graphene oxide process, wherein a is the aqueous solution of graphene oxide; B is the photo of graphene oxide sedimentation after adding flocculant; C is the graphene oxide solid after suction filtration washing, in c The inserted picture is the obtained graphene oxide solid dispersed in water,
图3a、b是单原子层氧化石墨烯的场发射低分辨率、高分辨率扫描电子显微镜图片, Figure 3a and b are low-resolution and high-resolution scanning electron microscope images of field emission of single atomic layer graphene oxide,
图4a、b是单原子层氧化石墨烯的高分辨透射低分辨率、高分辨率电子显微镜图片, Figure 4a, b are high-resolution transmission low-resolution, high-resolution electron microscope images of monoatomic layer graphene oxide,
图5a、b、c、d是单原子层氧化石墨烯的厚度为0.730nm、0.826nm的原子力显微镜图片和横截面分析, Figure 5a, b, c, d are atomic force microscope pictures and cross-sectional analysis of single atomic layer graphene oxide with a thickness of 0.730nm and 0.826nm,
图6是单原子层氧化石墨烯的X射线衍射光谱图, Fig. 6 is the X-ray diffraction spectrogram of monoatomic layer graphene oxide,
图7是单原子层氧化石墨烯的傅里叶变换红外光谱图。 Fig. 7 is a Fourier transform infrared spectrum of monoatomic layer graphene oxide. the
具体实施方式Detailed ways
参照图1,本发明的具体步骤是,用氧化剂将天然鳞片石墨进行氧化,得到氧化石墨,超声波剥离后,过滤除去未反应的石墨,得到氧化石墨烯的水溶液,加入絮凝剂,经沉降、过滤、干燥后得到氧化石墨烯固体。 With reference to Fig. 1, the specific steps of the present invention are, oxidize natural flake graphite with oxidizing agent, obtain graphite oxide, after ultrasonic stripping, filter and remove unreacted graphite, obtain the aqueous solution of graphene oxide, add flocculant, through sedimentation, filter , and obtain graphene oxide solid after drying. the
氧化剂最佳为浓硫酸、浓硝酸混酸和其它试剂的组合物,其它试剂最佳为氯酸钾、高锰酸钾、五氧化二磷中的一种或几种的组合。氧化剂的氧化时间最佳为72小时至96小时。超声分散剥离时间最佳为1小时至2小时。絮凝剂最佳为氢氧化钾、氢氧化钠、盐酸、氯化钾、氯化钠中的一种或几种的组合。 The oxidizing agent is preferably a combination of concentrated sulfuric acid, concentrated nitric acid mixed acid and other reagents, and the other reagents are preferably one or a combination of potassium chlorate, potassium permanganate, and phosphorus pentoxide. The optimum oxidation time of the oxidizing agent is 72 hours to 96 hours. The optimal time for ultrasonic dispersion and stripping is 1 hour to 2 hours. The flocculant is preferably one or a combination of potassium hydroxide, sodium hydroxide, hydrochloric acid, potassium chloride, and sodium chloride. the
本发明制备的氧化石墨烯是由碳原子组成的,面积为平方微米级的小尺寸单层薄片状结构,肉眼观察为深棕色粉末。场发射扫描电子显微镜照片(如图3a、b所示),高分辨透射电子显微镜照片图4a、b,结合原子力显微镜照片图5a、b显示具有薄片状结构的氧化石墨烯,其厚度均为零点几纳米,为单原子层厚度。X射线衍射光谱如图6所示,显示出氧化石墨烯的衍射峰:2θ=10.12°和单层氧化石墨烯结构的衍射峰:2θ=29°,30.8°。傅里叶变换红外光谱如图7所示,可以看出一些基团的特征峰,是由氧化过程产生的。各峰分别为C-O:1053cm-1,C-O-C:1280cm-1, C-OH:1385cm-1,and C=O:1723cm-1。1631cm-1左右的峰为石墨烯的骨架振动。 The graphene oxide prepared by the present invention is composed of carbon atoms, has a small-sized single-layer flake-like structure with an area of square micrometers, and is dark brown powder by naked eyes. Field emission scanning electron microscope photos (as shown in Figure 3a, b), high-resolution transmission electron microscope photos in Figure 4a, b, combined with atomic force microscope photos in Figure 5a, b show graphene oxide with a thin sheet structure, and its thickness is zero A few nanometers, the thickness of a single atomic layer. The X-ray diffraction spectrum is shown in Figure 6, showing the diffraction peaks of graphene oxide: 2θ=10.12° and the diffraction peaks of single-layer graphene oxide structure: 2θ=29°, 30.8°. The Fourier transform infrared spectrum is shown in Figure 7. It can be seen that the characteristic peaks of some groups are produced by the oxidation process. The peaks are C-O: 1053cm-1, C-O-C: 1280cm-1, C-OH: 1385cm-1, and C=O: 1723cm-1. The peak around 1631cm-1 is the skeleton vibration of graphene. the
下面,结合附图和实施例对本发明进行更详细说明。 Below, the present invention will be described in more detail in conjunction with the accompanying drawings and embodiments. the
实施例1、第一步、制备氧化石墨:2克天然鳞片石墨在搅拌下分散到在冰浴中搅拌冷却15分钟的35毫升浓硫酸和18毫升浓硝酸的混酸中。然后慢慢加入氯酸钾22g,整个反应体系保持敞开,并配备尾气吸收装置。反应持续96小时。反应结束后,混合物用1升去离子水洗涤抽滤、洗至中性。 Embodiment 1, the first step, preparation of graphite oxide: 2 grams of natural graphite flakes were dispersed under stirring into the mixed acid of 35 milliliters of concentrated sulfuric acid and 18 milliliters of concentrated nitric acid which were stirred and cooled in an ice bath for 15 minutes. Slowly add potassium chlorate 22g then, whole reaction system keeps open, and is equipped with tail gas absorption device. The reaction lasted 96 hours. After the reaction was finished, the mixture was washed with 1 liter of deionized water and filtered until neutral. the
第二步、分散剥离:将洗涤后的氧化石墨立即加到去离子水中,稀释至浓度为0.5克/升,稀释以后,用超声波进行分散剥离1小时。然后过滤除去未反应的石墨,收集滤液,得到如图2a所示的氧化石墨烯的水溶液,小烧杯中的溶液为:10毫升大烧杯中的加入50毫升去离子水稀释以后的溶液,从图中可以看到氧化石墨烯在水中的分散性很好。 The second step, dispersing and peeling: add the washed graphite oxide to deionized water immediately, dilute to a concentration of 0.5 g/L, and use ultrasonic waves to disperse and peel for 1 hour after dilution. Then filter and remove unreacted graphite, collect filtrate, obtain the aqueous solution of graphene oxide as shown in Figure 2a, the solution in the small beaker is: the solution after adding 50 milliliters of deionized water dilutions in the 10 milliliters of large beakers, from Fig. It can be seen that graphene oxide is well dispersed in water. the
第三步、絮凝沉降、过滤、干燥:在氧化石墨烯的水溶液中加入5克氢氧化钠溶液作为絮凝剂,氧化石墨烯立刻以絮状物析出沉降,静置后,氧化石墨烯完全沉降下来。最后过滤、干燥后得到2.3克氧化石墨烯固体(如图2b、c所示)。 The third step, flocculation and sedimentation, filtration, and drying: add 5 grams of sodium hydroxide solution to the aqueous solution of graphene oxide as a flocculant, and the graphene oxide will immediately precipitate and settle as flocs. After standing still, the graphene oxide will completely settle down . Finally, 2.3 grams of graphene oxide solids were obtained after filtration and drying (as shown in Figure 2b, c). the
实施例2、按实施例1的制备方法,只是所述氧化剂为10克高锰酸钾,同样得到如图3、4、5、6、7所示的结果。 Embodiment 2, by the preparation method of embodiment 1, just described oxidizing agent is 10 grams of potassium permanganate, obtain the result shown in Figure 3,4,5,6,7 equally. the
实施例3、按实施例1的制备方法,只是所述氧化剂为15克过硫酸钾,同样得到如图3、4、5、6、7所示的结果。 Embodiment 3, by the preparation method of embodiment 1, just described oxygenant is 15 grams of potassium persulfate, obtain the result shown in Figure 3,4,5,6,7 equally. the
实施例4、按实施例1的制备方法,只是所述氧化剂为10克高锰酸钾和13毫升双氧水,同样得到如图3、4、5、6、7所示的结果。
实施例5、按实施例1的制备方法,只是所述氧化剂为10克高锰酸钾和1.7克五氧化二磷,同样得到如图3、4、5、6、7所示的结果。 Embodiment 5, by the preparation method of embodiment 1, just described oxidizing agent is 10 gram potassium permanganate and 1.7 gram phosphorus pentoxide, obtain the result shown in Figure 3,4,5,6,7 equally. the
实施例6按实施例1的制备方法,只是所述氧化剂为10克高锰酸钾和1.7克过硫酸钾,同样得到如图3、4、5、6、7所示的结果。 Embodiment 6 is by the preparation method of embodiment 1, just described oxidizing agent is 10 gram potassium permanganate and 1.7 gram potassium persulfate, obtain the result shown in Figure 3,4,5,6,7 equally. the
实施例7、按实施例1的制备方法,氧化时间为72小时,同样得到如图3、4、5、6、7所示的结果。 Example 7, according to the preparation method of Example 1, the oxidation time was 72 hours, and the results shown in Figures 3, 4, 5, 6, and 7 were also obtained. the
实施例8、按实施例1的制备方法,超声波剥离时间为0.5小时,同样得到如图3、4、5、6、7所示的结果。 Example 8, according to the preparation method of Example 1, the ultrasonic stripping time is 0.5 hours, and the results shown in Figures 3, 4, 5, 6, and 7 are also obtained. the
实施例9、按实施例1的制备方法,絮凝剂为盐酸溶液,同样得到如图2b、c 所示的结果。 Example 9, according to the preparation method of Example 1, the flocculant is hydrochloric acid solution, and the results shown in Figure 2b and c are also obtained. the
实施例10、按实施例1的制备方法,絮凝剂为硫酸溶液,同样得到如图2b、c所示的结果。 Example 10, according to the preparation method of Example 1, the flocculant is a sulfuric acid solution, and the results shown in Figure 2b and c are also obtained. the
实施例11、按实施例1的制备方法,絮凝剂为硝酸溶液,同样得到如图2B、C所示的结果。 Example 11. According to the preparation method of Example 1, the flocculant is nitric acid solution, and the results shown in Fig. 2B and C are also obtained. the
实施例12、按实施例1的制备方法,絮凝剂为氢氧化钾溶液,同样得到如图2b、c所示的结果。 Example 12. According to the preparation method of Example 1, the flocculant is potassium hydroxide solution, and the results shown in Figure 2b and c are also obtained. the
实施例13、按实施例1的制备方法,絮凝剂为氯化钾溶液,同样得到如图2b、c所示的结果。 Example 13. According to the preparation method of Example 1, the flocculant is potassium chloride solution, and the results shown in Figure 2b and c are also obtained. the
实施例14、按实施例1的制备方法,絮凝剂为氯化钠溶液,同样得到如图2b、c所示的结果。 Example 14. According to the preparation method of Example 1, the flocculant is sodium chloride solution, and the results shown in Figure 2b and c are also obtained. the
实施例15、按实施例1的制备方法,絮凝剂为硫酸钠溶液,同样得到如图2b、c所示的结果。 Example 15. According to the preparation method of Example 1, the flocculant is sodium sulfate solution, and the results shown in Figure 2b and c are also obtained. the
实施例16、按实施例1的制备方法,絮凝剂为碘化钾溶液,同样得到如图2b、c所示的结果。 Example 16. According to the preparation method of Example 1, the flocculant is potassium iodide solution, and the results shown in Figure 2b and c are also obtained. the
实施例17、按实施例1的制备方法,絮凝剂为聚丙烯酰胺,同样得到如图2b、c所示的结果。 Example 17. According to the preparation method of Example 1, the flocculant is polyacrylamide, and the results shown in Figure 2b and c are also obtained. the
实施例18、按实施例1的制备方法,只是将所述絮凝剂换为氢氧化钾和氯化钠的组合,同样得到如图2b、c所示的结果。 Example 18. According to the preparation method of Example 1, except that the flocculant was replaced by a combination of potassium hydroxide and sodium chloride, the results shown in Figure 2b and c were also obtained. the
实施例19、按实施例1的制备方法,絮凝剂为盐酸和氯化钠的组合物,盐酸和氯化钠的比例为1∶1,同样得到如图2b、c所示的结果。 Example 19. According to the preparation method of Example 1, the flocculant is a composition of hydrochloric acid and sodium chloride, and the ratio of hydrochloric acid and sodium chloride is 1:1. The results shown in Figure 2b and c are also obtained. the
实施例20、按实施例1的制备方法,10克天然鳞片石墨在搅拌下分散到35毫升浓硫酸和18毫升浓硝酸的混酸中,同样得到如图3、4、5、6、7所示的结果。 Example 20, according to the preparation method of Example 1, 10 grams of natural flake graphite was dispersed into the mixed acid of 35 milliliters of concentrated sulfuric acid and 18 milliliters of concentrated nitric acid under stirring, and the same obtained as shown in Figures 3, 4, 5, 6, and 7. the result of. the
实施例21、按实施例1的制备方法,50克天然鳞片石墨在搅拌下分散到35毫升浓硫酸和18毫升浓硝酸的混酸中,同样得到如图3、4、5、6、7所示的结果。 Example 21, according to the preparation method of Example 1, 50 grams of natural flake graphite was dispersed into the mixed acid of 35 milliliters of concentrated sulfuric acid and 18 milliliters of concentrated nitric acid under stirring, and the same obtained as shown in Figures 3, 4, 5, 6, and 7. the result of. the
实施例22、按实施例1~15的制备方法,500克天然鳞片石墨在搅拌下分散到35毫升浓硫酸和18毫升浓硝酸的混酸中,氧化时间为100小时,超声波剥离时间为10小时,絮凝剂的用量为50克/升氧化石墨烯水溶液,同样得到如图2b、c和图3、4、5、6、7所示的结果。 Example 22, according to the preparation method of Examples 1 to 15, 500 grams of natural graphite flakes were dispersed into the mixed acid of 35 milliliters of concentrated sulfuric acid and 18 milliliters of concentrated nitric acid under stirring, the oxidation time was 100 hours, and the ultrasonic stripping time was 10 hours. The amount of flocculant used was 50 g/L graphene oxide aqueous solution, and the results shown in Fig. 2b, c and Fig. 3, 4, 5, 6, 7 were also obtained. the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100628698A CN101591014B (en) | 2009-06-30 | 2009-06-30 | Method for realizing large-scale preparation of monolayer oxidized graphene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100628698A CN101591014B (en) | 2009-06-30 | 2009-06-30 | Method for realizing large-scale preparation of monolayer oxidized graphene |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101591014A CN101591014A (en) | 2009-12-02 |
CN101591014B true CN101591014B (en) | 2010-12-29 |
Family
ID=41405928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100628698A Expired - Fee Related CN101591014B (en) | 2009-06-30 | 2009-06-30 | Method for realizing large-scale preparation of monolayer oxidized graphene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101591014B (en) |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101734654B (en) * | 2009-12-23 | 2011-09-14 | 天津大学 | Transparent graphene oxide film and method for regulating transmittance |
CN101812194B (en) * | 2010-03-17 | 2012-04-25 | 湖北大学 | Graphene-based barrier composite material and preparation method thereof |
CN101818059B (en) * | 2010-03-29 | 2013-02-27 | 中国科学院合肥物质科学研究院 | A kind of preparation method of graphene oxide with high fluorescence quantum yield |
CN101817516A (en) * | 2010-05-21 | 2010-09-01 | 哈尔滨工业大学 | Method for preparing graphene or graphene oxide by using high-efficiency and low-cost mechanical stripping |
CN101857221A (en) * | 2010-05-21 | 2010-10-13 | 哈尔滨工业大学 | Method for preparing graphene composite or graphene oxide composite with high efficiency |
CN101966988B (en) * | 2010-11-17 | 2012-07-04 | 哈尔滨工业大学 | Method for preparing graphene powder |
KR101793684B1 (en) * | 2010-11-19 | 2017-11-03 | 한화테크윈 주식회사 | Apparatus for transferring grapheme |
CN102199415B (en) * | 2010-12-27 | 2014-04-16 | 中国人民解放军空军油料研究所 | Preparation method of graphene oxide/nano-gold particulate composite material with mono-atomic thickness |
CN102070140B (en) * | 2011-02-28 | 2012-08-29 | 无锡第六元素高科技发展有限公司 | Method for preparing high-specific surface area graphene material by utilizing strong base chemical treatment |
CN102161785B (en) * | 2011-03-10 | 2013-02-13 | 四川大学 | Preparation method of graphene/polymer nano composite material |
CN102154694B (en) * | 2011-03-18 | 2013-03-27 | 昆明物理研究所 | Preparation method of hydrogen and oxygen co-doped graphene |
CN102249220A (en) * | 2011-03-18 | 2011-11-23 | 太原理工大学 | Quick preparation method for graphene oxide film |
CN102254583B (en) * | 2011-03-30 | 2013-07-17 | 中国科学院青岛生物能源与过程研究所 | Iodine-doped carbon material serving as cathode of dye-sensitized solar cell |
CN102167312B (en) * | 2011-04-25 | 2012-07-25 | 同济大学 | Preparation method of graphene integrating processes of stripping, separating and reducing |
CN102212616B (en) * | 2011-04-27 | 2013-01-09 | 湖北富邦科技股份有限公司 | Preparation method for synthesizing nanocomposite from graphene oxide and organic dye |
CN103748035B (en) * | 2011-08-18 | 2016-02-10 | 株式会社半导体能源研究所 | Form method and the graphene oxide salt of Graphene and graphene oxide salt |
WO2013031526A1 (en) | 2011-08-26 | 2013-03-07 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
CN103241727B (en) * | 2012-02-09 | 2015-03-04 | 中国科学院深圳先进技术研究院 | Preparation method of graphene |
CN102674327A (en) * | 2012-05-17 | 2012-09-19 | 哈尔滨工业大学 | Environment-friendly method for preparing water-soluble grapheme at normal temperature |
CN102745673A (en) * | 2012-06-21 | 2012-10-24 | 泰州巨纳新能源有限公司 | Method for preparing large-scale graphene in industrial large-scale reaction vessel |
CN102701197A (en) * | 2012-06-27 | 2012-10-03 | 苏州大学 | Preparation method of soluble graphite oxide powder |
CN103680973A (en) * | 2012-09-14 | 2014-03-26 | 海洋王照明科技股份有限公司 | Polyaniline/graphene/carbon nanotube composite and preparation method thereof, as well as electrode plate and capacitor |
CN103833008A (en) * | 2012-11-20 | 2014-06-04 | 中国科学院兰州化学物理研究所 | Method for preparing graphene at normal temperature |
CN102992309A (en) * | 2012-11-26 | 2013-03-27 | 同济大学 | Method for quickly preparing high-quality graphene oxide solids in large scale |
CN103058178B (en) * | 2013-01-11 | 2016-02-24 | 常州第六元素材料科技股份有限公司 | A kind of High specific surface area graphene and its production and use |
CN103172056B (en) * | 2013-02-06 | 2015-01-21 | 中国科学院上海硅酸盐研究所 | Efficient separation and purification method of graphene oxide |
CN103224230B (en) * | 2013-04-16 | 2017-07-07 | 湖南元素密码石墨烯高科技有限公司 | A kind of preparation method of Graphene |
CN103320839B (en) * | 2013-05-28 | 2016-08-17 | 青岛农业大学 | Go the preparation method of the titanium dioxide nanotube array photoelectrode of removal organic polluter |
CN103361689B (en) * | 2013-05-28 | 2016-05-04 | 青岛农业大学 | The preparation method of Nano tube array of titanium dioxide optoelectronic pole |
CN103936000B (en) * | 2014-05-14 | 2016-06-29 | 苏州斯迪克新材料科技股份有限公司 | A kind of preparation method of Graphene |
CN103964429B (en) * | 2014-05-26 | 2015-12-30 | 苏州斯迪克新材料科技股份有限公司 | A kind of preparation method of Graphene |
CN104386671B (en) * | 2014-10-17 | 2016-02-17 | 浙江碳谷上希材料科技有限公司 | A kind of pollution-free low cost prepares the technique of single-layer graphene oxide |
CN104445168A (en) * | 2014-11-28 | 2015-03-25 | 张明 | Preparation method of graphene oxide |
CN105271214B (en) * | 2015-11-25 | 2017-09-05 | 合肥国轩高科动力能源有限公司 | Graphene oxidation-reduction preparation method |
CN105860432B (en) * | 2016-04-01 | 2018-01-12 | 中南林业科技大学 | The preparation method of tartaric acid modified graphene oxide/Lauxite composite |
CN105859992B (en) * | 2016-04-01 | 2018-01-12 | 中南林业科技大学 | A kind of preparation method of the graphene oxide adsorption microspheres based on Lauxite |
CN106328897A (en) * | 2016-09-29 | 2017-01-11 | 柳州申通汽车科技有限公司 | Preparation method of composite negative electrode material for automobile battery |
CN106129389A (en) * | 2016-09-29 | 2016-11-16 | 柳州申通汽车科技有限公司 | The preparation method of new energy car battery pole piece |
CN106229494A (en) * | 2016-09-29 | 2016-12-14 | 柳州申通汽车科技有限公司 | A kind of preparation method of automobile batteries |
CN106159245A (en) * | 2016-09-29 | 2016-11-23 | 柳州申通汽车科技有限公司 | A kind of preparation method of graphene battery negative plate |
CN106207141A (en) * | 2016-09-29 | 2016-12-07 | 柳州申通汽车科技有限公司 | The preparation method of new energy car battery negative material |
CN106430178B (en) * | 2016-11-04 | 2019-04-30 | 辽宁省地质矿产研究院有限责任公司 | Microwave chemical preparation method of fine flake sulfur-free expanded graphite |
CN106519444A (en) * | 2016-11-10 | 2017-03-22 | 无锡市明盛强力风机有限公司 | Fan material for computer |
CN107398265A (en) * | 2017-08-09 | 2017-11-28 | 张家港市汇鼎新材料科技有限公司 | A kind of preparation method based on graphene oxide catalysis material |
CN107352532A (en) * | 2017-09-14 | 2017-11-17 | 昂星新型碳材料常州有限公司 | Graphene oxide and its preparation method and application |
CN107595292B (en) * | 2017-09-22 | 2021-03-12 | 深圳先进技术研究院 | Photothermal imaging fingerprint detection method |
CN107768601B (en) * | 2017-10-13 | 2020-02-21 | 南京旭羽睿材料科技有限公司 | Novel graphene membrane electrode preparation method |
CN111315684A (en) * | 2017-10-31 | 2020-06-19 | 日东电工株式会社 | Method for chemically stripping graphite |
CN109336095A (en) * | 2018-12-10 | 2019-02-15 | 成都理工大学 | Preparation method of three-dimensional structure nitrogen-doped graphene |
CN110184184B (en) * | 2019-05-07 | 2022-03-11 | 浙江正合谷生物科技有限公司 | Preparation method and application of nucleic acid reactor integrating nucleic acid extraction, enrichment and in-situ amplification |
CN110104639A (en) * | 2019-05-13 | 2019-08-09 | 四川欧迅能源工程科技有限公司 | A kind of extensive, controllable, inexpensive graphene preparation method |
GB201910948D0 (en) * | 2019-07-31 | 2019-09-11 | Anaphite Ltd | Composites materials |
CN110526238B (en) * | 2019-09-17 | 2021-05-14 | 西南科技大学 | Preparation method of reduced graphene oxide and precipitation method of graphene oxide sol |
CN110818047B (en) * | 2019-11-12 | 2022-03-08 | 常熟理工学院 | A kind of preparation method of polysilicon ferromanganese graphene flocculant |
CN111544795A (en) * | 2020-04-08 | 2020-08-18 | 常州美洛医疗科技有限公司 | Preparation method of graphene filtering particulate respirator antibacterial filter element and prepared filter element |
CN113582168A (en) * | 2020-04-30 | 2021-11-02 | 北京超思电子技术有限责任公司 | Graphene preparation method based on mixed inorganic acid solvent |
CN112678812A (en) * | 2020-12-31 | 2021-04-20 | 南通第六元素材料科技有限公司 | Method and equipment for efficiently preparing graphene oxide or graphite oxide on large scale |
CN112875692A (en) * | 2021-02-07 | 2021-06-01 | 张标 | Method for preparing large-flake-diameter graphene oxide based on flaky graphene |
CN113257991B (en) * | 2021-06-25 | 2022-02-22 | 之江实验室 | 003-type flexible piezoelectric composite material, flexible multilayer actuator and preparation method |
CN116969447A (en) * | 2023-07-20 | 2023-10-31 | 重庆鼎立石墨烯技术研究院有限公司 | Flake expanded graphite molecular template stripping method |
-
2009
- 2009-06-30 CN CN2009100628698A patent/CN101591014B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101591014A (en) | 2009-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101591014B (en) | Method for realizing large-scale preparation of monolayer oxidized graphene | |
Qiu et al. | Current progress in black phosphorus materials and their applications in electrochemical energy storage | |
Emiru et al. | Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production | |
Sumdani et al. | Recent advances of the graphite exfoliation processes and structural modification of graphene: a review | |
Huang et al. | A facile route to reduced graphene oxide–zinc oxide nanorod composites with enhanced photocatalytic activity | |
Ciriminna et al. | Commercialization of graphene-based technologies: a critical insight | |
Zhang et al. | Hierarchical utilization of raw Ti3C2T x MXene for fast preparation of various Ti3C2T x MXene derivatives | |
CN101549864B (en) | A simple and non-toxic method for preparing single-layer graphene | |
CN103408000B (en) | Preparation method for oxidized grapheme in large sheet | |
Krishna et al. | Rapid electrochemical synthesis of hydrogenated graphene oxide using Ni nanoparticles | |
CN102631913B (en) | A kind of preparation method of graphene-supported ceria nanocubic composite | |
Dang et al. | Facile and green synthesis of titanate nanotube/graphene nanocomposites for photocatalytic H2 generation from water | |
Singh et al. | Electrochemical synthesis of graphene oxide and its application as counter electrode in dye sensitized solar cell | |
CN105873858A (en) | Preparation method of graphene and dispersion composition of graphene | |
Mo et al. | Preparation and characterization of graphene/europium oxide composites | |
CN101973543B (en) | Preparation method of monolayer graphene | |
Gu et al. | Producing “symbiotic” reduced graphene oxide/Mn3O4 nanocomposites directly from converting graphite for high-performance supercapacitor electrodes | |
Falak et al. | Synthesis of stable titanium carbide MXene nanocomposites using crosslinker nanoparticles for flexible supercapacitors: A novel and cost-effective approach | |
Pareek et al. | Graphene and its applications in microbial electrochemical technology | |
CN103408003B (en) | Method for preparing graphene | |
Shan et al. | Electrochemical preparation of hydroxylated boron nitride nanosheets for solid–state flexible supercapacitors using deep eutectic solvent and water mixture as electrolytes | |
Prabhakar et al. | Effect on delamination of Nb4C3Tx MXene supported tungsten oxide for high-performance supercapacitor | |
CN107731550A (en) | A kind of metal oxide/graphene composite material and its preparation method and application | |
Vivas et al. | Facile synthesis and optimization of CrOOH/rGO-Based electrode material for a highly efficient supercapacitor device | |
Xu et al. | Synthesis and characterization of reduced graphene oxide with D-fructose and D-galactose as reductants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101229 Termination date: 20180630 |