[go: up one dir, main page]

CN101585864A - Nitrogen-terminal fixed-point coupling method for colony stimulating factor of column chromatography granulocyte and coupled product - Google Patents

Nitrogen-terminal fixed-point coupling method for colony stimulating factor of column chromatography granulocyte and coupled product Download PDF

Info

Publication number
CN101585864A
CN101585864A CNA2009100137107A CN200910013710A CN101585864A CN 101585864 A CN101585864 A CN 101585864A CN A2009100137107 A CNA2009100137107 A CN A2009100137107A CN 200910013710 A CN200910013710 A CN 200910013710A CN 101585864 A CN101585864 A CN 101585864A
Authority
CN
China
Prior art keywords
rhg
csf
peg
csfm
mpeg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100137107A
Other languages
Chinese (zh)
Other versions
CN101585864B (en
Inventor
张旋
马光辉
苏志国
祁庆生
雷建都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Pegylatt Biotechnology Co ltd
Institute of Process Engineering of CAS
Original Assignee
Tianjin Pegylatt Biotechnology Co ltd
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Pegylatt Biotechnology Co ltd, Institute of Process Engineering of CAS filed Critical Tianjin Pegylatt Biotechnology Co ltd
Priority to CN2009100137107A priority Critical patent/CN101585864B/en
Publication of CN101585864A publication Critical patent/CN101585864A/en
Application granted granted Critical
Publication of CN101585864B publication Critical patent/CN101585864B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,其中所述偶联方法中1)层析介质优选阳离子交换介质;2)层析柱柱床高度优选推荐柱高的上限;3)rhG-CSF蛋白的上样量优选为介质实测最大载量的30-50%;4)以较低的上样流速、较长的上样时间(3~5小时)、较高反应率的pH值上样活化的mPEG;5)活化的mPEG的上样量按活化的mPEG与rhG-CSF的反应量比为1~50mol∶1mol进行;6)以0.5M~1M氯化钠盐溶液梯度洗脱。本发明还公开了所述方法制得的偶联化合物,即聚乙二醇化重组人粒细胞集落刺激因子,其结构式为:CH3-(CH2CH2-O)n-(CH2)r-NH-rhG-CSF或CH3-(CH2-CH2-O)n-(CH2)r-NH-rhG-CSFm,式中n为570~2200,r为1~3;以及所述偶联化合物作为制备防治粒细胞减少症制剂的应用。

Figure 200910013710

The invention discloses a method for column chromatography granulocyte colony-stimulating factor nitrogen terminal fixed-point coupling polyethylene glycol, wherein in the coupling method, 1) the chromatographic medium is preferably a cation exchange medium; 2) the chromatographic column bed The upper limit of the recommended column height is highly preferred; 3) The sample volume of rhG-CSF protein is preferably 30-50% of the maximum load capacity measured in the medium; 4) With a lower sample flow rate and a longer sample time (3~ 5 hours), the pH value of the higher reaction rate was loaded with activated mPEG; 5) the amount of activated mPEG was loaded according to the reaction volume ratio of activated mPEG and rhG-CSF was 1 ~ 50mol: 1mol; 6) with 0.5 M ~ 1M sodium chloride salt solution gradient elution. The invention also discloses the coupling compound prepared by the method, that is, pegylated recombinant human granulocyte colony-stimulating factor, and its structural formula is: CH 3 -(CH 2 CH 2 -O)n-(CH 2 )r -NH-rhG-CSF or CH 3 -(CH 2 -CH 2 -O)n-(CH 2 )r-NH-rhG-CSFm, wherein n is 570-2200, r is 1-3; and the Application of the coupling compound as preparation for preventing and treating granulocytopenia.

Figure 200910013710

Description

柱层析粒细胞集落刺激因子氮端定点偶联方法及其产物 Column Chromatography Granulocyte Colony Stimulating Factor Nitrogen-terminal Site-specific Coupling Method and Its Product

技术领域 technical field

本发明在广义上隶属于蛋白质修饰和水溶性多聚体偶联蛋白、多肽及其突变体或类似物领域;较为具体地表述是,本发明涉及一种柱层析聚乙二醇蛋白氮末端点特异性偶联的新方法,以及利用该方法所获得的一类聚乙二醇化重组人粒细胞集落刺激因子偶联化合物(PEG-rhG-CSF)及其作为一类具药学上长效、高效、低免疫原性特征的蛋白质化合物长效制剂的应用。In a broad sense, the present invention belongs to the field of protein modification and water-soluble multimer coupling protein, polypeptide and its mutants or analogues; more specifically, the present invention relates to a column chromatography polyethylene glycol protein nitrogen terminal A new method for point-specific coupling, and a class of pegylated recombinant human granulocyte colony-stimulating factor conjugated compound (PEG-rhG-CSF) obtained by this method and its long-acting, long-acting, Application of long-acting preparations of protein compounds with high efficiency and low immunogenicity characteristics.

背景技术 Background technique

重组人粒细胞集落刺激因子(recombinant human granulocyte colony stimulatingfactor,rhG-CSF)可促进骨髓粒系祖细胞增值和分化,增加外周血成熟中性粒细胞的数目与活性,大剂量rhG-CSF尚可动员骨髓各系祖细胞释放入血。因此,自1992年批准上市以来,rhG-CSF主要应用于临床治疗因肿瘤或急性白血病化疗所致的粒细胞减少症、骨髓和外周血干细胞移植、以及慢性、原发性粒细胞减少症等,并取得了良好的疗效和安全性。但rhG-CSF的血浆半衰期较短,仅为3~4小时,需要每天应用,连续应用7-14天,给治疗和病人带来诸多不便。Recombinant human granulocyte colony stimulating factor (rhG-CSF) can promote the proliferation and differentiation of bone marrow granulocyte progenitor cells, increase the number and activity of mature neutrophils in peripheral blood, and large doses of rhG-CSF can still mobilize The progenitor cells of various bone marrow lines are released into the blood. Therefore, since it was approved for marketing in 1992, rhG-CSF has been mainly used in the clinical treatment of granulocytopenia caused by tumor or acute leukemia chemotherapy, bone marrow and peripheral blood stem cell transplantation, and chronic and primary granulocytopenia, etc. And achieved good curative effect and safety. However, the plasma half-life of rhG-CSF is short, only 3-4 hours, and it needs to be applied every day for 7-14 consecutive days, which brings a lot of inconvenience to the treatment and patients.

Royer GI等于1977年(USP 4002531)公布了聚乙二醇醛基衍生物(aldehydederivative of a monoalkyl polyethyleneglycol)偶联蛋白质赖氨酸和氮末端(N-terminal,N-末端)氨基的方法,并首次证明,这种PEG化修饰细菌天门冬酰胺酶(Asparaginase)和尿激酶(Uricase)可显著降低该酶的免疫原性、增加其体内的稳定性和活性,并能延长血浆衰期,故具有重要的药理学和临床应用的价值。Davis FF等于1977年申请的专利(USP 4,179,337)更为详尽地描述了各种可与蛋白质或酶偶联的PEG分子特征,及其上述药理学性质。由于蛋白或多肽序列中常常含有多个赖氨酸,故Royer和Davis等所描述的方法常常会形成PEG蛋白的混合物,如一个蛋白分子连接1~4个不等的PEG分子。这显然不易实现新药分子生产的质量可控性要求。因此,后来人们一直致力于点特异性聚乙二醇化(Site-specific Pegylation)技术的研发。Royer GI was equal to 1977 (USP 4002531) announced the method of polyethylene glycol aldehyde derivatives (aldehydederivative of a monoalkyl polyethyleneglycol) coupling protein lysine and nitrogen terminal (N-terminal, N-terminal) amino, and for the first time It is proved that this PEGylated bacterial asparaginase (Asparaginase) and urokinase (Uricase) can significantly reduce the immunogenicity of the enzyme, increase its stability and activity in vivo, and can prolong the life of the plasma, so it has important pharmacological and clinical value. The patent (USP 4,179,337) applied by Davis FF in 1977 described in more detail the molecular characteristics of various PEGs that can be coupled with proteins or enzymes, and the above pharmacological properties. Since a protein or polypeptide sequence often contains multiple lysines, the method described by Royer and Davis often forms a mixture of PEG proteins, such as one protein molecule linked with 1 to 4 PEG molecules. Obviously, it is not easy to achieve the quality controllability requirements for the production of new drug molecules. Therefore, people have been devoting themselves to the research and development of site-specific pegylation (Site-specific Pegylation) technology.

早在1989年Kuga等的工作业已证实,敲除rhG-CSF N-末端11个氨基酸并不影响rhG-CSF的体外活性,说明rhG-CSF N-末端远离分子的活性位点,因此,rhG-CSF N-末端是PEG分子定点偶联的理想位点之一。有多种策略可实现PEG与rhG-CSF N-末端的点特异性偶联,其中包括:1)Wetzel R等〔1〕1990年提出的通过控制pH值实现多肽N-末端alfa氨基的高选择性偶联;2)Gaertner HF等〔2〕1996年描述了各种可以选择性偶联蛋白N-末端氨基的PEG活性基团,并在白介素-8、G-CSF等分子上应用;3)ChangTK等〔3〕1994年发现枯草杆菌酶(subtiligase)具有酶促PEG选择性偶联的作用;4)较近也有学者采用重组DNA技术〔4〕,通过表达转谷氨酰胺酶(transglutaminase)介导微生物体内PEG点特异性N-末端偶联目标蛋白。As early as 1989, the work of Kuga et al. has confirmed that knocking out the 11 amino acids at the N-terminal of rhG-CSF does not affect the in vitro activity of rhG-CSF, indicating that the N-terminal of rhG-CSF is far away from the active site of the molecule. Therefore, rhG-CSF The N-terminus of CSF is one of the ideal sites for site-specific coupling of PEG molecules. There are a variety of strategies to achieve point-specific coupling of PEG to the rhG-CSF N-terminal, including: 1) Wetzel R et al. [1] proposed in 1990 to achieve high selection of alfa amino groups at the N-terminal of the polypeptide by controlling the pH value Sexual coupling; 2) Gaertner HF et al. [2] described various PEG active groups that can selectively couple the N-terminal amino groups of proteins in 1996, and applied them to molecules such as interleukin-8 and G-CSF; 3) ChangTK et al. [3] found in 1994 that subtilase (subtiligase) had the effect of enzymatic PEG selective coupling; 4) recently, some scholars also adopted recombinant DNA technology [4], through the expression of transglutaminase (transglutaminase) mediated In vivo PEG point specific N-terminal coupling target protein.

在上述Wetzel R等1990年提出的通过控制pH值实现多肽N-末端alfa氨基的高选择性偶联的基础上,美国Amgen公司的Kinstler OB和Gabrial等进一步详细描述了通过降低pH值可以使单甲基聚乙二醇醛基(PEG-ALD)特异性偶联rhG-CSF和复合干扰素等N-末端氨基的方法及其产物,详见USP 5,824,784/USP 5,985,265/USP 7,090,835B2和US 2006/0233746A1以及CN 1896103A等专利;Kinstler等将这种通过降低pH值实现PEG-ALD选择性偶联蛋白N-末端反应称为还原性烷基化反应(reductivealkylation)。事实上,在Royer GI等于1977年的美国专利USP 4,002,531和Shaw等在1990年的美国专利USP4,904,584中对此也都已有述及,它是指PEG-ALD与蛋白质的氨基反应分两步进行,即先形成Shiff碱,进而亚胺被还原形成不可逆的PEG-ALD与蛋白质烷基化偶合物,偶联的选择性发生在第一步。还原性烷基化反应出现N-末端选择性的原理是:在不同pH值条件下,rhG-CSF分子中赖氨酸上的epsilon氨基和N-末端蛋氨酸上的alfa氨基的解离常数(pKa)不同,故epsilon氨基和alfa氨基与PEG醛基(PEG-ALD)的偶联反应速率不同,而出现选择性;据计算在pH 4.5的条件下,rhG-CSF分子上N-末端alfa氨基与PEG-ALD的偶联反应机率是赖氨酸上的epsilon氨基的50倍以上;故当偶联反应持续较长时间时,将会出现绝大多数PEG-ALD偶联在rhG-CSF分子N-末端alfa氨基上,形成单一、定点的PEG-rhG-CSF化合物;因此,形成单一、蛋白N-末端高选择性的条件包括低pH值和较长的反应时间,此外还需要相对较低的PEG-ALD投入量。事实上,近中性、偏碱性或碱性条件下可加速PEG-ALD与蛋白分子氨基的偶联,只是此时会失去PEG-ALD对蛋白N-末端的选择性,而形成多修饰PEG-蛋白质的混合物。On the basis of the highly selective coupling of the N-terminal alfa amino group of the polypeptide by controlling the pH value proposed by Wetzel R et al. in 1990, Kinstler OB and Gabrial of the Amgen Company in the United States further described in detail that the single The method and the product of methylpolyethylene glycol aldehyde group (PEG-ALD) specific coupling rhG-CSF and compound interferon and other N-terminal amino groups, see USP 5,824,784/USP 5,985,265/USP 7,090,835B2 and US 2006/ Patents such as 0233746A1 and CN 1896103A; Kinstler et al. call this reaction by reducing the pH value to realize the N-terminal reaction of PEG-ALD selective coupling protein as reductive alkylation reaction (reductivealkylation). In fact, Royer GI is equal to 1977 U.S. Patent USP 4,002,531 and Shaw et al. have already mentioned this in 1990 U.S. Patent No. 4,904,584, which means that the amino group reaction between PEG-ALD and protein is divided into two steps To carry out, that is, the Shiff base is formed first, and then the imine is reduced to form an irreversible PEG-ALD and protein alkylation conjugate, and the selectivity of the coupling occurs in the first step. The principle of N-terminal selectivity in the reductive alkylation reaction is: under different pH conditions, the dissociation constants (pKa ) are different, so the coupling reaction rates of epsilon amino group and alfa amino group and PEG aldehyde group (PEG-ALD) are different, and selectivity appears; The coupling reaction probability of PEG-ALD is more than 50 times that of the epsilon amino group on lysine; therefore, when the coupling reaction lasts for a long time, most of the PEG-ALD will be coupled to the rhG-CSF molecule N- On the terminal alfa amino group, a single, site-directed PEG-rhG-CSF compound is formed; thus, conditions for formation of a single, highly selective protein N-terminus include low pH and long reaction times, in addition to requiring relatively low PEG - ALD input amount. In fact, the coupling of PEG-ALD to amino groups of protein molecules can be accelerated under near-neutral, slightly alkaline or alkaline conditions, but at this time the selectivity of PEG-ALD to the N-terminus of the protein will be lost, and a multi-modified PEG will be formed. - a mixture of proteins.

在主要涉及PEG化偶联rhG-CSF的专利USP 5,824,784中,Kinstler OB对药用PEG-rhG-CSF分子特别保护了分子量在6kDa~25kDa(6,000-25,000道尔顿)的PEG分子与rhG-CSF的单一、N-末端氨基的偶联产物。同时,美国Amgen公司也开发出PEG化rhG-CSF新药(PEG-rhG-CSF),即Neulasta(pegfilgrastim),该新药产品是rhG-CSF蛋白N-末端偶联20kDa分子量PEG的化合物;Neulasta可实现一个化疗周期注射一针的疗效,且安全性上也与普通rhG-CSF(filgrastim)相当,但其单剂用量却高达6mg(6毫克),是大剂量普通rhG-CSF连续应用十天剂量总和的两倍(即300ug/剂/天×10×2=6mg),因此Neulasta在药品经济学上存在缺陷。然而本申请发明人所描述的一类长效制剂产物其PEG的分子量恰恰在此专利权利要求的范围之外,且令人意外的是本发明专利申请公布的一类PEG-rhG-CSF化合物分子,作为长效制剂与上述新药Neulasta(pegfilgrastim)相比,具药学上明显的长效、高效和低免疫原性等特征,故预计其临床应用剂量将显著低于Neulasta。In the patent USP 5,824,784 mainly related to PEGylation coupling rhG-CSF, Kinstler OB specially protected PEG molecules with a molecular weight of 6kDa~25kDa (6,000-25,000 Daltons) and rhG-CSF molecules for pharmaceutical PEG-rhG-CSF molecules. The coupling product of a single, N-terminal amino group. At the same time, Amgen Corporation of the United States has also developed a new PEGylated rhG-CSF drug (PEG-rhG-CSF), namely Neulasta (pegfilgrastim), which is a compound that is coupled to the N-terminus of the rhG-CSF protein with 20kDa molecular weight PEG; The curative effect of one injection in one chemotherapy cycle, and the safety is also comparable to common rhG-CSF (filgrastim), but its single dose is as high as 6 mg (6 mg), which is the total dose of high-dose common rhG-CSF for ten consecutive days Twice of that (ie 300ug/dose/day×10×2=6mg), so Neulasta has defects in pharmaceutical economics. However, the molecular weight of PEG of a class of long-acting preparation products described by the inventors of the present application is just outside the scope of this patent claim, and it is surprising that a class of PEG-rhG-CSF compound molecules published in the patent application of the present invention , as a long-acting preparation, compared with the above-mentioned new drug Neulasta (pegfilgrastim), it has the characteristics of pharmaceutically obvious long-acting, high efficiency and low immunogenicity, so its clinical application dose is expected to be significantly lower than Neulasta.

Fee CJ(USP 2006/0128945A1)公布了一种利用凝胶层析进行蛋白质PEG修饰的技术,提出由于蛋白质和PEG化蛋白质在凝胶层析流动相中的速率差异,使用层析柱进行PEG化偶联反应可能更易产生单一的偶联产物,但Fee CJ的方法〔6〕并未涉及需要添加催化剂的PEG化偶联反应,也非蛋白质N-末端的特异性偶联技术。最近Lee BK等〔5〕描述了利用一种固相PEG化技术点特异性修饰重组人干扰素alfa-2a(IFN a-2a)的方法,并获得了与IFN a-2a蛋白N-末端偶联的PEG-IFN,但此方法是通过使用与Kinstler OB等十分相似的催化反应条件才获得了蛋白N-末端高选择性的偶联产物,因此,从本质上讲,该方法仍然是依据上述还原性烷基化反应的原理,通过控制反应体系的pH值而使PEG-ALD高选择性偶联蛋白N-末端,且由于反应时间的限制使偶联反应率降低,出现较多的游离IFN a-2a;同时该法也并未涉及rhG-CSF的PEG偶联;更未如本发明申请所达到的效果,即利用加长的强阳离子交换层析同时实现PEG-ALD特异性rhG-CSF N-末端偶联与一步纯化获得单一、定点N-末端偶联PEG-rhG-CSF产物;此外,实验表明不同的介质、柱床高度和层析条件等因素均可显著影响层析柱点特异性偶联的结果,包括PEG偶联反应率、偶联位点、偶联产物及其种类以及终产物的分离效果等。Fee CJ (USP 2006/0128945A1) published a technology for protein PEG modification using gel chromatography, and proposed that due to the speed difference between protein and PEGylated protein in the mobile phase of gel chromatography, PEGylation using a chromatography column The coupling reaction may be easier to produce a single coupling product, but Fee CJ's method [6] does not involve the PEGylation coupling reaction that requires the addition of a catalyst, nor is it a specific coupling technology for the N-terminus of the protein. Recently, Lee BK et al. [5] described a method for point-specific modification of recombinant human interferon alfa-2a (IFN α-2a) using a solid-phase PEGylation technique, and obtained a method for coupling with the N-terminus of the IFN α-2a protein. However, this method obtains highly selective coupling products at the N-terminus of the protein by using catalytic reaction conditions very similar to those of Kinstler OB et al. Therefore, in essence, this method is still based on the above-mentioned The principle of reductive alkylation reaction, by controlling the pH value of the reaction system, PEG-ALD can be highly selectively coupled to the N-terminal of the protein, and due to the limitation of the reaction time, the coupling reaction rate is reduced, and more free IFN appears a-2a; at the same time, this method does not involve the PEG coupling of rhG-CSF; it is not as effective as the application of the present invention, that is, the use of extended strong cation exchange chromatography to simultaneously achieve PEG-ALD-specific rhG-CSF N -End coupling and one-step purification to obtain a single, site-specific N-terminal coupling PEG-rhG-CSF product; in addition, experiments have shown that factors such as different media, column bed heights, and chromatographic conditions can significantly affect the specificity of the chromatography column Coupling results, including PEG coupling reaction rate, coupling site, coupling product and its type, and separation effect of the final product, etc.

综上所述,体外PEG蛋白N-末端点特异性偶联反应有多种,其主要策略是通过提高PEG活化基团对N-末端alfa氨基的选择性而实现,而本发明则是通过离子交换层析将rhG-CSF分子上的赖氨酸epsilon氨基“封闭”而实现PEG-ALD与rhG-CSF N-末端蛋氨酸alfa氨基的特异性偶联,并同时实现PEG-rhG-CSF偶联产物的纯化。PEG偶联rhG-CSF而形成的PEG-rhG-CSF新分子种类繁多,其性质可有很大的差异,即使是PEG与rhG-CSF N-末端氨基的特异性偶联产物其性质也可能完全不同;就PEG分子而言,不同的分子量、不同的分子结构(单链、双链、多链)、不同的活性基团、甚或相同活性基团不同的碳原子个数(如丙醛、戊醛等)等都会显著影响偶联化合物分子的某些性质;就rhG-CSF分子而言,是否同时伴有其他偶联位点或是否含有某一赖氨基酸氨基的偶联产物等都可能会明显改变PEG-rhG-CSF的理化、药学和药理学的性质,这些改变包括,但不限于,蛋白质的稳定性、体内外活性、血浆半衰期、体内分布及其免疫原性或抗原性。因此,既往许多PEG偶联蛋白质或多肽的专利,包括Kinstler等的USP5,824,784/USP 5,985,265等,由于权利要求范围过于宽泛,使其中PEG偶联蛋白的性质差异很大甚或性质完全相反,大大影响了这些专利的实际应用价值与意义;更不能据此联想到本发明申请所涉及的采用柱层析的方法、以特异的、可控制的方式直接影响rhG-CSF的药学和药理学性质,并开发出与Neulasta(pegfilgrastim)相比,同时具备长效、高效和低免疫原性特征的新的长效制剂。In summary, there are many kinds of PEG protein N-terminal point-specific coupling reactions in vitro, and the main strategy is to improve the selectivity of the PEG activating group to the N-terminal alfa amino group. The lysine epsilon amino group on the rhG-CSF molecule is "blocked" by exchange chromatography to realize the specific coupling of PEG-ALD and the rhG-CSF N-terminal methionine alfa amino group, and simultaneously realize the PEG-rhG-CSF coupling product of purification. There are many kinds of PEG-rhG-CSF new molecules formed by coupling rhG-CSF with PEG, and their properties may vary greatly. Even the specific coupling products of PEG and rhG-CSF N-terminal amino groups may have completely different properties. Different; as far as PEG molecules are concerned, different molecular weights, different molecular structures (single-chain, double-chain, multi-chain), different active groups, or even different numbers of carbon atoms in the same active group (such as propionaldehyde, pentamethylene Aldehydes, etc.) will significantly affect some properties of the coupling compound molecule; as far as the rhG-CSF molecule is concerned, whether it is accompanied by other coupling sites or whether the coupling product contains a certain lysine amino group may be obvious. Change the physicochemical, pharmaceutical and pharmacological properties of PEG-rhG-CSF, these changes include, but not limited to, protein stability, in vivo and in vitro activities, plasma half-life, distribution in vivo and its immunogenicity or antigenicity. Therefore, many previous patents on PEG-coupling proteins or polypeptides, including Kinstler et al. The actual application value and significance of these patents; let alone the use of column chromatography involved in the application of the present invention to directly affect the pharmaceutical and pharmacological properties of rhG-CSF in a specific and controllable manner, and Compared with Neulasta (pegfilgrastim), a new long-acting preparation with long-acting, high-efficiency and low immunogenicity characteristics has been developed.

参考文献:references:

〔1〕Wetzel R,Halualani R,Stults JT,Quan C.A general method for highlyselective cross-linking of unprotected polypeptides via pH-controlledmodification of N-terminal a-amino groups.Bioconjugate Chemistry1990;1:114-122。〔1〕Wetzel R, Halualani R, Stults JT, Quan C.A general method for highlyselective cross-linking of unprotected polypeptides via pH-controlled modification of N-terminal a-amino groups. Bioconjugate Chemistry1990;1:114-122.

〔2〕Gaertner HF and Offord RE.Site-specific attachment of functionalizedpoly(ethylene glycol)to the amino terminus proteins.Bioconjugate Chemistry1996;7:38-44。[2] Gaertner HF and Offord RE. Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus proteins. Bioconjugate Chemistry 1996; 7: 38-44.

〔3〕Chang TK,Jackson DY,Burnier JP,Wells JA.Subtiligase:a tool forsemisynthesis of proteins.Proc National Acad Science 1994;91:12544-12548。[3] Chang TK, Jackson DY, Burnier JP, Wells JA. Subtiligase: a tool for semisynthesis of proteins. Proc National Acad Science 1994; 91: 12544-12548.

〔4〕Sato H,Yamamoto K,Hayashi E,Takahara Y.Transglutaminase-mediated dualand site-specific incorporation of poly(ethylene glycol)derivatives intochimeric interleukin-2.Bioconjugate Chem 2000;11:502-509。[4] Sato H, Yamamoto K, Hayashi E, Takahara Y. Transglutaminase-mediated dual and site-specific incorporation of poly(ethylene glycol) derivatives into chimeric interleukin-2. Bioconjugate Chem 2000;11:502-509.

〔5〕Lee BK,Kwon JS,Kim HJ,Yamamoto S and Lee EK.Solid-phase PEGylation ofrecombinant interferon a-2a for site-specific modification:processperformance,characterization,and in vitro bioactivity.Bioconjugate Chem.2007;18:1728-1734。[5] Lee BK, Kwon JS, Kim HJ, Yamamoto S and Lee EK. Solid-phase PEGylation of recombinant interferon a-2a for site-specific modification: process performance, characterization, and in vitro bioactivity. Bioconjugate Chem. 2007; 18: 1728 -1734.

〔6〕Fee CJ.Size-exclusion reaction chromatography(SERC):A New Technique forprotein PEGylation.Biotechnology and bioengineering 2003;82(2):200-206。[6] Fee CJ. Size-exclusion reaction chromatography (SERC): A New Technique for protein PEGylation. Biotechnology and bioengineering 2003; 82(2): 200-206.

发明内容 Contents of the invention

针对现有技术的不足,本发明的目的是提供一种柱层析聚乙二醇蛋白氮末端点特异性偶联的新方法,即柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,以及利用该方法所获得的一类聚乙二醇化重组人粒细胞集落刺激因子偶联化合物(PEG-rhG-CSF)及其作为一类具药学上长效、高效、低免疫原性特征的蛋白质化合物长效制剂的应用。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a new method for column chromatography polyethylene glycol protein nitrogen terminal point-specific coupling, that is, column chromatography granulocyte colony-stimulating factor nitrogen terminal point-specific coupling polyethylene glycol The method of diol, and a class of PEGylated recombinant human granulocyte colony-stimulating factor conjugated compound (PEG-rhG-CSF) obtained by the method and its pharmaceutically long-acting, high-efficiency, low-immunity compound Application of long-acting preparations of protein compounds with original characteristics.

发明概述(Summary of The Invention)Summary of The Invention

本发明首次公开了一种PEG与rhG-CSF蛋白N-末端点特异性偶联的新方法,即通过离子交换层析同时实现PEG与rhG-CSF蛋白N-末端点特异性偶联及其同步实现单一、定点PEG-rhG-CSF化合物的纯化。The present invention discloses for the first time a new method for specific coupling of PEG to the N-terminal point of rhG-CSF protein, that is, to realize the specific coupling and synchronization of PEG and rhG-CSF protein N-terminal point at the same time through ion exchange chromatography Enables purification of single, site-directed PEG-rhG-CSF compounds.

其中所述偶联方法中对PEG的选择条件是:可与蛋白质氨基偶联的各种活化的单甲基PEG(mPEG)分子,主要包括mPEG-ALD、PEG-琥珀酰亚胺α甲基丁酸酯(mPEG-Succinimidyl α-methylbutanoate,mPEG-SMB)、mPEG-琥珀酰亚胺丙酸酯(mPEG-Succinimidyl Propionate,mPEG-SPA)等各种mPEG-N-羟基琥珀酰亚胺活化酯(mPEG-N-Hydroxy succinimide active esters,mPEG-NHS ester),优选mPEG-ALD;mPEG的分子量大于25kDa,优选26~40kDa,最优选30kDa;mPEG分子可为单链、双链或多链,优选单链;mPEG-ALD,其分子式为mPEG-(CH2)r-CHO,其中r为1~3,r的更适范围为2~3,即mPEG-丙醛和mPEG-丁醛。The selection conditions for PEG in the coupling method are: various activated monomethyl PEG (mPEG) molecules that can be coupled with protein amino groups, mainly including mPEG-ALD, PEG-succinimide α-methylbutyl Various mPEG-N-hydroxysuccinimide activated esters (mPEG-Succinimidyl α-methylbutanoate, mPEG-SMB), mPEG-Succinimidyl propionate (mPEG-SPA), etc. -N-Hydroxy succinimide active esters, mPEG-NHS ester), preferably mPEG-ALD; the molecular weight of mPEG is greater than 25kDa, preferably 26-40kDa, most preferably 30kDa; mPEG molecules can be single-chain, double-chain or multi-chain, preferably single-chain ; mPEG-ALD, its molecular formula is mPEG-(CH 2 )r-CHO, wherein r is 1-3, and the more suitable range of r is 2-3, that is, mPEG-propionaldehyde and mPEG-butyraldehyde.

所述偶联方法中对rhG-CSF的选择条件是:rhG-CSF或rhG-CSF突变体(rhG-CSFm)的氨基酸序列应符合SEQ ID NO.1所示的氨基酸序列公式;其中所述rhG-CSFm为N-末端敲除1~10个氨基酸而N-末端氨基酸仍为蛋氨酸的rhG-CSF;本发明所述重组人粒细胞集落刺激因子(rhG-CSF)优先采用原核细胞表达体系即大肠杆菌高效表达;尚包括人工合成和各种其他原核细胞、真核细胞、昆虫、植物或动物表达体系;同时rhG-CSF/rhG-CSFm可以是全部的氨基酸序列组成的蛋白,也可以是经过突变的rhG-CSF序列组成的rhG-CSF变异体,甚或是部分氨基酸序列组成的rhG-CSF类似物,但其唯一的特征是:体外活性与rhG-CSF相当或不低于3×10E7IU/mg蛋白;上述各种rhG-CSF蛋白均在本发明所涉及的范围之内。The selection conditions for rhG-CSF in the coupling method are: the amino acid sequence of rhG-CSF or rhG-CSF mutant (rhG-CSFm) should meet the amino acid sequence formula shown in SEQ ID NO.1; wherein the rhG - CSFm is the rhG-CSF whose N-terminal amino acid is knocked out and the N-terminal amino acid is still methionine; the recombinant human granulocyte colony-stimulating factor (rhG-CSF) of the present invention is preferentially expressed in a prokaryotic cell expression system, namely the large intestine Bacillus high-efficiency expression; including artificial synthesis and various other prokaryotic cells, eukaryotic cells, insects, plants or animal expression systems; at the same time, rhG-CSF/rhG-CSFm can be a protein composed of the entire amino acid sequence, or it can be mutated RhG-CSF variants composed of rhG-CSF sequences, or even rhG-CSF analogs composed of partial amino acid sequences, but their only characteristic is: the in vitro activity is equivalent to that of rhG-CSF or not lower than 3×10E7IU/mg protein ; The various rhG-CSF proteins mentioned above are within the scope of the present invention.

所述偶联方法中的层析介质、柱及条件的选择条件是:1)层析介质可选用各种离子交换、疏水性、凝胶和亲和等层析介质,其中优选阳离子交换介质,如MacroCap SP、Sepharose Fast Flow等;2)层析柱柱床高度优选推荐柱高的上限;3)rhG-CSF蛋白的上样量为介质实测最大载量的30-50%;4)以较低的上样流速、较长的上样时间(3~5小时)、较高反应率的pH值上样活化的mPEG,以获得更适宜的PEG化反应条件;5)活化的mPEG的上样量按活化的mPEG与rhG-CSF的反应量比为1~50mol∶1mol进行,优选2~20mol∶1mol,以利于单修饰的PEG-rhG-CSF的生成;6)以0.5M~1M氯化钠盐溶液梯度洗脱,以利各反应产物的有效分离,结果如图1所示。The selection conditions of chromatographic medium, column and condition in the coupling method are: 1) chromatographic medium can be selected various chromatographic mediums such as ion exchange, hydrophobicity, gel and affinity, wherein preferred cation exchange medium, such as MacroCap SP, Sepharose Fast Flow, etc.; 2) The height of the chromatographic column bed is preferably the upper limit of the recommended column height; 3) The loading of rhG-CSF protein is 30-50% of the maximum capacity of the medium measured; 4) A lower The sample loading flow rate, longer sample loading time (3-5 hours), higher reaction rate pH value loading activated mPEG, to obtain more suitable PEGylation reaction conditions; 5) loading amount of activated mPEG The reaction volume ratio of activated mPEG and rhG-CSF is 1-50mol: 1mol, preferably 2-20mol: 1mol, so as to facilitate the generation of single-modified PEG-rhG-CSF; 6) with 0.5M-1M sodium chloride Gradient elution of salt solution was used to facilitate the effective separation of the reaction products. The results are shown in Figure 1.

经上述条件的方法获得的单修饰PEG-rhG-CSF洗脱峰样品经液质联用胰蛋白酶酶解肽图分析,重要而出乎意外地发现:活化的PEG的偶联位点为rh-CSF的N-末端,如30kDa、40kDa或20kDa分子量的PEG-ALD均可与rhG-CSF蛋白N-末端形成单一、定点的特异性偶联产物,即PG-N-30,PG-N-40,PG-N-20(详见实施例3);且单修饰PEG-rhG-CSF洗脱峰样品的纯度经高效凝胶色谱(SEC)和高效液相色谱(HPLC)测定证实其纯度大于95%,如图3,图4所示。The single-modified PEG-rhG-CSF elution peak sample obtained by the above-mentioned method was analyzed by liquid chromatography-mass chromatography with trypsin digestion peptide map, and it was important and unexpected to find that the coupling site of the activated PEG is rh- The N-terminal of CSF, such as PEG-ALD with a molecular weight of 30kDa, 40kDa or 20kDa, can form a single, site-specific specific coupling product with the N-terminal of rhG-CSF protein, namely PG-N-30, PG-N-40 , PG-N-20 (see Example 3 for details); and the purity of the single-modified PEG-rhG-CSF elution peak sample confirms that its purity is greater than 95 through high-performance gel chromatography (SEC) and high-performance liquid chromatography (HPLC). %, as shown in Figure 3 and Figure 4.

本发明还发现,选用mPEG-ALD,仅将上述反应体系的pH值下调到4.0,可使单修饰PEG-rhG-CSF洗脱峰面积占总洗脱峰面积显著降低为62%,未反应rhG-CSF洗脱峰占总洗脱峰面积可显著增加达38%,多修饰PEG-rhG-CSF洗脱峰消失;单修饰PEG-rhG-CSF洗脱峰的样品经液质联用胰蛋白酶酶解肽图分析确定PEG-ALD的偶联位点仍为rh-CSF的N-末端;提示在上述离子交换层析条件下,酸性pH值条件并非PEG-ALD选择性偶联rh-CSF N-末端的主要因素;The present invention also found that by selecting mPEG-ALD and only lowering the pH value of the above reaction system to 4.0, the elution peak area of single-modified PEG-rhG-CSF can be significantly reduced to 62% of the total elution peak area, and the unreacted rhG - The CSF elution peak accounted for a significant increase of 38% in the total elution peak area, and the elution peak of multi-modified PEG-rhG-CSF disappeared; Peptide map analysis confirmed that the coupling site of PEG-ALD was still the N-terminal of rh-CSF; it suggested that under the above ion-exchange chromatography conditions, acidic pH conditions were not the selective coupling of PEG-ALD to rh-CSF N- main factor at the end;

同样方法,选用可与蛋白质氨酸反应的PEG-ALD和PEG-NHS ester(聚乙二醇N-羟基琥珀酰亚胺活化酯)修饰剂,采用上述阳离子交换层析,反应体系的pH值分别在5.0~6.0和6.0~7.0,均可获得峰面积大于90%的PEG与rh-CSF的N-末端单一、定点偶联产物(如图1和图5所示);In the same way, select PEG-ALD and PEG-NHS ester (polyethylene glycol N-hydroxysuccinimide activated ester) modifiers that can react with protein amino acid, and adopt the above-mentioned cation exchange chromatography, and the pH values of the reaction system are respectively At 5.0-6.0 and 6.0-7.0, the N-terminal single and fixed-point coupling products of PEG and rh-CSF with a peak area greater than 90% can be obtained (as shown in Figure 1 and Figure 5);

在液相中,采用与上述层析柱PEG化反应相同的反应物比例、条件和持续时间,mPEG-ALD和mPEG-SPA与rhG-CSF的偶联反应产物,经高效凝胶测定表明,通常仅有约23%~45%为单修饰的PEG-rhG-CSF,其余36%~47%为多修饰PEG-rhG-CSF化合物;19~30%未反应的rhG-CSF,与层析柱上PEG化偶联反应产物比例明显不同;In the liquid phase, using the same ratio of reactants, conditions and duration as the PEGylation reaction of the above-mentioned chromatography column, the coupling reaction products of mPEG-ALD and mPEG-SPA and rhG-CSF were determined by high-efficiency gel, usually Only about 23%-45% are single-modified PEG-rhG-CSF, and the remaining 36%-47% are multi-modified PEG-rhG-CSF compounds; 19-30% unreacted rhG-CSF, with the column The product ratio of PEGylation coupling reaction is obviously different;

本发明通过上述实验令人意外地发现:在一定条件下,阳离子交换介质吸附rhG-CSF蛋白,并可“封闭”位于rhG-CSF分子表面的赖氨酸epsilon氨基,从而使PEG-ALD或PEG-NHS特异性偶联rhG-CSF分子N-末端蛋氨酸的alfa氨基,形成单一、N-末端定点PEG-rhG-CSF,如PG-N-30等(30kDa PEG-ALD与rhG-CSF蛋白N-末端单一、定点特异性偶联产物)。与此同时,所收集到的单一、N-末端定点PEG-rhG-CSF化合物的纯度大于95%以上(如图2,图3所示);说明层析柱PEG化反应可同步实现特异性rhG-CSF N-末端单一、定点偶联,以及PEG-rhG-CSF偶联化合物的纯化。The present invention surprisingly found through the above experiments: under certain conditions, the cation exchange medium adsorbs rhG-CSF protein, and can "block" the lysine epsilon amino group located on the surface of rhG-CSF molecules, so that PEG-ALD or PEG -NHS is specifically coupled to the alfa amino group of the N-terminal methionine of rhG-CSF molecules to form a single, N-terminal-directed PEG-rhG-CSF, such as PG-N-30 (30kDa PEG-ALD and rhG-CSF protein N- single-terminal, site-specific coupling product). At the same time, the purity of the collected single, N-terminal site-directed PEG-rhG-CSF compound is greater than 95% (as shown in Figure 2 and Figure 3); it shows that the PEGylation reaction of the chromatography column can simultaneously realize the specific rhG -CSF N-terminal single, site-specific coupling, and purification of PEG-rhG-CSF coupling compounds.

发明详述(Detailed Description of The Invention)Detailed Description of The Invention

本发明所述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,步骤包括:The method for column chromatography of the present invention to couple the nitrogen terminal of granulocyte colony-stimulating factor with fixed-point coupling to polyethylene glycol, the steps include:

选择阳离子交换介质,装载于层析色谱柱中,柱床高度为常规推荐高度的上限,并将其连接到液相层析系统上;使用相当于5~6倍柱体积的pH 3.5~6.0的20mM醋酸钠缓冲液和质量百分比为0.005%聚山梨醇酯80充分平衡色谱柱;用进料泵,以8~10ml/min的流速,将rhG-CSF或rhG-CSFm原液加入层析柱中,上样量为介质实测最大载量的10%~70%;再在13~15ml/min的流速下,用5~6倍柱体积的pH 3.5~6.0的20mM醋酸钠缓冲液冲洗柱子,去除不与色谱介质发生静电吸附的物质;按mPEG∶rhG-CSF或rhG-CSFm的反应量比为1~50mol∶1mol的比例,以0.5~3ml/min的流速上样加入分子量范围为26~40kDa的单甲基PEG,所述不同分子量的mPEG投入总量X按公式(1)计算:Select the cation exchange medium, load it in the chromatographic column, the height of the column bed is the upper limit of the conventional recommended height, and connect it to the liquid chromatography system; 20mM sodium acetate buffer solution and 0.005% polysorbate 80 by mass percentage are fully balanced chromatographic column; use a feed pump to add rhG-CSF or rhG-CSFm stock solution into the chromatographic column at a flow rate of 8-10ml/min, The amount of sample loaded is 10% to 70% of the maximum capacity of the medium measured; then at a flow rate of 13 to 15ml/min, wash the column with 5 to 6 times the column volume of 20mM sodium acetate buffer solution with a pH of 3.5 to 6.0 to remove excess Substances that undergo electrostatic adsorption with the chromatographic medium; according to the reaction volume ratio of mPEG:rhG-CSF or rhG-CSFm at a ratio of 1 to 50mol:1mol, add a sample with a molecular weight range of 26 to 40kDa at a flow rate of 0.5 to 3ml/min Monomethyl PEG, the mPEG input total amount X of described different molecular weights is calculated by formula (1):

(1)X=5~50×m×MWPEG/MWG-CSF (1) X=5~50×m×MW PEG /MW G-CSF

式中:X为不同分子量的mPEG投入总量,m为加入的rhG-CSF蛋白含量,MWPEG和MWG-CSF分别为mPEG和G-CSF的分子量;In the formula: X is the total input amount of mPEG with different molecular weights, m is the protein content of rhG-CSF added, MW PEG and MW G-CSF are the molecular weights of mPEG and G-CSF respectively;

再按公式(2)计算还原剂氰基硼氢化钠的加入量:Then calculate the add-on of reducing agent sodium cyanoborohydride by formula (2):

(2)NaBH3CN加入量=10×MW还原剂×X/MWPEG (2) NaBH 3 CN addition amount = 10×MW reducing agent ×X/MW PEG

式中:MW还原剂为还原剂氰基硼氢化钠的分子量,X为不同分子量的mPEG投入总量,MWPEG为mPEG的分子量;In the formula: MW reducing agent is the molecular weight of the reducing agent sodium cyanoborohydride, X is the total amount of mPEG input with different molecular weights, and MW PEG is the molecular weight of mPEG;

连续上样240±5分钟;反应体系的pH为3.5~6.0;再以13~15ml/min的流速,用5~6倍柱体积的pH 3.5~6.0的20mM醋酸钠缓冲液冲洗柱子,去除不与色谱介质发生静电吸附的物质;随后用pH 3.5~6.0的20mM醋酸钠缓冲液与0.5M~1M氯化钠的混合液,以洗脱方式0~8%、8%~18%和18%~100%洗脱,持续150±2分钟,获得三个洗脱峰,即P1,P2和P3,分别是多修饰PEG-rhG-CSF、单修饰PEG-rhG-CSF和未反应rhG-CSF洗脱峰,其中P2的峰面积占总峰面积的90±1%,为单修饰的PEG-rhG-CSF或PEG-rhG-CSFm,即聚乙二醇与rhG-CSF或rhG-CSFm蛋白N-末端单一、定点特异性偶联化合物;Load the sample continuously for 240±5 minutes; the pH of the reaction system is 3.5-6.0; then wash the column with 5-6 column volumes of 20mM sodium acetate buffer solution with a pH of 3.5-6.0 at a flow rate of 13-15ml/min to remove excess Substances that undergo electrostatic adsorption with chromatographic media; then use a mixture of 20mM sodium acetate buffer with pH 3.5 to 6.0 and 0.5M to 1M sodium chloride in the elution mode of 0 to 8%, 8% to 18% and 18% ~100% elution lasted for 150±2 minutes, and three elution peaks were obtained, namely P1, P2 and P3, which were multi-modified PEG-rhG-CSF, single-modified PEG-rhG-CSF and unreacted rhG-CSF respectively. Peak off, wherein the peak area of P2 accounts for 90±1% of the total peak area, which is a single modified PEG-rhG-CSF or PEG-rhG-CSFm, that is, polyethylene glycol and rhG-CSF or rhG-CSFm protein N- Single-terminal, site-specific coupling compounds;

其中:in:

上述rhG-CSF或rhG-CSFm的氨基酸序列应符合SEQ ID NO.1所示的氨基酸序列公式。The amino acid sequence of the above rhG-CSF or rhG-CSFm should conform to the amino acid sequence formula shown in SEQ ID NO.1.

所述SEQ ID NO.1氨基酸序列公式如下:The amino acid sequence formula of said SEQ ID NO.1 is as follows:

-1  -2  -3  -4  -5  -6  -7  -8  -9  -10-1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa XaaXaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa

Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu LeuMet Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu

                 5                  10                  155 10 15

Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala LeuLys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu

            20                  25                  3020 25 30

Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu LeuGln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu

        35                  40                  4535 40 45

Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser SerVal Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser

    50                  55                  6050 55 60

Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HisCys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His

65                  70                  75                  8065 70 75 80

Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly IleSer Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile

                85                  90                  9585 90 95

Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val AlaSer Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala

            100                 105                 110100 105 110

Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met AlaAsp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala

        115                 120                 125115 120 125

Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser AlaPro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala

    130                 135                 140130 135 140

Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln SerPhe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser

145                 150                 155                 160145 150 155 160

Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro ***Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro ***

                165                 170                 175165 170 175

其中所述rhG-CSFm为N-末端敲除1~10位氨基酸而N-末端氨基酸仍为蛋氨酸的rhG-CSF。Wherein the rhG-CSFm is the rhG-CSF whose N-terminal amino acids 1-10 are deleted and the N-terminal amino acid is still methionine.

rhG-CSF由175个氨基酸组成,所述的rhG-CSF突变体(rhG-CSFm)即指N-末端有1~10个氨基酸缺失而N-末端氨基酸仍为蛋氨酸的rhG-CSF。上述氨基酸序列公式中,-10Xaa为N-末端10个氨基酸缺失,即rhG-CSF-165;-9Xaa为N-末端9个氨基酸缺失,即rhG-CSF-166;-8Xaa为N-末端8个氨基酸缺失,即rhG-CSF-167;-7Xaa为N-末端7个氨基酸缺失,即rhG-CSF-168;-6Xaa为N-末端6个氨基酸缺失,即rhG-CSF-169;-5Xaa为N-末端5个氨基酸缺失,即rhG-CSF-170;-4Xaa为N-末端4个氨基酸缺失,即rhG-CSF-171;-3Xaa为N-末端3个氨基酸缺失,即rhG-CSF-172;-2Xaa为N-末端2个氨基酸缺失,即rhG-CSF-173;-1Xaa为N-末端1个氨基酸缺失,即rhG-CSF-174。rhG-CSF consists of 175 amino acids, and the rhG-CSF mutant (rhG-CSFm) refers to rhG-CSF with 1-10 amino acid deletions at the N-terminal and methionine as the N-terminal amino acid. In the above amino acid sequence formula, -10Xaa is the deletion of 10 amino acids at the N-terminal, namely rhG-CSF-165; -9Xaa is the deletion of 9 amino acids at the N-terminal, namely rhG-CSF-166; -8Xaa is the deletion of 8 amino acids at the N-terminal Amino acid deletion, that is rhG-CSF-167; -7Xaa is N-terminal 7 amino acid deletion, that is rhG-CSF-168; -6Xaa is N-terminal 6 amino acid deletion, that is rhG-CSF-169; -5Xaa is N -Deletion of 5 amino acids at the end, i.e. rhG-CSF-170; -4Xaa, deletion of 4 amino acids at the N-terminus, i.e. rhG-CSF-171; -3Xaa, deletion of 3 amino acids at the N-terminus, i.e. rhG-CSF-172; -2Xaa is the deletion of 2 amino acids at the N-terminal, namely rhG-CSF-173; -1Xaa is the deletion of 1 amino acid at the N-terminal, namely rhG-CSF-174.

上述单甲基PEG指可与蛋白质氨基偶联的各种活化的单甲基PEG分子,优选mPEG-ALD或mPEG-N-羟基琥珀酰亚胺活化酯中的PEG-琥珀酰亚胺α甲基丁酸酯或mPEG-琥珀酰亚胺丙酸酯。The above monomethyl PEG refers to various activated monomethyl PEG molecules that can be coupled to protein amino groups, preferably PEG-succinimide α-methyl in mPEG-ALD or mPEG-N-hydroxysuccinimide activated ester butyrate or mPEG-succinimidyl propionate.

进一步的,上述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法中:Further, in the above-mentioned method of column chromatography granulocyte colony-stimulating factor nitrogen-terminal-specific coupling of polyethylene glycol:

所述阳离子交换介质优选MacroCap SP或Sepharose Fast Flow。The cation exchange medium is preferably MacroCap SP or Sepharose Fast Flow.

所述rhG-CSF或rhG-CSFm优选采用原核细胞表达体系中的大肠杆菌表达制备。The rhG-CSF or rhG-CSFm is preferably prepared by expression in Escherichia coli in a prokaryotic cell expression system.

所述rhG-CSF或rhG-CSFm的上样量优选为介质实测最大载量的30-50%。The loading amount of the rhG-CSF or rhG-CSFm is preferably 30-50% of the measured maximum load of the medium.

所述单甲基PEG的分子量优选30kDa;mPEG分子优选单链;所述单甲基PEG的上样量按mPEG∶rhG-CSF或rhG-CSFm的反应量比优选为2~20mol∶1mol的比例。The molecular weight of the monomethyl PEG is preferably 30kDa; the mPEG molecule is preferably a single chain; the loading amount of the monomethyl PEG is preferably a ratio of 2 to 20 mol: 1 mol according to the reaction volume ratio of mPEG: rhG-CSF or rhG-CSFm .

所述单甲基PEG优选mPEG-ALD;其分子式为mPEG-(CH2)r-CHO,其中r选2~3,即mPEG-丙醛或mPEG-丁醛。The monomethyl PEG is preferably mPEG-ALD; its molecular formula is mPEG-(CH 2 )r-CHO, wherein r is selected from 2 to 3, that is, mPEG-propionaldehyde or mPEG-butyraldehyde.

其中mPEG-丙醛的分子结构式如下所示;Wherein the molecular structural formula of mPEG-propionaldehyde is as follows;

其中mPEG-丁醛的分子结构式如下所示;Wherein the molecular structural formula of mPEG-butyraldehyde is as follows;

Figure A20091001371000102
Figure A20091001371000102

所述柱层析rhG-CSF或rhG-CSFm氮端定点偶联单甲基PEG的反应体系的pH优选为5.0~6.0。The pH of the reaction system of column chromatography rhG-CSF or rhG-CSFm nitrogen-terminally coupled monomethyl PEG is preferably 5.0-6.0.

本发明所述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇方法制得的一类聚乙二醇化重组人粒细胞集落刺激因子,其特征在于:所述聚乙二醇化的重组人粒细胞集落刺激因子分子结构式为:A kind of PEGylated recombinant human granulocyte colony-stimulating factor prepared by column chromatography granulocyte colony-stimulating factor nitrogen terminal fixed-point coupling polyethylene glycol method, characterized in that: the PEGylated The molecular structural formula of recombinant human granulocyte colony-stimulating factor is:

CH3-(CH2CH2-O)n-(CH2)r-NH-rhG-CSF或CH3-(CH2-CH2-O)n-(CH2)r-NH-rhG-CSFm,CH 3 -(CH 2 CH 2 -O)n-(CH 2 )r-NH-rhG-CSF or CH 3 -(CH 2 -CH 2 -O)n-(CH 2 )r-NH-rhG-CSFm ,

式中n为570~2200,r为1~3;同时所述聚乙二醇化重组人粒细胞集落刺激因子还应具备下列特征:In the formula, n is 570-2200, r is 1-3; at the same time, the pegylated recombinant human granulocyte colony-stimulating factor should also have the following characteristics:

1)rhG-CSF或rhG-CSFm与mPEG偶联的分子比例为1∶1,偶联位点为rhG-CSF或rhG-CSFm分子N-末端氨基;1) The molecular ratio of rhG-CSF or rhG-CSFm to mPEG coupling is 1:1, and the coupling site is the N-terminal amino group of rhG-CSF or rhG-CSFm molecule;

2)在体外抗酶解试验中:将胰蛋白酶与PEG-rhG-CSF或PEG-rhG-CSFm在37℃共同孵育4小时,取样经SDS-PAGE法测定,PEG-rhG-CSF或PEG-rhG-CSFm的酶解百分比应低于50%;2) In the in vitro anti-enzyme test: incubate trypsin with PEG-rhG-CSF or PEG-rhG-CSFm at 37°C for 4 hours, take samples and determine by SDS-PAGE method, PEG-rhG-CSF or PEG-rhG - The percentage of enzymatic hydrolysis of CSFm should be less than 50%;

3)在比活性测定中,以Lowry法测定待测PEG-rhG-CSF或PEG-rhG-CSFm的蛋白浓度,NFS60细胞/MTT法测体外活性,计算出每毫克蛋白的活性即得比活性,PEG-rhG-CSF或PEG-rhG-CSFm的比活性应大于或等于2.0X10E7U/mg蛋白;3) In the determination of specific activity, the Lowry method is used to measure the protein concentration of PEG-rhG-CSF or PEG-rhG-CSFm to be tested, the NFS60 cell/MTT method is used to measure the in vitro activity, and the activity per mg of protein is calculated to obtain the specific activity. The specific activity of PEG-rhG-CSF or PEG-rhG-CSFm should be greater than or equal to 2.0X10E7U/mg protein;

4)PEG-rhG-CSF或PEG-rhG-CSFm的血浆半衰期应比Pegfilgrastim(20kDaPEG-ALD与rhG-CSF N-末端偶联产物,即PG-N-20)的血浆清除半衰期长50%以上;4) The plasma half-life of PEG-rhG-CSF or PEG-rhG-CSFm should be more than 50% longer than the plasma elimination half-life of Pegfilgrastim (20kDa PEG-ALD and rhG-CSF N-terminal coupling product, namely PG-N-20);

5)在免疫原性测定中,PEG-rhG-CSF或PEG-rhG-CSFm在第12周rhG-CSF抗体阳性率应小于20%。5) In the assay of immunogenicity, the positive rate of PEG-rhG-CSF or PEG-rhG-CSFm at week 12 should be less than 20%.

其中:上述聚乙二醇化的重组人粒细胞集落刺激因子分子式中所述n为570~1000,n的更适范围为700±100;r更适范围为2~3。Wherein: n in the molecular formula of the above pegylated recombinant human granulocyte colony-stimulating factor is 570-1000, the more suitable range of n is 700±100; the more suitable range of r is 2-3.

本发明所述方法制备的一类聚乙二醇化重组人粒细胞集落刺激因子同时具备分子量和分子结构上的均一性,是单链、单一大分子PEG与rhG-CSF或PEG-rhG-CSFm N-末端定点偶联产物;所述聚乙二醇化重组人粒细胞集落刺激因子首选分子量30kDaPEG-ALD与rhG-CSF N-末端定点偶联产物,即PG-N-30分子。A class of PEGylated recombinant human granulocyte colony-stimulating factor prepared by the method of the present invention has both molecular weight and molecular structure uniformity, and is a single-chain, single macromolecule PEG and rhG-CSF or PEG-rhG-CSFmN -Terminal site-specific coupling product; the preferred molecular weight 30kDa PEG-ALD and rhG-CSF N-terminal site-specific coupling product of the PEGylated recombinant human granulocyte colony-stimulating factor is PG-N-30 molecule.

本发明所述方法制备的一类聚乙二醇化重组人粒细胞集落刺激因子在体外溶解性和抗酶解性稳定性上明显优于普通rhG-CSF,在体外细胞活性上大于或等于2.0X10E7U/mg蛋白;在体内应用时,与上述Neulasta(Pegfilgrastim,20kDa PEG-ALD与rhG-CSF N-末端偶联产物,即PG-N-20)相比,具有血浆半衰期明显延长、体内活性明显增高和免疫原性降低等长效制剂药代动力学与药效学特征;在粒细胞减少的动物模型上,采用每日连续给药的模式,达到等效水平的PG-N-30的用量低于普通rhG-CSF用量的10倍;采用一个化疗周期注射一针的给药模式,PG-N-30的疗效明显优于PG-N-20,达到相同的有效性PG-N-30的给药剂量可显著低于PG-N-20用量的2倍以上。基于此,本发明所述一类聚乙二醇化重组人粒细胞集落刺激因子,如PG-N-30和PGm-N-30(30kDaPEG-ALD与rhG-CSFm蛋白N-末端定点偶联产物),同时具备长效、高效和低免疫原性的特征,在每日连续应用或一个化疗周期应用一次的治疗模式上,均能表现出很好的比较优势,但从药品经济学的角度,每日连续给药或较短给药间隔的给药方式可能是更优的治疗模式。A class of pegylated recombinant human granulocyte colony-stimulating factor prepared by the method of the present invention is significantly better than ordinary rhG-CSF in in vitro solubility and resistance to enzymolysis, and its in vitro cell activity is greater than or equal to 2.0X10E7U /mg protein; when used in vivo, compared with the above-mentioned Neulasta (Pegfilgrastim, 20kDa PEG-ALD and rhG-CSF N-terminal coupling product, namely PG-N-20), it has significantly prolonged plasma half-life and significantly increased in vivo activity Pharmacokinetics and pharmacodynamics characteristics of long-acting preparations such as reduced immunogenicity and reduced immunogenicity; in animal models of granulocytopenia, the dosage of PG-N-30 to achieve equivalent levels is low by adopting the mode of daily continuous administration. 10 times the amount of common rhG-CSF; using the administration mode of injecting one injection in one chemotherapy cycle, the curative effect of PG-N-30 is significantly better than that of PG-N-20, achieving the same effectiveness as the administration of PG-N-30 The dosage can be significantly lower than 2 times of the dosage of PG-N-20. Based on this, a class of pegylated recombinant human granulocyte colony-stimulating factor of the present invention, such as PG-N-30 and PGm-N-30 (30kDa PEG-ALD and rhG-CSFm protein N-terminal site-specific coupling product) , has the characteristics of long-acting, high efficiency and low immunogenicity at the same time, and can show a good comparative advantage in the treatment mode of daily continuous application or once in a chemotherapy cycle, but from the perspective of pharmaceutical economics, each Daily continuous administration or administration with shorter dosing intervals may be a better treatment mode.

本发明所述聚乙二醇化重组人粒细胞集落刺激因子在制备用于防治因肿瘤或白血病化疗所致的粒细胞减少症、骨髓及外周血干细胞移植以及原发性慢性粒细胞减少症的胃肠外制剂类药物中的应用。The PEGylated recombinant human granulocyte colony-stimulating factor of the present invention is used in the preparation and treatment of granulocytopenia caused by tumor or leukemia chemotherapy, bone marrow and peripheral blood stem cell transplantation, and primary chronic granulocytopenia. Application in parenteral preparations.

进一步实现的用于防治因肿瘤或白血病化疗所致的粒细胞减少症、骨髓及外周血干细胞移植以及原发性慢性粒细胞减少症的胃肠外制剂,其中含有治疗有效量的本发明所述聚乙二醇化重组人粒细胞集落刺激因子和药学上可接受的载体。A further realized parenteral preparation for preventing and treating neutropenia caused by tumor or leukemia chemotherapy, bone marrow and peripheral blood stem cell transplantation and primary chronic neutropenia, which contains a therapeutically effective amount of the present invention Pegylated recombinant human granulocyte colony-stimulating factor and a pharmaceutically acceptable carrier.

本发明所述由PEG-rhG-CSF或PEG-rhG-CSFm分子制成的胃肠外制剂,明显具备长效、高效和低免疫原性的特征,可实现1-4周注射一次,或可实现一个治疗周期(疗程)用药一次的临床应用模式,执行通常所述的长效制剂功能;然而药效学试验发现随着PEG-rhG-CSF如PG-N-30给药间隔的逐渐加大(如间隔1天、2天等),要达到与连续应用rhG-CSF相当的疗效,PG-N-30的给药剂量需要成倍增加,要实现一个化疗周期注射一针的给药模式,PG-N-30的给药剂量甚或要达到连续应用rhG-CSF总量的5倍(详见表6-2,表7),这一结果大大出乎意外,这表明体内仍存在强大的PG-N-30清除机制,一个化疗周期应用一次或较长给药间隔的治疗模式远非经济的或最佳的给药模式,因此每日连续给药或较短给药间隔的给药方式可能是更优的治疗模式。The parenteral preparation made of PEG-rhG-CSF or PEG-rhG-CSFm molecules of the present invention obviously has the characteristics of long-acting, high efficiency and low immunogenicity, and can be injected once every 1-4 weeks, or can be Realize the clinical application mode of taking medicine once in a treatment cycle (course of treatment), and perform the functions of long-acting preparations as described in general; (such as intervals of 1 day, 2 days, etc.), to achieve the same curative effect as continuous application of rhG-CSF, the dosage of PG-N-30 needs to be doubled, and to realize the administration mode of one injection per chemotherapy cycle, The dosage of PG-N-30 may even reach 5 times of the total amount of continuous application of rhG-CSF (see Table 6-2, Table 7 for details). This result is quite unexpected, which shows that there is still a strong PG -N-30 clearance mechanism, a single or longer dosing interval in a chemotherapy cycle is far from economical or optimal, so continuous daily dosing or shorter dosing intervals may is a better treatment modality.

试验证实:采用每天连续注射的治疗模式,PEG-rhG-CSF或PEG-rhG-CSFm连续应用的剂量显著低于普通rhG-CSF;根据应用指征与治疗目的的不同,作为长效制剂一次应用或采用每天连续注射治疗的PEG-rhG-CSF或PEG-rhG-CSFm的剂量在0.1ug~300ug/kg体重/1天~4周。Experiments have confirmed that: with the treatment mode of continuous daily injection, the dose of PEG-rhG-CSF or PEG-rhG-CSFm continuously applied is significantly lower than that of ordinary rhG-CSF; according to the different application indications and therapeutic purposes, it can be used once as a long-acting preparation Or the dose of PEG-rhG-CSF or PEG-rhG-CSFm treated by daily continuous injection is 0.1ug~300ug/kg body weight/1 day~4 weeks.

上述rhG-CSF或rhG-CSFm采用原核细胞表达体系(大肠杆菌)的表达制备:The above rhG-CSF or rhG-CSFm is prepared by expression of prokaryotic cell expression system (Escherichia coli):

rhG-CSF和rhG-CSFm基因克隆与高效表达Cloning and high-level expression of rhG-CSF and rhG-CSFm genes

取人新鲜骨髓细胞进行培养,以美洲商陆分裂素(PWN mitogen)进行激活。提取人骨髓细胞mRNA,RT-PCR方法扩增得到hG-CSF基因。应用多维多参数核苷酸链分析技术,对人G-CSF mRNA原序列进行全面详细分析处理,找到G-CSF mRNA原序中基因阻遏片段,使用PCR和定点突变的方法修改人天然G-CSF基因序列(不改变其编码氨基酸序列)使其适宜于细菌体内表达,将修改后的基因构建在pMD18-T载体上,载体转化到Top10菌株中保存。Human fresh bone marrow cells were cultured and activated with pokeweed mitogen (PWN mitogen). Human bone marrow cell mRNA was extracted, and hG-CSF gene was amplified by RT-PCR method. Apply multi-dimensional and multi-parameter nucleotide chain analysis technology to analyze and process the human G-CSF mRNA original sequence in detail, find the gene repression fragment in the G-CSF mRNA original sequence, and use PCR and site-directed mutagenesis to modify human natural G-CSF The gene sequence (without changing its coded amino acid sequence) makes it suitable for expression in bacteria. The modified gene is constructed on the pMD18-T vector, and the vector is transformed into the Top10 strain for preservation.

以修改的rhG-CSF基因为模板,利用PCR(聚合酶链式反应)体外扩增rhG-CSF基因。基因经过Nde I和EcoR I酶切,克隆入大肠杆菌表达载体,并验证质粒的正确性。重组质粒命名为vector-rhG-CSF。Using the modified rhG-CSF gene as a template, the rhG-CSF gene was amplified in vitro by PCR (polymerase chain reaction). The gene was digested with Nde I and EcoRI, cloned into the expression vector of Escherichia coli, and the correctness of the plasmid was verified. The recombinant plasmid was named vector-rhG-CSF.

将重组质粒vector-rhG-CSF转化入大肠杆菌BL21(DE3)pLysS。筛选高效表达目标蛋白rhG-CSF的菌株。The recombinant plasmid vector-rhG-CSF was transformed into Escherichia coli BL21(DE3)pLysS. Screen the strains that highly express the target protein rhG-CSF.

rhG-CSF和rhG-CSFm的制备Preparation of rhG-CSF and rhG-CSFm

rhG-CSF大肠杆菌工程菌株经高密度发酵培养、发酵后处理、rhG-CSF蛋白包涵体洗涤、复性及分离纯化等工艺(详见实施例1),获得高纯度的rhG-CSF或rhG-CSFm蛋白。The rhG-CSF Escherichia coli engineering strain was subjected to high-density fermentation culture, post-fermentation treatment, rhG-CSF protein inclusion body washing, renaturation, separation and purification (see Example 1 for details), to obtain high-purity rhG-CSF or rhG- CSFm protein.

在严格无菌操作下,将rhG-CSF大肠杆菌工程菌接种于LB/Amp平板培养,倒置于细菌培养箱中37℃培养12-15小时;选取单一菌落,转接在12ml LB/Amp培养试管中,37℃250rpm振荡培养12小时;取10ml发酵液转接在1000ml LB/Amp发酵液中摇瓶培养(37℃,250rpm振荡),当菌液浓度达OD600 1.5~2.5时;再接种于15升发酵罐中培养(每升发酵液含胰蛋白胨12克、酵母浸膏24克、磷酸二氢钾3.8克、磷酸氢二钾12.5克、硫酸镁0.5克、甘油6.3克、纯水0.9升、葡萄糖20克和氨苄青霉素0.1克);设发酵参数为温度37℃、pH7.0、溶氧35%及搅拌转速与溶氧联动。当OD600值达20时,为工程菌对数增长的中期,加入IPTG诱导,持续2小时后终止发酵。冷却发酵液,使其降温至4-8℃。用大容量低温冷冻低速离心机4000rpm离心菌液30分钟,收集菌体。Under strict aseptic operation, inoculate rhG-CSF Escherichia coli engineered bacteria on LB/Amp plates and culture them upside down in a bacterial incubator at 37°C for 12-15 hours; select a single colony and transfer it to a 12ml LB/Amp culture test tube medium, 37°C and 250rpm shaking culture for 12 hours; take 10ml of fermentation broth and transfer it to 1000ml LB/Amp fermentation broth for shaking flask culture (37°C, 250rpm shaking), when the concentration of the bacterial solution reaches OD600 1.5-2.5; then inoculate at 15 Cultivate in a 1-liter fermenter (each liter of fermentation broth contains 12 grams of tryptone, 24 grams of yeast extract, 3.8 grams of potassium dihydrogen phosphate, 12.5 grams of dipotassium hydrogen phosphate, 0.5 grams of magnesium sulfate, 6.3 grams of glycerin, 0.9 liters of pure water, 20 grams of glucose and 0.1 gram of ampicillin); the fermentation parameters were set as temperature 37° C., pH 7.0, dissolved oxygen 35%, and the linkage between stirring speed and dissolved oxygen. When the OD 600 value reaches 20, it is the middle stage of the logarithmic growth of the engineered bacteria, and IPTG is added to induce it, and the fermentation is terminated after 2 hours. Cool the fermented liquid to bring it down to 4-8°C. Centrifuge the bacterial liquid at 4000rpm with a large-capacity low-temperature refrigerated low-speed centrifuge for 30 minutes, and collect the bacterial cells.

向收集的工程菌菌体沉淀中加入工程菌破碎缓冲液(50mM Tris,1mM EDTA,pH7.5缓冲液)。经高压匀浆机在10000psi压力下破碎菌体两遍。破菌后液体经高速冷冻离心机于4℃,10000g下离心20分钟获得工程菌包涵体(IB)粗品。用包涵体洗涤液(50mMTris,1mM EDTA,pH7.5,2.5%曲拉通×100,0.15M NaCl)反复洗涤三遍,即将包涵体洗涤液与包涵体经高速液体搅拌机充分混合,再在4℃10000g高速离心50分钟收集包涵体,如此反复三遍完成包涵体洗涤与纯化。将已纯化的包涵体按10克湿重比500毫升的比例溶解于包涵体溶解变性液中(50mM Tris,1mM EDTA,8M盐酸胍,1mM二巯基赤藓醇),置4℃下12小时,获得包涵体溶解变性液,在经4℃10000g高速离心40分钟,收取上清。Add engineering bacteria breaking buffer (50mM Tris, 1mM EDTA, pH7.5 buffer) to the collected engineering bacteria thalline precipitate. The bacteria were crushed twice under the pressure of 10000 psi by a high-pressure homogenizer. After breaking the bacteria, the liquid was centrifuged in a high-speed refrigerated centrifuge at 4°C and 10,000g for 20 minutes to obtain the crude engineering bacteria inclusion body (IB). Repeatedly wash three times with inclusion body washing solution (50mM Tris, 1mM EDTA, pH7.5, 2.5% Triton × 100, 0.15M NaCl), then fully mix the inclusion body washing solution and inclusion body with a high-speed liquid mixer, and then in 4 The inclusion bodies were collected by high-speed centrifugation at 10,000 g for 50 minutes, and this was repeated three times to complete the washing and purification of the inclusion bodies. The purified inclusion body was dissolved in inclusion body dissolving and denaturing solution (50mM Tris, 1mM EDTA, 8M guanidine hydrochloride, 1mM dimercaptoerythritol) according to the ratio of 10g wet weight to 500ml, and placed at 4°C for 12 hours, Obtain inclusion body dissolving and denaturing solution, centrifuge at 10000g high speed at 4°C for 40 minutes, and collect the supernatant.

按1∶100体积比将包涵体溶解变性液缓慢加入20mM醋酸钠缓冲液(pH 6.0),150mM氯化钠,3M尿素,0.005%聚山利醇酯80(polysorbate 80)复性溶液中,4℃静置24小时,经0.45μm孔径滤膜过滤后,进行蛋白质提纯。Slowly add inclusion body dissolving and denaturing solution into 20mM sodium acetate buffer (pH 6.0), 150mM sodium chloride, 3M urea, 0.005% polysorbate 80 (polysorbate 80) refolding solution at a volume ratio of 1:100, 4 ℃ for 24 hours, after filtering through a 0.45 μm pore size filter membrane, the protein was purified.

rhG-CSF蛋白复性液经过Sepharose Fast Flow离子交换层析,平衡缓冲液为20mM醋酸钠缓冲液(pH 4.5),150mM氯化钠,0.005%聚山梨醇酯80;60ml/分钟上样,用0~1M氯化钠梯度洗脱,收集A280d蛋白洗脱峰液。再用缓冲液10mM醋酸钠缓冲液(pH4.5),0.005%聚山梨醇酯80缓冲液平衡Superdex 75prep grade凝胶层析柱,按30ml/分钟的流速上样,上样120分钟后,收集出现的A280蛋白吸收峰,即为rhG-CSF原液。The rhG-CSF protein refolding solution was subjected to Sepharose Fast Flow ion exchange chromatography, and the equilibrium buffer was 20mM sodium acetate buffer (pH 4.5), 150mM sodium chloride, 0.005% polysorbate 80; 60ml/min loading, using 0 ~ 1M sodium chloride gradient elution, collect A280d protein elution peak liquid. Then use buffer 10mM sodium acetate buffer (pH4.5), 0.005% polysorbate 80 buffer to balance the Superdex 75prep grade gel chromatography column, load the sample at a flow rate of 30ml/min, and collect the sample after 120 minutes. The A280 protein absorption peak that appears is the rhG-CSF stock solution.

采用敲除rhG-CSF N-末端1~10氨基酸残基、保留N-末端氨基酸仍为蛋氨酸的方法获得rhG-CSF突变体(rhG-CSFm),即rhG-CSF-165~174。同样的方法处理可获rhG-CSFm原液。实施例4中提供的数据显示,敲除rhG-CSF N-末端1~10氨基酸残基几乎不影响rhG-CSF的体外活性,详见表3。The rhG-CSF mutant (rhG-CSFm), i.e. rhG-CSF-165-174, was obtained by knocking out 1-10 amino acid residues at the N-terminal of rhG-CSF and retaining the N-terminal amino acid as methionine. The rhG-CSFm stock solution can be obtained by the same method. The data provided in Example 4 show that knocking out 1-10 amino acid residues at the N-terminal of rhG-CSF hardly affects the in vitro activity of rhG-CSF, see Table 3 for details.

以PEG-丙醛与rhG-CSF N-末端特异性定点偶联方法为优选例,描述PEG化rhG-CSF及其制备工艺:Taking PEG-propionaldehyde and rhG-CSF N-terminal specific site-specific coupling method as a preferred example, PEGylated rhG-CSF and its preparation process are described:

选择MacroCap SP或Sepharose FF阳离子交换介质,装载层析色谱柱,柱床高度达推荐高度的上限,并将其连接到AKTA Explorer 100液相层析系统(AmershamBioscience,Sweden)上,使用相当于5倍柱体积的20mM醋酸钠缓冲液pH 3.5~6.0(缓冲液A)和0.005%聚山梨醇酯80充分平衡色谱柱;用进料泵,以10ml/min的流速,将rhG-CSF原液加入色谱柱中,上样量为介质实测最大载量10%~70%,更适范围为30-50%,再在15ml/min的流速下,用大约5倍柱体积的缓冲液A冲洗柱子,去除不与色谱介质发生静电吸附的物质;以0.5~3ml/min的流速,加入0.22mM~2.2mM 30kDa的PEG-丙醛(PEG-propionaldehyde)和2.2mM~22mM NaBH3CN溶液250ml~1500ml,连续上样约240分钟;反应体系的pH为3.5~6.0,更适为pH 5.0~6.0;再以15ml/min的流速,用大约5倍柱体积的缓冲液A冲洗柱子,去除不与色谱介质发生静电吸附的物质;随后用缓冲液B(即缓冲液A+1mol氯化钠),以洗脱方式0~8%、8%~18%和18%~100%洗脱,持续约150分钟,即可记录到如图1所示的离子交换层析谱图,由图中看到,共可获得峰-1,峰-2和峰-3三个洗脱峰,即P1,P2和P3,其中P2的峰面积占总峰面积的90%;P2经还原型SDS-PAGE、高效凝胶色谱(SEC)和高效液相色谱(HPLC)纯度分析为单修饰PEG-rhG-CSF,纯度大于95%(如图2,3,4所示),该产物通过液质联用胰蛋白酶酶解肽图分析,确定是30kDa分子量的PEG-ALD与rh-CSF N-末端的定点偶联,即PG-N-30(详见实施例3)。Select MacroCap SP or Sepharose FF cation exchange medium, load the chromatographic column, the height of the column bed reaches the upper limit of the recommended height, and connect it to the AKTA Explorer 100 liquid chromatography system (Amersham Bioscience, Sweden), using the equivalent of 5 times Column volume of 20mM sodium acetate buffer solution pH 3.5~6.0 (buffer solution A) and 0.005% polysorbate 80 to fully equilibrate the chromatographic column; use a feed pump to add the rhG-CSF stock solution to the chromatographic column at a flow rate of 10ml/min In this method, the sample load is 10%-70% of the maximum load capacity measured in the medium, and the more suitable range is 30-50%. Then, at a flow rate of 15ml/min, wash the column with about 5 times the column volume of buffer A to remove excess Substances that have electrostatic adsorption with the chromatographic medium; at a flow rate of 0.5-3ml/min, add 0.22mM-2.2mM 30kDa PEG-propionaldehyde (PEG-propionaldehyde) and 2.2mM-22mM NaBH 3 CN solution 250ml-1500ml, continuously The sample is about 240 minutes; the pH of the reaction system is 3.5-6.0, more preferably pH 5.0-6.0; then at a flow rate of 15ml/min, wash the column with about 5 times the column volume of buffer A to remove the static electricity that does not occur with the chromatographic medium. Adsorbed substances; then use buffer B (i.e. buffer A + 1mol sodium chloride) to elute in the elution mode of 0-8%, 8%-18% and 18%-100% for about 150 minutes, namely Can record the ion-exchange chromatogram as shown in Figure 1, see from the figure, can obtain peak-1 altogether, three elution peaks of peak-2 and peak-3, i.e. P1, P2 and P3, wherein The peak area of P2 accounts for 90% of the total peak area; P2 is analyzed as single modified PEG-rhG-CSF through reduced SDS-PAGE, high performance gel chromatography (SEC) and high performance liquid chromatography (HPLC), with a purity greater than 95% (As shown in Figures 2, 3, and 4), the product was determined to be the site-specific coupling of PEG-ALD with a molecular weight of 30kDa and the rh-CSF N-terminus by liquid chromatography-mass chromatography with trypsin digestion peptide map analysis, that is, PG- N-30 (see Example 3 for details).

同法可得PG-N-10、PG-N-20、PG-N-40以及PGm-N-10、PGm-N-20、PGm-N-30、PGm-N-40等。In the same way, PG-N-10, PG-N-20, PG-N-40, PGm-N-10, PGm-N-20, PGm-N-30, PGm-N-40, etc. can be obtained.

类似的,以PEG-NHS ester(聚乙二醇N-羟基琥珀酰亚胺活化酯)与rhG-CSF N-末端特异性定点偶联方法为例,描述PEG化rhG-CSF及其制备工艺:Similarly, taking PEG-NHS ester (polyethylene glycol N-hydroxysuccinimide activated ester) and rhG-CSF N-terminal specific site-specific coupling method as an example, describe PEGylated rhG-CSF and its preparation process:

选择MacroCap SP阳离子交换介质,装载层析色谱柱,柱床高度达推荐高度的上限,并将其连接到AKTA Explorer 100液相层析系统(Amersham Bioscience,Sweden)上,使用相当于5倍柱体积的20mM醋酸钠缓冲液pH 3.5~6.0(缓冲液A)和0.005%聚山梨醇酯80充分平衡色谱柱;用进料泵,以10ml/min的流速,将rhG-CSF原液加入色谱柱中,上样量为介质实测最大载量的10%~70%,更适范围为30-50%;再在15ml/min的流速下,用大约5倍柱体积的缓冲液A冲洗柱子,去除不与色谱介质发生静电吸附的物质;以0.5~3ml/min的流速,加入0.22mM~2.2mM 30kDa的PEG-NHS ester(聚乙二醇N-羟基琥珀酰亚胺活化酯)溶液250ml~1500ml,连续上样约240分钟;反应体系的pH为4.5~7.0,更适为pH 6.0~7.0;再以15ml/min的流速,用大约5倍柱体积的缓冲液A冲洗柱子,去除不与色谱介质发生静电吸附的物质;随后用缓冲液B(即缓冲液A+1mol氯化钠),以洗脱方式0~8%、8%~18%和18%~100%洗脱,持续约150分钟,即可记录到如图5所示的离子交换层析谱图,由图5可以看到:单修饰PEG-rhG-CSF的峰面积大于90%的总峰面积,经液质联用胰蛋白酶酶解肽图分析确定为30kDa分子量PEG-NHS与rh-CSF的N-末端单一、定点偶联产物(详见实施例3)。Select MacroCap SP cation exchange medium, load the chromatographic column, the height of the column bed reaches the upper limit of the recommended height, and connect it to the AKTA Explorer 100 liquid chromatography system (Amersham Bioscience, Sweden), using the equivalent of 5 times the column volume 20mM sodium acetate buffer solution pH 3.5~6.0 (buffer solution A) and 0.005% polysorbate 80 fully equilibrate the chromatographic column; With the feed pump, with the flow rate of 10ml/min, rhG-CSF stock solution is added in the chromatographic column, The amount of sample loaded is 10% to 70% of the maximum capacity of the medium measured, and the more suitable range is 30-50%; then at a flow rate of 15ml/min, wash the column with about 5 times the column volume of buffer A to remove the Substances that are electrostatically adsorbed by the chromatographic medium; at a flow rate of 0.5-3ml/min, add 0.22mM-2.2mM 30kDa PEG-NHS ester (polyethylene glycol N-hydroxysuccinimide activated ester) solution 250ml-1500ml, continuously Load the sample for about 240 minutes; the pH of the reaction system is 4.5-7.0, more preferably pH 6.0-7.0; then wash the column with about 5 times the column volume of buffer A at a flow rate of 15ml/min to remove the Electrostatically adsorbed substances; then use buffer B (i.e. buffer A+1mol sodium chloride) to elute in the elution mode of 0-8%, 8%-18% and 18%-100% for about 150 minutes, The ion-exchange chromatogram as shown in Figure 5 can be recorded, and it can be seen from Figure 5 that the peak area of the single-modified PEG-rhG-CSF is greater than 90% of the total peak area, and the liquid-mass spectrometry trypsin enzyme Peptide mapping analysis determined that it was the N-terminal single, site-specific coupling product of 30kDa molecular weight PEG-NHS and rh-CSF (see Example 3 for details).

以现有常规方式进行的在液相反应体系中PEG-ALD与rhG-CSF氨基特异性偶联的方法及结果:The method and results of the amino-specific coupling of PEG-ALD and rhG-CSF in a liquid phase reaction system carried out in an existing conventional manner:

取上述rhG-CSF原液经超滤浓缩使蛋白浓度达2mg/ml,按8~40mol∶1mol比例将分子量为30kDa的PEG丙醛(PEG-propionaldehyde)溶解于2mg/ml的rhG-CSF原液;较适的比例是30kDa的PEG-ALD与rhG-CSF原液摩尔比例为8~20mol∶1mol;反应液为20mM~50mM醋酸钠缓冲液,pH 5.0~6.0;再按1∶1~5(w/w)比例加入浓度为7.5mg/ml的氰基硼氢化钠(NaBH3CN),反应液于4℃~25℃下,静置4小时,按1∶100(v/v)比例加入1mM稀盐酸溶液(pH 3.5)终止反应。Get the above rhG-CSF stock solution and concentrate it through ultrafiltration to make the protein concentration reach 2mg/ml, and dissolve PEG propionaldehyde (PEG-propionalaldehyde) with a molecular weight of 30kDa in the rhG-CSF stock solution of 2mg/ml according to the ratio of 8~40mol: 1mol; The appropriate ratio is that the molar ratio of 30kDa PEG-ALD and rhG-CSF stock solution is 8-20mol: 1mol; the reaction solution is 20mM-50mM sodium acetate buffer solution, pH 5.0-6.0; ) by adding sodium cyanoborohydride (NaBH 3 CN) with a concentration of 7.5mg/ml, and the reaction solution was left to stand for 4 hours at 4°C to 25°C, and 1mM dilute hydrochloric acid was added in a ratio of 1:100 (v/v) solution (pH 3.5) to terminate the reaction.

用缓冲液20mM~50mM醋酸钠缓冲液,pH 3.5~9.0,150mM~500mM氯化钠和0.005%聚山梨醇酯80溶液,平衡Sepharose Fast Flow离子交换层析柱,按50ml/分钟流速连续上样PEG-rhG-CSF反应液,经0~1M氯化钠溶液梯度洗脱,收集A280蛋白洗脱峰;获得三个洗脱峰,分别为多修饰PEG-rhG-CSF、单修饰的PEG-rhG-CSF和rhG-CSF的洗脱峰。经计算,仅有约45%的PEG-rhG-CSF为单修饰的PEG-rhG-CSF,另36%为多修饰PEG-rhG-CSF化合物;余19%为未反应的rhG-CSF,结果如图6所示。Use 20mM~50mM sodium acetate buffer solution, pH 3.5~9.0, 150mM~500mM sodium chloride and 0.005% polysorbate 80 solution to equilibrate the Sepharose Fast Flow ion exchange chromatography column, and continuously load samples at a flow rate of 50ml/min The PEG-rhG-CSF reaction solution was eluted with a gradient of 0-1M sodium chloride solution, and the elution peak of the A280 protein was collected; three elution peaks were obtained, which were multi-modified PEG-rhG-CSF and single-modified PEG-rhG - Elution peaks of CSF and rhG-CSF. It is calculated that only about 45% of PEG-rhG-CSF is single-modified PEG-rhG-CSF, and the other 36% is multi-modified PEG-rhG-CSF compounds; the remaining 19% is unreacted rhG-CSF, the results are as follows Figure 6 shows.

以现有常规方式进行的在液相反应体系中PEG-NHS与rhG-CSF氨基特异性偶联的方法及结果:The method and results of the amino-specific coupling of PEG-NHS and rhG-CSF in a liquid phase reaction system carried out in an existing conventional manner:

取上述rhG-CSF原液经超滤浓缩使蛋白浓度达1~2mg/ml,按5~50mol∶1mol比例将分子量为30kDa的PEG-NHS溶解于2mg/ml的rhG-CSF原液;反应液为20mM~50mM PBS缓冲液,pH 6.0~9.0,150mM氯化钠;反应液于4℃~25℃下,静置15~180分钟。Take the above rhG-CSF stock solution and concentrate it by ultrafiltration so that the protein concentration reaches 1-2 mg/ml, and dissolve PEG-NHS with a molecular weight of 30 kDa in the rhG-CSF stock solution of 2 mg/ml according to the ratio of 5-50 mol:1 mol; the reaction solution is 20 mM ~50mM PBS buffer solution, pH 6.0~9.0, 150mM sodium chloride; the reaction solution was kept at 4℃~25℃ for 15~180 minutes.

用缓冲液20mM~50mM PBS缓冲液,pH 4.5~7.0,150mM氯化钠和0.005%聚山梨醇酯80溶液,平衡Sepharose Fast Flow离子交换层析柱,按50ml/分钟流速连续上样PEG-rhG-CSF反应液,经0~1M氯化钠溶液梯度洗脱,收集A280蛋白洗脱峰;获得三个洗脱峰,分别为多修饰PEG-rhG-CSF、单修饰的PEG-rhG-CSF和rhG-CSF的洗脱峰。经计算,仅有约23%的PEG-rhG-CSF为单修饰的PEG-rhG-CSF,另47%为多修饰PEG-rhG-CSF化合物;余30%为未反应的rhG-CSF,结果如图7所示。Use 20mM~50mM PBS buffer solution, pH 4.5~7.0, 150mM sodium chloride and 0.005% polysorbate 80 solution to balance the Sepharose Fast Flow ion exchange chromatography column, and continuously load PEG-rhG at a flow rate of 50ml/min -CSF reaction solution, through gradient elution of 0 ~ 1M sodium chloride solution, the elution peak of A280 protein was collected; three elution peaks were obtained, which were multi-modified PEG-rhG-CSF, single-modified PEG-rhG-CSF and Elution peak of rhG-CSF. It is calculated that only about 23% of PEG-rhG-CSF is single-modified PEG-rhG-CSF, and the other 47% is multi-modified PEG-rhG-CSF compounds; the remaining 30% is unreacted rhG-CSF, the results are as follows Figure 7 shows.

PEG-rhG-CSF和PEG-rhG-CSFm的理化性质和生物活性Physicochemical properties and biological activities of PEG-rhG-CSF and PEG-rhG-CSFm

本发明首次公开了PG-N-30,PG-N-40,PG-N-20,PG-N-10等的体外理化性质和生物活性数据,详见实施例4。The present invention first discloses the in vitro physical and chemical properties and biological activity data of PG-N-30, PG-N-40, PG-N-20, PG-N-10, etc., see Example 4 for details.

本发明发现,分子量为30kDa的大分子PEG与rhG-CSF N-末端偶联后并未显著影响rhG-CSF的二级结构和等电点,而rhG-CSF的溶解性、抗酶解稳定性却有明显提高,这是此类PEG-rhG-CSF和PEG-rhG-CSFm分子具有体内外生物活性的基础之一(体外理化性质和生物活性数据如表1所示)。The present invention found that the coupling of macromolecular PEG with a molecular weight of 30kDa to the N-terminal of rhG-CSF did not significantly affect the secondary structure and isoelectric point of rhG-CSF, while the solubility and stability against enzymolysis of rhG-CSF However, it has been significantly improved, which is one of the bases that such PEG-rhG-CSF and PEG-rhG-CSFm molecules have biological activities in vivo and in vitro (the physical and chemical properties and biological activity data in vitro are shown in Table 1).

Figure A20091001371000151
Figure A20091001371000151

本发明的实验数据还显示(详见表3),采用NFS60细胞/MTT法同时测定PEG-rhG-CSF和rhEPO的体外活性,发现rhG-CSF蛋白氮末端偶联PEG丙醛所获得的PG-N-10,PG-N-20,PG-N-30和PG-N-40其体外活性随着偶联PEG分子量的增大,体外活性具降低趋势;而PG-N-10的体外活性明显高于普通rhG-CSF,通常高达50%,这一结果大大令人意外,因为,通常认为PEG大分子的偶联会显著降低rhG-CSF的活性,显然,这一发现具有潜在而重要的临床应用价值;此外,PG-N-20和PG-N-30的体外活性相差约30%,但与PG-N-30相比,PG-N-40的分子量增加了约30%,而其体外活性却降低了2倍以上,出现明显的活性“拐点”。这同时提示,双链PEG(如40kDa PEG-ALD为双链结构)对体外活性的影响大于单连PEG(如30kDa PEG-ALD为单链结构)。因此,本发明确认,首选单链PEG-ALD偶联rhG-CSF的N-末端氨基。The experimental data of the present invention also shows (see Table 3 for details), adopt NFS60 cell/MTT method to measure the in vitro activity of PEG-rhG-CSF and rhEPO simultaneously, find that the PG- The in vitro activity of N-10, PG-N-20, PG-N-30 and PG-N-40 has a tendency to decrease with the increase of the molecular weight of coupled PEG; while the in vitro activity of PG-N-10 is obvious higher than normal rhG-CSF, usually up to 50%, this result is greatly surprising, because it is generally believed that the conjugation of PEG macromolecules will significantly reduce the activity of rhG-CSF, obviously, this finding has potential and important clinical Application value; In addition, the in vitro activity of PG-N-20 and PG-N-30 differs by about 30%, but compared with PG-N-30, the molecular weight of PG-N-40 increases by about 30%, while its in vitro However, the activity was reduced by more than 2 times, and an obvious activity "inflection point" appeared. This also suggests that double-chain PEG (such as 40kDa PEG-ALD is a double-chain structure) has a greater impact on in vitro activity than single-chain PEG (such as 30kDa PEG-ALD is a single-chain structure). Therefore, the present invention confirms that single-chain PEG-ALD is preferred for coupling to the N-terminal amino group of rhG-CSF.

PEG-rhG-CSF和PEG-rhG-CSFm的药代动力学与药效动力学试验Pharmacokinetic and Pharmacodynamic Tests of PEG-rhG-CSF and PEG-rhG-CSFm

本发明首次公开了PG-N-30与PG-N-20在健康Beagle犬的系统、规范的药代动力学和药效动力学试验结果(如表4,5、图19,20所示),皮下注射相同剂量的PG-N-30和PG-N-20后,PG-N-30的消除相半衰期较PG-N-20明显延长,分别是33.5±4.0和21.7±6.7小时;AUC明显大于PG-N-20,PG-N-30的Cmax为PG-N-20的120.5%,相对生物利用度为158.7%,且血浆清除率显著低于PG-N-20,表明PG-N-30皮下注射后在体内滞留时间明显长于PG-N-20;因此PG-N-30的长效作用优于PG-N-20。同时显示这种药代动力学参数的改变,也带来了药效学的相应反应,即效应消除相半衰期(t1/2(E))显著延长、效应峰浓度(ANCCmax)和基线上效应曲线面积(AOBEC(0-192h))的明显提高;因此PG-N-30比PG-N-20更高效。这一结果出乎意外并异乎寻常,因为PG-N-20就是目前已上市并取得了卓越疗效、安全性和高销量的Neulasta;本发明的试验表明虽然Neulasta在市场上获得了成功,但其并非“最佳的”rhG-CSF的长效制剂;显然,PG-N-30的长效性和高效性更优于Neulasta。The present invention first discloses the systemic and standardized pharmacokinetic and pharmacodynamic test results of PG-N-30 and PG-N-20 in healthy Beagle dogs (as shown in Tables 4 and 5, Figures 19 and 20) , after subcutaneous injection of the same dose of PG-N-30 and PG-N-20, the half-life of the elimination phase of PG-N-30 was significantly longer than that of PG-N-20, which were 33.5±4.0 and 21.7±6.7 hours respectively; the AUC was significantly Greater than PG-N-20, the C max of PG-N-30 is 120.5% of PG-N-20, the relative bioavailability is 158.7%, and the plasma clearance rate is significantly lower than PG-N-20, indicating that PG-N After subcutaneous injection, the residence time of -30 in the body is significantly longer than that of PG-N-20; therefore, the long-acting effect of PG-N-30 is better than that of PG-N-20. At the same time, it was shown that the change of this pharmacokinetic parameter also brought about the corresponding response of pharmacodynamics, that is, the half-life of the elimination phase of the effect (t 1/2(E) ) was significantly prolonged, the peak concentration of the effect (ANCC max ) and the baseline Significant increase in the area of the effect curve (AOBEC (0-192h) ); therefore PG-N-30 is more efficient than PG-N-20. This result is unexpected and unusual, because PG-N-20 is exactly Neulasta that has been on the market at present and achieved excellent curative effect, safety and high sales volume; Not the "best" long-acting formulation of rhG-CSF; obviously, PG-N-30 is better than Neulasta in terms of long-acting and high-efficiency.

PEG-rhG-CSF和PEG-rhG-CSFm的药效学与免疫原性Pharmacodynamics and immunogenicity of PEG-rhG-CSF and PEG-rhG-CSFm

本发明公布的实验结果显示(详见表6-1,表7),在137Cs-r照射所致小鼠白细胞减少和化疗所致大鼠白细胞减少的模型上,在每天连续给药的模式下,注射相同剂量的PG-N-30和rhG-CSF,结果表明,两种受试药均可导致白细胞(WBC)和中性粒细胞(ANC)呈量-效依赖性增高,但出乎意料的是,当注射rhG-CSF的剂量是PG-N-30用量的十倍时才能达到等效水平的WBC和ANC的增幅;或相同注射剂量的PG-N-30致WBC和ANC的增高值为rhG-CSF的三倍;这表明在每日连续给药的治疗模式下,PG-N-30具明显的高效特征,其使用剂量甚或可以低于普通rhG-CSF的剂量;显然,这一发现具有潜在而重要的临床治疗学意义。本发明还发现,在上述两种动物模型上,随着PG-N-30给药间隔的逐渐加大(如间隔1天、2天等),要达到与连续应用rhG-CSF相当的疗效,PG-N-30的给药剂量需要成倍增加,要实现一个化疗周期注射一针的给药模式,PG-N-30的给药剂量甚或要达到连续应用rhG-CSF总量的5倍(详见表6-2,表7),这一结果大大出乎意外,这表明体内仍存在强大的PG-N-30清除机制,一个化疗周期应用一次或较长给药间隔的治疗模式远非经济的或最佳的给药模式。The experimental results published by the present invention show (see Table 6-1, Table 7 for details), on the model of mouse leukopenia caused by 137 Cs-r irradiation and chemotherapy-induced rat leukopenia, the pattern of continuous administration every day The results showed that the two test drugs could lead to a dose-dependent increase in white blood cells (WBC) and neutrophils (ANC), but beyond Unexpectedly, when the dose of rhG-CSF injected is ten times that of PG-N-30, the increase of WBC and ANC at the equivalent level can be achieved; or the increase of WBC and ANC caused by the same injected dose of PG-N-30 The value is three times that of rhG-CSF; this shows that in the treatment mode of daily continuous administration, PG-N-30 has obvious high-efficiency characteristics, and its dosage may even be lower than that of ordinary rhG-CSF; obviously, this One discovery has potential and important clinical therapeutic implications. The present invention also found that, on the above two animal models, with the gradual increase of the PG-N-30 administration interval (such as interval 1 day, 2 days, etc.), to achieve a curative effect equivalent to that of continuous application of rhG-CSF, The dosage of PG-N-30 needs to be doubled. To realize the administration mode of injecting one injection in one chemotherapy cycle, the dosage of PG-N-30 may even reach 5 times of the total amount of rhG-CSF used continuously ( See Table 6-2, Table 7 for details), this result is greatly unexpected, which shows that there is still a strong PG-N-30 clearance mechanism in the body, and the treatment mode of applying once or longer dosing intervals in a chemotherapy cycle is far from Economical or optimal mode of administration.

本发明发现,在氟尿嘧啶致小鼠白细胞减少模型模型上,采用一个化疗周期应用一次的给药方式,结果表明,单剂应用1200ug/kg的PG-N-30与应用2400ug/kg的PG-N-20等效(如图21所示);采用相同的给药模式,在环磷酰胺致大鼠白细胞减少模型上,证实单剂应用600ug/kg的PG-N-30与应用1200ug/kg的PG-N-20等效(如图22所示);因此,在上述两种动物模型上,均证实在一个化疗周期应用一次的治疗模式上,PG-N-30的疗效也明显优于PG-N-20;因此预计PG-N-30的临床用量将显著低于Neulasta。The present invention found that on the model of fluorouracil-induced leukopenia in mice, the administration method of one chemotherapy cycle was adopted, and the results showed that the single-dose application of 1200ug/kg of PG-N-30 and the application of 2400ug/kg of PG-N -20 equivalent (as shown in Figure 21); Adopt the same mode of administration, on the rat leukopenia model caused by cyclophosphamide, confirm that the PG-N-30 of single agent application 600ug/kg and the PG-N-30 of application 1200ug/kg PG-N-20 is equivalent (as shown in Figure 22); therefore, in the above two animal models, it is confirmed that the curative effect of PG-N-30 is also significantly better than that of PG in the treatment mode of one chemotherapy cycle application -N-20; therefore, the clinical use of PG-N-30 is expected to be significantly lower than that of Neulasta.

本发明首次证实,PG-N-30可能是更佳的、或更有效的制剂,在每日连续应用和一个化疗周期应用一次的治疗模式上,均能表现出很好的比较优势,但从药品经济学的角度,每日连续给药或较短给药间隔的给药方式可能是更优的治疗模式。The present invention proves for the first time that PG-N-30 may be a better or more effective preparation, and it can show a good comparative advantage in the treatment mode of daily continuous application and once-in-one chemotherapy cycle, but from From the perspective of pharmaceutical economics, daily continuous dosing or shorter dosing intervals may be a better treatment mode.

本发明还公开了上述PEG-rhG-CSF和PEG-rhG-CSFm免疫原性的试验资料,在正常大鼠上,采用1次/周、连续应用12周的给药方式,结果表明,PG-N-20、PG-N-30和PG-N-40的免疫原性均明显低于rhG-CSF,且PG-N-30和PG-N-40的免疫原性均显著低于PG-N-20。The present invention also discloses the experimental data on the immunogenicity of the above-mentioned PEG-rhG-CSF and PEG-rhG-CSFm. On normal rats, the administration method of 1 time/week for 12 consecutive weeks shows that PG- The immunogenicity of N-20, PG-N-30 and PG-N-40 was significantly lower than that of rhG-CSF, and the immunogenicity of PG-N-30 and PG-N-40 was significantly lower than that of PG-N -20.

本发明所涉及的PEG-rhG-CSF或PEG-rhG-CSFm偶联化合物为临床药用制剂的有效成分,该制剂中还可以包括:稀释剂(diluents)、稳定剂(stabilizers)、防腐剂(preservatives)、溶解剂(solubilizers)、乳化剂(emulsifiers)、佐剂(adjuvants)和载体(carriers)等各类制剂所需的辅料。具体的如:1)稀释液:Tris-HCL、磷酸、醋酸等缓冲液;2)pH值和离子强度;3)去污剂和溶解剂:聚山梨醇酯20,聚山梨醇酯80;4)充填剂(bulking substances):乳糖、甘露醇。详见Remington’sPharmaceutical Science,18thEd(1990,Mack Publishing Co.,Easton,Pa.18042)Pages1435:1712。有效成分的有效剂量是指考虑体重、年龄等因素的有效的治疗或预防剂量。本发明所涉及的PEG-rhG-CSF或PEG-rhG-CSFm其有效剂量范围在0.1ug-300ug/kg体重/剂,较适合的有效剂量范围在0.5ug-200ug/kg体重/剂。The PEG-rhG-CSF or PEG-rhG-CSFm coupling compound involved in the present invention is an active ingredient of a clinical pharmaceutical preparation, which may also include: diluents, stabilizers, preservatives ( Preservatives), dissolving agents (solubilizers), emulsifiers (emulsifiers), adjuvants (adjuvants) and carriers (carriers) etc. Specifically, such as: 1) diluent: Tris-HCL, phosphoric acid, acetic acid and other buffers; 2) pH value and ionic strength; 3) detergent and dissolving agent: polysorbate 20, polysorbate 80; 4 ) Filling agents (bulking substances): lactose, mannitol. See Remington's Pharmaceutical Science, 18th Ed (1990, Mack Publishing Co., Easton, Pa. 18042) Pages 1435:1712 for details. The effective dose of the active ingredient refers to the effective therapeutic or preventive dose considering factors such as body weight and age. The PEG-rhG-CSF or PEG-rhG-CSFm involved in the present invention has an effective dosage range of 0.1ug-300ug/kg body weight/dose, and a more suitable effective dosage range is 0.5ug-200ug/kg body weight/dose.

本发明所涉及的PEG-rhG-CSF或PEG-rhG-CSFm临床药用制剂,为长效、高效、低免疫原性制剂,通常每1-2周注射一针,或一个疗程应用一次;甚或可达3-4周的长效效果;也可采用每天注射一次的连续给药方式或间隔1~3天的给药方式;PEG-rhG-CSF或PEG-rhG-CSFm临床药用制剂的应用间隔设计,还与应用的指征和病人的实际情况有关。PEG-rhG-CSF或PEG-rhG-CSFm临床药用制剂,可皮下、肌肉、静脉和腹腔内注射;也可经吸入、舌下或透皮给药。The PEG-rhG-CSF or PEG-rhG-CSFm clinical pharmaceutical preparations involved in the present invention are long-acting, high-efficiency, and low-immunogenic preparations, usually injected once every 1-2 weeks, or once in a course of treatment; or The long-acting effect can reach 3-4 weeks; the continuous administration method of injecting once a day or the administration method at an interval of 1 to 3 days can also be used; the application of PEG-rhG-CSF or PEG-rhG-CSFm clinical pharmaceutical preparations The interval design is also related to the indications of the application and the actual condition of the patient. The PEG-rhG-CSF or PEG-rhG-CSFm clinical pharmaceutical preparation can be injected subcutaneously, intramuscularly, intravenously and intraperitoneally; it can also be administered by inhalation, sublingually or transdermally.

本发明的聚乙二醇化重组人粒细胞集落刺激因子可应用于防治各种粒细胞减少症,常见的指正包括:肿瘤或白血病化疗所致的或艾滋病化疗药如AZT所致的粒细胞减少症、骨髓及外周血干细胞移植以及原发性慢性粒细胞减少症等。The pegylated recombinant human granulocyte colony-stimulating factor of the present invention can be applied to prevent and treat various granulocytopenias, common indications include: granulocytopenia caused by tumor or leukemia chemotherapy or AIDS chemotherapy drugs such as AZT , bone marrow and peripheral blood stem cell transplantation, and primary chronic neutropenia.

本发明所提供的资料和方法同样适用于其他细胞因子和抗体片段Fab’,scFv和Fc聚乙二醇化与长效、高效、低免疫原性制剂的开发,如重组人干扰素alfas、干扰素betas、肿瘤坏死因子受体蛋白等等。The data and methods provided by the present invention are also applicable to the development of other cytokines and antibody fragments Fab', scFv and Fc PEGylation and long-acting, high-efficiency, and low-immunogenicity preparations, such as recombinant human interferon alfas, interferon betas, tumor necrosis factor receptor protein and so on.

附图说明 Description of drawings

图1PEG-ALD与rhG-CSF N-末端特异性定点偶联离子交换层析谱图Figure 1 PEG-ALD and rhG-CSF N-terminal specific site-specific coupling ion exchange chromatogram

其中:峰1为二修饰或多修饰的PEG-rhG-CSF,峰2为单修饰PEG-rhG-CSF,峰3为未反应的rhG-CSF。Among them: peak 1 is double-modified or multi-modified PEG-rhG-CSF, peak 2 is single-modified PEG-rhG-CSF, and peak 3 is unreacted rhG-CSF.

图2SDS-PAGE PG-N-30分子量测定(银染)。Figure 2 SDS-PAGE PG-N-30 molecular weight determination (silver staining).

显示PG-N-30的分子量为66.2kDa,为单修饰PEG-rhG-CSF。It shows that the molecular weight of PG-N-30 is 66.2kDa, which is a single modified PEG-rhG-CSF.

图3高效凝胶色谱(SEC)测定PG-N-30纯度Fig. 3 High Performance Gel Chromatography (SEC) Determination of PG-N-30 Purity

其中主峰面积大于95%,经检定为单修饰PEG-rhG-CSF,其前的小峰为多修饰PEG-rhG-CSF。Among them, the area of the main peak is greater than 95%, which is identified as single-modified PEG-rhG-CSF, and the small peak before it is multi-modified PEG-rhG-CSF.

图4高效液相色谱(RT-HPLC)测定PG-N-30纯度Fig. 4 high performance liquid chromatography (RT-HPLC) measures PG-N-30 purity

其中主峰面积大于98%以上,经检定为单修饰PEG-rhG-CSF。Among them, the area of the main peak is greater than 98%, and it is identified as single-modified PEG-rhG-CSF.

图5PEG-NHS ester与rhG-CSF N-末端特异性定点偶联离子交换层析谱图Figure 5 PEG-NHS ester and rhG-CSF N-terminal specific site-specific coupling ion-exchange chromatogram

显示:单修饰PEG-rhG-CSF的峰面积大于90%的总峰面积,经液质联用胰蛋白酶酶解肽图分析确定为30kDa分子量PEG-NHS与rh-CSF的N-末端单一、定点偶联产物(详见实施例3)。Display: the peak area of single modified PEG-rhG-CSF is greater than 90% of the total peak area, and it is determined by liquid chromatography-mass spectrometry that the N-terminus of PEG-NHS and rh-CSF with a molecular weight of 30kDa is single and fixed. Coupling product (see Example 3 for details).

图6高效凝胶色谱分析PEG-ALD与rhG-CSF偶联反应产物Figure 6 High performance gel chromatography analysis of PEG-ALD and rhG-CSF coupling reaction products

其中:峰-1为多修饰PEG-rhG-CSF,占总峰面积的33.12%,峰-2为二修饰PEG-rhG-CSF,占总峰面积的2.68%,峰-3为单修饰PEG-rhG-CSF,占总峰面积的45.60%,峰-4为未反应rhG-CSF,占总峰面积的18.60%。Among them: peak-1 is multi-modified PEG-rhG-CSF, accounting for 33.12% of the total peak area, peak-2 is two-modified PEG-rhG-CSF, accounting for 2.68% of the total peak area, peak-3 is single-modified PEG- rhG-CSF accounted for 45.60% of the total peak area, and peak-4 was unreacted rhG-CSF, accounting for 18.60% of the total peak area.

图7高效凝胶色谱分析PEG-NHS与rhG-CSF偶联反应产物Figure 7 High performance gel chromatography analysis of PEG-NHS and rhG-CSF coupling reaction products

其中,峰-1为多修饰PEG-rhG-CSF,占总峰面积的44.6%,峰-2为二修饰PEG-rhG-CSF,占总峰面积的2.7%,峰-3为单修饰PEG-rhG-CSF,占总峰面积的22.78%,峰-4为未反应rhG-CSF,占总峰面积的29.92%。Among them, peak-1 is multi-modified PEG-rhG-CSF, accounting for 44.6% of the total peak area, peak-2 is di-modified PEG-rhG-CSF, accounting for 2.7% of the total peak area, peak-3 is single-modified PEG- rhG-CSF accounted for 22.78% of the total peak area, and peak-4 was unreacted rhG-CSF, accounting for 29.92% of the total peak area.

图8表达rh-CSF的重组质粒构建。Fig. 8 Construction of recombinant plasmid expressing rh-CSF.

图9SDS-PAGE rhG-CSF的表达量分析Figure 9 SDS-PAGE expression analysis of rhG-CSF

其中,箭头所指为目标蛋白rhG-CSF的表达带。Wherein, the arrow points to the expression band of the target protein rhG-CSF.

图10MALDI-TOF测定rhG-CSF分子量。Figure 10 MALDI-TOF determination of rhG-CSF molecular weight.

图11高效液相色谱(HPLC)法测定rhG-CSF原液纯度。Fig. 11 Determination of the purity of rhG-CSF stock solution by high performance liquid chromatography (HPLC).

图12高效凝胶色谱法(SEC)测定rhG-CSF原液的纯度。Fig. 12 Determination of the purity of rhG-CSF stock solution by high performance gel chromatography (SEC).

图13-1为rhG-CSF原蛋白酶切后M1TPLGPASSLPQSFLLK17片段分析检测结果Figure 13-1 is the analysis and detection results of M 1 TPLGPASSLPQSFLLK 17 fragment after rhG-CSF proteolysis

显示经过一级质谱扫描以及精确质量数扫描,可以断定此肽段m/z=894.6左右。It shows that after the primary mass spectrometry scan and the accurate mass number scan, it can be concluded that the peptide segment m/z=894.6 or so.

图13-2为pH8.0条件下的PEG-ALD单修饰产物PEG-rhG-CSF酶解后对于M1TPLGPASSLPQSFLLK17肽段的一级质谱图,精确质量扫描及二级质谱分析结果Figure 13-2 is the first-order mass spectrum, accurate mass scanning and second-order mass spectrometry analysis results of the M 1 TPLGPASSLPQSFLLK 17 peptide of the PEG-ALD single modification product PEG-rhG-CSF at pH 8.0

显示m/z=894.3的片段依然非常清晰的存在,根据其丰度可以看出含量相对较高。这说明与rhG-CSF原蛋白相比,pH8.0条件下的修饰产物有很大一部分位点不在N末端。The fragment showing m/z=894.3 still exists very clearly, and its content can be seen to be relatively high according to its abundance. This shows that compared with the rhG-CSF original protein, a large part of the site of the modified product under the condition of pH8.0 is not at the N-terminus.

图13-3为pH4.5条件下的PEG-ALD单修饰产物PEG-rhG-CSF即PG-N-30经胰蛋白酶酶解后对于M1TPLGPASSLPQSFLLK17肽段的一级质谱图、精确质量扫描及二级质谱分析结果Figure 13-3 is the primary mass spectrum and accurate mass scan of the M 1 TPLGPASSLPQSFLLK 17 peptide of the PEG-ALD single modification product PEG-rhG-CSF, namely PG-N-30, at pH 4.5, after trypsin digestion And the results of the secondary mass spectrometry

显示m/z=894.3的片段几乎不存在,含量非常低,根据其丰度可以看出其含量应该低于5~10%。这说明与pH8.0条件下的修饰产物相比,pH4.5条件下的修饰产物只有非常小的一部分不在N末端,也即是修饰产物的位点主要都集中在N末端。The fragment showing m/z=894.3 hardly exists, and its content is very low. According to its abundance, it can be seen that its content should be less than 5-10%. This shows that compared with the modified product at pH 8.0, only a very small part of the modified product at pH 4.5 is not at the N-terminal, that is, the sites of the modified product are mainly concentrated at the N-terminal.

图14-1PEG-ALD(30kDa)的MALDI-TOF-MS分子量测定结果。Figure 14-1 MALDI-TOF-MS molecular weight measurement results of PEG-ALD (30kDa).

图14-2实施例2峰2MALDI-TOF-MS分子量测定结果。Figure 14-2 MALDI-TOF-MS molecular weight determination results of peak 2 in Example 2.

图15等电聚焦测定结果。Fig. 15 isoelectric focusing measurement results.

图16圆二色光谱测定rhG-CSF和PEG-rhG-CSF二级结构Figure 16 Circular dichroism spectrum determination of rhG-CSF and PEG-rhG-CSF secondary structure

其中三线示rhG-CSF、PG-N-20和PG-N-30。Among them, the three lines show rhG-CSF, PG-N-20 and PG-N-30.

图17-1PG-N-30(3mg/mL/支)在4℃条件下静置24月后,经过高效凝胶检测结果Figure 17-1 PG-N-30 (3mg/mL/bottle) after standing at 4°C for 24 months, the results of high-efficiency gel detection

其中:峰1为PG-N-30多聚体占0.5%,峰2为PG-N-30二聚体1.1%,峰3为PG-N-30占98.4%。Wherein: peak 1 is PG-N-30 multimer accounting for 0.5%, peak 2 is PG-N-30 dimer 1.1%, peak 3 is PG-N-30 accounting for 98.4%.

图17-2rhG-CSF(3mg/mL/支)在4℃条件下静置30天后,经过高效凝胶检测结果Figure 17-2rhG-CSF (3mg/mL/vial) after standing at 4°C for 30 days, the results of high-efficiency gel detection

其中:峰1为rhG-CSF占41.2%,峰2为rhG-CSF聚集体占58.8%。Among them: peak 1 is rhG-CSF accounting for 41.2%, peak 2 is rhG-CSF aggregates accounting for 58.8%.

图18rhG-CSF和PG-N-30体外酶解反应图。Fig. 18 In vitro enzymatic hydrolysis reaction diagram of rhG-CSF and PG-N-30.

图19Beagle犬皮下注射同剂量PG-N-30和PG-N-20(200μg·kg-1)后的药时曲线。Fig. 19 The drug-time curves of Beagle dogs after subcutaneous injection of the same dose of PG-N-30 and PG-N-20 (200 μg·kg -1 ).

图20-1Beagle犬皮下注射PG-N-30和PG-N-20后不同时间ANC计数的变化。Figure 20-1 Changes in ANC counts at different times after subcutaneous injection of PG-N-30 and PG-N-20 in Beagle dogs.

图20-2Beagle犬注射PG-N-30200μg·kg-1后药物浓度与ANC计数的变化比较。Figure 20-2 Comparison of changes in drug concentration and ANC counts after Beagle dogs were injected with 200 μg·kg -1 of PG-N-30.

图21PG-N-30对氟尿嘧啶致小鼠白细胞减少模型动物中性粒细胞水平的影响。Fig. 21 Effect of PG-N-30 on neutrophil level in mouse leukopenia model animals induced by fluorouracil.

图22PG-N-30对环磷酰胺致大鼠白细胞减少模型动物中性粒细胞水平的影响。Fig. 22 Effect of PG-N-30 on neutrophil level in rat leukopenia model animals induced by cyclophosphamide.

具体实施方式 Detailed ways

下面的实施范例有助于进一步阐述本发明,但本发明所涉及的内容与范围不仅限于这些范例所述。The following examples help to further illustrate the present invention, but the content and scope of the present invention are not limited to these examples.

实施例1表达与制备rhG-CSF及rhG-CSFmExample 1 Expression and preparation of rhG-CSF and rhG-CSFm

表达rhG-CSF及rhG-CSFm:Expression of rhG-CSF and rhG-CSFm:

取人新鲜骨髓细胞进行培养,并用美洲商陆分裂素(Sigma公司,美国)进行激活。提取人骨髓细胞mRNA,RT-PCR方法扩增得到hG-CSF基因,经测序(由北京博尚生物技术有限公司完成)证实为hG-CSF基因,其cDNA序列如SEQID NO.2所示,其氨基酸序列如SEQID NO.1所示。采用DNA Strider软件分析hG-CSF基因DNA序列分析;使用PCR(聚合酶链式反应))和定点突变的方法修改人天然G-CSF基因序列,获新的修饰后的人粒细胞集落刺激因子(rhG-CSF)基因编码序列,其核苷酸序列如SEQID NO.3所示,将此基因构建在pMD18-T载体上,载体转化到Top10菌株中保存。Fresh human bone marrow cells were cultured and activated with pokeweed kinogen (Sigma, USA). Human bone marrow cell mRNA was extracted, and RT-PCR method was used to amplify hG-CSF gene, which was confirmed to be hG-CSF gene through sequencing (completed by Beijing Boshang Biotechnology Co., Ltd.), and its cDNA sequence is shown in SEQ ID NO.2. The amino acid sequence is shown in SEQID NO.1. DNA Strider software was used to analyze hG-CSF gene DNA sequence analysis; PCR (polymerase chain reaction)) and site-directed mutagenesis were used to modify the human natural G-CSF gene sequence to obtain a new modified human granulocyte colony-stimulating factor ( rhG-CSF) gene coding sequence, its nucleotide sequence is shown in SEQID NO.3, this gene is constructed on the pMD18-T vector, and the vector is transformed into the Top10 bacterial strain and preserved.

以引物rhG-CSF_F(5-GATCCTAGCATATGACTCCATTAGGTCCT-3)为前引物,引物rhG-CSF_R(5-GATCCTAGAATTCTCAGGGCTGCGCAAG-3)为后引物,以pMD18-T/rhG-CSF为模板,利用PCR体外扩增rhG-CSF序列(PCR反应条件:引物浓度为20μmol/L,10×缓冲液5μl;25mmol/L MgCl2 4μl;10mmol/L四种dNTP混合液1μl;上下游引物各1μl;TaqDNA聚合酶0.5μl;模板DNA1μl,加水补至50μl;经97℃预变性10分钟,94℃变性60秒,55℃退火60秒,72℃延伸60秒,30个循环后72℃延伸10分钟,4℃保存)。取反应后产物电泳检测(琼脂糖胶浓度为0.8%)片段的分子量。The primer rhG-CSF_F (5-GATCCTAGCATATGACTCCATTAGGTCCT-3) was used as the front primer, the primer rhG-CSF_R (5-GATCCTAGAATTCTCAGGGCTGCGCAAG-3) was used as the back primer, and pMD18-T/rhG-CSF was used as the template to amplify rhG-CSF in vitro by PCR Sequence (PCR reaction conditions: primer concentration 20 μmol/L, 5 μl 10× buffer; 25 mmol/L MgCl 2 4 μl; 10 mmol/L four kinds of dNTP mixture 1 μl; upstream and downstream primers 1 μl; TaqDNA polymerase 0.5 μl; template DNA 1 μl , add water to make up to 50 μl; pre-denaturation at 97°C for 10 minutes, denaturation at 94°C for 60 seconds, annealing at 55°C for 60 seconds, extension at 72°C for 60 seconds, extension at 72°C for 10 minutes after 30 cycles, and storage at 4°C). The molecular weight of the fragments was detected by electrophoresis after the reaction (the concentration of the agarose gel was 0.8%).

将PCR得到片断和pGL1质粒利用Nde I、EcoR I核酸内切酶进行双酶切消化。然后利用PCR产物回收试剂盒(购自OMEGA公司)回收纯化酶切的片段。利用T4连接酶(购买于MBI公司)连接,将反应组成体系(rhG-CSF基因片段:6μl;pGL1片断2μl;连接液缓冲液(10X)1μl;T4连接酶1μl)在22℃下进行连接反应,时间为4小时,经连接后得到重组环境诱导型表达质粒pGL1-rhG-CSF。The fragment obtained by PCR and the pGL1 plasmid were digested with Nde I and EcoR I endonucleases. Then, the PCR product recovery kit (purchased from OMEGA) was used to recover and purify the digested fragments. Use T4 ligase (purchased from MBI company) for ligation, and the reaction composition system (rhG-CSF gene fragment: 6 μl; pGL1 fragment 2 μl; ligation buffer (10X) 1 μl; T4 ligase 1 μl) for ligation reaction at 22°C , the time is 4 hours, and the recombinant environment-inducible expression plasmid pGL1-rhG-CSF is obtained after ligation.

同上述方法,分别使用下列所述前引物及后引物rhG-CSF_R(5-GATCCTAGAATTCTCAGGGCTGCGCAAG-3)以上述方式及条件进行PCR扩增,并将扩增产物克隆进入pGL1质粒的Nde I、EcoR I两个酶切位点之间,构建rhG-CSF突变体的表达质粒。With the above-mentioned method, use the following pre-primer and back primer rhG-CSF_R (5-GATCCTAGAATTCTCAGGGCTGCGCAAG-3) respectively to carry out PCR amplification in the above-mentioned manner and conditions, and clone the amplified product into Nde I and EcoR I of the pGL1 plasmid. Between the restriction sites, construct the expression plasmid of rhG-CSF mutant.

rhG-CSF-174_F:5-GATCCTAGCAT ATGCCATTAGGTCCTGCA-3rhG-CSF-174_F: 5-GATCCTAGCAT ATGCCATTAGGTCCTGCA-3

rhG-CSF-173_F:5-GATCCTAGCAT ATGTTAGGTCCTGCATCT-3rhG-CSF-173_F: 5-GATCCTAGCAT ATGTTAGGTCCTGCATCT-3

rhG-CSF-172_F:5-GATCCTAGCAT ATGGGTCCTGCATCTTCT-3rhG-CSF-172_F: 5-GATCCTAGCAT ATGGGTCCTGCATCTTCT-3

rhG-CSF-171_F:5-GATCCTAGCAT ATGCCTGCATCTTCTTTA-3rhG-CSF-171_F: 5-GATCCTAGCAT ATGCCTGCATCTTCTTTA-3

rhG-CSF-170_F:5-GATCCTAGCAT ATGGCATCTTCTTTACCA-3rhG-CSF-170_F: 5-GATCCTAGCAT ATGGCATCTTCTTTACCA-3

rhG-CSF-169_F:5-GATCCTAGCAT ATGTCTTCTTTACCACAA-3rhG-CSF-169_F: 5-GATCCTAGCAT ATGTCTTTCTTTACCACAA-3

rhG-CSF-168_F:5-GATCCTAGCAT ATGTCTTTACCACAAAGC-3rhG-CSF-168_F: 5-GATCCTAGCAT ATGTCTTTACCACAAGC-3

rhG-CSF-167_F:5-GATCCTAGCAT ATGTTACCACAAAGCTTC-3rhG-CSF-167_F: 5-GATCCTAGCAT ATGTTACCACAAAAGCTTC-3

rhG-CSF-166_F:5-GATCCTAGCAT ATGCCACAAAGCTTCCTG-3rhG-CSF-166_F: 5-GATCCTAGCAT ATGCCACAAAGCTTCCTG-3

rhG-CSF-165_F:5-GATCCTAGCAT ATGCAAAGCTTCCTGCTC-3。rhG-CSF-165_F: 5-GATCCTAGCATATGCAAAGCTTCCTGCTC-3.

将含有重组质粒pGL1-rhG-CSF转化进入大肠杆菌DH5α。将单菌落挑取转入含有100微克/毫升的氨苄青霉素的LB液体培养基中,37℃,225转/分钟下培养过夜。利用质粒试剂盒提取重组质粒pGL1-rhG-CSF,验证质粒的大小。并用Nde I、EcoR I核酸内切酶双酶切分析,筛选含有rhG-CSF基因片段的重组质粒转化子;重组质粒图谱见图8。The recombinant plasmid pGL1-rhG-CSF was transformed into Escherichia coli DH5α. Pick and transfer a single colony into LB liquid medium containing 100 μg/ml ampicillin, and culture overnight at 37° C. and 225 rpm. The plasmid kit was used to extract the recombinant plasmid pGL1-rhG-CSF, and the size of the plasmid was verified. And use Nde I, EcoRI endonuclease double digestion analysis, screen the recombinant plasmid transformant containing rhG-CSF gene fragment; The recombinant plasmid map is shown in Figure 8.

将经过验证的重组质粒pGL1-rhG-CSF转化入大肠杆菌BL21(DE3)pLysS。挑取LB平板中筛选后的阳性克隆,在无菌条件下用接种环接1~2环于5ml并加有终浓度为50~150微克/毫升的氨苄青霉素的发酵培养基中,30~40℃条件下,150~300转/分钟摇床振荡培养8~16小时,制得种子液;以1%~5%的接种量转接入装有50ml培养基的300ml三角瓶中。37℃剧烈振荡培养3h,使细菌处于对数生长中期,OD600值约为0.8。从50ml对数生长期菌液中取1mL做对照,向其余菌液中加入1mol/L IPTG溶液,使其最终浓度为1mmol/L。加入IPTG后菌液继续培养1~4h,12000rpm离心10min,取上清与沉淀分别保存待用,最后离心收获细菌,检测目的蛋白的表达。SDS-PAGE结果见图2,rhG-CSF含量占菌体总蛋白的25%左右,如图9所示。The verified recombinant plasmid pGL1-rhG-CSF was transformed into Escherichia coli BL21(DE3)pLysS. Pick the positive clones after screening on the LB plate, and inoculate 1-2 loops under sterile conditions into 5ml of fermentation medium with ampicillin at a final concentration of 50-150 μg/ml, 30-40 Under the condition of ℃, 150-300 rev/min shaker shake culture for 8-16 hours to obtain seed solution; transfer 1%-5% inoculum amount into a 300ml Erlenmeyer flask with 50ml medium. Incubate vigorously at 37°C for 3 hours, so that the bacteria are in the mid-logarithmic growth phase, and the OD 600 value is about 0.8. Take 1mL from 50ml logarithmic growth phase bacterial liquid as a control, add 1mol/L IPTG solution to the remaining bacterial liquid to make the final concentration 1mmol/L. After adding IPTG, continue to culture the bacterial solution for 1-4 hours, centrifuge at 12,000 rpm for 10 minutes, take the supernatant and precipitate and store them separately for later use, and finally harvest the bacteria by centrifugation to detect the expression of the target protein. The results of SDS-PAGE are shown in Figure 2, and the rhG-CSF content accounts for about 25% of the total bacterial protein, as shown in Figure 9 .

同上述方法,以构建的rhG-CSF突变体表达质粒同样经筛选可以获得高效表达目标蛋白的即从N-末端第2到第11个氨基酸逐一缺失的10个rhG-CSF突变体的工程菌株及其rhG-CSF突变体,即rhG-CSF-174,rhG-CSF-173,rhG-CSF-172,rhG-CSF-171,rhG-CSF-170,rhG-CSF-169,rhG-CSF-168,rhG-CSF-167,rhG-CSF-166,rhG-CSF-165;其氨基酸序列如SEQ ID NO.1的氨基酸序列公式所示。With the above method, the constructed rhG-CSF mutant expression plasmid can also be screened to obtain engineering strains of 10 rhG-CSF mutants that can efficiently express the target protein, that is, 10 rhG-CSF mutants that are deleted one by one from the 2nd to the 11th amino acid at the N-terminal and Its rhG-CSF mutants, namely rhG-CSF-174, rhG-CSF-173, rhG-CSF-172, rhG-CSF-171, rhG-CSF-170, rhG-CSF-169, rhG-CSF-168, rhG-CSF-167, rhG-CSF-166, rhG-CSF-165; its amino acid sequence is shown in the amino acid sequence formula of SEQ ID NO.1.

rhG-CSF或rhG-CSFm在大肠杆菌表达体系中的表达制备:Preparation of rhG-CSF or rhG-CSFm in E. coli expression system:

从液氮罐中取出上述rhG-CSF菌种,37℃水浴速融;在严格无菌操作下,将rhG-CSF大肠杆菌工程菌接种于LB/Amp(配方组成为100ml中含胰蛋白胨1克、酵母浸膏0.5克、氯化钠0.5克、氢氧化钠4毫克、琼脂粉1.5克和氨苄青霉素5毫克),置37℃培养箱(SANYO MCO-17AIC)培养12-15小时,选取单一菌落,转接在12ml LB/Amp(配方组成为100ml中含胰蛋白胨1克、酵母浸膏0.5克、氯化钠0.5克、氢氧化钠4毫克和氨苄青霉素5毫克)培养管中,37℃250rpm振荡培养(HWY 111恒温摇床)12小时;取10ml发酵液转接在1000ml LB/Amp发酵液中摇瓶培养(37℃,250rpm振荡)8小时;再接种于15升发酵罐(B.Braun BIOSTAT C)中培养,每升发酵液含胰蛋白胨12克、酵母浸膏24克、磷酸二氢钾3.8克、磷酸氢二钾12.5克、硫酸镁0.5克、甘油6.3克、纯水0.9升、葡萄糖20克和氨苄青霉素0.1克;设发酵参数为温度37℃、pH7.0、溶氧35%及搅拌转速与溶氧联动。当OD600值达20时,为工程菌对数增长的中期,加入IPTG诱导,持续2小时后终止发酵。冷却发酵液,使其降温至4-8℃。采用Sorvall大容量低温冷冻低速离心机(Sorvall RC3B)离心(4000rpm,30分钟)收集细菌。Take out the above rhG-CSF strains from the liquid nitrogen tank, and melt them quickly in a water bath at 37°C; under strict aseptic operation, inoculate the rhG-CSF E. , 0.5 g of yeast extract, 0.5 g of sodium chloride, 4 mg of sodium hydroxide, 1.5 g of agar powder, and 5 mg of ampicillin), cultivated in a 37°C incubator (SANYO MCO-17AIC) for 12-15 hours, and selected a single colony , transferred in a 12ml LB/Amp (100ml formula contains 1 gram of tryptone, 0.5 grams of yeast extract, 0.5 grams of sodium chloride, 4 mg of sodium hydroxide and 5 mg of ampicillin) culture tube, 37 ° C 250 rpm Shaking culture (HWY 111 constant temperature shaker) for 12 hours; transfer 10ml of fermentation broth to 1000ml LB/Amp fermentation broth for shaking flask culture (37°C, 250rpm shaking) for 8 hours; re-inoculate in a 15-liter fermenter (B.Braun Cultivated in BIOSTAT C), each liter of fermentation broth contains 12 grams of tryptone, 24 grams of yeast extract, 3.8 grams of potassium dihydrogen phosphate, 12.5 grams of dipotassium hydrogen phosphate, 0.5 grams of magnesium sulfate, 6.3 grams of glycerin, 0.9 liters of pure water, 20 grams of glucose and 0.1 grams of ampicillin; the fermentation parameters were set as temperature 37°C, pH 7.0, dissolved oxygen 35%, and the linkage between stirring speed and dissolved oxygen. When the OD 600 value reaches 20, it is the middle stage of the logarithmic growth of the engineered bacteria, and IPTG is added to induce it, and the fermentation is terminated after 2 hours. Cool the fermented liquid to bring it down to 4-8°C. Bacteria were collected by centrifugation (4000 rpm, 30 minutes) in a Sorvall large-capacity low-temperature refrigerated low-speed centrifuge (Sorvall RC3B).

向收集的工程菌菌体沉淀中加入工程菌破碎缓冲液(50mM Tris,1mM EDTA,pH7.5缓冲液)。经APV高压匀浆机(APV 2000)10000psi压力下破碎菌体。破菌后液体经高速冷冻离心机(Sorvall RC5B)SLA-3000转头11000rpm转速离心(4℃,20分钟)获得包涵体(IB)粗品。使用包涵体洗涤液(50mM Tris,1mM EDTA,pH7.5,2.5%曲拉通×100,0.15M NaCl)三遍,与包涵体充分混合,再经低温(4℃)高速离心(SorvallRC5B,11000rpm,50分钟)收集包涵体,完成包涵体洗涤与纯化。将已纯化的包涵体按10克湿重比500毫升的比例溶解于包涵体溶解变性液中(50mM Tris,1mM EDTA,8M盐酸胍,1mM二巯基赤藓醇),4℃,12小时,获得包涵体溶解变性液,离心40分钟(SorvallRC5B,11,000rpm),收取上清。Add engineering bacteria breaking buffer (50mM Tris, 1mM EDTA, pH7.5 buffer) to the collected engineering bacteria thalline precipitate. The bacteria were crushed under the pressure of 10000psi by APV high-pressure homogenizer (APV 2000). After breaking the bacteria, the liquid was centrifuged at a speed of 11000 rpm in a high-speed refrigerated centrifuge (Sorvall RC5B) SLA-3000 (4°C, 20 minutes) to obtain crude inclusion bodies (IB). Use inclusion body washing solution (50mM Tris, 1mM EDTA, pH7.5, 2.5% Triton × 100, 0.15M NaCl) three times, mix well with inclusion body, and then centrifuge at low temperature (4°C) at high speed (Sorvall RC5B, 11000rpm) , 50 minutes) to collect the inclusion bodies, and complete the washing and purification of the inclusion bodies. Dissolve the purified inclusion body in inclusion body dissolving and denaturing solution (50mM Tris, 1mM EDTA, 8M guanidine hydrochloride, 1mM dimercaptoerythritol) at a ratio of 10 grams of wet weight to 500 ml, at 4°C for 12 hours to obtain Inclusion bodies were dissolved in denaturing solution, centrifuged for 40 minutes (Sorvall RC5B, 11,000 rpm), and the supernatant was collected.

按1∶100体积比将包涵体溶解变性液缓慢加入20mM醋酸钠缓冲液(pH 6.0),150mM氯化钠,3M尿素,0.005%聚山利醇酯80(polysorbate 80)复性溶液中,4℃静置24小时,经0.45μm孔径滤膜过滤后,进行蛋白质提纯。Slowly add inclusion body dissolving and denaturing solution into 20mM sodium acetate buffer (pH 6.0), 150mM sodium chloride, 3M urea, 0.005% polysorbate 80 (polysorbate 80) refolding solution at a volume ratio of 1:100, 4 ℃ for 24 hours, after filtering through a 0.45 μm pore size filter membrane, the protein was purified.

rhG-CSF蛋白复性液经过离子交换层析(层析设备AKTA purifier,层析柱INdEX200/500,层析介质Sepharose big bead),平衡缓冲液为20mM醋酸钠缓冲液(pH 4.5),150mM氯化钠,0.005%聚山梨醇酯80;用0~1M氯化钠梯度洗脱,分离结果如图3所示,收集A280蛋白洗脱峰液。用上述平衡缓冲液平衡凝胶层析柱(层析柱BPG100,层析介质Superdex 75 prep grade),按30ml/分钟的流速上样,每次上样持续5分钟(上样量约150ml),上样120分钟后,收集出现的A280蛋白吸收峰,即为rhG-CSF原液。The rhG-CSF protein refolding solution was subjected to ion exchange chromatography (chromatography equipment AKTA purifier, chromatography column INdEX200/500, chromatography medium Sepharose big bead), and the equilibrium buffer was 20mM sodium acetate buffer (pH 4.5), 150mM chloride Sodium chloride, 0.005% polysorbate 80; gradient elution with 0-1M sodium chloride, the separation result is shown in Figure 3, and the A280 protein elution peak solution was collected. Equilibrate the gel chromatography column (chromatographic column BPG100, chromatography medium Superdex 75 prep grade) with the above-mentioned equilibration buffer, load the sample at a flow rate of 30ml/min, and each loading lasts for 5 minutes (the loading volume is about 150ml), After 120 minutes of sample loading, the A280 protein absorption peak that appeared was collected, which was the rhG-CSF stock solution.

MALDI-TOF(基质辅助激光解析-电离时间飞行质谱)测定rhG-CSF分子量(如图10),以及高效液相色谱(HPLC)法和高效凝胶色谱法(SEC)测定rhG-CSF原液,结果如图11和图12所示,方法同实施例3所述方法相同。结果表明rhG-CSF的分子量约为18.688kDa;而rhG-CSF原液HPLC和SEC纯度均大于98%。MALDI-TOF (matrix-assisted laser desorption-ionization time-of-flight mass spectrometry) measures the molecular weight of rhG-CSF (as shown in Figure 10), and high-performance liquid chromatography (HPLC) and high-performance gel chromatography (SEC) measure rhG-CSF stoste, the result As shown in Figure 11 and Figure 12, the method is the same as that described in Embodiment 3. The results showed that the molecular weight of rhG-CSF was about 18.688kDa; and the purity of rhG-CSF stock solution by HPLC and SEC was greater than 98%.

实施例2PEG-丙醛与rhG-CSF N-末端定点偶联制备PEG-rhG-CSFExample 2 Preparation of PEG-rhG-CSF by site-specific coupling of PEG-propionaldehyde and rhG-CSF N-terminus

装载MacroCap SP强阳离子交换色谱柱(2.6cmX20cm),并将其连接到AKTAExplorer 100液相层析系统(Amersham Bioscience,Sweden)上,使用20mM醋酸钠缓冲液pH 5.5(缓冲液A)和0.005%聚山梨醇酯80 500ml充分平衡色谱柱;用进料泵,以10ml/min的流速,将rhG-CSF原液0.5mg/ml 1500ml加入色谱柱中;再在15ml/min的流速下,用大约500ml缓冲液A冲洗柱子,去除不与色谱介质发生静电吸附的物质;以3ml/min的流速,加入5mg/ml 30kDa的PEG-丙醛(PEG-propionaldehyde)和0.1mg/mlNaBH3CN溶液1500ml,连续上样约240分钟;反应体系的pH为5.5;再以15ml/min的流速,用大约500ml缓冲液A冲洗柱子,去除不与色谱介质发生静电吸附的物质;随后用缓冲液B(即缓冲液A+1mol氯化钠),以洗脱方式0~8%、8%~18%和18%~100%洗脱,持续约150分钟,即可记录到如图1所示的离子交换层析谱图,由图1看到,共可获得峰1,峰2和峰3三个洗脱峰,即P1,P2和P3,其中P2的峰面积约占总峰面积的90%;P1和P3分别占总峰面积的4%和6%。P2经还原型SDS-PAGE、高效凝胶色谱(SEC)和高效液相色谱(HPLC)纯度分析为单修饰的PEG-rhG-CSF,纯度大于95%(如图2,3,4所示)。该产物通过液质联用胰蛋白酶酶解肽图分析确定30kDa分子量PEG-丙醛的偶联位点为rh-CSF的N-末端,即PG-N-30(详见实施例3)。Load MacroCap SP strong cation exchange chromatographic column (2.6cmX20cm), and connect it to AKTAExplorer 100 liquid chromatography system (Amersham Bioscience, Sweden), use 20mM sodium acetate buffer pH 5.5 (buffer solution A) and 0.005% poly Sorbitol ester 80 500ml fully equilibrates the chromatographic column; using a feed pump, add 0.5mg/ml 1500ml of rhG-CSF stock solution to the chromatographic column at a flow rate of 10ml/min; Wash the column with liquid A to remove substances that do not electrostatically adsorb with the chromatographic medium; add 5mg/ml 30kDa PEG-propionaldehyde (PEG-propionaldehyde) and 0.1mg/mlNaBH 3 CN solution 1500ml at a flow rate of 3ml/min, and continuously add The sample is about 240 minutes; the pH of the reaction system is 5.5; then at a flow rate of 15ml/min, wash the column with about 500ml buffer A to remove substances that do not electrostatically adsorb with the chromatographic medium; then use buffer B (i.e. buffer A +1mol sodium chloride), with the elution mode of 0-8%, 8%-18% and 18%-100% elution, for about 150 minutes, the ion-exchange chromatogram as shown in Figure 1 can be recorded Fig. 1 sees, peak 1 can be obtained altogether, and three elution peaks of peak 2 and peak 3, namely P1, P2 and P3, wherein the peak area of P2 accounts for about 90% of total peak area; P1 and P3 respectively Accounted for 4% and 6% of the total peak area. P2 was analyzed as a single modified PEG-rhG-CSF by reducing SDS-PAGE, high performance gel chromatography (SEC) and high performance liquid chromatography (HPLC), with a purity greater than 95% (as shown in Figures 2, 3, and 4) . The product was analyzed by LC-MS using tryptic peptide map to determine that the coupling site of PEG-propionaldehyde with a molecular weight of 30 kDa was the N-terminal of rh-CSF, namely PG-N-30 (see Example 3 for details).

在上述层析柱PEG蛋白N-末端定点偶联法中,若仅改变反应体系的pH值,如在pH4.0和pH6.0下(详见表2),洗脱峰的组成和比例将会改变,但单修饰PEG-rhG-CSF经液质联用胰蛋白酶酶解肽图分析检定仍是30kDa分子量的PEG-丙醛与rh-CSF N-末端的定点偶联,即PG-N-30。In the above-mentioned chromatographic column PEG protein N-terminal fixed-point coupling method, if only the pH value of the reaction system is changed, such as at pH4.0 and pH6.0 (see Table 2 for details), the composition and ratio of the elution peak will be It will change, but the single-modified PEG-rhG-CSF is still the fixed-point coupling between 30kDa molecular weight PEG-propionaldehyde and rh-CSF N-terminus, that is, PG-N- 30.

表2反应体系pH值的改变对层析柱PEG蛋白N-末端定点偶联的影响Table 2 The influence of the change of the pH value of the reaction system on the N-terminal coupling of the PEG protein on the chromatography column

Figure A20091001371000211
Figure A20091001371000211

实施例3液质联用胰蛋白酶酶解肽图分析PEG-ALD与rh-CSF的偶联位点Example 3 Analysis of the Coupling Site of PEG-ALD and rh-CSF Using Trypsin Digestion Peptide Mapping by Liquid-MS

1)测定方法1) Measurement method

选择液相色谱仪Agillent 1100和质谱仪LCQ Deca XP MS进行分析,具体方法如下:Select liquid chromatograph Agilent 1100 and mass spectrometer LCQ Deca XP MS to analyze, and specific method is as follows:

液相色谱仪操作条件:Liquid chromatograph operating conditions:

流动相为:A:0.1%A:0.1%TFA的水溶液,B:0.1%TFA的ACN溶液;The mobile phase is: A: 0.1% A: 0.1% TFA in water, B: 0.1% TFA in ACN;

色谱条件:色谱柱为Zorbax SBC18(2.1×150mm,Agilent),流速为0.2ml/ml,梯度为0-60min,5%B-60B,60-120min,60%B-90%B,检测波长为214nm;Chromatographic conditions: the chromatographic column is Zorbax SBC18 (2.1 × 150mm, Agilent), the flow rate is 0.2ml/ml, the gradient is 0-60min, 5%B-60B, 60-120min, 60%B-90%B, and the detection wavelength is 214nm;

质谱仪操作条件:Mass spectrometer operating conditions:

Sheath gas:60arb;Aux gas:0;喷雾电压:4.5kV;检测方式:Triple play;一级质谱:Mass range:m/z300-2000;Zoom scan:Data dependent mode;MS/MS:Data dependent mode;数据处理软件:Bioworks3.1;质谱数据解析软件Turbosequest3.1。Sheath gas: 60arb; Aux gas: 0; Spray voltage: 4.5kV; Detection method: Triple play; Primary mass spectrometry: Mass range: m/z300-2000; Zoom scan: Data dependent mode; Data processing software: Bioworks3.1; mass spectrometry data analysis software Turbosequest3.1.

通过液相色谱自动进样系统将酶解样品注入色谱系统警醒分析。The enzymolysis sample is injected into the chromatographic system through the liquid chromatography automatic sampling system for vigilance analysis.

样品处理操作条件:Sample handling operating conditions:

待测未修饰蛋白样品处理:Sample processing of unmodified protein to be tested:

①取200μl(蛋白浓度1mg/mL)待测样品,加入10uL 8M脲,超声10min分散样品,采用0.2M的Tris-HCl调节pH至pH8.0;①Take 200μl (protein concentration 1mg/mL) of the sample to be tested, add 10uL 8M urea, disperse the sample by ultrasonication for 10min, and adjust the pH to pH8.0 with 0.2M Tris-HCl;

②按照摩尔比50∶1(蛋白∶胰蛋白酶)加入胰蛋白酶溶液,37℃恒温孵育8h;胰蛋白酶购自美国Promega公司;② Add trypsin solution at a molar ratio of 50:1 (protein:trypsin), and incubate at a constant temperature of 37°C for 8 hours; trypsin was purchased from Promega, USA;

③二硫键还原:向酶解产物中加入1.4mol/l的二硫苏糖醇水溶液10μl,震荡混合,37℃反应10分钟;③Reduction of disulfide bonds: Add 10 μl of 1.4 mol/l dithiothreitol aqueous solution to the enzymatic hydrolysis product, shake and mix, and react at 37°C for 10 minutes;

待测修饰蛋白的处理方式与未修饰蛋白处理方式相同,但延长酶切时间至12小时。The treatment method of the modified protein to be tested is the same as that of the unmodified protein, but the digestion time is extended to 12 hours.

2)rhG-CSF的氨基酸序列及其可能的酶切位点分析2) Analysis of the amino acid sequence of rhG-CSF and its possible restriction sites

M1TPLGPASSL10PQSFLLK17CLE20QVRK24IQGDGA30ALQEK35LCATYK41LCHPEELVLLGHSLGIPWAPLSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWQQMEELGMAPALQPTQGAMPAFASAFQRRAGGVLVASHLQSFLEVSYRVLRHLAQP。M 1 TPLGPASSSL 10 PQSFLLK 17 CLE 20 QVRK 24 IQGDGA 30 ALQEK 35 LCATYK 41 LCHPEELVLLGHSLGIPWAPLSSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWQQMEELGMAPALQPTQGAMPAFASLAFQRRAGGVLEVASHLQ.

理论上,胰蛋白酶的酶切位点为赖氨酸和精氨酸(Lys及Arg)的羧基端,经胰蛋白酶处理酶切可获得的rhG-CSF的肽段为:Theoretically, the enzyme cleavage site of trypsin is the carboxyl terminal of lysine and arginine (Lys and Arg), and the peptide segment of rhG-CSF obtained by digestion with trypsin is:

①M1TPLGPASSLPQSFLLK17 ①M 1 TPLGPASSLPQSFLLK 17

②CLEQVRK24 ②CLEQVRK 24

③IQGDGAALQEK35 ③IQGDGAALQEK 35

④LCATYK41 ④LCATYK 41

⑤LCHPEELVLLGHSLGIPWAPLSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWQQMEELGMAPALQPTQGAMPAFASAFQR147 ⑤LCHPEELVLLGHSLGIPWAPLSSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWQQMEELGMAPALQPTQGAMPAFASAFQR 147

⑥AGGVLVASHLQSFLEVSYR167 ⑥AGGVLVASHLQSFLEVSYR 167

⑦HLAQP175 ⑦HLAQP 175

由于PEG-ALD的修饰位点也为Lys及N末端的Met,因此我们可将注意力集中在Lys41位之前的那些酶切多肽片段的分析即可。理论上讲,rhG-CSF Lys41位之前胰蛋白酶酶切可获得下列4个多肽片段:Since the modification sites of PEG-ALD are also Lys and Met at the N-terminal, we can focus on the analysis of those enzyme-cleaved polypeptide fragments before Lys41. Theoretically, trypsin digestion before Lys41 of rhG-CSF can obtain the following 4 polypeptide fragments:

①M1TPLGPASSLPQSFLLK17;②CLEQVRK24;③IQGDGAALQEK35;④LCATYK41 ①M 1 TPLGPASSLPQSFLLK 17 ; ②CLEQVRK 24 ; ③IQGDGAALQEK 35 ; ④LCATYK 41

在实际的酶切片段测定与分析中,我们获得了与理论值完全符合的结果,即已将理论上的酶切片段逐一找到,图13-1为酶切片段①M1TPLGPASSLPQSFLLK17,即在m/z=894.6左右;因原图太多,其余片段未收录。In the actual detection and analysis of restriction enzyme fragments, we obtained results that are in full agreement with the theoretical values, that is, the theoretical restriction fragments have been found one by one. Figure 13-1 shows the restriction fragments ①M 1 TPLGPASSLPQSFLLK 17 , that is, at m /z=894.6 or so; because there are too many original pictures, the rest of the clips are not included.

3)PEG-ALD单修饰rhG-CSF的偶联位点分析3) Coupling site analysis of PEG-ALD single modified rhG-CSF

分析不同pH条件下的PEG-ALD修饰rhG-CSF的产物,即PEG-rhG-CSF,结果发现,在pH=8.0的条件下,单修饰的PEG-rhG-CSF经酶切后m/z=894.3的片段非常清晰的存在,根据其丰度可以看出含量相对较高,如图13-2所示,而其他②CLEQVRK24;③IQGDGAALQEK35;④LCATYK41,则丰度降低或相应片段消失。而在pH=4.5的条件下,却相反,上述片段①M1TPLGPASSLPQSFLLK17m/z=894.3几乎消失(如图13-3所示),其余三个酶切片段均清晰存在,并与等量的rhG-CSF相应片段的丰度一致;事实上。理论和实验均证实,当pH=4.5条件下,单修饰的PEG-rhG-CSF绝大多数为蛋白N-末端修饰的PEG-rhG-CSF;说明在确认为单修饰的PEG-rhG-CSF的前提下,可以通过判断酶切片段①M1TPLGPASSLPQSFLLK17(m/z=894.3)是否存在及其丰度而判断PEG偶联位点是否位于N-末端。Analysis of the product of PEG-ALD modified rhG-CSF under different pH conditions, namely PEG-rhG-CSF, found that under the condition of pH=8.0, the m/z= The fragment of 894.3 exists very clearly, according to its abundance, it can be seen that the content is relatively high, as shown in Figure 13-2, while other ②CLEQVRK 24 ; ③IQGDGAALQEK 35 ; ④LCATYK 41 , the abundance decreases or the corresponding fragment disappears. However, under the condition of pH=4.5, on the contrary, the above-mentioned fragment ①M 1 TPLGPASSLPQSFLLK 17 m/z=894.3 almost disappeared (as shown in Figure 13-3), and the remaining three enzyme-digested fragments were clearly present, and were compatible with the same amount of The abundance of the corresponding fragments of rhG-CSF was consistent; indeed. Both theory and experiments have confirmed that under the condition of pH=4.5, most of the monomodified PEG-rhG-CSF is PEG-rhG-CSF modified at the N-terminus of the protein; On the premise, whether the PEG coupling site is located at the N-terminus can be judged by judging the existence and abundance of the restriction fragment ① M 1 TPLGPASSLPQSFLLK 17 (m/z=894.3).

4)样品测定与分析4) Sample determination and analysis

测定图2峰-2收集液样品和图5峰-2收集液样品,结果均未测到酶切片段①M1TPLGPASSLPQSFLLK17(m/z=894.3)的存在,而其他三个酶切片段即②CLEQVRK24;③IQGDGAALQEK35;④LCATYK41均清晰可辨,且丰度同等量的普通rhG-CSF酶切图谱,说明上述两个样品单修饰的PEG-rhG-CSF均为PEG-ALD或PEG-NHS与rhG-CSF蛋白N-末端定点偶联的产物。The samples collected from peak-2 in Figure 2 and the sample collected from peak-2 in Figure 5 were measured. The results showed that the enzyme-cut fragment ①M 1 TPLGPASSLPQSFLLK 17 (m/z=894.3) was not detected, while the other three enzyme-cut fragments were ②CLEQVRK 24 ; ③ IQGDGAALQEK 35 ; ④ LCATYK 41 are clearly identifiable, and the common rhG-CSF restriction pattern of the same amount of abundance shows that the single modified PEG-rhG-CSF of the above two samples is PEG-ALD or PEG-NHS and rhG - The product of site-directed coupling to the N-terminus of CSF protein.

实施例4PEG-rhG-CSF或PEG-rhG-CSFm的理化性质与体外活性Physicochemical properties and in vitro activity of embodiment 4 PEG-rhG-CSF or PEG-rhG-CSFm

1)MALDI-TOF-MS分子量测定1) MALDI-TOF-MS molecular weight determination

在基质辅助激光解析-电离时间飞行质谱仪Bruker Daltonics Autoflex 3(BrukerDaltonics Billerica公司,美国)上,按操作程序进行MALDI靶的清洗和晾干,采用Zip Tip C4(Millipore公司,美国)枪头脱盐、浓缩待测样品;吸取10ul待测样品和标准品点靶;设仪器操作程序条件为:延迟提取时间(Delayed extraction)190ns、检测模式为Linear ion mode/positive ion mode、激光频率(Laser frequency)50Hz、加速电压(Acecelerating Voltage)20KV、图形叠加(sum shots)400次、校正模式为External calibration;通过标准样品的校正,进行样品测定,并对数据处理可获MALDI-TOF-MS分子量测定图谱;如图10、图14-1和图14-2所示。图14-1为实施例2中所用修饰剂PEG-ALD(30kDa)的MALDI-TOF-MS分子量测定结果,为32439.3道尔顿,结果表明MALDI-TOF-MS法测定PEG-ALD(30kDa)的分子量与其标记分子量接近;图14-2所示为上述实施例2中所获峰2测定结果,PG-N-30的分子量为50667.491道尔顿,说明为单修饰PEG-rhG-CSF。On the matrix-assisted laser desorption-ionization time-of-flight mass spectrometer Bruker Daltonics Autoflex 3 (Bruker Daltonics Billerica Company, the United States), the MALDI target was cleaned and dried according to the operating procedures, and the Zip Tip C4 (Millipore Company, the United States) was used for desalting, Concentrate the sample to be tested; draw 10ul of the sample to be tested and the standard target; set the operating program conditions of the instrument as follows: Delayed extraction time (Delayed extraction) 190ns, detection mode is Linear ion mode/positive ion mode, laser frequency (Laser frequency) 50Hz , Accelerating Voltage (Accelerating Voltage) 20KV, graphic overlay (sum shots) 400 times, calibration mode is External calibration; through the calibration of standard samples, sample determination is carried out, and the MALDI-TOF-MS molecular weight determination spectrum can be obtained by data processing; Figure 10, Figure 14-1 and Figure 14-2. Figure 14-1 is the MALDI-TOF-MS molecular weight measurement result of the modifier PEG-ALD (30kDa) used in Example 2, which is 32439.3 Daltons. The molecular weight is close to its marked molecular weight; Figure 14-2 shows the measurement results of peak 2 obtained in Example 2 above. The molecular weight of PG-N-30 is 50667.491 Daltons, indicating that it is a single modified PEG-rhG-CSF.

2)高效液相色谱(High Performance Liquid Chromatography,HPLC)蛋白度测定2) High Performance Liquid Chromatography (HPLC) protein determination

在Agilent 1100色谱仪(美国安捷伦公司生产)上,选用碳4Vydac C4蛋白色谱柱(公司),以A相三氟乙酸水溶液(取1.0ml三氟乙酸加水致1000ml)和B相三氟乙酸乙腈溶液(取1.0ml三氟乙酸加入色谱纯乙腈致1000ml)为流动相;在室温下,设流速为1ml/min、压力为76bar,进行梯度洗脱(0~70%B相);待测样品上样体积20ul,上样量不低于30ug,于波长280nm检测。按面积归一化法计算各峰面积。结果如图4,图11所示。On the Agilent 1100 chromatographic instrument (produced by Agilent Corporation of the United States), select the carbon 4Vydac C4 protein chromatographic column (company), use A phase trifluoroacetic acid aqueous solution (take 1.0ml trifluoroacetic acid and add water to 1000ml) and B phase trifluoroacetic acid acetonitrile solution (Get 1.0ml trifluoroacetic acid and add chromatographically pure acetonitrile to 1000ml) as mobile phase; at room temperature, set flow rate as 1ml/min, pressure as 76bar, carry out gradient elution (0~70% B phase); The sample volume is 20ul, the sample volume is not less than 30ug, and the detection is performed at a wavelength of 280nm. The area of each peak was calculated by the area normalization method. The results are shown in Figure 4 and Figure 11.

3)高效凝胶色谱(Size Exclusion Chromatography,SEC)蛋白纯度测定3) Determination of protein purity by high performance gel chromatography (Size Exclusion Chromatography, SEC)

在Agilent 1100色谱仪(美国安捷伦公司生产)上,选用凝胶过滤色谱柱SuperdexTM200,HR10/30(GE Healthcare Biosciences公司),流动相为50mM的磷酸钠缓冲液(内含有0.1M的硫酸钠),pH6.7;设流速为0.5ml/min、压力为16bar、温度为25℃;检测波长280nm,波宽4nm;参比波长360nm,波宽100nm;待测样品上样量不低于20ug;采用面积归一法进行计算各峰面积。结果如图3,图6,图7,图8,图12,图17-1,17-2所示。On the Agilent 1100 chromatograph (produced by U.S. Agilent), select gel filtration chromatography column Superdex TM 200, HR10/30 (GE Healthcare Biosciences company), mobile phase is 50mM sodium phosphate buffer (containing 0.1M sodium sulfate ), pH6.7; set the flow rate at 0.5ml/min, the pressure at 16bar, and the temperature at 25°C; the detection wavelength is 280nm, and the wave width is 4nm; the reference wavelength is 360nm, and the wave width is 100nm; the amount of sample to be tested is not less than 20ug ; Use the area normalization method to calculate the area of each peak. The results are shown in Figure 3, Figure 6, Figure 7, Figure 8, Figure 12, Figure 17-1, and Figure 17-2.

4)等电点测定4) Determination of isoelectric point

在Phastsystem电泳仪(Pharmacia Biotech,瑞典)上,选择等电聚焦用预制胶PhastGel IEF 5~8(GE Healthcare Biosciences公司,美国);准备固定液20%(W∶V)三氯乙酸、脱色液30%甲醇+10%乙酸混合溶液和染色液0.02%PhastGel Blue R溶液;按“Pharmacia Phastsystem的使用和维护手册”所述设置电泳程序、染色/脱色步骤和清洗程序等,上样量为1ul(含1~2ug蛋白),根据预制胶PhastGel IEF 5~8所提供的标准蛋白计算判断样品的等电点。如图15所示,rhG-CSF、PG-N-20和PG-N-30的等电点一致,说明PEG偶联在rhG-CSF的N-末端并未改变其等电点。On the Phastsystem electrophoresis instrument (Pharmacia Biotech, Sweden), select prefabricated gel PhastGel IEF 5-8 for isoelectric focusing (GE Healthcare Biosciences, USA); prepare fixative 20% (W:V) trichloroacetic acid, decolorization solution 30 % methanol + 10% acetic acid mixed solution and staining solution 0.02% PhastGel Blue R solution; according to the "Pharmacia Phastsystem Use and Maintenance Manual" to set the electrophoresis program, staining/decolorization steps and washing procedures, etc., the sample volume is 1ul (including 1~2ug protein), calculate and judge the isoelectric point of the sample according to the standard protein provided by the precast gel PhastGel IEF 5~8. As shown in Fig. 15, the isoelectric points of rhG-CSF, PG-N-20 and PG-N-30 are consistent, indicating that the coupling of PEG to the N-terminus of rhG-CSF does not change its isoelectric point.

5)园二色光谱测定二级结构5) Determination of secondary structure by circular dichroism spectroscopy

待测样品经G-25凝胶层析柱(GE Healthcare,USA)脱盐置换到20mM乙酸-乙酸钠缓冲液(pH 4.5),调节蛋白浓度致0.2mg/ml。按规程操作园二色光谱仪(Jasco-810Spectropolarimeter,Jasco,Tokyo,Japan),设置参数:sensitivity:100mdeg,bandwidth:1.0nm,rosolution:0.5nm,response:0.5sec,accumulation:4,scanspeed:500nm/min。测定结果如图16所示。结果表明,PG-N-30、PG-N-20与rhG-CSF的园二色谱图形几乎完全吻合,提示rhG-CSF蛋白分子的氮末端偶联20kDa和30kDa分子量的PEG可以很好地保持其二级结构。The samples to be tested were desalted and replaced with 20 mM acetic acid-sodium acetate buffer (pH 4.5) by G-25 gel chromatography column (GE Healthcare, USA), and the protein concentration was adjusted to 0.2 mg/ml. Operate the garden dichroic spectrometer (Jasco-810Spectropolarimeter, Jasco, Tokyo, Japan) according to the regulations, set parameters: sensitivity: 100mdeg, bandwidth: 1.0nm, rosolution: 0.5nm, response: 0.5sec, accumulation: 4, scanspeed: 500nm/min . The measurement results are shown in FIG. 16 . The results show that the circular dichroism patterns of PG-N-30, PG-N-20 and rhG-CSF are almost in perfect agreement, suggesting that the nitrogen end of the rhG-CSF protein molecule coupled with PEG of 20kDa and 30kDa molecular weight can well maintain its secondary structure.

6)体外活性6) In vitro activity

采用体外NFS60细胞/MTT法测定并比较了rhG-CSF和各种PEG-rhG-CSF的体外活性,结果如表3所示。The in vitro activity of rhG-CSF and various PEG-rhG-CSF was measured and compared by NFS60 cell/MTT method in vitro, and the results are shown in Table 3.

NFS细胞/MTT比色法:详细方法见中华人民共和国药典2005年版三部附录X E。NFS60细胞购自中国药品生物制品检定所,NFS60细胞在含10%新生牛血清、20ng/mlrhG-CSF的RPMI 1640培养基(含青霉素10E5IU/L和链霉素10E5IU/L)中37℃、5%二氧化碳培养,控制细胞浓度为每1ml含1.0×10E5~4.0×10E5个细胞,传代24~36小时用于活性测定;离心收集NFS60细胞,用RPMI 1640培养基清洗细胞3次;配成1ml含2.0×10E5个细胞的细胞悬液;在加有标准品溶液和供试品溶液的96孔细胞培养液板中每孔加入细胞悬液50ul,于37℃、5%二氧化碳培养40-48小时;每孔加入20uL噻唑蓝试剂(MTT试剂,Sigma,USA),继续培养5小时;每孔加入100uL裂解液(由盐酸14ml、Triton X-100溶液50mL加异丙醇致500mL制成),混匀后,放入酶标仪(Bio-Tek公司,USA),以630nm为参比波长,于波长570nm处测定吸光度值。NFS cell/MTT colorimetric method: For detailed methods, see Appendix X E of Part Three of the Pharmacopoeia of the People's Republic of China in 2005. NFS60 cells were purchased from China National Institute for the Control of Pharmaceutical and Biological Products. NFS60 cells were cultured in RPMI 1640 medium (containing penicillin 10E5IU/L and streptomycin 10E5IU/L) containing 10% newborn bovine serum and 20ng/ml rhG-CSF at 37°C for 5 % carbon dioxide culture, control the cell concentration to contain 1.0×10E5~4.0×10E5 cells per 1ml, subculture for 24~36 hours for activity determination; collect NFS60 cells by centrifugation, wash the cells 3 times with RPMI 1640 medium; prepare 1ml containing 2. Cell suspension of 0×10E5 cells; add 50ul of cell suspension to each well of a 96-well cell culture medium plate with standard solution and test solution, and incubate at 37°C and 5% carbon dioxide for 40-48 hours; Add 20uL thiazolyl blue reagent (MTT reagent, Sigma, USA) to each well, and continue to incubate for 5 hours; add 100uL lysate (made from 14ml hydrochloric acid, 50mL Triton X-100 solution and 500mL isopropanol) to each well, and mix well Then, put it into a microplate reader (Bio-Tek Company, USA), take 630nm as a reference wavelength, and measure the absorbance value at a wavelength of 570nm.

表3rhG-CSF体外活性测定结果Table 3 rhG-CSF activity assay results in vitro

Figure A20091001371000241
Figure A20091001371000241

从表3中可以看到:PG-N-10比rhG-CSF的体外活性明显为高;rhG-CSF蛋白氮末端偶联PEG丙醛所获得的PG-N-10,PG-N-20,PG-N-30和PG-N-40其体外活性随着偶联PEG分子量的增大,体外活性具降低趋势,且PG-N-40的体外活性的降低尤为显著,较PG-N-30体外活性降低2倍以上,出现明显的活性“拐点”,而PE-N-10、PE-N-20和PE-N-30的体外活性相差在30%之内。偶联两个20kDa PEG的di-PG-40其体外活性显著低于同等分子量的PG-N-40;而PG-165N-30和PG-174N-30的体外活性与PG-N-30相差不大。It can be seen from Table 3 that the in vitro activity of PG-N-10 is significantly higher than that of rhG-CSF; PG-N-10, PG-N-20 obtained by coupling PEG propionaldehyde to the nitrogen end of rhG-CSF protein, The in vitro activity of PG-N-30 and PG-N-40 has a tendency to decrease with the increase of the molecular weight of coupled PEG, and the decrease in in vitro activity of PG-N-40 is particularly significant, compared with PG-N-30 The in vitro activity decreased by more than 2 times, and an obvious activity "inflection point" appeared, while the in vitro activity of PE-N-10, PE-N-20 and PE-N-30 differed within 30%. The in vitro activity of di-PG-40 coupled with two 20kDa PEGs was significantly lower than that of PG-N-40 with the same molecular weight; while the in vitro activities of PG-165N-30 and PG-174N-30 were not different from PG-N-30 big.

7)PG-N-30制剂的稳定性7) Stability of PG-N-30 preparation

在10mM醋酸钠缓冲液(pH 4.5)、0.005%聚山梨醇酯80、5%山梨醇的溶液中,蛋白浓度为3mg/ml PE-N-30,在4℃下保持24个月,经SEC测定未发现蛋白聚集或降解(如图17-1所示),而rhG-CSF在此条件下保存1个月即出现少量蛋白聚集,为可溶性聚集体(如图17-2所示);说明PEG化rhG-CSF明显增加了蛋白的溶解性或在水中的稳定性。In a solution of 10mM sodium acetate buffer (pH 4.5), 0.005% polysorbate 80, 5% sorbitol, the protein concentration was 3mg/ml PE-N-30, kept at 4°C for 24 months, and tested by SEC No protein aggregation or degradation was found in the measurement (as shown in Figure 17-1), while a small amount of protein aggregation appeared in rhG-CSF stored under these conditions for 1 month, which was soluble aggregates (as shown in Figure 17-2); explanation PEGylated rhG-CSF significantly increased protein solubility or stability in water.

8)PE-N-30体外抗酶解稳定性8) PE-N-30 in vitro anti-enzymatic stability

用超纯水透析待测样品24小时,冻干(冷冻干燥机,Alphal-2,Matin Christ,USA)待测样品后,用1%碳酸氢铵水溶液溶解致1.5mg/ml,按1∶25(w/w)加入TPCK处理过的胰蛋白酶(TPCK treated TRYPSIN,Sigma,USA)与待测样品PG-N-30和rhg-CSF在37℃恒温下共同孵育,分别在15、30、60、120和240分钟取样,SDS-PAGE法测原蛋白酶解百分比,结果如图18所示,结果表明,酶解4小时后,PG-N-30尚有90%未被酶解,而rhG-CSF在1小时即被酶解约50%。说明PEG30-rhG-CSF的抗酶解稳定性远远高于普通rhG-CSF。Dialyze the test sample with ultrapure water for 24 hours, freeze-dry (freeze dryer, Alphal-2, Matin Christ, USA) after the test sample, dissolve it with 1% ammonium bicarbonate aqueous solution to 1.5 mg/ml, press 1:25 (w/w) Add TPCK treated TRYPSIN (TPCK treated TRYPSIN, Sigma, USA) and incubate with the test samples PG-N-30 and rhg-CSF at a constant temperature of 37°C, respectively, at 15, 30, 60, Samples were taken at 120 and 240 minutes, and the hydrolysis percentage of the original protein was measured by SDS-PAGE. The results are shown in Figure 18. The results showed that after 4 hours of enzymolysis, 90% of PG-N-30 had not been enzymatically hydrolyzed, while rhG-CSF About 50% of the enzyme was digested in 1 hour. It shows that the anti-enzyme stability of PEG30-rhG-CSF is much higher than that of common rhG-CSF.

实施例5PEG-rhG-CSF药代动力学与药效动力学试验Embodiment 5 PEG-rhG-CSF pharmacokinetics and pharmacodynamics test

选健康Beagle犬进行药代动力学和药效动力学试验,经单次皮下注射相同剂量即200ug/kg的PG-N-20和PG-N-30,在给药0,1,3,6,8,10,12,24,48,72,96,120,144,168和192小时后从前肢头静脉采血,每一取血时间点同时取6只动物,按常规方法制备血清,-20℃保存,采用ELISA法(美国R&D公司,晶美公司分装)测定血药浓度;且对格采血点的全血测定中性粒细胞计数(ANC),结果见表4,表5和如图19、图20-1所示。Choose healthy Beagle dogs to carry out pharmacokinetic and pharmacodynamic tests, through a single subcutaneous injection of PG-N-20 and PG-N-30 at the same dose of 200ug/kg, after administration of 0, 1, 3, 6 , 8, 10, 12, 24, 48, 72, 96, 120, 144, 168 and 192 hours later, blood was collected from the cephalic vein of the forelimb, and 6 animals were taken at the same time at each blood collection time point, and serum was prepared according to the conventional method, -20 Preserve at ℃, adopt ELISA method (American R & D company, Jingmei company sub-package) to measure the blood drug concentration; And measure the neutrophil count (ANC) of the whole blood of grid blood collection point, the results are shown in Table 4, Table 5 and Figure 19 , as shown in Figure 20-1.

表4.比格犬皮下注射不同分子量PEG-rhG-CSF(200μg·kg-1)后PK主要参数比较(X±s,n=6)Table 4. Comparison of main PK parameters after subcutaneous injection of different molecular weight PEG-rhG-CSF (200μg·kg -1 ) in Beagle dogs (X±s, n=6)

表5.比格犬皮下注射不同分子量PEG-rhG-CSF(200μg·kg-1)后的PD主要参数比较(X±s,n=6)Table 5. Comparison of main parameters of PD after subcutaneous injection of different molecular weight PEG-rhG-CSF (200μg·kg -1 ) in Beagle dogs (X±s, n=6)

上述试验结果大大出乎意外,并首次证实,PG-N-30与PG-N-20(即是已上市的Neulasta)相比,血浆清除半衰期显著延长、血药清除率(CL/F)明显降低、血药浓度(Cmax)和平均药时曲线下面积(AUC(0-192h))均显著增加;同时这种药代动力学参数的改变,也带来了药效学的相应反应,即效应消除相半衰期(t1/2(E))显著延长、效应峰浓度(ANCCmax)和基线上效应曲线面积(AOBEC(0-192h))的明显提高;这表明虽然Neulasta在市场上取得了很好的疗效和销量,但其并非“最佳的”rhG-CSF的长效制剂;显然,PG-N-30的长效作用比Neulasta更优。The above test results were quite unexpected, and confirmed for the first time that compared with PG-N-20 (that is, Neulasta, which is already on the market), the plasma elimination half-life of PG-N-30 is significantly prolonged, and the plasma drug clearance rate (CL/F) is significantly higher than that of PG-N-20. decrease, blood drug concentration (C max ) and average area under the drug time curve (AUC (0-192h) ) all increased significantly; at the same time, this change in pharmacokinetic parameters also brought about corresponding pharmacodynamic responses, That is, the half-life of the elimination phase of the effect (t 1/2(E) ) was significantly prolonged, the peak concentration of the effect (ANCC max ) and the area of the effect curve on the baseline (AOBEC (0-192h) ) were significantly increased; this shows that although Neulasta has achieved It has a good curative effect and sales volume, but it is not the "best" rhG-CSF long-acting preparation; obviously, the long-acting effect of PG-N-30 is better than Neulasta.

在探索血药浓度与血ANC的变化规律中发现,两者呈负相关趋势(如图20-2所示);说明rhG-CSF受体对血PG-N-30具明显的清除作用。这一点在Neulasta的临床应用中也得到了证实。In the exploration of the changing rule of blood drug concentration and blood ANC, it was found that the two showed a negative correlation trend (as shown in Figure 20-2), indicating that rhG-CSF receptor has obvious clearing effect on blood PG-N-30. This has also been confirmed in the clinical application of Neulasta.

实施例6PEG-rhG-CSF的药效学试验The pharmacodynamics test of embodiment 6 PEG-rhG-CSF

在放射线照射(137Cs-r照射一次,剂量为3.78Gy,照射时间4.7分钟)BALB/C小鼠致白细胞减少的模式上,每天皮下应用同等剂量12,48和120ug/kg的PG-N-30和rhG-CSF,连续15天,于给药后第5,10和15天取血测中性粒细胞计数(ANC)等,结果表明(表6-1所示),自第5天起PG-N-30和rhG-CSF组ANC即显著高于模型对照组;且各剂量组间ANC的增高具剂量依赖性趋势;令人惊异地发现,注射12ug/kg的PG-N-30所致ANC的增高与注射120ug/kg的rhG-CSF的结果相当;而注射PG-N-30致ANC的增高值比注射相同剂量的rhG-CSF致ANC的增加高3倍以上。但是,PG-N-30如果采用隔一日、隔两日或一个化疗周期使用一次的给药模式,则随着给药间期的延长,给药剂量显著增加2~5倍才能达到与连续应用12μg/kg的rhG-CSF 15天等效,如表6-2所示,这说明在体内存在对PG-N-30的受体清除机制的情况下,一个化疗周期应用一次或较长给药间隔的治疗模式远非经济的或最佳的给药模式。In the model of leukopenia induced by radiation irradiation ( 137 Cs-r once, the dose is 3.78Gy, and the irradiation time is 4.7 minutes) BALB/C mice, the same dose of 12, 48 and 120ug/kg of PG-N- 30 and rhG-CSF, for 15 consecutive days, blood was taken on the 5th, 10th and 15th day after administration to measure the neutrophil count (ANC), etc., the results showed (shown in Table 6-1), since the 5th day The ANC of PG-N-30 and rhG-CSF groups was significantly higher than that of the model control group; and the increase of ANC between each dose group had a dose-dependent trend; surprisingly, it was found that the injection of 12ug/kg of PG-N-30 The increase of ANC caused by the injection of 120ug/kg rhG-CSF is equivalent to the result; while the increase of ANC caused by the injection of PG-N-30 is more than 3 times higher than the increase of ANC caused by the injection of the same dose of rhG-CSF. However, if PG-N-30 is administered every other day, every two days, or once in a chemotherapy cycle, as the administration interval prolongs, the dosage must be significantly increased by 2 to 5 times to achieve the same level as continuous chemotherapy. Applying 12μg/kg rhG-CSF for 15 days is equivalent, as shown in Table 6-2, which shows that in the case of the receptor clearance mechanism for PG-N-30 in the body, one chemotherapy cycle should be administered once or longer. A treatment pattern of drug intervals is far from being an economical or optimal dosing pattern.

在环磷酰胺致大鼠白细胞减少的动物模型上(腹腔注射),每天皮下应用同等剂量10,30和100ug/kg的PG-N-30和rhG-CSF,连续10天,于给药后第4,7和10天取血测中性粒细胞计数(ANC)等,结果如表7所示,所得到的结论与前放射致小鼠白细胞减少的动物模型上的结论完全一致,即注射10ug/kg的PG-N-30所致ANC的增高与注射100ug/kg的rhG-CSF的结果相当;而注射PG-N-30致ANC的增高值比注射相同剂量的rhG-CSF致ANC的增加高3倍以上。这表明在每日连续给药的治疗模式下,PG-N-30具明显的高效特征,其使用剂量甚或可以低于普通rhG-CSF的剂量。但是,与放射致小鼠白细胞减少的模型应用结果一样,如果PG-N-30采用一个化疗周期注射一针的给药模式,则需要注射500ug/kg/cycle(化疗周期)才能获得与连续应用rhG-CSF 10g/kg/d疗效相当的结果(见表7)。On the animal model of cyclophosphamide-induced leukopenia in rats (intraperitoneal injection), PG-N-30 and rhG-CSF of the same dose of 10, 30 and 100ug/kg were subcutaneously applied every day for 10 consecutive days. 4, 7 and 10 days, blood test neutrophil count (ANC) etc. are taken, and the results are shown in Table 7. The conclusions obtained are completely consistent with the conclusions on the animal model of mouse leukopenia caused by previous radiation, that is, injection of 10ug The increase of ANC caused by PG-N-30/kg is equivalent to the result of injection of 100ug/kg rhG-CSF; and the increase of ANC caused by injection of PG-N-30 is higher than the increase of ANC caused by injection of the same dose of rhG-CSF more than 3 times higher. This shows that in the treatment mode of continuous daily administration, PG-N-30 has obvious high-efficiency characteristics, and its dosage may even be lower than that of common rhG-CSF. However, as with the model application results of radiation-induced leukopenia in mice, if PG-N-30 is administered with one injection per chemotherapy cycle, 500ug/kg/cycle (chemotherapy cycle) needs to be injected to obtain continuous application rhG-CSF 10g/kg/d curative effect equivalent results (see Table 7).

表6-1连续皮下注射PG-N-30对放射致白细胞减少小鼠ANC的影响X±SD(n=10)Table 6-1 The impact of continuous subcutaneous injection of PG-N-30 on the ANC of radiation-induced leukopenia mice X±SD (n=10)

Figure A20091001371000261
Figure A20091001371000261

Figure A20091001371000271
Figure A20091001371000271

注:与模型组数值相比*P<0.01,与相同剂量阳性对照组数值比○P<0.01Note: *P<0.01 compared with the value of the model group, ○P<0.01 compared with the value of the positive control group with the same dose

表6-2连续皮下注射PG-N-30对放射致白细胞减少小鼠ANC的影响X±SD(n=10)Table 6-2 The impact of continuous subcutaneous injection of PG-N-30 on the ANC of radiation-induced leukopenia mice X±SD (n=10)

Figure A20091001371000272
Figure A20091001371000272

注:与模型组数值相比*P<0.01;与12μg/kg/d阳性对照组数值比○P<0.01Note: Compared with the value of the model group *P<0.01; compared with the value of the 12μg/kg/d positive control group ○P<0.01

表7皮下注射PG-N-30对化疗致白细胞减少大鼠ANC的影响X±SD(n=10)Table 7 The impact of subcutaneous injection of PG-N-30 on the ANC of chemotherapy-induced leukopenia rats X±SD (n=10)

注:与模型组数值相比*P<0.01,与相同剂量阳性对照组数值比○P<0.01,与10μg/kg/d阳性对照组数值比★P<0.05。Note: *P<0.01 compared with the value of the model group, ○P<0.01 compared with the value of the same dose positive control group, ★P<0.05 compared with the value of the 10μg/kg/d positive control group.

在5-氟尿嘧啶(5-Fu)致小鼠白细胞减少的动物模型上(尾注射120mg/kg的5-Fu),于化疗药注射后第3天,一次皮下注射PG-N-30600ug/kg(低剂量组),1200ug/kg(中剂量组)和2400ug/kg(高剂量组),以及PG-N-202400ug/kg和rhG-CSF 60ug/kg/日连续9天;分别在给药后第0,3,6,9天采血测ANC等,结果如图21所示;在环磷酰胺(cy)致大鼠白细胞减少的动物模型上(腹腔注射cy 35mg/kg,连续三天),于化疗药注射后第2天,一次皮下注射PG-N-30 300ug/kg(低剂量组),600ug/kg(中剂量组)和1200ug/kg(高剂量组),以及PG-N-20 1200ug/kg和rhG-CSF 30ug/kg/日连续10天;分别在给药后第0,3,5,7,10天采血测ANC等,结果如图22所示;上述两个试验均表明:一次皮下应用高、中、低剂量的PG-N-30和高剂量的PG-N-20均能在给药后第3天有效纠正粒细胞减少,同时中剂量的PG-N-30与高剂量的PG-N-20导致粒细胞的反应程度与模式相当,两者相差一倍的用量,因此,在上述两种动物模型上,证实在一个化疗周期应用一次的治疗模式上,PG-N-30的疗效也明显优于PG-N-20;因此预计PG-N-30的临床用量将显著低于Neulasta。On the animal model of 5-fluorouracil (5-Fu)-induced leukopenia in mice (tail injection of 120mg/kg of 5-Fu), on the 3rd day after chemotherapy drug injection, a subcutaneous injection of PG-N-30600ug/kg ( low dose group), 1200ug/kg (middle dose group) and 2400ug/kg (high dose group), and PG-N-202400ug/kg and rhG-CSF 60ug/kg/day for 9 consecutive days; 0, 3, 6, and 9 days blood sampling to measure ANC etc., the results are shown in Figure 21; On the second day after chemotherapy drug injection, a subcutaneous injection of PG-N-30 300ug/kg (low dose group), 600ug/kg (medium dose group) and 1200ug/kg (high dose group), and PG-N-20 1200ug /kg and rhG-CSF 30ug/kg/day for 10 consecutive days; blood was collected on days 0, 3, 5, 7, and 10 after administration to measure ANC, etc., and the results are shown in Figure 22; the above two tests all showed that: Subcutaneous application of high, medium and low doses of PG-N-30 and high doses of PG-N-20 can effectively correct neutropenia on the 3rd day after administration, while medium doses of PG-N-30 and high doses The dose of PG-N-20 caused the response of granulocytes to be equivalent to the pattern, and the difference was doubled. Therefore, in the above two animal models, it was confirmed that in the treatment pattern of one chemotherapy cycle, PG-N The curative effect of -30 is also significantly better than that of PG-N-20; therefore, the clinical dosage of PG-N-30 is expected to be significantly lower than that of Neulasta.

实施例7PEG-rhG-CSF的免疫原性试验The immunogenicity test of embodiment 7 PEG-rhG-CSF

在健康SD大鼠上,受试化合物(每组15只大鼠)按每周注射一次、每次10ug/kg的给药模式,连续给药、观察12周,于第1周和第8,10,12周抽血测定ANC和抗PEG-rhG-CSF抗体;采用间接ELISA法测定PEG-rhG-CSF抗体(美国R&D公司,即将PEG-rhG-CSF(抗原)用pH9.6的Na2CO3-NaHCO3溶液稀释成10μg/ml浓度,包被于96孔酶标板上,每孔100μl,4℃过夜。用2%BSA封闭液37℃封闭2h后,各孔加入100μl用样品稀释液稀释的待检血清样品,同时设阳性和阴性对照孔,37℃孵育1h。洗涤后每孔加100μl辣根过氧化物酶标记的羊抗大鼠IgG(1∶6万),37℃再孵育1h。洗涤后各孔加100μl酶反应底物TMB,37℃反应20min。用50μl终止液终止反应,在酶标微板读数仪上读取各孔450nm处的OD值。On the healthy SD rats, the test compound (15 rats in each group) was injected once a week, each 10ug/kg administration mode, administered continuously, observed for 12 weeks, in the 1st week and the 8th, At 10 and 12 weeks, blood was drawn to measure ANC and anti-PEG-rhG-CSF antibody; PEG-rhG-CSF antibody was determined by indirect ELISA (American R&D Company, PEG-rhG-CSF (antigen) was treated with Na 2 CO at pH 9.6 3- NaHCO 3 solution was diluted to a concentration of 10 μg/ml, coated on a 96-well ELISA plate, 100 μl per well, overnight at 4°C. After blocking with 2% BSA blocking solution at 37°C for 2 hours, add 100 μl of sample diluent to each well For the diluted serum samples to be tested, set positive and negative control wells at the same time, and incubate at 37°C for 1 hour. After washing, add 100 μl horseradish peroxidase-labeled goat anti-rat IgG (1:60,000) to each well, and incubate again at 37°C 1h. After washing, add 100μl enzyme reaction substrate TMB to each well, and react at 37°C for 20min. Stop the reaction with 50μl stop solution, and read the OD value of each well at 450nm on a microplate reader.

抗体阳性率的判断:以同期赋形剂对照组动物血清标本所测得OD值的2.1倍作为产生抗体的阈值,凡给药后血清标本测得的OD值大于或等于阈值者,判定为阳性。结果如表8所示,结果表明:PG-N-20,PG-N-30,PG-N-40的免疫原性均低于rhG-CSF,而PG-N-30和PG-N-40的免疫原性均低于PG-N-20。Judgment of the positive rate of antibodies: 2.1 times the OD value measured in the serum samples of animals in the excipient control group during the same period is used as the threshold value for antibody production, and those whose OD value measured in the serum samples after administration is greater than or equal to the threshold value are judged as positive . The results are shown in Table 8. The results showed that: PG-N-20, PG-N-30, and PG-N-40 had lower immunogenicity than rhG-CSF, while PG-N-30 and PG-N-40 The immunogenicity is lower than that of PG-N-20.

表8大鼠连续应用各种PEG-rhG-CSF的免疫原性比较Table 8 The comparison of the immunogenicity of continuous application of various PEG-rhG-CSF in rats

注:*与rhG-CSF相差异显著P<0.05;△与PG-N-20相比差异显著P<0.05。Note: *significantly different from rhG-CSF at P<0.05; △significantly different from PG-N-20 at P<0.05.

序列表sequence listing

<110>天津派格生物技术有限公司,中国科学院过程工程研究所<110> Tianjin Paige Biotechnology Co., Ltd., Institute of Process Engineering, Chinese Academy of Sciences

<120>柱层析粒细胞集落刺激因子氮端定点偶联方法及其产物<120>Column chromatography granulocyte colony-stimulating factor nitrogen-terminal site-specific coupling method and its product

<141>2008-12-1<141>2008-12-1

<160>3<160>3

<210>1<210>1

<211>175<211>175

<212>PRT<212>PRT

<213>重组人粒细胞集落刺激因子<213> Recombinant human granulocyte colony-stimulating factor

<221>rhG-CSF或rhG-CSFm的氨基酸序列公式<221> amino acid sequence formula of rhG-CSF or rhG-CSFm

<222>(1)…(175)<222>(1)...(175)

<400>1<400>1

-1  -2  -3  -4  -5  -6  -7  -8  -9  -10-1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa XaaXaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa

Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu LeuMet Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu

                 5                  10                  155 10 15

Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala LeuLys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu

            20                  25                  3020 25 30

Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu LeuGln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu

        35                  40                  4535 40 45

Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser SerVal Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser

    50                  55                  6050 55 60

Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HisCys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His

65                  70                  75                  8065 70 75 80

Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly IleSer Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile

                85                  90                  9585 90 95

Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val AlaSer Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala

            100                 105                 110100 105 110

Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met AlaAsp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala

        115                 120                 125115 120 125

Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser AlaPro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala

    130                 135                 140130 135 140

Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln SerPhe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser

145                 150                 155                 160145 150 155 160

Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro ***Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro ***

                165                 170                 175165 170 175

<210>2<210>2

<211>528<211>528

<212>DNA<212>DNA

<213>重组人粒细胞集落刺激因子<213> Recombinant human granulocyte colony-stimulating factor

<221>天然编码人粒细胞集落刺激因子(rhG-CSF)基因<221> Naturally encoded human granulocyte colony-stimulating factor (rhG-CSF) gene

<222>(1)…(528)<222>(1)...(528)

<400>2<400>2

atgacccccc tgggccctgc cagctccctg ccccagagct tcctgctcaa gtgcttagag   60atgacccccc tgggccctgc cagctccctg ccccagagct tcctgctcaa gtgcttagag 60

caagtgagga acatccaggg cgatggcgca gcgctccagg agaagctgtg tgccacctac  120caagtgagga acatccaggg cgatggcgca gcgctccagg agaagctgtg tgccacctac 120

aagctgtgcc accccgagga gctggtgctg ctcggacact ctctgggcat cccctgggct  180aagctgtgcc accccgagga gctggtgctg ctcggacact ctctgggcat cccctgggct 180

cccctgagct cctgccccag ccaggccctg cagctggcag gctgcttgag ccaactccat  240cccctgagct cctgccccag ccaggccctg cagctggcag gctgcttgag ccaactccat 240

agcggccttt tcctctacca ggggctcctg caggccctgg aagggatatc ccccgagttg  300agcggccttt tcctctacca ggggctcctg caggccctgg aagggatatc ccccgagttg 300

ggtcccacct tggacacact gcagctggac gtcgccgact ttgccaccac catctggcag  360ggtcccacct tggacacact gcagctggac gtcgccgact ttgccaccac catctggcag 360

cagatggaag aactgggaat ggcccctgcc ctgcagccca cccagggtgc catgccggcc  420cagatggaag aactgggaat ggcccctgcc ctgcagccca cccagggtgc catgccggcc 420

ttcgcctctg ctttccagcg ccgggcagga ggggtcctgg ttgctagcca tctgcagagc  480ttcgcctctg ctttccagcg ccgggcagga ggggtcctgg ttgctagcca tctgcagagc 480

ttcctggagg tgtcgtaccg cgttctacgc caccttgcgc agccctgattcctggagg tgtcgtaccg cgttctacgc caccttgcgc agccctga

<210>3<210>3

<211>528<211>528

<212>DNA<212>DNA

<213>重组人粒细胞集落刺激因子<213> Recombinant human granulocyte colony-stimulating factor

<221>修饰后的编码人粒细胞集落刺激因子(rhG-CSF)基因<221> Modified gene encoding human granulocyte colony-stimulating factor (rhG-CSF)

<222>(1)…(528)<222>(1)...(528)

<400>3<400>3

atgactccat taggtcctgc atcttcttta ccacaaagct tcctgctcaa gtgcttagag   60atgactccat taggtcctgc atcttcttta ccacaaagct tcctgctcaa gtgcttagag 60

caagtgagga agatccaggg cgatggcgca gcgctccagg agaagctgtg tgccacctac  120caagtgagga agatccaggg cgatggcgca gcgctccagg agaagctgtg tgccacctac 120

aagctgtgcc accccgagga gctggtgctg ctcggacact ctctgggcat cccctgggct  180aagctgtgcc accccgagga gctggtgctg ctcggacact ctctgggcat cccctgggct 180

cccctgagct cctgccccag ccaggccctg cagctggcag gctgcttgag ccaactccat  240cccctgagct cctgccccag ccaggccctg cagctggcag gctgcttgag ccaactccat 240

agcggccttt tcctctacca ggggctcctg caggccctgg aagggatatc ccccgagttg  300agcggccttt tcctctacca ggggctcctg caggccctgg aagggatatc ccccgagttg 300

ggtcccacct tggacacact gcagctggac gtcgccgact ttgccaccac catctggcag  360ggtcccacct tggacacact gcagctggac gtcgccgact ttgccaccac catctggcag 360

cagatggaag aactgggaat ggcccctgcc ctgcagccca cccagggtgc catgccggcc  420cagatggaag aactgggaat ggcccctgcc ctgcagccca cccagggtgc catgccggcc 420

ttcgcctctg ctttccagcg ccgggcagga ggggtcctgg ttgctagcca tctgcagagc  480ttcgcctctg ctttccagcg ccgggcagga ggggtcctgg ttgctagcca tctgcagagc 480

ttcctggagg tgtcgtaccg cgttctacgc caccttgcgc agccctgattcctggagg tgtcgtaccg cgttctacgc caccttgcgc agccctga

Claims (10)

1.一种柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,步骤包括:1. A method for column chromatography granulocyte colony-stimulating factor nitrogen-terminal fixed-point coupling polyethylene glycol, the steps comprising: 选择阳离子交换介质,装载于层析色谱柱中,柱床高度为常规推荐高度的上限,并将其连接到液相层析系统上;使用相当于5~6倍柱体积的pH 3.5~6.0的20mM醋酸钠缓冲液和质量百分比为0.005%聚山梨醇酯80充分平衡色谱柱;用进料泵,以8~10ml/min的流速,将rhG-CSF或rhG-CSFm原液加入层析柱中,上样量为介质实测最大载量的10%~70%;再在13~15ml/min的流速下,用5~6倍柱体积的pH 3.5~6.0的20mM醋酸钠缓冲液冲洗柱子,去除不与色谱介质发生静电吸附的物质;按mPEG∶rhG-CSF或rhG-CSFm的反应量比为1~50mol∶1mol的比例,以0.5~3ml/min的流速上样加入分子量范围为26~40kDa的单甲基PEG,所述不同分子量的mPEG投入总量X按公式(1)计算:Select the cation exchange medium, load it in the chromatographic column, the height of the column bed is the upper limit of the conventional recommended height, and connect it to the liquid chromatography system; 20mM sodium acetate buffer solution and 0.005% polysorbate 80 by mass percentage are fully balanced chromatographic column; use a feed pump to add rhG-CSF or rhG-CSFm stock solution into the chromatographic column at a flow rate of 8-10ml/min, The amount of sample loaded is 10% to 70% of the maximum capacity of the medium measured; then at a flow rate of 13 to 15ml/min, wash the column with 5 to 6 times the column volume of 20mM sodium acetate buffer solution with a pH of 3.5 to 6.0 to remove excess Substances that undergo electrostatic adsorption with the chromatographic medium; according to the reaction volume ratio of mPEG:rhG-CSF or rhG-CSFm at a ratio of 1 to 50mol:1mol, add a sample with a molecular weight range of 26 to 40kDa at a flow rate of 0.5 to 3ml/min Monomethyl PEG, the mPEG input total amount X of described different molecular weights is calculated by formula (1): (1)X=5~50×m×MWPEG/MWG-CSF (1) X=5~50×m×MW PEG /MW G-CSF 式中:X为不同分子量的mPEG投入总量,m为加入的rhG-CSF蛋白含量,MWPEG和MWG-CSF分别为mPEG和G-CSF的分子量;In the formula: X is the total input amount of mPEG with different molecular weights, m is the protein content of rhG-CSF added, MW PEG and MW G-CSF are the molecular weights of mPEG and G-CSF respectively; 再按公式(2)计算还原剂氰基硼氢化钠的加入量:Then calculate the add-on of reducing agent sodium cyanoborohydride by formula (2): (2)NaBH3CN加入量=10×MW还原剂×X/MWPEG (2) NaBH 3 CN addition amount = 10×MW reducing agent×X/MW PEG 式中:MW还原剂为还原剂氰基硼氢化钠的分子量,X为不同分子量的mPEG投入总量,MWPEG为mPEG的分子量;In the formula: MW reducing agent is the molecular weight of the reducing agent sodium cyanoborohydride, X is the total amount of mPEG input with different molecular weights, and MW PEG is the molecular weight of mPEG; 连续上样240±5分钟;反应体系的pH为3.5~6.0;再以13~15ml/min的流速,用5~6倍柱体积的pH 3.5~6.0的20mM醋酸钠缓冲液冲洗柱子,去除不与色谱介质发生静电吸附的物质;随后用pH 3.5~6.0的20mM醋酸钠缓冲液与0.5M~1M氯化钠的混合液,以洗脱方式0~8%、8%~18%和18%~100%洗脱,持续150±2分钟,获得三个洗脱峰,即P1,P2和P3,其中P2的峰面积占总峰面积的90±1%,为单修饰的PEG-rhG-CSF或PEG-rhG-CSFm,即聚乙二醇与rhG-CSF或rhG-CSFm蛋白N-末端单一、定点特异性偶联化合物;Load the sample continuously for 240±5 minutes; the pH of the reaction system is 3.5-6.0; then wash the column with 5-6 column volumes of 20mM sodium acetate buffer solution with a pH of 3.5-6.0 at a flow rate of 13-15ml/min to remove excess Substances that undergo electrostatic adsorption with chromatographic media; then use a mixture of 20mM sodium acetate buffer with pH 3.5 to 6.0 and 0.5M to 1M sodium chloride in the elution mode of 0 to 8%, 8% to 18% and 18% ~100% elution, lasting 150±2 minutes, three elution peaks were obtained, namely P1, P2 and P3, among which the peak area of P2 accounted for 90±1% of the total peak area, which was mono-modified PEG-rhG-CSF Or PEG-rhG-CSFm, that is, polyethylene glycol and rhG-CSF or rhG-CSFm protein N-terminal single, site-specific coupling compound; 其中:in: 上述rhG-CSF或rhG-CSFm的氨基酸序列应符合SEQ ID NO.1所示的氨基酸序列公式,其中所述rhG-CSFm为N-末端敲除1~10位氨基酸而N-末端氨基酸仍为蛋氨酸的rhG-CSF;The amino acid sequence of the above rhG-CSF or rhG-CSFm should conform to the amino acid sequence formula shown in SEQ ID NO.1, wherein the rhG-CSFm is the N-terminal knockout of 1-10 amino acids and the N-terminal amino acid is still methionine rhG-CSF; 上述单甲基PEG指能与蛋白质氨基偶联的各种活化的单甲基PEG分子,为mPEG-ALD或mPEG-N-羟基琥珀酰亚胺活化酯中的PEG-琥珀酰亚胺α甲基丁酸酯或mPEG-琥珀酰亚胺丙酸酯。The above monomethyl PEG refers to various activated monomethyl PEG molecules that can be coupled with protein amino groups, which are PEG-succinimide α-methyl in mPEG-ALD or mPEG-N-hydroxysuccinimide activated ester butyrate or mPEG-succinimidyl propionate. 2.如权利要求1所述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,其特征在于:所述阳离子交换介质为MacroCap SP或Sepharose Fast Flow。2. The method for column chromatography of granulocyte colony-stimulating factor nitrogen-terminal fixed-point coupling polyethylene glycol as claimed in claim 1, characterized in that: the cation exchange medium is MacroCap SP or Sepharose Fast Flow. 3.如权利要求1所述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,其特征在于:所述rhG-CSF或rhG-CSFm采用原核细胞表达体系中的大肠杆菌表达制备。3. The method of column chromatography granulocyte colony-stimulating factor nitrogen-terminal fixed-point coupling polyethylene glycol as claimed in claim 1, characterized in that: the rhG-CSF or rhG-CSFm adopts Escherichia coli in the prokaryotic cell expression system Expression preparation. 4.如权利要求1所述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,其特征在于:所述rhG-CSF或rhG-CSFm的上样量为介质实测最大载量的30-50%。4. The method of column chromatography granulocyte colony-stimulating factor nitrogen-terminal fixed-point coupling polyethylene glycol as claimed in claim 1, characterized in that: the loading amount of the rhG-CSF or rhG-CSFm is the maximum load of the medium actually measured 30-50% of the volume. 5.如权利要求1所述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,其特征在于:所述单甲基PEG的分子量选30kDa;mPEG分子选单链;所述单甲基PEG的上样量按mPEG∶rhG-CSE或rhG-CSFm的反应量比为2~20mol∶1mol的比例。5. the method for column chromatography granulocyte colony-stimulating factor nitrogen-terminal fixed-point coupling polyethylene glycol as claimed in claim 1, is characterized in that: the molecular weight of described monomethyl PEG is selected 30kDa; mPEG molecule is selected single chain; The loading amount of monomethyl PEG is in the ratio of 2-20 mol:1 mol according to the reaction amount ratio of mPEG:rhG-CSE or rhG-CSFm. 6.如权利要求1或5所述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,其特征在于:所述单甲基PEG选mPEG-ALD;其分子式为mPEG-(CH2)r-CHO,其中r选2~3,即mPEG-丙醛或mPEG-丁醛。6. The method for column chromatography granulocyte colony-stimulating factor nitrogen-terminal fixed-point coupling polyethylene glycol as claimed in claim 1 or 5, characterized in that: the monomethyl PEG is selected from mPEG-ALD; its molecular formula is mPEG- (CH 2 )r-CHO, wherein r is selected from 2 to 3, that is, mPEG-propionaldehyde or mPEG-butyraldehyde. 7.如权利要求1所述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇的方法,其特征在于:所述柱层析rhG-CSF或rhG-CSFm氮端定点偶联单甲基PEG的反应体系的pH为5.0~6.0。7. The method for column chromatography granulocyte colony-stimulating factor nitrogen-terminal fixed-point coupling polyethylene glycol as claimed in claim 1, characterized in that: the column chromatography rhG-CSF or rhG-CSFm nitrogen-terminal fixed-point coupling single The pH of the reaction system of methyl PEG is 5.0-6.0. 8.权利要求1所述柱层析粒细胞集落刺激因子氮端定点偶联聚乙二醇方法制得的一类聚乙二醇化重组人粒细胞集落刺激因子,其特征在于:所述聚乙二醇化的重组人粒细胞集落刺激因子分子结构式为:8. A class of PEGylated recombinant human granulocyte colony-stimulating factor prepared by column chromatography granulocyte colony-stimulating factor nitrogen terminal fixed-point coupling polyethylene glycol method according to claim 1, characterized in that: the polyethylene glycol The molecular structural formula of the glycolated recombinant human granulocyte colony-stimulating factor is: CH3-(CH2CH2-O)n-(CH2)r-NH-rhG-CSF或CH3-(CH2-CH2-O)n-(CH2)r-NH-rhG-CSFm,CH 3 -(CH 2 CH 2 -O)n-(CH 2 )r-NH-rhG-CSF or CH 3 -(CH 2 -CH 2 -O)n-(CH 2 )r-NH-rhG-CSFm , 式中n为570~2200,r为1~3;同时所述聚乙二醇化重组人粒细胞集落刺激因子还应具备下列特征:In the formula, n is 570-2200, r is 1-3; at the same time, the pegylated recombinant human granulocyte colony-stimulating factor should also have the following characteristics: 1)rhG-CSF或rhG-CSFm与mPEG偶联的分子比例为1∶1,偶联位点为rhG-CSF或rhG-CSFm分子N-末端氨基;1) The molecular ratio of rhG-CSF or rhG-CSFm to mPEG coupling is 1:1, and the coupling site is the N-terminal amino group of rhG-CSF or rhG-CSFm molecule; 2)在体外抗酶解试验中:将胰蛋白酶与PEG-rhG-CSF或PEG-rhG-CSFm在37℃共同孵育4小时,取样经SDS-PAGE法测定,PEG-rhG-CSF或PEG-rhG-CSFm的酶解百分比应低于50%;2) In the in vitro anti-enzyme test: incubate trypsin with PEG-rhG-CSF or PEG-rhG-CSFm at 37°C for 4 hours, take samples and determine by SDS-PAGE method, PEG-rhG-CSF or PEG-rhG - The percentage of enzymatic hydrolysis of CSFm should be less than 50%; 3)在比活性测定中,以Lowry法测定待测PEG-rhG-CSF或PEG rhG-CSFm的蛋白浓度,NFS60细胞/MTT法测体外活性,计算出每毫克蛋白的活性即得比活性,PEG-rhG-CSF或PEG-rhG-CSFm的比活性应大于或等于2.0X10E7U/mg蛋白;3) In the determination of specific activity, the Lowry method is used to measure the protein concentration of PEG-rhG-CSF or PEG rhG-CSFm to be tested, the NFS60 cell/MTT method is used to measure the in vitro activity, and the activity per mg of protein is calculated to obtain the specific activity, PEG - The specific activity of rhG-CSF or PEG-rhG-CSFm should be greater than or equal to 2.0X10E7U/mg protein; 4)PEG-rhG-CSF或PEG-rhG-CSFm的血浆半衰期应比Pegfilgrastim即PG-N-20的血浆清除半衰期长50%以上;4) The plasma half-life of PEG-rhG-CSF or PEG-rhG-CSFm should be more than 50% longer than the plasma elimination half-life of Pegfilgrastim, namely PG-N-20; 5)在免疫原性测定中,PEG-rhG-CSF或PEG-rhG-CSFm在第12周rhG-CSF抗体阳性率应小于20%。5) In the assay of immunogenicity, the positive rate of PEG-rhG-CSF or PEG-rhG-CSFm at week 12 should be less than 20%. 9.如权利要求8所述的聚乙二醇化重组人粒细胞集落刺激因子,其特征在于:所述聚乙二醇化的重组人粒细胞集落刺激因子分子结构式中n为700±100;r为2~3。9. The pegylated recombinant human granulocyte colony-stimulating factor as claimed in claim 8, characterized in that: n in the molecular structural formula of the pegylated recombinant human granulocyte colony-stimulating factor is 700 ± 100; r is 2~3. 10.权利要求8所述聚乙二醇化重组人粒细胞集落刺激因子在制备用于防治因肿瘤或白血病化疗所致的粒细胞减少症、骨髓及外周血干细胞移植以及原发性慢性粒细胞减少症的胃肠外制剂类药物中的应用。10. The PEGylated recombinant human granulocyte colony-stimulating factor according to claim 8 is used for preventing and treating granulocytopenia, bone marrow and peripheral blood stem cell transplantation and primary chronic granulocytopenia caused by tumor or leukemia chemotherapy. Application in parenteral preparations of drugs.
CN2009100137107A 2009-01-05 2009-01-05 Nitrogen-terminal fixed-point coupling method for colony stimulating factor of column chromatography granulocyte and coupled product Active CN101585864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100137107A CN101585864B (en) 2009-01-05 2009-01-05 Nitrogen-terminal fixed-point coupling method for colony stimulating factor of column chromatography granulocyte and coupled product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100137107A CN101585864B (en) 2009-01-05 2009-01-05 Nitrogen-terminal fixed-point coupling method for colony stimulating factor of column chromatography granulocyte and coupled product

Publications (2)

Publication Number Publication Date
CN101585864A true CN101585864A (en) 2009-11-25
CN101585864B CN101585864B (en) 2011-11-09

Family

ID=41370313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100137107A Active CN101585864B (en) 2009-01-05 2009-01-05 Nitrogen-terminal fixed-point coupling method for colony stimulating factor of column chromatography granulocyte and coupled product

Country Status (1)

Country Link
CN (1) CN101585864B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102188156A (en) * 2011-05-16 2011-09-21 王建平 Novel soybean milk maker
CN102485742A (en) * 2010-12-02 2012-06-06 山东新时代药业有限公司 Preparation method and separation and purification method of polyethylene glycol single modified recombinant human granulocyte-colony stimulating factor
CN102850450A (en) * 2011-07-01 2013-01-02 齐鲁制药有限公司 Purification method of pegylated recombinant human granulocyte colony stimulating factor
CN112316120A (en) * 2019-08-05 2021-02-05 天津派格生物技术有限公司 Methods for effective and safe treatment of granulocytopenia using low-mobilization G-CSF
CN114853872A (en) * 2022-04-27 2022-08-05 山东新时代药业有限公司 Preparation method of polyethylene glycol modified rhG-CSF

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176108A1 (en) * 2003-03-13 2005-08-11 Young-Min Kim Physiologically active polypeptide conjugate having prolonged in vivo half-life
CN1663962A (en) * 2004-03-01 2005-09-07 重庆富进生物医药有限公司 Recombinant human granulocyte colony stimulating factor and one-step purifying process for chemical modifications thereof
CN101245109B (en) * 2007-02-12 2011-12-14 杭州九源基因工程有限公司 Polyglycol single-modificatory recombined human granular leukocyte colony stimulating factor mutant and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485742A (en) * 2010-12-02 2012-06-06 山东新时代药业有限公司 Preparation method and separation and purification method of polyethylene glycol single modified recombinant human granulocyte-colony stimulating factor
CN102188156A (en) * 2011-05-16 2011-09-21 王建平 Novel soybean milk maker
CN102850450A (en) * 2011-07-01 2013-01-02 齐鲁制药有限公司 Purification method of pegylated recombinant human granulocyte colony stimulating factor
CN112316120A (en) * 2019-08-05 2021-02-05 天津派格生物技术有限公司 Methods for effective and safe treatment of granulocytopenia using low-mobilization G-CSF
CN114853872A (en) * 2022-04-27 2022-08-05 山东新时代药业有限公司 Preparation method of polyethylene glycol modified rhG-CSF
CN114853872B (en) * 2022-04-27 2023-11-17 山东新时代药业有限公司 Preparation method of polyethylene glycol modified rhG-CSF

Also Published As

Publication number Publication date
CN101585864B (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4753867B2 (en) Conjugates containing human IL-18 and substitutional variants thereof
JP2022000043A (en) Conjugates of il-2 moiety and polymer
Wu et al. Precise and combinatorial PEGylation generates a low-immunogenic and stable form of human growth hormone
US8901277B2 (en) Interferon alpha mutant and its polyethylene glycol derivative
KR101914023B1 (en) Engineered enzymes with methionine-gamma-lyase enzymes and pharmacological preparations thereof
MXPA02006795A (en) Gcsf conjugates.
EP3473261A1 (en) Biosynthetic proline/alanine random coil polypeptides and their uses
JP2008535793A (en) Dipolymer / protein conjugate and preparation method thereof
JP2007531715A (en) Glycol-linked FGF-21 compound
CA3060410A1 (en) Long-acting interleukin-15 receptor agonists and related immunotherapeutic compositions and methods
KR20140107616A (en) Human arginase and pegylated human arginase and application thereof
JP2007533665A (en) New G-CSF conjugate
CN101585864A (en) Nitrogen-terminal fixed-point coupling method for colony stimulating factor of column chromatography granulocyte and coupled product
CN101213208A (en) Mutants of granulocyte colony-forming stimulating factor (G-CSF) and chemically conjugated polypeptides thereof
KR100694994B1 (en) Human granulocyte colony forming factor homologue
CN101503457B (en) Column chromatography PEG and interferon analogue protein N-terminal site-directed coupling method and product thereof
CN101376676B (en) PEGylated erythropoietin protein long-acting preparation
JP2004501975A (en) Chemokine conjugate
LT6164B (en) Fused proteins of interferon alpha 5 with another cytokine and process for production thereof
CN105017408B (en) Pegylation thrombopoietin mimic peptide homotetramer and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant