CN101591012B - Preparation method of lithium iron phosphate as cathode material of lithium ion battery - Google Patents
Preparation method of lithium iron phosphate as cathode material of lithium ion battery Download PDFInfo
- Publication number
- CN101591012B CN101591012B CN2008101130350A CN200810113035A CN101591012B CN 101591012 B CN101591012 B CN 101591012B CN 2008101130350 A CN2008101130350 A CN 2008101130350A CN 200810113035 A CN200810113035 A CN 200810113035A CN 101591012 B CN101591012 B CN 101591012B
- Authority
- CN
- China
- Prior art keywords
- lithium
- carbon
- iron phosphate
- total weight
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 title claims abstract description 30
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 25
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000010406 cathode material Substances 0.000 title abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000002994 raw material Substances 0.000 claims abstract description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- 239000011574 phosphorus Substances 0.000 claims abstract description 8
- -1 phosphorus compound Chemical class 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 238000005469 granulation Methods 0.000 claims abstract description 5
- 230000003179 granulation Effects 0.000 claims abstract description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- 229910052744 lithium Inorganic materials 0.000 claims description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- SNKMVYBWZDHJHE-UHFFFAOYSA-M lithium;dihydrogen phosphate Chemical compound [Li+].OP(O)([O-])=O SNKMVYBWZDHJHE-UHFFFAOYSA-M 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 5
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 5
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 5
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- 239000006230 acetylene black Substances 0.000 claims description 4
- 239000011363 dried mixture Substances 0.000 claims description 4
- 239000003979 granulating agent Substances 0.000 claims description 4
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004359 castor oil Substances 0.000 claims description 3
- 235000019438 castor oil Nutrition 0.000 claims description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 3
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 3
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 239000010405 anode material Substances 0.000 claims 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- 239000007789 gas Substances 0.000 claims 2
- 239000011159 matrix material Substances 0.000 claims 2
- 238000010792 warming Methods 0.000 claims 2
- 238000013019 agitation Methods 0.000 claims 1
- 239000003595 mist Substances 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 13
- 239000007833 carbon precursor Substances 0.000 abstract description 9
- 150000002642 lithium compounds Chemical class 0.000 abstract description 6
- 239000012298 atmosphere Substances 0.000 abstract description 4
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 3
- 239000000047 product Substances 0.000 description 10
- 239000007774 positive electrode material Substances 0.000 description 8
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010450 olivine Substances 0.000 description 3
- 229910052609 olivine Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 2
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NCZYUKGXRHBAHE-UHFFFAOYSA-K [Li+].P(=O)([O-])([O-])[O-].[Fe+2].[Li+] Chemical compound [Li+].P(=O)([O-])([O-])[O-].[Fe+2].[Li+] NCZYUKGXRHBAHE-UHFFFAOYSA-K 0.000 description 1
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种锂离子电池用正极材料磷酸铁锂的制备方法。将金属铁粉、锂的化合物、磷的化合物按照原子比Li∶Fe∶P=(0.95~1.1)∶1∶1进行配料,再加入碳或者碳的前驱体,在介质中均匀混合1~20小时,然后干燥、造粒,再在惰性气氛中300℃~500℃条件下处理1~20小时,然后在于600℃~850℃条件下合成5~36小时,得到磷酸铁锂正极材料。本发明使用较廉价的金属铁粉为原材料,加入碳或者碳前驱体,进行机械造粒的方法,有效提高了磷酸铁锂的振实密度,提高了其导电性能,所制备的正极材料,比容量高、循环性能优良、倍率性能好等特性。本发明制备磷酸铁锂的方法制备工艺简单,可操作性强,容易实现大规模生产。
The invention relates to a preparation method of lithium iron phosphate, a cathode material for lithium ion batteries. Mix metal iron powder, lithium compound, and phosphorus compound according to the atomic ratio Li:Fe:P=(0.95~1.1):1:1, then add carbon or carbon precursor, and mix uniformly in the medium for 1~20 hours, then dried and granulated, then treated in an inert atmosphere at 300°C to 500°C for 1 to 20 hours, and then synthesized at 600°C to 850°C for 5 to 36 hours to obtain a lithium iron phosphate cathode material. The present invention uses relatively cheap metal iron powder as a raw material, adds carbon or carbon precursors, and performs mechanical granulation, which effectively improves the tap density of lithium iron phosphate and improves its electrical conductivity. High capacity, excellent cycle performance, good rate performance and other characteristics. The method for preparing lithium iron phosphate of the present invention has simple preparation process, strong operability and easy realization of large-scale production.
Description
技术领域 technical field
本发明涉及一种用于锂离子电池正极材料磷酸铁锂(LiFePO4)的制备方法,属于锂离子电池正极材料制备技术领域。The invention relates to a preparation method of lithium iron phosphate (LiFePO 4 ), which is used as a positive electrode material for lithium ion batteries, and belongs to the technical field of preparation of positive electrode materials for lithium ion batteries.
背景技术 Background technique
自1990年日本索尼公司开发锂离子电池以来,正极材料的研发便受到人们的关注。目前应商品化锂离子电池使用的正极材料主要为嵌锂过渡金属氧化物,包括钴酸锂、镍酸锂、锰酸锂等是。其中,使用最为广泛的钴酸锂材料因其资源稀缺、价格昂贵、安全性能差等缺点研制了它在大容量电池中的应用。资源丰富、原材料价格低廉的锰酸锂材料容量较低、高温循环性能差限制了该种材料的广泛应用。镍酸锂因其制备困难、热稳定性差及安全性能等仍没有获得广泛应用。与目前实用的锂离子电池正极材料(钴酸锂、锰酸锂、镍钴锰酸锂三元体系等)相比,磷酸铁锂是一种橄榄石结构的化合物,来源丰富价格低廉、环境友好、比容量高、循环性能和热稳定性极好、安全性高等优点,被认为是最有潜力的第二代锂离子电池正极材料,在储能型锂离子蓄电池具有广阔的发展前景,特别是正在快速发展的锂离子动力型电池用正极材料的优选体系。Since Japan's Sony Corporation developed lithium-ion batteries in 1990, the research and development of positive electrode materials has attracted people's attention. At present, the positive electrode materials used in commercialized lithium-ion batteries are mainly lithium-intercalated transition metal oxides, including lithium cobaltate, lithium nickelate, lithium manganate, etc. Among them, the most widely used lithium cobalt oxide material has been developed for its application in large-capacity batteries due to its shortcomings such as scarcity of resources, high price, and poor safety performance. Lithium manganese oxide materials with abundant resources and low raw material prices have low capacity and poor high-temperature cycle performance, which limits the wide application of this material. Lithium nickelate has not been widely used because of its difficulty in preparation, poor thermal stability and safety performance. Compared with the current practical lithium-ion battery cathode materials (lithium cobaltate, lithium manganese oxide, nickel-cobalt lithium manganese oxide ternary system, etc.), lithium iron phosphate is a compound with an olivine structure, which is rich in sources, low in price, and environmentally friendly. , high specific capacity, excellent cycle performance and thermal stability, and high safety are considered to be the most potential second-generation lithium-ion battery cathode materials, and have broad development prospects in energy storage lithium-ion batteries, especially The preferred system for positive electrode materials for lithium-ion power batteries that is rapidly developing.
磷酸铁锂的制备方法主要有高温固相合成法和低温液相合成法。高温固相合成法中典型的方法有,以昂贵的二价铁有机化合物为前驱体的高温合成方法,在这种方法中由于即使在惰性气氛保护下二价铁也会被氧化,合成产物纯度不高,振实密度较低;以三价铁为前驱体的碳热还原法,合成时间长,能耗较高。低温液相合成法优点是原料混合可达分子级水平,但产物结晶程度不高,Fe和Li存在混排现象,仍需在高温下处理,使制备工艺复杂化,不适合大规模化生产。The preparation methods of lithium iron phosphate mainly include high-temperature solid-phase synthesis and low-temperature liquid-phase synthesis. Typical methods in high-temperature solid-phase synthesis include high-temperature synthesis methods using expensive ferrous organic compounds as precursors. In this method, ferrous iron will be oxidized even under the protection of an inert atmosphere, and the purity of the synthetic product Not high, the tap density is low; the carbothermal reduction method using ferric iron as the precursor has a long synthesis time and high energy consumption. The advantage of the low-temperature liquid-phase synthesis method is that the mixing of raw materials can reach the molecular level, but the degree of crystallization of the product is not high, and there is a phenomenon of mixed displacement of Fe and Li, which still needs to be processed at high temperature, which complicates the preparation process and is not suitable for large-scale production.
发明内容 Contents of the invention
本发明的目的是提供一种锂离子电池正极材料磷酸铁锂的制备方法,该方法制备工艺简单、制备成本低,易于在工业上实施,所制备的产物纯度高,电化学性能优良。The object of the present invention is to provide a preparation method of lithium iron phosphate, a positive electrode material for lithium ion batteries. The preparation process of the method is simple, the preparation cost is low, and it is easy to implement in industry. The prepared product has high purity and excellent electrochemical performance.
为了实现上述目的,本发明采取以下技术方案。In order to achieve the above object, the present invention adopts the following technical solutions.
一种用于锂离子电池正极材料磷酸铁锂的制备方法,包括以下步骤:A preparation method for lithium iron phosphate lithium ion battery cathode material, comprising the following steps:
将金属铁粉、磷的化合物、锂的化合物按照原子比Li∶Fe∶P=(0.95-1.1)∶1∶1进行配料,再加入碳或者碳的前驱体,在介质中均匀混合1~20小时,然后干燥。干燥后的混合物加入造粒剂机械混合造粒,造粒后的混合物放在高温竖炉中,在1~30升/分的惰性气体保护下,以1~15℃/分的升温速率下在300℃~500℃条件下处理1~20小时,然后继续升温于600℃~850℃条件下合成5~36小时后降至室温,制得锂离子电池用橄榄石结构磷酸铁锂正极材料。Mix metal iron powder, phosphorus compound, and lithium compound according to the atomic ratio Li:Fe:P=(0.95-1.1):1:1, then add carbon or carbon precursor, and mix uniformly in the medium for 1-20 hours, then dry. The dried mixture is added with a granulating agent and mechanically mixed and granulated. The granulated mixture is placed in a high-temperature shaft furnace, under the protection of an inert gas of 1-30 liters/min, at a heating rate of 1-15°C/min. Treat at 300°C to 500°C for 1 to 20 hours, then continue to heat up and synthesize at 600°C to 850°C for 5 to 36 hours, then cool down to room temperature to prepare the lithium iron phosphate cathode material with olivine structure for lithium ion batteries.
所说的磷的化合物为磷酸二氢锂、磷酸氢二銨、磷酸二氢銨、磷酸锂、磷酸铁中的一种或几种混合物。The phosphorus compound is one or more mixtures of lithium dihydrogen phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, lithium phosphate and iron phosphate.
所说的锂的化合物为氢氧化锂、碳酸锂、磷酸二氢锂、磷酸锂、醋酸锂中的一种或几种混合物。The lithium compound is one or more mixtures of lithium hydroxide, lithium carbonate, lithium dihydrogen phosphate, lithium phosphate, and lithium acetate.
所说的碳是石墨、乙炔黑,碳前驱体是聚乙烯、聚乙二醇、聚乙烯醇和糖中的一种或几种,加入量占总重量的1~30wt%。这里所述的总重量是原料的总重量,即铁粉、锂的化合物、磷的化合物,和碳或者碳前驱体的总重量。The carbon is graphite and acetylene black, and the carbon precursor is one or more of polyethylene, polyethylene glycol, polyvinyl alcohol and sugar, and the added amount accounts for 1-30 wt% of the total weight. The total weight mentioned here is the total weight of raw materials, that is, the total weight of iron powder, lithium compound, phosphorus compound, and carbon or carbon precursor.
所说的碳前驱体是经热解可分解为碳类物质的有机或高分子化合物。The carbon precursor is an organic or polymer compound that can be decomposed into carbon substances by pyrolysis.
所说的介质是水、乙醇、丙酮、正丁醇、正丙醇、异丙醇、乙晴、乙醇胺中的一种或几种混合物。Said medium is one or more mixtures of water, ethanol, acetone, n-butanol, n-propanol, isopropanol, acetonitrile and ethanolamine.
所说的造粒剂为聚乙烯醇、聚丙烯酰胺、蓖麻油、水中的一种或几种的混合物,加入量相对于原料总重量的1~10wt%。这里所说的原料总重量,即铁粉、锂的化合物、磷的化合物,和碳或者碳前驱体的总重量。The granulating agent is polyvinyl alcohol, polyacrylamide, castor oil, water or a mixture of several kinds, and the addition amount is 1-10wt% relative to the total weight of raw materials. The total weight of raw materials mentioned here refers to the total weight of iron powder, lithium compounds, phosphorus compounds, and carbon or carbon precursors.
所说的干燥温度为50℃~200℃。干燥的时间以将液体介质挥发掉为准。Said drying temperature is 50°C-200°C. The drying time is subject to the volatilization of the liquid medium.
本发明采用铁粉为原料,在原材料中加入碳或者碳的前驱体,机械造粒,降低了合成温度,加快了传热、传质过程。在反应过程中,碳的存在为反应提供了良好的还原气氛,得到了纯度高、电化学性能优良的磷酸铁锂产物;采用密度较大的金属铁粉制得的LiFePO4材料振实密度较高(由1.1g/cm3提高到1.3g/cm3以上),比容量高;再者,以金属铁粉成为成核中心,通过湿法工艺精细控制可以得到粒度可控及粒度分布窄的金属铁粉,利用高温反应的继承性,便于从原料上控制终产品的粒度及粒度分布;本发明所使用的原材料来源广泛,易得到、无污染、成本低;工艺方法工艺简单,可操作性强,容易实现大规模生产,本发明所制备的磷酸铁锂作为锂离子电池正极表现出优异的电化学性能,制备出的锂离子电池正极材料广泛应用于电子设备、电动汽车等领域,具有广阔的应用前景。The invention adopts iron powder as a raw material, adds carbon or a carbon precursor to the raw material, and mechanically granulates, thereby reducing the synthesis temperature and accelerating the process of heat transfer and mass transfer. During the reaction, the existence of carbon provides a good reducing atmosphere for the reaction, and the lithium iron phosphate product with high purity and excellent electrochemical performance is obtained; the tap density of LiFePO4 material prepared by using metal iron powder with high density is relatively low. High (from 1.1g/cm 3 to 1.3g/cm 3 or more), high specific capacity; moreover, with metal iron powder as the nucleation center, fine control of the wet process can obtain a controllable particle size and a narrow particle size distribution Metal iron powder, using the inheritance of high temperature reaction, is convenient to control the particle size and particle size distribution of the final product from the raw material; the raw material used in the present invention has a wide range of sources, easy to obtain, no pollution, and low cost; the process is simple and operable Strong, easy to realize large-scale production, the lithium iron phosphate prepared by the present invention shows excellent electrochemical performance as the positive electrode of lithium ion battery, the prepared lithium ion battery positive electrode material is widely used in fields such as electronic equipment, electric vehicles, has broad application prospects.
附图说明 Description of drawings
图1是按实施例1制备的磷酸铁锂材料的扫描电镜图。FIG. 1 is a scanning electron microscope image of the lithium iron phosphate material prepared in Example 1.
图2是按实施例1制备的磷酸铁锂材料的晶体衍射图。Fig. 2 is the crystal diffraction pattern of the lithium iron phosphate material prepared according to Example 1.
图3是按实施例1制备的磷酸铁锂材料试验电池的首次充放电曲线图,电压范围为2.2V~4.25V,电解液为1M(mol/L)LiPF6/EC+DMC(1∶1),充放电倍率为0.1C。Fig. 3 is the first charge and discharge curve diagram of the lithium iron phosphate material test battery prepared according to
图4是按实施例1所制备的锂离子电池的循环性能图,电压范围为2.2V~4.25V,电解液为1M(mol/L)LiPF6/EC+DMC(1∶1),充放电倍率为0.1C。Fig. 4 is the cycle performance figure of the lithium-ion battery prepared according to Example 1, the voltage range is 2.2V~4.25V, the electrolyte is 1M (mol/L) LiPF 6 /EC+DMC (1: 1), charge and discharge The magnification is 0.1C.
图5是按实施例1所制备的锂离子电池材料组装成10Ah高功率锂离子动力电池后不同的充放电倍率下的充放电曲线,放电倍率分别为1C、6C、10C、20C,电压范围2.2V~4.25V,电解液为1M(mol/L)LiPF6/EC+DMC(1∶1)。Figure 5 is the charge and discharge curves at different charge and discharge rates after the lithium ion battery material prepared in Example 1 is assembled into a 10Ah high power lithium ion power battery, the discharge rates are 1C, 6C, 10C, 20C, and the voltage range is 2.2 V~4.25V, the electrolyte is 1M (mol/L) LiPF 6 /EC+DMC (1:1).
具体实施方式 Detailed ways
在下述实施例中所说的原料的总重量,是指铁粉、锂的化合物、磷的化合物,和碳或者碳前驱体的总重量。例如,“将0.5摩尔的铁粉,0.5摩尔的磷酸二氢銨、0.55摩尔的氢氧化锂、占原料总重量5%的葡萄糖混合”,其中的葡萄糖的重量为铁粉、磷酸二氢銨、氢氧化锂和葡萄糖的原料总重量的5%。The total weight of raw materials mentioned in the following examples refers to the total weight of iron powder, lithium compounds, phosphorus compounds, and carbon or carbon precursors. For example, "mix 0.5 mole of iron powder, 0.5 mole of ammonium dihydrogen phosphate, 0.55 mole of lithium hydroxide, and 5% glucose of the total weight of raw materials", the weight of glucose is iron powder, ammonium dihydrogen phosphate, 5% of the total weight of lithium hydroxide and glucose raw materials.
实施例1Example 1
将0.5摩尔的铁粉、0.5摩尔的磷酸二氢锂、占原料总重量8%的蔗糖混合并放入棒磨罐中,以乙醇为介质,在棒磨机上充分混合5小时,在80℃下干燥,干燥后的混合物用相对于原料总重量5wt%的聚乙烯醇溶液机械搅拌造粒,将造粒后的混合物放入竖炉中,在5升/分的氩气气氛下,以6℃/分钟的速率升温至300℃处理10小时,然后在700℃下合成20小时,然后降至室温得到磷酸铁锂。测得合成材料的振实密度1.43g/cm3。图1为合成产物LiFePO4的扫描电镜照片,由图中可以看出,合成产物的粒度基本小于2微米。图2为合成产物LiFePO4的XRD图,XRD分析结果表明,所制备的产物LiFePO4粉末具有单一的橄榄石型晶体结构,未观察到杂质峰,产物纯度高。Mix 0.5 mole of iron powder, 0.5 mole of lithium dihydrogen phosphate, and 8% sucrose accounting for the total weight of the raw materials and put them into a rod mill jar, use ethanol as the medium, and fully mix them on the rod mill for 5 hours. Drying, the dried mixture is mechanically stirred and granulated with a polyvinyl alcohol solution of 5wt% relative to the total weight of the raw material, and the granulated mixture is put into a shaft furnace, under an argon atmosphere of 5 liters/min, at 6°C The temperature was raised to 300°C for 10 hours at a rate of 1/min, then synthesized at 700°C for 20 hours, and then lowered to room temperature to obtain lithium iron phosphate. The tap density of the synthetic material was measured to be 1.43 g/cm 3 . Figure 1 is a scanning electron micrograph of the synthesized product LiFePO 4 , as can be seen from the figure, the particle size of the synthesized product is basically less than 2 microns. Figure 2 is the XRD pattern of the synthesized product LiFePO 4 , the XRD analysis results show that the prepared product LiFePO 4 powder has a single olivine crystal structure, no impurity peaks are observed, and the product has high purity.
用实施例1所合成的正极材料按照下述方法制成电极:The positive electrode material synthesized in Example 1 is used to make an electrode according to the following method:
以83∶10∶7的质量比分别称取所制备的磷酸铁锂:粘结剂PVDF(聚偏氟乙烯):乙炔黑混合调成浆状后,涂在铝箔的两面上,在空气中干燥,制成电极。对电极为锂金属片组成试验电池。电解液为1M(mol/L)LiPF6/EC+DMC等,EC为碳酸乙烯酯,DMC为碳酸二甲酯。充放电电流密度0.1C,充放电上、下限电压为2.2~4.25V。用计算机控制恒电流测试仪进行电化学容量和循环测试。图3为相应电池按0.1C倍率在2.2~4.25V电压范围的电池的首次充放电曲线,由图可见,所合成的产物在3.4V左右具有良好的充放电电压平台,可逆比容量为157mAh/g。图4为电池在0.1C倍率下的循环性能,由图可见,所合成的材料具有优良的循环性能,经过25次循环,容量衰减很小。图5为所合成的材料组装成10Ah高功率锂离子动力电池后不同的充放电倍率下的放电曲线,由图中可见,1C、6C、10C时容量衰减不是很明显,说明合成材料的大电流放电性能比较优良。Weigh the prepared lithium iron phosphate at a mass ratio of 83:10:7: binder PVDF (polyvinylidene fluoride): acetylene black, mix them into a slurry, apply them on both sides of the aluminum foil, and dry in the air , to make electrodes. The counter electrode is a lithium metal sheet to form a test cell. The electrolyte is 1M (mol/L) LiPF 6 /EC+DMC, etc., EC is ethylene carbonate, and DMC is dimethyl carbonate. The charge and discharge current density is 0.1C, and the charge and discharge upper and lower limit voltages are 2.2 to 4.25V. Electrochemical capacity and cycle tests were performed with a computer-controlled galvanostatic tester. Fig. 3 is the first charge and discharge curve of the corresponding battery in the voltage range of 2.2 to 4.25V at a rate of 0.1C. It can be seen from the figure that the synthesized product has a good charge and discharge voltage platform at about 3.4V, and the reversible specific capacity is 157mAh/ g. Figure 4 shows the cycle performance of the battery at a rate of 0.1C. It can be seen from the figure that the synthesized material has excellent cycle performance. After 25 cycles, the capacity decay is very small. Figure 5 shows the discharge curves of the synthesized materials assembled into a 10Ah high-power lithium-ion power battery under different charge and discharge rates. It can be seen from the figure that the capacity decay is not obvious at 1C, 6C, and 10C, indicating that the synthetic material has a large current. The discharge performance is relatively good.
实施例2Example 2
将0.5摩尔的铁粉,0.5摩尔的磷酸二氢銨、0.55摩尔的氢氧化锂、占原料总重量5%的葡萄糖混合并放入棒磨罐中,以水为介质,在棒磨机上充分混合12小时,在120℃下干燥,干燥后的混合物用相对于原料总重量10wt%的聚丙烯酰胺溶液机械搅拌造粒,造粒后放入竖炉中,在10升/分的氩气气氛下,以10℃/分钟的速率升温至350℃处理20小时,然后在700℃下合成24小时,降至室温得到磷酸铁锂。测得磷酸铁锂的振实密度为1.38g/cm3,同样按照实施例1的方法制备成电极片,组装成电池后以0.1C的倍率充放电,测定可逆容量为153mAh/g。Mix 0.5 mole of iron powder, 0.5 mole of ammonium dihydrogen phosphate, 0.55 mole of lithium hydroxide, and glucose accounting for 5% of the total weight of raw materials and put them into a rod mill jar, use water as the medium, and fully mix them on a rod mill Dry at 120°C for 12 hours. The dried mixture is mechanically stirred and granulated with a polyacrylamide solution of 10% by weight relative to the total weight of the raw materials. After granulation, it is placed in a shaft furnace under an argon atmosphere of 10 liters/min. , heated up to 350°C at a rate of 10°C/min for 20 hours, then synthesized at 700°C for 24 hours, and lowered to room temperature to obtain lithium iron phosphate. The tap density of lithium iron phosphate was measured to be 1.38g/cm 3 , and electrode sheets were also prepared according to the method of Example 1. After being assembled into batteries, they were charged and discharged at a rate of 0.1C, and the measured reversible capacity was 153mAh/g.
实施例3Example 3
将0.5摩尔的铁粉、0.26摩尔的碳酸锂、0.5摩尔的磷酸氢二銨、占原料总重量20%的聚乙烯混合并放入棒磨罐中,以乙醇为介质,在棒磨机上充分混合5小时,在80℃下干燥,干燥后的混合物用相对于原料总重量3wt%的蓖麻油溶液机械搅拌造粒,造粒后将该混和物放入竖炉中,在10升/分的氩气气氛下,以10℃/分钟的速率升温至400℃处理15小时,然后在750℃下合成24小时,然后降至室温得到磷酸铁锂。测得磷酸铁锂的振实密度为1.41g/cm3,按实施例1的方法制备电极片,组装成试验电池后以0.1C的倍率充放电,可逆容量为155mAh/g。Mix 0.5 mole of iron powder, 0.26 mole of lithium carbonate, 0.5 mole of diammonium hydrogen phosphate, and polyethylene accounting for 20% of the total weight of raw materials and put them into a rod mill tank, using ethanol as the medium, and fully mix them on a
实施例4Example 4
将0.5摩尔的铁粉,0.5摩尔的磷酸二氢锂、占原料总重量10%的乙炔黑混合并放入棒磨罐中,以乙醇为介质,在棒磨机上充分混合8小时,在80℃下干燥,干燥后的混合物用相对于原料总重量8wt%的聚乙烯醇溶液机械搅拌造粒,造粒后将该混和物放入竖炉中,在8升/分的氮气气氛下,以12℃/分钟的速率升温至350℃处理10小时,然后在800℃下合成20小时,然后降至室温得到磷酸铁锂。测得磷酸铁锂的振实密度为1.36g/cm3,按实施例1的方法制备电极片,组装成试验电池后以0.1C的倍率充放电,可逆容量为151mAh/g。Mix 0.5 mole of iron powder, 0.5 mole of lithium dihydrogen phosphate, and acetylene black accounting for 10% of the total weight of the raw materials and put them into a rod mill tank, use ethanol as the medium, and fully mix them on the rod mill for 8 hours. Under drying, the mixture after drying is mechanically agitated and granulated with respect to the polyvinyl alcohol solution of 8wt% of the total weight of raw materials. The rate of °C/min was raised to 350 °C for 10 hours, then synthesized at 800 °C for 20 hours, and then lowered to room temperature to obtain lithium iron phosphate. The tap density of lithium iron phosphate was measured to be 1.36g/cm 3 . The electrode sheet was prepared according to the method of Example 1, assembled into a test battery and then charged and discharged at a rate of 0.1C. The reversible capacity was 151mAh/g.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101130350A CN101591012B (en) | 2008-05-27 | 2008-05-27 | Preparation method of lithium iron phosphate as cathode material of lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101130350A CN101591012B (en) | 2008-05-27 | 2008-05-27 | Preparation method of lithium iron phosphate as cathode material of lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101591012A CN101591012A (en) | 2009-12-02 |
CN101591012B true CN101591012B (en) | 2012-06-13 |
Family
ID=41405926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101130350A Active CN101591012B (en) | 2008-05-27 | 2008-05-27 | Preparation method of lithium iron phosphate as cathode material of lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101591012B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103137968B (en) * | 2011-11-30 | 2015-06-10 | 北京有色金属研究总院 | Positive electrode composite material for lithium ion batteries and preparation method thereof |
KR101561378B1 (en) | 2013-01-10 | 2015-10-20 | 주식회사 엘지화학 | Method for preparing lithium iron phospate nanopowder coated with carbon |
KR101561374B1 (en) | 2013-01-10 | 2015-10-19 | 주식회사 엘지화학 | Method for preparing lithium iron phosphate nanopowder |
KR101561376B1 (en) | 2013-01-10 | 2015-10-19 | 주식회사 엘지화학 | Method for preparing lithium iron phosphate nanopowder |
CN103151521B (en) * | 2013-02-22 | 2015-12-23 | 中国科学院过程工程研究所 | A kind of anode material for lithium-ion batteries and preparation method thereof |
CN103985862A (en) * | 2014-04-14 | 2014-08-13 | 江苏中欧材料研究院有限公司 | A kind of synthesis method of phosphate cathode material with high vibration and high specific capacity |
CN104300110B (en) * | 2014-09-23 | 2016-11-16 | 中南大学 | Preparation method of lithium manganese phosphate-lithium vanadium phosphate composite material |
CN106957049B (en) * | 2017-05-09 | 2019-01-29 | 东北大学 | A method of preparing nanoscale lithium manganese phosphate |
CN108529584B (en) * | 2018-04-24 | 2020-04-07 | 江西省金锂科技股份有限公司 | Preparation method of high-density lithium iron phosphate cathode material |
CN108706564B (en) * | 2018-04-24 | 2020-11-24 | 江西省金锂科技股份有限公司 | Preparation method of high-compaction lithium ion battery cathode material lithium iron phosphate |
CN113745503A (en) * | 2021-08-04 | 2021-12-03 | 北京泰丰先行新能源科技有限公司 | Preparation method of high-compaction lithium iron phosphate cathode material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1581537A (en) * | 2004-05-20 | 2005-02-16 | 上海交通大学 | Method for preparing lithiumion cell positive material Iron-lithium phosphate |
-
2008
- 2008-05-27 CN CN2008101130350A patent/CN101591012B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1581537A (en) * | 2004-05-20 | 2005-02-16 | 上海交通大学 | Method for preparing lithiumion cell positive material Iron-lithium phosphate |
Non-Patent Citations (2)
Title |
---|
乐斌等.LiFeP04固相碳热合成法研究.《稀有金属材料与工程 增刊1》.2007,第36卷177-179. * |
罗绍华等.造粒工艺制备LiFePO4/C复合正极材料及其性能.《电源技术》.2006,第30卷(第12期),第957-959页. * |
Also Published As
Publication number | Publication date |
---|---|
CN101591012A (en) | 2009-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101591012B (en) | Preparation method of lithium iron phosphate as cathode material of lithium ion battery | |
CN101081696B (en) | Ferric phosphate lithium material for lithium ion powder cell and preparation method thereof | |
CN100461507C (en) | Preparation method of nano lithium ferrous phosphate-carbon composite cathode material | |
CN101635348B (en) | Tantalum-containing lithium ion battery cathode material lithium titanate preparation method | |
CN101572305B (en) | A preparation method of LiFePO4/C cathode material with high rate performance | |
CN100491239C (en) | Preparation method and product of lithium iron phosphate cathode material for lithium ion battery | |
CN101420034A (en) | Carbon coated granularity controllable spherical lithium ferric phosphate composite positive pole material and preparation method thereof | |
CN102034971B (en) | Lithium iron phosphate/polypyridine composite cathode material and preparation method thereof for lithium ion battery | |
CN113526483B (en) | Ferro-phosphorus sodalite type cathode material and preparation method and application thereof | |
CN102328952B (en) | Preparation method for spherical lithium titanate material | |
CN109873140B (en) | Graphene composite ternary cathode material of lithium ion battery and preparation method of graphene composite ternary cathode material | |
CN104701538B (en) | A kind of preparation method for lithium ion battery anode material lithium iron phosphate | |
CN102623707A (en) | A kind of ferric fluoride cathode material doped with cobalt and coated with carbon and preparation method thereof | |
CN101481106A (en) | Oxygen-containing vacancy and Fe site doped lithium ferric phosphate and rapid solid-phase sintering method thereof | |
CN101339992B (en) | Preparation method of lithium vanadium silicate lithium ion battery cathode material | |
CN101339991B (en) | Composite coating modified high tap density lithium ion battery positive electrode material and its preparation method and application | |
CN101152959A (en) | Preparation method of lithium iron phosphate composite oxide | |
CN101764226B (en) | Oxygen vacancy-contained and Fe site-doped lithium ferric phosphate and rapid solid-phase sintering method thereof | |
CN104752693A (en) | Preparation method for lithium ion battery anode material lithium iron phosphate/graphene compound | |
CN101475155B (en) | Preparation method of lithium iron phosphate cathode material for lithium ion battery | |
CN100564250C (en) | The microwave fast solid phase sintering method of lithium ion battery anode material lithium iron phosphate | |
CN103165890B (en) | A kind of method adopting sol-gel auto-combustion to prepare phosphoric acid vanadium lithium | |
CN103594708A (en) | Valence-variable iron-based composite cathode material and preparation method thereof | |
CN105680037B (en) | A kind of anode material for lithium-ion batteries and preparation method thereof | |
CN1821065A (en) | Preparation method of high-density spherical lithium iron phosphate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160321 Address after: 101407 Beijing Yanqi Yanqi Economic Development Zone Huairou District Road No. 3 Patentee after: GUOLIAN AUTOMOBILE POWER CELL INSTITUTE CO., LTD. Address before: 100088, 2, Xinjie street, Beijing Patentee before: General Research Institute for Nonferrous Metals |