CN101587081A - Defect detecting method and device - Google Patents
Defect detecting method and device Download PDFInfo
- Publication number
- CN101587081A CN101587081A CNA2009101497612A CN200910149761A CN101587081A CN 101587081 A CN101587081 A CN 101587081A CN A2009101497612 A CNA2009101497612 A CN A2009101497612A CN 200910149761 A CN200910149761 A CN 200910149761A CN 101587081 A CN101587081 A CN 101587081A
- Authority
- CN
- China
- Prior art keywords
- film
- signal
- value
- polaroid
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007547 defect Effects 0.000 title claims abstract description 132
- 238000000034 method Methods 0.000 title claims description 11
- 238000001514 detection method Methods 0.000 claims abstract description 44
- 230000003287 optical effect Effects 0.000 claims abstract description 25
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 19
- 150000002367 halogens Chemical class 0.000 claims abstract description 19
- 230000010287 polarization Effects 0.000 claims description 22
- 230000002950 deficient Effects 0.000 claims description 11
- 238000007689 inspection Methods 0.000 claims description 9
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 5
- 229910052740 iodine Inorganic materials 0.000 claims description 5
- 239000011630 iodine Substances 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims 4
- 230000000996 additive effect Effects 0.000 claims 4
- 230000003760 hair shine Effects 0.000 claims 1
- 230000001932 seasonal effect Effects 0.000 claims 1
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 230000003595 spectral effect Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910001507 metal halide Inorganic materials 0.000 description 4
- 150000005309 metal halides Chemical class 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
本发明涉及缺陷检测方法及装置。使膜在配置于十字尼科耳的第一偏振片和第二偏振片之间走行。卤素灯经由第一偏振片对膜照射光。卤素灯发出的光中仅存在一条辉线。由于膜上的缺陷等使辉度发生变化的光经由第二偏振片和除去光学系统入射至光接收器。对光接收器的输出信号进行微分处理。根据被实施微分处理的微分处理信号检测出极大信号和极小信号。求得预先设定的基准信号的辉度值与所述极大信号的辉度值的差作为第一差分值,并且求得基准信号的辉度值与极小信号的辉度值的差作为第二差分值。当将第一差分值和第二差分值相加求得的相加值为一定值以上时,则确定极大信号和极小信号为缺陷信号。
The invention relates to a defect detection method and device. The film was run between a first polarizer and a second polarizer arranged in cross Nicols. The halogen lamp irradiates light to the film through the first polarizer. There is only one glow line in the light from a halogen lamp. Light whose luminance has changed due to defects in the film or the like enters the photoreceiver via the second polarizer and the removal optical system. The output signal of the optical receiver is differentiated. A maximum signal and a minimum signal are detected from the differentially processed signal subjected to differential processing. The difference between the luminance value of the preset reference signal and the luminance value of the maximum signal is obtained as the first difference value, and the difference between the luminance value of the reference signal and the luminance value of the minimum signal is obtained as Second difference value. When the sum obtained by adding the first differential value and the second differential value is greater than a certain value, the maximum signal and the minimum signal are determined to be defect signals.
Description
技术领域 technical field
本发明涉及对膜上的缺陷进行光学检测的缺陷检测方法及装置。The invention relates to a defect detection method and device for optically detecting defects on a film.
背景技术 Background technique
近年来,随着需求日益扩大,作为液晶显示器中偏振片的保护膜或光学补偿膜,多在显示屏上贴附具有光学各向异性的相位差膜。相位差膜(以下简称为“膜”)通过在透明支承体上形成取向膜的工序以及在形成取向膜的支承体上涂布液晶之后干燥形成液晶层的工序制造(例如(日本)特开平9-73081号公报)。在各工序中,尽管进行了严格的质量管理,但是,在制造中,由于异物的混入、附着而导致分子取向缺陷(取向缺陷)、液晶层的涂布厚度不匀(相位差缺陷)等缺陷要想完全去掉是很困难的。In recent years, with the increasing demand, as a protective film or optical compensation film for polarizers in liquid crystal displays, retardation films with optical anisotropy are often attached to the display screen. The retardation film (hereinafter simply referred to as "film") is produced by a process of forming an alignment film on a transparent support and a process of coating a liquid crystal on the support on which the alignment film is formed and drying to form a liquid crystal layer (for example, (Japanese) Patent Laying-Open No. 9 - Bulletin No. 73081). Although strict quality control is carried out in each process, defects such as molecular orientation defects (orientation defects) and uneven coating thickness of the liquid crystal layer (retardation defects) are caused by foreign matter in the manufacturing process. It is difficult to remove completely.
在膜上如果存在缺陷,由于由此导致光散射,所以,在膜的制造工艺中,设置光学式缺陷检测装置,检测膜的缺陷。该缺陷检测装置由对膜照射光的光照射器,接收来自该膜的光的光接收器,分析来自光接收器输出信号的处理电路构成。作为该光接收器,采用具有摄像装置(线传感器或面传感器)的电视相机,膜的宽度方向上线扫描的扫描信号(摄像信号)输出作为输出信号。If there is a defect on the film, light is scattered due to this, so in the film manufacturing process, an optical defect detection device is installed to detect the defect of the film. This defect inspection device is composed of a photoirradiator for irradiating light to a film, a photoreceiver for receiving light from the film, and a processing circuit for analyzing an output signal from the photoreceiver. As this photoreceiver, a television camera having an imaging device (line sensor or area sensor) is used, and a scanning signal (imaging signal) obtained by line-scanning in the width direction of the film is output as an output signal.
另外,在光照射器和光接收器之间也可以以彼此的偏振方向正交(十字尼科耳(crossed Nichol))的方式配置一对偏振片。该一对偏振片防止膜上无缺陷时光进入光接收器,而在膜上有缺陷时则在该缺陷处发生散射、扩散的光进入光接收器,从而容易检测出缺陷((日本)特开平6-148095号公报)。另外,通过对来自光接收器的输出信号进行微分处理,从而不但加强了缺陷部分的信号,而且缺陷部分之外的信号,即所谓的噪音信号得到降低,从而也能够容易地检测出缺陷。In addition, a pair of polarizing plates may be arranged between the photoirradiator and the photoreceiver so that their polarization directions are perpendicular to each other (crossed Nichols). The pair of polarizers prevent light from entering the photoreceptor when there is no defect on the film, and when there is a defect on the film, scattered and diffused light enters the photoreceiver at the defect, thereby easily detecting the defect ((Japanese) Patent Laid-Open No. Bulletin No. 6-148095). In addition, by performing differential processing on the output signal from the optical receiver, not only the signal of the defect portion is enhanced, but also the signal other than the defect portion, that is, the so-called noise signal is reduced, so that the defect can be easily detected.
近年来,为追求更高质量的膜,希望得到一种能够直到检测到微细缺陷之前都精度很好的缺陷检测方法。通常,缺陷检测精度采用在来自光接收器的输出信号中缺陷部分的信号(缺陷信号)除以缺陷部分之外的信号(噪音(noise)信号)的值(S/N)表示,该S/N越大缺陷检测精度越高。In recent years, in pursuit of higher-quality films, a defect detection method capable of high accuracy up to detection of fine defects has been desired. Generally, defect detection accuracy is represented by a value (S/N) of dividing a signal (defect signal) of a defect portion by a signal (noise signal) other than a defect portion in an output signal from an optical receiver, and the S/N The larger N is, the higher the defect detection accuracy is.
因此,为得到更大的S/N,不但需要提高缺陷信号,而且需要最小限度的抑制噪音信号。作为提高缺陷信号的方法,通常考虑通过对膜照射高辉度的光从而提高膜上缺陷处散射、扩散的光的强度。Therefore, in order to obtain a larger S/N, not only the defect signal needs to be improved, but also the noise signal needs to be suppressed to a minimum. As a method of increasing defect signals, it is generally considered to increase the intensity of light scattered and diffused at defects on the film by irradiating the film with high-intensity light.
然而,对于发出高辉度的光的光照射器而言,如金属卤化物灯等,多存在陡峰值,即存在辉线。在如膜这样的薄的透明体上照射具有这样的多条辉线的光的情况下,将会在膜上形成具有明亮光部分的干涉条纹。因此,由于没有缺陷的部分也存在强光,所以噪音信号变大,结果使S/N降低。另外,在十字尼科耳上配置一对偏振片,并且使之对膜的迟相轴倾斜的情况下,由于没有缺陷时从该对偏振片透过的光很少,所以如果存在多条辉线的光照射到膜上,则将会由于干涉条纹的影响而使得噪音信号变大。因此,对于具有高辉度的光照射器而言,在具有多条辉线的情况下,由于干涉条纹的影响而反到使得S/N降低。However, for light irradiators that emit high-brightness light, such as metal halide lamps, there are often steep peaks, that is, bright lines. When light having such a plurality of glow lines is irradiated on a thin transparent body such as a film, interference fringes having bright light portions will be formed on the film. Therefore, since there is strong light even in a portion without a defect, the noise signal becomes large, resulting in a decrease in S/N. In addition, when a pair of polarizers are arranged on the cross Nicols and inclined to the slow axis of the film, since there is little light transmitted through the pair of polarizers without defects, if there are many bright When the light of the line is irradiated on the film, the noise signal will become larger due to the influence of interference fringes. Therefore, for a light irradiator with high luminance, in the case of having many bright lines, the S/N is conversely lowered due to the influence of interference fringes.
另外,在十字尼科耳上配置一对偏振片检测缺陷的情况下,来自光接收器的输出信号由于膜的光学特性及光接收器的接收特性,在膜的宽度方向的中央部的辉度很高,从其中央部的两端部辉度缓缓变小。在对这样的输出信号进行微分处理时,缺陷信号将影响其周边的噪音信号。In addition, when a pair of polarizers are arranged on the cross Nicols to detect defects, the output signal from the photoreceiver will have a lower brightness in the center of the film width direction due to the optical characteristics of the film and the receiving characteristics of the photoreceiver. It is very high, and the luminance gradually decreases from the central part to both ends. When performing differential processing on such an output signal, the defect signal will affect its surrounding noise signals.
例如,如图7(A)所示,如果在膜上存在多个相同程度的缺陷,在各缺陷处散射,漫射的光的辉度相同的情况下对输出信号进行微分处理的话,则会如图(B)所示,对膜的宽度方向的噪音信号的倾斜度位于负的区域的缺陷信号将比倾斜度位于正的区域的缺陷信号小。因此,如图7(B)所示,在用于缺陷检测的阈值设定为一定辉度值Th的情况下,噪音信号的倾斜度位于正的区域的缺陷信号位于Th以上而被检测出,而另一方面,倾斜度位于负的区域的缺陷信号则由于不足Th而没检测到。因此,无论缺陷为何种程度,无论散射、漫射的光的辉度是否相同,则噪音信号的倾斜度无论为正为负,都存在缺陷信号不能检测出来的问题。For example, as shown in FIG. 7(A), if there are a plurality of defects of the same degree on the film, and the output signal is differentiated when the brightness of the diffused light scattered at each defect is the same, then As shown in Figure (B), the defect signal in the region where the slope of the noise signal in the width direction of the film is negative is smaller than the defect signal in the region where the slope is positive. Therefore, as shown in FIG. 7(B), when the threshold value for defect detection is set to a constant luminance value Th, the defect signal in the region where the gradient of the noise signal is positive is detected at or above Th, On the other hand, a defect signal in a region with a negative inclination is not detected due to insufficient Th. Therefore, regardless of the degree of the defect, regardless of whether the luminance of scattered or diffused light is the same, there is a problem that the defect signal cannot be detected regardless of whether the slope of the noise signal is positive or negative.
发明内容 Contents of the invention
本发明的目的在于提供一种不降低S/N而能够高精度进行缺陷检测的缺陷检测方法及装置。An object of the present invention is to provide a defect detection method and device capable of detecting defects with high accuracy without reducing S/N.
另外,本发明目的还在于提供一种能够防止缺陷部分的检测失误的缺陷检测方法及装置。Another object of the present invention is to provide a defect detection method and device capable of preventing detection errors of defective parts.
为实现所述目的及其它目的,本发明提供一种缺陷检测装置,其在以十字尼科耳方式配置的第一偏振片和第二偏振片之间配置膜的状态下,对所述膜上的缺陷进行检测,具有:光照射部,其将不具有辉线或者仅具有一条辉线的光经由所述第一偏振片照射到所述膜上;光接收部,其经由所述第二偏振片接收从所述膜射出的光;以及缺陷检测部,其根据来自所述光接收器的输出信号检测所述膜的缺陷。In order to achieve the above object and other objects, the present invention provides a defect inspection device which detects a film on the film in a state where a film is arranged between a first polarizing plate and a second polarizing plate arranged in a Cross Nicol manner. The defects are detected, and it has: a light irradiation part, which irradiates light with no glow line or only one glow line to the film through the first polarizer; a light receiving part, which passes through the second polarizer a sheet that receives light emitted from the film; and a defect detection section that detects a defect of the film based on an output signal from the light receiver.
优选的是,所述膜为相位差膜,所述第一偏振片和所述第二偏振片的偏振方向相对于所述相位差膜的迟相轴成45°的方向。优选的是,所述光照射部为卤素灯。优选的是,所述第一偏振片和所述第二偏振片为碘系偏振片。Preferably, the film is a retardation film, and the polarization directions of the first polarizer and the second polarizer are 45° relative to the slow axis of the retardation film. Preferably, the light irradiation unit is a halogen lamp. Preferably, the first polarizer and the second polarizer are iodine-based polarizers.
本发明的缺陷检测方法,包括:经由所述第一偏振片将不具有辉线或者仅具有一条辉线的光照射到所述膜上的工序、由光接收部经由所述第二偏振片接收来自所述膜的光的工序、以及根据来自所述光接收部的输出信号检测所述膜的缺陷的工序。The defect detection method of the present invention includes the steps of irradiating light with no bright line or only one bright line on the film through the first polarizer, and receiving the light by the light receiving part through the second polarizer. a step of emitting light from the film, and a step of detecting a defect of the film based on an output signal from the light receiving unit.
本发明还提供一种缺陷检测装置,其用于检测膜的缺陷,具有:光接收部,其具有线状排列的多个像素,在所述膜的宽度方向上进行扫描并输出时间序列的输出信号;微分处理部,其对所述输出信号进行微分处理;极值信号检测部,其在由所述微分处理部得到的微分处理信号中检测出在规定像素范围内辉度值最大的极大信号和在规定像素范围内辉度值最小的极小信号;差分值计算部,其求得预先设定的基准信号的辉度值与所述极大信号的辉度值的差作为第一差分值,并且求得所述基准信号的辉度值与所述极小信号的辉度值的差作为第二差分值;加法运算部,其求得将第一差分值和第二差分值相加的相加值;以及缺陷信号确定部,其在所述相加值为一定值以上时,将由所述极值信号检测部检测出的极大信号和极小信号确定为缺陷信号。The present invention also provides a defect detection device for detecting a defect of a film, comprising: a light receiving unit having a plurality of pixels arranged in a line, scanning in the width direction of the film and outputting a time-series output signal; a differential processing unit that performs differential processing on the output signal; and an extreme value signal detection unit that detects a maximum luminance value within a predetermined pixel range from the differential processing signal obtained by the differential processing unit. signal and a very small signal with the smallest luminance value within a predetermined pixel range; a difference value calculation unit, which obtains the difference between the luminance value of the preset reference signal and the luminance value of the maximum signal as the first difference value, and obtain the difference between the luminance value of the reference signal and the luminance value of the extremely small signal as the second difference value; and a defect signal determining unit that determines the maximum signal and the minimum signal detected by the extreme value signal detection unit as a defect signal when the added value is equal to or greater than a certain value.
而且,优选的是,具有:按照彼此的偏振方向正交的方式配置的第一偏振片和第二偏振片、及向位于所述第一偏振片和所述第二偏振片之间的所述膜照射光的光照射部。所述膜为相位差膜,所述第一偏振片和所述第二偏振片的偏振方向相对于所述相位差膜的迟相轴成45°的方向。Furthermore, it is preferable to have: a first polarizer and a second polarizer arranged so that their polarization directions are orthogonal to each other; and the polarizer positioned between the first polarizer and the second polarizer The film is a light irradiation part that irradiates light. The film is a retardation film, and the polarization directions of the first polarizer and the second polarizer are 45° relative to the slow axis of the retardation film.
本发明提供一种缺陷检测方法,包括:利用具有线状排列的多个像素的光接收部在所述膜的宽度方向进行扫描而得到时间序列的输出信号的工序;对所述输出信号进行微分处理的工序;在所述微分处理信号中、检测出在规定像素范围内辉度值最大的极大信号和在规定像素范围内辉度值最小的极小信号的工序;求得预先设定的基准信号的辉度值与所述极大信号的辉度值的差作为第一差分值、并且求得所述基准信号的辉度值与所述极小信号的辉度值的差作为第二差分值的工序;求得将第一差分值和第二差分值相加的相加值的工序;以及在所述相加值为一定值以上时、将所述极大信号和极小信号确定为缺陷信号的工序。The present invention provides a defect detection method, comprising: scanning in the width direction of the film by a light receiving unit having a plurality of pixels arranged in a line to obtain a time-series output signal; and differentiating the output signal The process of processing; in the differential processing signal, the process of detecting the maximum signal with the largest luminance value within the specified pixel range and the minimum signal with the minimum luminance value within the specified pixel range; obtain the preset The difference between the luminance value of the reference signal and the luminance value of the maximum signal is used as the first difference value, and the difference between the luminance value of the reference signal and the luminance value of the minimum signal is obtained as the second difference. A step of difference value; a step of obtaining an added value obtained by adding the first difference value and the second difference value; and determining the maximum signal and the minimum signal when the added value is equal to or greater than a certain value Process that is a defect signal.
根据本发明,由于使用辉线少的光照射部对膜进行照明,所以,能够在不降低S/N的情况下进行高精度的缺陷检测。此外,根据本发明,由于利用微分处理信号的极大值和极小值检测缺陷,所以能够防止缺陷部分的检测失误。According to the present invention, since the film is illuminated using the light irradiation portion with few bright lines, it is possible to perform high-precision defect detection without lowering S/N. Furthermore, according to the present invention, since defects are detected using the maximum and minimum values of the differentially processed signal, it is possible to prevent detection errors of defective portions.
附图说明 Description of drawings
图1为相位差膜生产线的示意图。Figure 1 is a schematic diagram of a retardation film production line.
图2为表示卤素灯的分光照射强度的图。Fig. 2 is a graph showing the spectral irradiation intensity of a halogen lamp.
图3为缺陷检测装置的立体图。Fig. 3 is a perspective view of a defect detection device.
图4为表示第一偏振片的偏振方向相对膜的迟相轴的角度θ和透过光量比的关系的图。Fig. 4 is a graph showing the relationship between the angle θ of the polarization direction of the first polarizing plate with respect to the slow axis of the film and the transmitted light ratio.
图5为表示膜的相位差和透过光量比的关系的图。FIG. 5 is a graph showing the relationship between the retardation of the film and the transmitted light ratio.
图6为表示配置于十字尼科耳上的一对偏振片的分光透过率的图。FIG. 6 is a graph showing the spectral transmittance of a pair of polarizing plates arranged on cross Nicols.
图7(A)为表示输出信号的图,图7(B)为表示对输出信号进行微分处理的微分处理信号的图。FIG. 7(A) is a diagram showing an output signal, and FIG. 7(B) is a diagram showing a differentially processed signal obtained by performing differential processing on the output signal.
图8为用于说明本发明的缺陷检测方法的说明图。FIG. 8 is an explanatory diagram for explaining the defect detection method of the present invention.
图9为表示卤素灯、金属卤化物灯、荧光灯的分光照射强度的图。Fig. 9 is a graph showing spectral irradiation intensities of halogen lamps, metal halide lamps, and fluorescent lamps.
图10为表示实施例1和比较例1、2的结果的表。FIG. 10 is a table showing the results of Example 1 and Comparative Examples 1 and 2. FIG.
具体实施方式 Detailed ways
如图1所示,相位差膜生产线10具有:取向膜形成装置11、液晶层形成装置12、缺陷检测装置13、及卷取装置14。As shown in FIG. 1 , the retardation
取向膜形成装置11在从膜输送辊18输送来的透明树脂膜15的表面上涂布含有取向膜形成用树脂的涂布液并进行加热干燥。这样,在透明树脂膜15的表面上形成树脂层。之后,取向膜形成装置11通过对树脂层进行研磨(rubbing)处理形成取向膜。The alignment film forming apparatus 11 applies a coating solution containing a resin for forming an alignment film on the surface of the
液晶层形成装置12在取向膜上涂布含有液晶化合物的涂布液,在涂布之后进行加热干燥形成液晶层。然后,对液晶层照射紫外线,接合取向膜和液晶层。这样,在透明树脂膜15之上得到形成有取向膜和液晶层的相位差膜16(以下简称“膜”)。膜16在经过缺陷检测装置13之后,由卷取装置14卷取。其中,在膜输送辊18出来被卷取于卷取装置14之前,膜16的输送方向为X方向。The liquid crystal layer forming device 12 applies a coating liquid containing a liquid crystal compound on the alignment film, and heats and dries it after coating to form a liquid crystal layer. Then, the liquid crystal layer is irradiated with ultraviolet rays to join the alignment film and the liquid crystal layer. In this way, the retardation film 16 (hereinafter referred to simply as "film") in which the alignment film and the liquid crystal layer are formed on the
缺陷检测装置13检测膜16上产生的缺陷。作为缺陷,例如有伤、厚度缺陷、涂布不匀、分子取向缺陷等等。另外,缺陷检测装置的检测对象除了相位差膜之外,还可以是防反射膜等。The defect detection device 13 detects defects generated on the
缺陷检测装置13包括:导辊20、21、光照射器22、光量调节部23、光接收器24、第一偏振片和第二偏振片25、26、除去光学系统27、控制器28。导辊20、21沿着膜16的输送路径配置,随着膜16的输送而旋转。导辊21上连接有编码器30,编码器30对于膜16的每一段长度输送产生编码器脉冲信号。编码器脉冲信号发送向控制器28,用于确定膜16的长度方向的缺陷位置。Defect detection device 13 includes
光照射器22设于膜16的输送路径下方,在膜16的宽度方向延伸呈带状进行照明。作为该光照射器22采用卤素灯。如图2所示,该卤素灯在波长600nm和800nm之间只有一个照射强度的峰值即辉线。从卤素灯发出的光由于只有一条辉线,所以膜16上基本上不会形成干涉条纹。另外,假设形成干涉条纹时,光强明亮部分的辉度比卤素灯发出的光的辉度稍稍大一点。因此,干涉条纹不会对缺陷检测精度产生影响。另外,对于没有辉线或只有一条辉线的光照射器,也可以选用卤素灯之外的照明器。另外,也可以将用于除去波长600nm以上的光的除去光学系统配置于卤素灯和第一偏振片之间,除去卤素灯发出的光的辉线。The
光量调节部23根据设于光照射器22附近的传感器(未图示)检测出的光量检测信号控制光照射器22。这样,由于能够对膜16照射光量均匀的光,所以通常能够用于以相同灵敏度进行缺陷检测。The light
第一偏振片和第二偏振片25、26由碘系偏振片构成,第一偏振片25设置在光照射器22和膜16之间,第二偏振片26设置于膜16和光接收器24之间。另外,第一偏振片和第二偏振片25、26配置成彼此的偏振方向25a、25b正交(十字尼科耳(crossed Nichol))。另外,从性能和价格上考虑,尽管第一偏振片和第二偏振片采用碘系偏振片,但是,除此之外,还可以采用由染料系偏振片、金属偏振子、方解石等构成的偏振片。The first polarizer and the
通过将第一偏振片和第二偏振片25、26配置于十字尼科耳上,在没有缺陷的膜16的情况下,从光照射器22发出的光在第一偏振片25于偏振方向25a偏振之后,原样地透过膜16,被另一方的第二偏振片26遮挡。因此,透过正常部分的光基本上不射入光接收器24。对此,在混入异物,存在伤等的取向缺陷的膜16的情况下,从光照射器22发出的光在由第一偏振片25于偏振方向25a偏振之后,在膜16上的缺陷处发生散射、漫射。散射、漫射的光由于偏振方向发生变化,所以透过另一方的第二偏振片26入射到光接收器24上。By arranging the first polarizer and the
膜上的伤、异物混入等取向缺陷由于产生散射光,根据两片第一偏振片和第二偏振片25、26的以十字尼科耳方式配置,能够仅散射光透过而被光接收器24检测出。然而,涂布厚度不匀等缺陷(相位差缺陷)由于不产生散射光,在两片第一偏振片和第二偏振片25、26的以十字尼科耳方式配置的结构中,不能检测。但是,该涂布厚度不匀的缺陷在两片第一偏振片和第二偏振片25、26的以十字尼科耳方式配置的状态下,通过膜16的迟相轴和第一偏振片的偏振方向25a交叉,这样能够检测。Scattered light is generated by orientation defects such as flaws on the film and contamination of foreign matter. By disposing the two first and
图4表示第一偏振片的偏振方向25a相对膜16的迟相轴的角度θ改变时透过两片第一偏振片和第二偏振片25、26的光的透过光量比。角度θ为0°时为消光模式,透过光量比(%)为“0.00”。角度θ为45°时为布尔模式(ブル一モ一ド),该布尔模式中透过光量比(%)约为“0.80”。如果角度θ为45°,透过光量最大。其中,透过光量比(%)表示相对入射到第一偏振片25的入射光从第二偏振片26出射的出射光的比例。4 shows the ratio of the transmitted light quantity of the light transmitted through the two first and
另外,如果角度θ相同,如图5所示,由于缺陷部分相对膜16的正常部分的相位差而透过光量比(%)变化。在该图5中,“○”为角度θ为0°,“□”为角度θ为15°,“△”为角度θ为30°,“◇”为角度θ为45°。相位差越大,透过光量越大。Also, if the angle θ is the same, as shown in FIG. 5 , the transmitted light amount ratio (%) varies due to the phase difference of the defective portion with respect to the normal portion of the
如上,在将两片第一偏振片和第二偏振片25、26的以十字尼科耳方式配置的状态下,相对膜16的迟相轴,第一偏振片的偏振方向25a的角度θ取45°,从正常部分的透过光量和由于涂布厚度不匀的缺陷部分的透过光量的差,能够检测出涂布厚度不匀(相位差缺陷)。As above, in the state where the two first polarizers and
其中,在本实施方式中,如图3所示,第一偏振片的偏振方向25a相对膜16的迟相轴的角度θ设定为45°,第二偏振片的偏振方向26a相对膜16的迟相轴方向的角度(90°-θ)为45°。另外,也可以使得膜的迟相轴方向和膜输送方向X相同。Wherein, in this embodiment, as shown in FIG. 3 , the angle θ of the
图6表示以十字尼科耳方式配置的一对偏振片的光透过特性。当膜上没有缺陷时,从第一偏振片和第二偏振片25、26仅很少射出波长不到700nm的光,从这些偏振片的特性看,波长超过700nm的光会以高的透过率漏射。除去光学系统27由红外线截止滤波器构成,配置于光接收器24之前。该红外线截止滤波器截止由影线表示的区域35内的光(红外线)。因此,从第二偏振片26射出的光中波长为700nm以上的光(红外线)被除去,仅波长不到700nm的光入射到光接收器24上。FIG. 6 shows the light transmission characteristics of a pair of polarizers arranged in a cross Nicols arrangement. When there is no defect on the film, light with a wavelength less than 700nm is only rarely emitted from the first polarizer and the
光接收器24由CCD摄像机构成,设置于膜16的输送路径的上方。CCD摄像机具有在膜16的宽度方向呈线状配置多个光接收元件的摄像装置,在膜16的宽度方向进行扫描并将扫描信号(摄像信号)作为输出信号产生。该输出信号如图7(A)所示,包括:膜16上的缺陷导致的缺陷信号和仅从第一偏振片和第二偏振片25、26泄露的噪音信号。光接收器不但可以是1台,而且优选可以设置有多台。另外,作为摄像装置,可以采用将光接收元件呈二维配置的图像面传感器。The
通常,光接收器24尽管也对波长超过700nm的光进行光电转换,但通过除去光学系统27将700nm以上的光除去。因此,仅基于膜16上的缺陷光被光电转换,所以能够抑制噪音信号为最小限,能够得到足够大的S/N(缺陷信号/噪音信号)。例如,在检测由于涂布厚度不匀而导致的涂布失误的情况下,相对于在没有被除去光学系统27除去700nm以上的光时的S/N为“1.5”,在除去700nm以上的光时,S/N提高到“2.1”。Normally, the
如图3所示,控制器28具有:根据光接收器24输出的输出信号(摄像信号)检测缺陷信号的缺陷信号检测部32、和基于缺陷信号和来自编码器30的编码器脉冲信号确定膜16的长度方向的缺陷的位置的缺陷位置确定部33。缺陷信号检测部32包括:微分处理部32a、极值信号检测部32b、辉度值计算部32c、缺陷信号确定部32d。As shown in FIG. 3 , the
微分处理部32a对如图7(A)所示的输出信号40进行微分处理。这样,如图7(B)所示,得到辉度值变化大的部分被加强的信号42(以下称为“微分处理信号”)。然后,如图8所示,极值信号检测部32b根据微分处理信号42中检测在一定像素范围内辉度值最大的极大信号50a、51a、52a和在一定像素范围内辉度值最小的极小信号50b、51b、52b。The
辉度值计算部32c求得预先设定的基准信号55的辉度值和极大信号50a、51a、52a的辉度值的差LA1、LB1、LC1(以下称为“第一差分值”)和基准信号55的辉度值和极小信号50b、51b、52b的辉度值的差LA2、LB2、LC2(以下称为“第二差分值”)。其中,基准信号55使噪音信号平均化,每次进行缺陷检测按照顺序更新。并且,辉度值计算部32c求得第一差分值LA1、LB1、LC1和第二差分值LA2、LB2、LC2的和的相加值LA、LB、LC。The luminance
缺陷信号确定部32d判定辉度值计算部32c求得的相加值LA、LB、LC是否为一定值以上。判定的结果中,在相加值LA、LB、LC为一定值以上的情况下,将极大信号50a、51a、52a和极小信号50b、51b、52b确定为缺陷信号。在图8中,由于相加值LA、LB、LC全部为一定值以上,所以,检测出的信号全部确定为缺陷信号。The defect
在现有技术中,如图7(B)所示,对微分处理信号42设定一定的阈值Th,将超过该阈值Th的信号作为缺陷信号,在辉度变化大的信号为阈值Th以下的信号(图7(B)中的右侧的信号)的情况下,缺陷信号没有被检测出。对此,在本发明中,代替阈值Th,用辉度值的变化量来确定缺陷信号,能够可靠地检测出膜16上的缺陷。In the prior art, as shown in FIG. 7(B), a certain threshold Th is set for the
接下来,对本发明缺陷检测装置的作用进行说明。缺陷检测装置13中,膜16经由取向膜形成装置11和液晶层形成装置12被送入。光照射器22对在第一偏振片25和第二偏振片26之间走行的膜16照射光。光照射器22由于使用卤素灯而光的辉线仅一条,所以在膜16上,并没有产生作为使噪音信号增大原因之一的干涉条纹。Next, the action of the defect detection device of the present invention will be described. In the defect inspection device 13 , the
来自光照射器22的光由第一偏振片25在偏振方向25a上偏振。膜16上存在异物混入等取向缺陷的情况下,来自第一偏振片25的光在缺陷处由于散射、漫射偏振方向发生变化,从第二偏振片26射出光。另外,存在涂布不匀等相位差缺陷的情况下也一样。由于第一偏振片和第二偏振片25、26的特性,波长为700nm以上的光原样地透过第一偏振片和第二偏振片25、26。The light from the
从第二偏振片26射出的光由除去光学系统27除去波长为700nm以上的光之后,入射到光接收器24。光接收器24因为将入射的光转换成电信号,所以对每个像素依次读出。该光接收器24的输出信号40被送到控制器28。The light emitted from the second
控制器28内的微分处理部32a对来自光接收器24的输出信号40进行微分处理。根据被实施微分处理的微分处理信号42,由极值信号检测部检测出极大信号50a、51a、52a和极小信号50b、51b、52b。然后,由辉度值计算部32c将预先设定的基准信号55的辉度值和极大信号50a、51a、52a的差作为第一差分值LA1、LB1、LC1求得,另外,将基准信号55的辉度值和极小信号50b、51b、52b的辉度值的差作为第二差分值LA2、LB2、LC2求得。另外,通过辉度值计算部32c求得第一差分值LA1、LB1、LC1和第二差分值LA2、LB2、LC2的和的相加值LA、LB、LC。在求得的相加值LA、LB、LC为一定值以上的情况下,缺陷信号确定部32d将极值信号检测部32b检测出的极大信号50a、51a、52a和极小信号50b、51b、52b确定为缺陷信号。而且,缺陷位置确定部33根据缺陷信号和编码器脉冲信号,确定膜16上的缺陷位置。控制器28的结果显示于显示器(未图示)上。The
另外,在所述实施方式中,作为除去光学系统27尽管使用了红外线截止滤波器,但除此之外,还可以使用采用了电介质多层膜的带通滤波器、单色仪、波长截止滤波器、彩色玻璃滤波器、衍射光栅等。另外,除去光学系统27除去的光的波长区域并不限于700nm以上,可以对应缺陷检测中使用的偏振片的种类而作出适当变更。In addition, in the above-described embodiment, although an infrared cut filter is used as the removal
下面,通过实施例1和比较例1、2对本发明作出具体的说明。Hereinafter, the present invention will be specifically described through Example 1 and Comparative Examples 1 and 2.
[实施例1][Example 1]
使用图3所示的缺陷检测装置13检测膜16上的缺陷。在检查对象膜16的下方设置卤素灯的光照射器22,在其上方设置光接收器24。在光照射器22和膜16之间设置第一偏振片25,在膜16和光接收器24之间设置第二偏振片26。此外,第一偏振片的偏振方向25a相对膜16的迟相轴为45°,第二偏振片的偏振方向26a相对X方向成45°。第一偏振片和第二偏振片25、26使用碘系偏振片,光接收器24采用CCD线摄像机。Defects on the
在光接收器24之前设置由红外线截止滤波器构成的除去光学系统27。通过除去光学系统27除去来自第二偏振片26的光中波长为700nm以上的光。光接收器24检测出从除去光学系统27射出的光,将检测出的信号发送给控制器28。Before the
在控制器28中,通过对光接收器24得到的信号进行微分处理,从而得到微分处理信号42。根据微分处理信号42,用极值信号检测部32b检测出在一定像素范围内的最大的极大信号50a、51a、52a和成为最小的极小信号50b、51b、52b。然后,将预先设定的基准信号55的辉度值和极大信号50a、51a、52a的辉度值的差作为第一差分值LA1、LB1、LC1求得,另外,将基准信号55的辉度值和极小信号50a、51a、52a的辉度值的差作为第二差分值LA2、LB2、LC2求得,而且,求得第一差分值LA1、LB1、LC1和第二差分值LA2、LB2、LC2进行加法运算的相加值LA、LB、LC。在求得的相加值LA、LB、LC为一定值以上的情况下,确定由极值信号检测部32b检测出的极大信号50a、51a、52a和极小信号50b、51b、52b为缺陷信号。In the
[比较例1][Comparative example 1]
除了采用金属卤化物灯代替卤素灯发出光之外,其它与实施例1一样地进行缺陷检测。Defect detection was performed in the same manner as in Example 1, except that a metal halide lamp was used to emit light instead of a halogen lamp.
[比较例2][Comparative example 2]
除了采用荧光灯代替卤素灯发出光之外,其它与实施例1一样地进行缺陷检测。Defect detection was performed in the same manner as in Example 1 except that a fluorescent lamp was used instead of a halogen lamp to emit light.
[评价][evaluate]
在所述实施例1和比较例1、2进行的缺陷检测中,在对膜上干涉条纹形成怎样程度、S/N程度如何进行评价的基础上,对各实施例和比较例进行综合评价。此外,采用公知的分光测定器测定各实施例和比较例的光照射器的分光照射强度,根据该测定结果检查有多少条辉线。In the defect detection in the above-mentioned Example 1 and Comparative Examples 1 and 2, on the basis of evaluating the degree of formation of interference fringes on the film and the degree of S/N, comprehensive evaluation was performed for each of the Examples and Comparative Examples. In addition, the spectral irradiation intensity of the light irradiators of the respective examples and comparative examples was measured using a known spectrometer, and the number of glow lines was checked based on the measurement results.
图9表示各实施例和比较例测定的分光照射强度,曲线60表示卤素灯的分光照射强度,曲线61表示金属卤化物灯的分光照射强度,曲线62表示荧光灯的分光照射强度。Fig. 9 shows the spectral irradiation intensity measured in each embodiment and comparative example,
图10表示各实施例和比较例的评价结果。图10的光照射器表示各实施例和比较例使用的光照射器的种类,辉线表示光照射器发出的光的辉线数量。此外,干涉条纹“○”表示膜上不产生干涉条纹,“×”表示膜上产生干涉条纹。此外,“S/N”的“○”表示S/N为2以上,“△”表示S/N为1.5以上。此外,评价的“○”表示检测出产品上的问题的缺陷,“×”表示不能确定检测出产品上问题的缺陷。此外,针对S/N,如果为“2”以上,则能够稳定进行缺陷检测。FIG. 10 shows the evaluation results of each Example and Comparative Example. The light irradiators in FIG. 10 show the types of light irradiators used in the respective examples and comparative examples, and the bright lines indicate the number of bright lines of light emitted by the light irradiators. In addition, interference fringes "◯" indicate that interference fringes are not generated on the film, and "×" indicate that interference fringes are generated on the film. In addition, "◯" of "S/N" indicates that S/N is 2 or more, and "△" indicates that S/N is 1.5 or more. In addition, "◯" in the evaluation indicates that a problematic defect on the product was detected, and "×" indicates that a problematic defect on the product could not be definitely detected. Moreover, when S/N is "2" or more, defect detection can be performed stably.
在实施例1中,由于从卤素灯发出的光的辉线仅为一条,所以在膜上没有形成干涉条纹。对此,在比较例1和2中,由于存在两条以上的辉线,所以在膜上形成了明亮部分和黑暗部分清晰的干涉条纹。受此干涉条纹的影响,S/N降低,无法可靠地进行成为产品上问题的缺陷的检测。In Example 1, since there was only one bright line of light emitted from the halogen lamp, no interference fringes were formed on the film. On the other hand, in Comparative Examples 1 and 2, since two or more bright lines were present, interference fringes with clear bright and dark parts were formed on the film. Due to the influence of the interference fringes, the S/N is lowered, making it impossible to reliably detect defects that cause problems on products.
Claims (9)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008085793 | 2008-03-28 | ||
JP2008085794A JP2009236826A (en) | 2008-03-28 | 2008-03-28 | Defect detector and defect detection method |
JP2008085793A JP5258349B2 (en) | 2008-03-28 | 2008-03-28 | Defect detection apparatus and method |
JP2008-085793 | 2008-03-28 | ||
JP2008-085794 | 2008-03-28 | ||
JP2008085794 | 2008-03-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101587081A true CN101587081A (en) | 2009-11-25 |
CN101587081B CN101587081B (en) | 2014-04-23 |
Family
ID=41250939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910149761.2A Expired - Fee Related CN101587081B (en) | 2008-03-28 | 2009-03-27 | Defect detection method and device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5258349B2 (en) |
CN (1) | CN101587081B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102262252A (en) * | 2010-05-26 | 2011-11-30 | 住友化学株式会社 | Manufacturing method of optical sheet and manufacturing device of optical sheet |
CN102753960A (en) * | 2010-02-08 | 2012-10-24 | 住友化学株式会社 | Defect inspection method for LCD panel having laminated sheet polariser |
CN103135242A (en) * | 2011-11-21 | 2013-06-05 | 东友精细化工有限公司 | Image acquiring apparatus of pattern phase retardation film |
CN103293160A (en) * | 2012-02-22 | 2013-09-11 | 郭上鲲 | Optical detection device |
CN103487381A (en) * | 2013-09-16 | 2014-01-01 | 达尼特材料科技(芜湖)有限公司 | Membrane uniformity detection method and device |
CN104390976A (en) * | 2014-11-12 | 2015-03-04 | 河北铠朗新型材料科技有限公司 | Online film coating monitoring system |
CN105977175A (en) * | 2015-03-11 | 2016-09-28 | 株式会社迪思科 | Protection film detecting method |
CN107643612A (en) * | 2016-07-22 | 2018-01-30 | 日东电工株式会社 | Check device and inspection method |
CN112334264A (en) * | 2018-06-22 | 2021-02-05 | 三菱电机株式会社 | Laser processing apparatus |
CN114096833A (en) * | 2019-07-16 | 2022-02-25 | 柯尼卡美能达株式会社 | Method and apparatus for detecting defect of uneven alignment of retardation film |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012163533A (en) * | 2011-02-09 | 2012-08-30 | Fujifilm Corp | Defect inspection apparatus and method for lenticular sheet |
JP2013205091A (en) * | 2012-03-27 | 2013-10-07 | Dainippon Printing Co Ltd | Film inspection system, and film inspection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6650410B2 (en) * | 2000-03-08 | 2003-11-18 | Fuji Photo Film Co., Ltd. | Apparatus, system and method for checking film for defects |
JP2007333608A (en) * | 2006-06-16 | 2007-12-27 | Toray Ind Inc | Inspection device and inspection method of irregular flaw on sheet |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09229642A (en) * | 1996-02-27 | 1997-09-05 | Matsushita Electric Ind Co Ltd | Method for inspecting appearance of electronic part |
JP4440485B2 (en) * | 2000-03-08 | 2010-03-24 | 富士フイルム株式会社 | Film defect inspection apparatus, defect inspection system, defect inspection method, and method for manufacturing film having birefringence characteristics |
JP4396160B2 (en) * | 2003-07-31 | 2010-01-13 | 住友化学株式会社 | Foreign film inspection method for transparent film |
JP4960026B2 (en) * | 2006-06-09 | 2012-06-27 | 富士フイルム株式会社 | Film defect inspection apparatus and film manufacturing method |
-
2008
- 2008-03-28 JP JP2008085793A patent/JP5258349B2/en active Active
-
2009
- 2009-03-27 CN CN200910149761.2A patent/CN101587081B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6650410B2 (en) * | 2000-03-08 | 2003-11-18 | Fuji Photo Film Co., Ltd. | Apparatus, system and method for checking film for defects |
JP2007333608A (en) * | 2006-06-16 | 2007-12-27 | Toray Ind Inc | Inspection device and inspection method of irregular flaw on sheet |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102753960A (en) * | 2010-02-08 | 2012-10-24 | 住友化学株式会社 | Defect inspection method for LCD panel having laminated sheet polariser |
CN102262252A (en) * | 2010-05-26 | 2011-11-30 | 住友化学株式会社 | Manufacturing method of optical sheet and manufacturing device of optical sheet |
CN103135242B (en) * | 2011-11-21 | 2016-09-07 | 东友精细化工有限公司 | The video capturing device of pattern phase retardation film |
CN103135242A (en) * | 2011-11-21 | 2013-06-05 | 东友精细化工有限公司 | Image acquiring apparatus of pattern phase retardation film |
CN103293160A (en) * | 2012-02-22 | 2013-09-11 | 郭上鲲 | Optical detection device |
CN103487381A (en) * | 2013-09-16 | 2014-01-01 | 达尼特材料科技(芜湖)有限公司 | Membrane uniformity detection method and device |
CN104390976A (en) * | 2014-11-12 | 2015-03-04 | 河北铠朗新型材料科技有限公司 | Online film coating monitoring system |
CN105977175A (en) * | 2015-03-11 | 2016-09-28 | 株式会社迪思科 | Protection film detecting method |
CN107643612A (en) * | 2016-07-22 | 2018-01-30 | 日东电工株式会社 | Check device and inspection method |
CN107643612B (en) * | 2016-07-22 | 2022-03-22 | 日东电工株式会社 | Inspection apparatus and inspection method |
CN112334264A (en) * | 2018-06-22 | 2021-02-05 | 三菱电机株式会社 | Laser processing apparatus |
CN114096833A (en) * | 2019-07-16 | 2022-02-25 | 柯尼卡美能达株式会社 | Method and apparatus for detecting defect of uneven alignment of retardation film |
CN114096833B (en) * | 2019-07-16 | 2024-05-10 | 柯尼卡美能达株式会社 | Method and device for detecting uneven alignment defect of phase difference film |
Also Published As
Publication number | Publication date |
---|---|
JP5258349B2 (en) | 2013-08-07 |
JP2009236825A (en) | 2009-10-15 |
CN101587081B (en) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101587081B (en) | Defect detection method and device | |
TWI480539B (en) | Defect inspection apparatus and method for light transmittance material | |
US7428049B2 (en) | Apparatus and method for inspecting film defect | |
US7408633B2 (en) | Apparatus and method for inspecting film defect | |
KR101725577B1 (en) | Surface detection method for steel plate having resin coating film and surface detection device for same | |
TWI463132B (en) | Film defect inspection method and device | |
KR101721965B1 (en) | Device and method for inspecting appearance of transparent substrate | |
JP2015175815A (en) | Method and device for inspecting defect of transparent sheet | |
KR101676333B1 (en) | Method and device for detecting defect | |
JPH10148619A (en) | Method and device for inspecting face defect of substrate under inspection | |
KR101636055B1 (en) | Upper Surface Foreign Matter Detection Method of the Transparent Substrate using Polarized Light | |
JP2009236826A (en) | Defect detector and defect detection method | |
KR102045818B1 (en) | Transmissive optical inspection device and method of detecting defect using the same | |
KR102696996B1 (en) | System for detecting defect of optical film | |
JPH0755720A (en) | Defect inspecting apparatus for transparent and opaque films | |
KR102306234B1 (en) | Transmissive optical inspection device | |
WO2010071209A1 (en) | Inspection device | |
JP2001201319A (en) | Thickness testing method and device for plate glass | |
TW201917375A (en) | Optical inspection method | |
JP2014052217A (en) | Foreign matter inspection device, foreign matter inspection method | |
KR19990052240A (en) | Afterglow elimination structure using polarization filter for surface defect measurement of steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140423 |