CN101586186A - Method for leaching chalcopyrite and corresponding leaching agent - Google Patents
Method for leaching chalcopyrite and corresponding leaching agent Download PDFInfo
- Publication number
- CN101586186A CN101586186A CNA2009100946065A CN200910094606A CN101586186A CN 101586186 A CN101586186 A CN 101586186A CN A2009100946065 A CNA2009100946065 A CN A2009100946065A CN 200910094606 A CN200910094606 A CN 200910094606A CN 101586186 A CN101586186 A CN 101586186A
- Authority
- CN
- China
- Prior art keywords
- leaching
- chalcopyrite
- agent
- parts
- leaching agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002386 leaching Methods 0.000 title abstract description 55
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 title abstract description 19
- 229910052951 chalcopyrite Inorganic materials 0.000 title abstract description 19
- 238000000034 method Methods 0.000 title abstract description 16
- 239000003795 chemical substances by application Substances 0.000 abstract description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052802 copper Inorganic materials 0.000 abstract description 15
- 239000010949 copper Substances 0.000 abstract description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000005272 metallurgy Methods 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003054 catalyst Substances 0.000 abstract description 2
- 239000007800 oxidant agent Substances 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract 1
- 229940085991 phosphate ion Drugs 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000009854 hydrometallurgy Methods 0.000 description 4
- 239000013067 intermediate product Substances 0.000 description 4
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 3
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005363 electrowinning Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- LPXDNEQTGPFOPF-UHFFFAOYSA-N hydron;1h-imidazol-1-ium;phosphate Chemical compound C1=CNC=N1.OP(O)(O)=O LPXDNEQTGPFOPF-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- -1 roasting/leaching Chemical compound 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种黄铜矿的浸出方法及相应的浸出剂,属于冶金技术领域。The invention relates to a chalcopyrite leaching method and a corresponding leaching agent, belonging to the technical field of metallurgy.
背景技术 Background technique
炼铜原料90%来自硫化矿,约10%来自氧化矿,少量来自自然铜。众所周知,氧化铜和自然铜均极易浸出,硫化矿则相对困难,而黄铜矿作为储量最丰富的原生硫化铜矿,约占世界已知铜矿储量的70%,是硫化矿中最难浸出的一种,革新黄铜矿的浸出技术一直以来都是冶金领域关注的焦点。90% of copper smelting raw materials come from sulfide ore, about 10% from oxide ore, and a small amount from natural copper. As we all know, copper oxide and natural copper are easy to leach, while sulfide ore is relatively difficult, and chalcopyrite, as the most abundant primary copper sulfide ore, accounts for about 70% of the world's known copper ore reserves, and is the most difficult sulfide ore. A kind of leaching, the innovation of chalcopyrite leaching technology has always been the focus of attention in the field of metallurgy.
多年来,黄铜矿的浸出一直是硫化铜矿湿法冶金的核心,湿法冶金工作者一直致力于其湿法冶金研究,开发各种工艺处理黄铜矿,其中包括焙烧/浸出、加压酸浸、氯化浸出、氨浸及生物浸出等。随着各国的环保意识日益加强,人们愈发关注冶金工业的绿色及可持续发展,各国冶金工作者都希望研发出低能耗、低酸耗、低氧耗、无污染物排放的新型绿色的湿法冶金工艺。同时,随着化学采矿——就地溶浸、堆浸、细菌浸出、溶剂萃取/电积等技术的不断发展,湿法炼铜的成本也在逐渐降低,湿法炼铜正成为世界铜冶炼的一个趋势。但是,至今未开发出可以普遍处理铜的最主要原生矿-黄铜矿的工艺,这是铜湿法冶金工业面临的挑战。For many years, the leaching of chalcopyrite has been the core of copper sulfide ore hydrometallurgy. Hydrometallurgists have been devoting themselves to their hydrometallurgical research and developing various processes to treat chalcopyrite, including roasting/leaching, pressurization Acid leaching, chloride leaching, ammonia leaching and biological leaching, etc. With the increasing awareness of environmental protection in various countries, people are paying more and more attention to the green and sustainable development of the metallurgical industry. Metallurgical workers from all over the world hope to develop new green wet products with low energy consumption, low acid consumption, low oxygen consumption, and no pollutant emissions. metallurgical process. At the same time, with the continuous development of chemical mining-in-situ leaching, heap leaching, bacterial leaching, solvent extraction/electrowinning and other technologies, the cost of hydrometallurgy is gradually decreasing, and hydrometallurgy is becoming the world's copper smelting industry. of a trend. However, a process that can universally treat chalcopyrite, the most important primary ore of copper, has not been developed so far, which is a challenge for the copper hydrometallurgy industry.
发明内容 Contents of the invention
本发明目的在于提供一种黄铜矿的浸出剂及其浸出方法,其操作工艺简单、选择性好、浸出率高。The object of the present invention is to provide a chalcopyrite leaching agent and a leaching method thereof, which has simple operation process, good selectivity and high leaching rate.
解决本发明的技术问题所采用的浸出剂是:以甲苯、氯代正丁烷、N-甲基咪唑、磷酸和蒸馏水合成得到的磷酸二氢咪唑离子液体。The leaching agent adopted to solve the technical problem of the present invention is: imidazolium dihydrogen phosphate ionic liquid synthesized with toluene, n-chlorobutane, N-methylimidazole, phosphoric acid and distilled water.
浸出剂是由两步合成得到,即①将氯代正丁烷和N-甲基咪唑混合,以甲苯为溶剂,反应得到中间产物;②中间产物与磷酸混合,蒸馏水为溶剂,反应得到磷酸二氢咪唑离子液体([BMIM]H2PO4)。The leaching agent is obtained by two-step synthesis, that is, ① mix n-chlorobutane and N-methylimidazole, use toluene as a solvent, and react to obtain an intermediate product; ② mix the intermediate product with phosphoric acid, use distilled water as a solvent, and react to obtain diphosphate Hydrogen imidazolium ionic liquid ([BMIM]H 2 PO 4 ).
①在中间产物制备中,氯代正丁烷的重量分数为70份,N-甲基咪唑为25份,加入5份的甲苯,在80~90℃氩气保护下机械搅拌,经回流反应24~72h后经减压蒸馏提纯,70~80℃下真空干燥8~12h即可;②中间产物的重量分数为55份,磷酸为30份,蒸馏水15份,在100~110℃下机械搅拌,回流反应4~6h后减压蒸馏提纯,110~120℃下真空干燥8~12h即可制得。①In the preparation of intermediate products, the weight fraction of n-chlorobutane is 70 parts, N-methylimidazole is 25 parts, and 5 parts of toluene are added, mechanically stirred under the protection of argon at 80-90 °C, and refluxed for 24 Purify by vacuum distillation after ~72h, then vacuum dry at 70~80°C for 8~12h; ②The weight fraction of the intermediate product is 55 parts, phosphoric acid is 30 parts, distilled water is 15 parts, mechanically stirred at 100~110°C, Reflux for 4 to 6 hours, then purify by distillation under reduced pressure, and dry in vacuum at 110 to 120°C for 8 to 12 hours.
本发明的所述的黄铜矿的浸出方法是:The leaching method of described chalcopyrite of the present invention is:
在浸出时无需添加催化剂或氧化剂,浸出过程中配以17KPa~81KPa的氧分压,充分搅拌下浸出,工艺条件为①浸出时温度控制在70~90℃;②氧分压>20%;③黄铜矿、水、浸出剂的重量比为1∶5∶5;④浸出反应pH为0~1.5。There is no need to add catalysts or oxidants during the leaching process. During the leaching process, an oxygen partial pressure of 17KPa ~ 81KPa is used, and the leaching is fully stirred. The process conditions are as follows: ①The temperature during leaching is controlled at 70~90°C; ②Oxygen partial pressure > 20%; ③ The weight ratio of chalcopyrite, water and leaching agent is 1:5:5; ④ pH of leaching reaction is 0-1.5.
在浸出过程中本浸出剂还可中配以0.5~1mol/L的硫酸混合使用。During the leaching process, this leaching agent can also be mixed with 0.5-1mol/L sulfuric acid.
本发明的有益效果是:The beneficial effects of the present invention are:
该方法的反应器无须高温、加压设备,浸出操作工艺简单,工艺成本低;The reactor of the method does not need high temperature and pressurized equipment, the leaching operation process is simple, and the process cost is low;
此外,浸出剂的制作容易、成本低、且可循环使用,从而降低生成成本。In addition, the leaching agent is easy to manufacture, low in cost, and can be recycled, thereby reducing production cost.
具体实施方式 Detailed ways
下面结合实例对本浸出剂的应用作详细说明。The application of this leaching agent will be described in detail below in conjunction with examples.
实施例1.称取含铜24.8%的黄铜矿粉100克,细度100~200目,加入浸出剂和水调节pH=0,液固比为1∶5∶5(即黄铜矿、水、浸出剂的重量比),反应温度90℃,常压鼓氧,搅拌浸出反应12小时,铜的浸出率为95%。Embodiment 1. take by weighing 100 grams of chalcopyrite powder containing 24.8% copper, fineness 100~200 orders, add leaching agent and water to regulate pH=0, liquid-solid ratio is 1: 5: 5 (being chalcopyrite, Water, leaching agent weight ratio), reaction temperature 90 ℃, normal pressure drum oxygen, stirring leaching reaction 12 hours, the leaching rate of copper is 95%.
实施例2.称取含铜24.8%的黄铜矿粉100克,细度100~200目,加入浸出剂和硫酸调节pH=0.5,液固比为1∶5∶5(即黄铜矿、水、浸出剂的重量比),反应温度70℃,常压鼓空气,搅拌浸出反应6小时,铜的浸出率为90%。Embodiment 2. take by weighing 100 grams of chalcopyrite powder containing 24.8% copper, fineness 100~200 orders, add leaching agent and sulfuric acid to regulate pH=0.5, liquid-solid ratio is 1: 5: 5 (being chalcopyrite, Water, leaching agent weight ratio), reaction temperature 70 ℃, normal pressure blowing air, stirring leaching reaction for 6 hours, the leaching rate of copper is 90%.
实施例3.称取含铜24.8%的黄铜矿粉100克,细度100~200目,加入浸出剂和水调节pH=1,液固比为1∶5∶5(即黄铜矿、水、浸出剂的重量比),反应温度90℃,常压鼓空气,搅拌浸出反应12小时,铜的浸出率为91%。Embodiment 3. take by weighing 100 grams of chalcopyrite powder containing 24.8% copper, fineness 100~200 orders, add leaching agent and water to regulate pH=1, liquid-solid ratio is 1: 5: 5 (being chalcopyrite, Water, leaching agent weight ratio), reaction temperature 90 ℃, blowing air at normal pressure, stirring leaching reaction for 12 hours, the leaching rate of copper was 91%.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100946065A CN101586186B (en) | 2009-06-19 | 2009-06-19 | Method for leaching chalcopyrite and corresponding leaching agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100946065A CN101586186B (en) | 2009-06-19 | 2009-06-19 | Method for leaching chalcopyrite and corresponding leaching agent |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101586186A true CN101586186A (en) | 2009-11-25 |
CN101586186B CN101586186B (en) | 2012-07-25 |
Family
ID=41370612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100946065A Expired - Fee Related CN101586186B (en) | 2009-06-19 | 2009-06-19 | Method for leaching chalcopyrite and corresponding leaching agent |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101586186B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102643988A (en) * | 2012-04-13 | 2012-08-22 | 西南科技大学 | Method for leaching metallic copper from waste printed circuit board by using ionic liquid |
CN104831060A (en) * | 2015-04-07 | 2015-08-12 | 昆明理工大学 | Method for preparing zinc oxalate as zinc oxide powder precursor from middle/low-grade zinc oxide ore |
CN105087930A (en) * | 2015-08-31 | 2015-11-25 | 贵州大学 | Method for extracting copper from structured rubble alterated rocks |
CN117230313A (en) * | 2023-11-16 | 2023-12-15 | 长春黄金研究院有限公司 | Tin-lead immersing agent and process for treating tin and lead in electronic garbage |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1320137C (en) * | 2002-12-31 | 2007-06-06 | 熊尚彬 | Compound leaching agent and leaching method for leaching out copper pyrite using compound leaching agent |
-
2009
- 2009-06-19 CN CN2009100946065A patent/CN101586186B/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102643988A (en) * | 2012-04-13 | 2012-08-22 | 西南科技大学 | Method for leaching metallic copper from waste printed circuit board by using ionic liquid |
CN102643988B (en) * | 2012-04-13 | 2013-07-10 | 西南科技大学 | Method for leaching metallic copper from waste printed circuit board by using ionic liquid |
CN104831060A (en) * | 2015-04-07 | 2015-08-12 | 昆明理工大学 | Method for preparing zinc oxalate as zinc oxide powder precursor from middle/low-grade zinc oxide ore |
CN105087930A (en) * | 2015-08-31 | 2015-11-25 | 贵州大学 | Method for extracting copper from structured rubble alterated rocks |
CN117230313A (en) * | 2023-11-16 | 2023-12-15 | 长春黄金研究院有限公司 | Tin-lead immersing agent and process for treating tin and lead in electronic garbage |
CN117230313B (en) * | 2023-11-16 | 2024-01-30 | 长春黄金研究院有限公司 | Tin-lead immersing agent and process for treating tin and lead in electronic garbage |
Also Published As
Publication number | Publication date |
---|---|
CN101586186B (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102956936B (en) | Method for treating lithium iron phosphate cathode material of waste and old power lithium battery of automobile | |
CN102382980B (en) | Method for directly purifying cadmium from sponge cadmium | |
CN101886168B (en) | Extraction technology of semi-manganese oxide ore | |
CN101736153B (en) | Method for extracting ammonium molybdate from molybdenum concentrate by pressure ammonia leaching | |
CN102912123A (en) | Method for decomposing stone coal vanadium ore by curing sulfuric acid | |
CN102784643B (en) | A ternary copper catalyst prepared from copper powder recovered from organic silicon waste contacts and its preparation method | |
CN104726705B (en) | A kind of chromite leaches the method for carrying chromium | |
CN104098148B (en) | A kind for the treatment of process reclaiming nickel, chromium, iron from stainless steel plant's waste residue | |
CN101450814A (en) | Novel method for extracting vanadic anhydride from stone coal vanadium ore | |
CN103740931B (en) | Containing the method for ferronickel mixing solutions goethite precipitation iron | |
CN102321809A (en) | Method for extracting cobalt and copper from cobalt-copper-iron alloy | |
CN102690947A (en) | Smelting process of silver concentrate | |
CN101586186B (en) | Method for leaching chalcopyrite and corresponding leaching agent | |
CN108570555A (en) | A method of directly producing LITHIUM BATTERY nickel sulfate from nickel cobalt enriched substance | |
CN103451447A (en) | Method for recovering copper and cobalt from high-iron waste water treatment and residue | |
CN101619388A (en) | Method for restraining generation of manganous dithionate in process of leaching sulfur dioxide gas out of pyrolusite | |
CN100480404C (en) | Method for leaching vanadium from stone-like coal by oxidation transformation | |
CN101871045B (en) | Method for producing zinc by utilizing sulphate process titanium dioxide waste acid | |
CN102794233A (en) | Amphoteric collector for reverse flotation of iron ores, and preparation method and application method thereof | |
CN101210287A (en) | Acidolysis oxidation conversion method for extracting vanadium from stone coal | |
CN101768669A (en) | Method for processing cobalt-copper alloy at room temperature | |
CN103911510B (en) | Method for purifying and removing iron, aluminum and silicon in superimposition manner | |
CN101285117A (en) | A kind of pressure leaching method of high silicon zinc oxide ore | |
CN101928098A (en) | Method for preparing cuprous oxide powder by pressurized hydrogen reduction of copper-containing electroplating sludge | |
CN103979498B (en) | A kind of method of high efficiente callback iodine in production process of phosphoric acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120725 Termination date: 20150619 |
|
EXPY | Termination of patent right or utility model |