[go: up one dir, main page]

CN101581718B - 陶瓷坯泥内应力在线软测量方法 - Google Patents

陶瓷坯泥内应力在线软测量方法 Download PDF

Info

Publication number
CN101581718B
CN101581718B CN2009100230765A CN200910023076A CN101581718B CN 101581718 B CN101581718 B CN 101581718B CN 2009100230765 A CN2009100230765 A CN 2009100230765A CN 200910023076 A CN200910023076 A CN 200910023076A CN 101581718 B CN101581718 B CN 101581718B
Authority
CN
China
Prior art keywords
neural network
layer
output
internal stress
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100230765A
Other languages
English (en)
Other versions
CN101581718A (zh
Inventor
周强
王莹
谈国强
牟强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN2009100230765A priority Critical patent/CN101581718B/zh
Publication of CN101581718A publication Critical patent/CN101581718A/zh
Application granted granted Critical
Publication of CN101581718B publication Critical patent/CN101581718B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

陶瓷坯泥内应力在线软测量方法,应用于陶瓷领域的测量新技术。利用与真空练泥机机头内壁平齐安装的压力传感器阵列在线测量泥料所受外力,压力传感器阵列的输出信号矩阵作为神经网络的输入,由经过训练的神经网络计算出陶瓷泥料内应力分布。即根据泥料所受外力计算出其内应力分布。

Description

陶瓷坯泥内应力在线软测量方法
技术领域
本发明属于无机材料科学领域,具体涉及一种陶瓷坯泥内应力在线软测量方法。
背景技术
随着近代科学技术的飞速发展,陶瓷墙地砖已经成为人类生活和现代化建设中不可缺少的材料之一。墙地砖的生产有陶瓷粉料干压成型和塑性挤压成型两种方法。目前,我国墙地砖工业仍普遍采用陶瓷粉料干压成型生产方式,需配备价格昂贵的喷雾干燥制粉及全自动液压压砖机等大型设备。在陶瓷粉料的制粉过程中,为确保坯体质量,须添加适宜的粘接剂,因而导致压砖机模具又易被陶瓷粉料所粘附——陶瓷粉料的粘模,严重影响墙地砖的产品质量,浪费原材料并危害操作工人的身体健康。与干压成型生产方式相比,墙地砖的塑性挤压成型生产技术,具有生产工艺简单、投资小、见效快、无粉尘污染、产品质量好、品种更换快、市场竞争力大等优点。因此,墙地砖塑性挤压成型技术势必成为我国墙地砖工业的主要生产工艺。
但是,挤压成型生产的墙地砖存在一个严重的缺陷,由于泥料具有的颗粒定向性使得它在真空练泥机挤制过程产生了坯泥内部应力分布的不均匀,具体来说不同位置不同方向的内应力差异巨大,这一问题严重地影响了陶瓷坯体的致密度、机械强度、表面光洁度及产量等,并阻碍了陶瓷泥料塑性挤出成型生产技术及生产设备的大力推广应用,已引起了世界范围内陶瓷泥料塑性挤出成型生产厂家及广大陶瓷工作者的共同关注。
发明内容
本发明的目的在于提供一种能够为消除内应力的不均匀分布提供定量描述的陶瓷坯泥内应力在线软测量方法。由于泥料内部应力的在线测量难以直接实现,本发明使用了间接测量的方法,即软测量技术。
为达到上述目的,本发明采用的技术方案是:
1)压力传感器的安装
首先将压力传感器以阵列的方式嵌入真空练泥机机头内壁,压力传感器的压力检测面与真空炼泥机机头内壁平齐;
2)压力传感器阵列的测量
运行真空练泥机,记录压力传感器阵列产生的压力矩阵M,
M = P 11 P 12 . . . P 1 M P 21 P 22 . . . P 2 M . . . . . . . . . . . . P N 1 P N 2 . . . P NM
其中,N为压力传感器矩阵的行数,M为压力传感器矩阵的列数,同时通过压力传感器测量陶瓷坯泥在直角坐标系下不同位置(x,y,z)的内应力F(x,y,z)。获得的多组数据,并通过信号采集卡3将获得的多组数据存入计算机4中,组成训练神经网络所需要的训练样本集{M,(x,y,z),F(x,y,z)};
3)建立神经网络
使用Labview编写神经网络应用程序,建立一个包含输入层、隐层和输出层的多层前向网络,其中输入层神经元个数为压力传感器的数量(N×M个)加上x、y、z3个位置量,即神经元总数为N×M+3,并由线性激励函数unm=apnm+b完成规一化运算,其中pnm是压力传感器输出的压力信号,unm是对pnm归一化处理后的压力信号,a、b分别是归一化处理中的比例因子和平移因子,a、b都是常数;根据2N+1规则,隐层神经元个数为2×N×M+7,针对于拟合对象的奇异性和非线性,隐层神经元的激励函数hi(·)采用母小波Marr函数,且神经元激励函数的尺度和相位随着神经元序号的减小而倍增;输出层包含3个神经元,分别输出轴向、切向和径向的内部应力,它的激励函数选用线性函数y=cv+d,其中v、y分别是神经网络输出层的输入、输出变量,c、d分别是输出层激励函数的比例因子和平移因子;
4)神经网络的学习算法
使用训练样本集{M,(x,y,z),F(x,y,z)}训练神经网络,获得成熟的神经网络以准确地反映真空练泥机机头内壁压力矩阵与陶瓷坯泥内应力之间存在的函数关系:
F(x,y,z)=f(M)
式中:F(x,y,z)——是陶瓷坯泥在直角坐标系下的内应力,它包含径向应力F1(x,y,z)、切向应力F2(x,y,z)、轴向应力F3(x,y,z)3个垂直方向的应力,因此F(x,y,z)是个3维向量;
M——真空练泥机机头内壁的压力矩阵;
f——F和M的函数关系;
神经网络通过BP算法调整连接网络的连接权值,输入层神经元和隐层神经元的连接权值为
w ni ( n + 1 ) = w ni ( n ) + η ∂ E ( n ) ∂ w ni
公式中wni(n)和wni(n+1)分别是神经网络训练进行到第n步和n+1步时,神经网络隐层和输出层之间连接权值,η是训练的步长,E(n)是神经网络训练到第n步时输出层神经元的输出误差的均方和,可以由下式计算
E ( n ) = 1 2 Σ j = 1 3 [ F j ( x , y , z ) - y j ( x , y , z ) ] 2
其中yj(x,y,z)是神经网络的输出,在这里它的物理意义是陶瓷坯泥内部应力的软测量值,Fj(x,y,z)是陶瓷坯泥的实验测量值,在这里它被认为是陶瓷坯泥的真实值;
隐层神经元和输出层的连接权值为
w ij ( n + 1 ) = w ij ( n ) + η ∂ E ( n ) ∂ w ij
公式中wij(n)和wij(n+1)分别是神经网络训练进行到第n步和n+1步时,神经网络输入层和隐层之间的连接权值;
将训练样本代入以上公式,经过计算可以完成对神经网络的训练;
5)神经网络的软测量
在神经网络完成训练后,将从压力传感器阵列中获得的压力矩阵M和泥料位置(x,y,z)输入神经网络的输入层,神经网络输出层就会输出陶瓷坯泥在(x,y,z)处的内部应力
y j ( x , y , z ) = c Σ l = 1 2 MN + 7 w ij h i ( Σ n = 1 MN w ni ( a P n + b ) + w xi x + w yi y + w zi z ) + d , ( j = 1,2,3 )
其中,y1、y2、y3分别代表陶瓷坯泥在径向、切向和轴向的应力,hi(·)是神经网络的激励函数,wni及wxi、wyi、wzi是神经网络输入层与隐层之间的连接权值。
本发明利用陶瓷坯泥的内部应力与机头内壁压力间的内在的联系,通过机头内壁压力的测量和计算来获得陶瓷坯泥的内部应力的分布情况从而得到成型过程中坯料内部应力的分布,为下一步选择塑性成型工艺的方法以及制定成型程序过程中的工艺参数的优化提供依据。
附图说明
图1是本发明真空练泥机机头内壁压力测量图;
图2是本发明真空练泥机机头内壁压力与陶瓷坯泥内应力之间函数关系f(·)的神经网络结构图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
参见图1,
1)压力传感器的安装
首先将压力传感器1以阵列的方式嵌入真空练泥机机头2内壁,压力传感器的压力检测面与真空炼泥机机头内壁平齐;这种安装方法目的是为了使传感器能够实时测量陶瓷坯泥与真空练泥机机头内壁的相互作用力,而不影响真空练泥机内泥料的正常流动。
2)压力传感器阵列的测量
运行真空练泥机,记录压力传感器阵列产生的压力矩阵M,
M = P 11 P 12 . . . P 1 M P 21 P 22 . . . P 2 M . . . . . . . . . . . . P N 1 P N 2 . . . P NM
其中,N为压力传感器矩阵的行数,M为压力传感器矩阵的列数,同时通过压力传感器测量陶瓷坯泥在直角坐标系下不同位置(x,y,z)的内应力F(x,y,z),获得的多组数据,并通过信号采集卡3将获得的多组数据存入计算机4中,组成训练神经网络所需要的训练样本集{M,(x,y,z),F(x,y,z)};
3)建立神经网络
由于真空练泥机机头内壁压力与陶瓷坯泥内应力之间的函数关系f非常复杂,难以用普通的函数关系来表达。本发明采用神经网络完成函数关系f的拟合。具体神经网络见图2:
本发明使用Labview编写神经网络应用程序,建立一个包含输入层、隐层和输出层的多层前向网络,其中输入层神经元个数为压力传感器的数量(N×M个)加上x、y、z 3个位置量,即神经元总数为N×M+3,并由线性激励函数unm=apnm+b完成规一化运算,其中pnm是压力传感器输出的压力信号,unm是对pnm归一化处理后的压力信号,a、b分别是归一化处理中的比例因子和平移因子,a、b都是常数;根据2N+1规则,隐层神经元个数为2×N×M+7,针对于拟合对象的奇异性和非线性,隐层神经元的激励函数hi(·)采用母小波Marr函数,且神经元激励函数的尺度和相位随着神经元序号的减小而倍增;输出层包含3个神经元,分别输出轴向、切向和径向的内部应力,它的激励函数选用线性函数y=cv+d,其中v、y分别是神经网络输出层的输入、输出变量,c、d分别是输出层激励函数的比例因子和平移因子;
4)神经网络的学习算法
使用训练样本集{M,(x,y,z),F(x,y,z)}训练神经网络,获得成熟的神经网络以准确地反映真空练泥机机头内壁压力矩阵与陶瓷坯泥内应力之间存在的函数关系:
F(x,y,z)=f(M)
式中:F(x,y,z)——是陶瓷坯泥在直角坐标系下的内应力,它包含径向应力F1(x,y,z)、切向应力F2(x,y,z)、轴向应力F3(x,y,z)3个垂直方向的应力,因此F(x,y,z)是个3维向量;
M——真空练泥机机头内壁的压力矩阵;
f——F和M的函数关系;
神经网络通过BP算法调整连接网络的权值,输入层神经元和隐层神经元的权值为
w ni ( n + 1 ) = w ni ( n ) + η ∂ E ( n ) ∂ w ni
公式中wni(n)和wni(n+1)分别是神经网络训练进行到第n步和n+1步时,神经网络隐层和输出层之间连接权值,η是训练的步长,E(n)是神经网络训练到第n步时输出层神经元的输出误差的均方和,可以由下式计算
E ( n ) = 1 2 Σ j = 1 3 [ F j ( x , y , z ) - y j ( x , y , z ) ] 2
其中yj(x,y,z)是神经网络的输出,在这里它的物理意义是陶瓷坯泥内部应力的软测量值,Fj(x,y,z)是陶瓷坯泥的实验测量值,在这里它被认为是陶瓷坯泥的真实值;
隐层神经元和输出层的权值为
w ij ( n + 1 ) = w ij ( n ) + η ∂ E ( n ) ∂ w ij
公式中wij(n)和wij(n+1)分别是神经网络训练进行到第n步和n+1步时,神经网络输入层和隐层之间连接权值;
将训练样本代入以上公式,经过计算可以完成对神经网络的训练;
5)神经网络的软测量
在神经网络完成训练后,将从压力传感器阵列中获得的压力矩阵M和泥料位置(x,y,z)输入神经网络的输入层,神经网络输出层会输出陶瓷坯泥在(x,y,z)处的内部应力
y j ( x , y , z ) = c Σ l = 1 2 MN + 7 w ij h i ( Σ n = 1 MN w ni ( a P n + b ) + w xi x + w yi y + w zi z ) + d , ( j = 1,2,3 )
其中,y1、y2、y3分别代表陶瓷坯泥在径向、切向和轴向的应力,hi(·)是神经网络的激励函数,wni及wxi、wyi、wzi是神经网络输入层与隐层之间的连接权值。

Claims (1)

1.陶瓷坯泥内应力在线软测量方法,其特征在于:
1)压力传感器的安装
首先将压力传感器以阵列的方式嵌入真空练泥机机头内壁,压力传感器的压力检测面与真空炼泥机机头内壁平齐;
2)压力传感器阵列的测量
运行真空练泥机,记录压力传感器阵列产生的压力矩阵M,
Figure FDA0000139110710000011
其中,N为压力传感器矩阵的行数,M为压力传感器矩阵的列数,同时通过压力传感器测量陶瓷坯泥在直角坐标系下不同位置(x,y,z)的内应力F(x,y,z),获得的多组数据,并通过信号采集卡(3)将获得的多组数据存入计算机(4)中,组成训练神经网络所需要的训练样本集{M,(x,y,z),F(x,y,z)};
3)建立神经网络
使用Labview编写神经网络应用程序,建立一个包含输入层、隐层和输出层的多层前向网络,其中输入层神经元个数为压力传感器的数量(N×M个)加上x、y、z3个位置量,即神经元总数为N×M+3,并由线性激励函数unm=apnm+b完成规一化运算,其中pnm是压力传感器输出的压力信号,unm是对pnm归一化处理后的压力信号,a、b分别是归一化处理中的比例因子和平移因子,a、b都是常数;根据2N+1规则,隐层神经元个数为 2×N×M+7,针对于拟合对象的奇异性和非线性,隐层神经元的激励函数hi(·)采用母小波Marr函数,且神经元激励函数的尺度和相位随着神经元序号的减小而倍增;输出层包含3个神经元,分别输出轴向、切向和径向的内部应力,它的激励函数选用线性函数y=cv+d,其中v、y分别是神经网络输出层的输入、输出变量,c、d分别是输出层激励函数的比例因子和平移因子;
4)神经网络的学习算法
使用训练样本集{M,(x,y,z),F(x,y,z)}训练神经网络,获得成熟的神经网络以准确地反映真空练泥机机头内壁压力矩阵与陶瓷坯泥内应力之间存在的函数关系:
F(x,y,z)=f(M)
式中:F(x,y,z)——是陶瓷坯泥在直角坐标系下的内应力,它包含径向应力F1(x,y,z)、切向应力F2(x,y,z)、轴向应力F3(x,y,z)3个垂直方向的应力,因此F(x,y,z)是个3维向量;
M——真空练泥机机头内壁的压力矩阵;
f——F和M的函数关系;
神经网络通过BP算法调整连接网络的连接权值,输入层神经元和隐层神经元的连接权值为
公式中wni(n)和wni(n+1)分别是神经网络训练进行到第n步和n+1步时,神经网络隐层和输出层之间连接权值,η是训练的步长,E(n)是神经网络训练到第n步时输出层神经元的输出误差的均方和,由下式计算
Figure FDA0000139110710000022
其中yj(x,y,z)是神经网络的输出,在这里它的物理意义是陶瓷坯泥内部应力的软测量值,Fj(x,y,z)是陶瓷坯泥的实验测量值,在这里它被认为是陶瓷坯泥的真实值;
隐层神经元和输出层的连接权值为
Figure FDA0000139110710000031
公式中wij(n)和wij(n+1)分别是神经网络训练进行到第n步和n+1步时,神经网络输入层和隐层之间的连接权值;
将训练样本代入以上公式,经过计算可以完成对神经网络的训练;
5)神经网络的软测量
在神经网络完成训练后,将从压力传感器阵列中获得的压力矩阵M和泥料位置(x,y,z)输入神经网络的输入层,神经网络输出层就会输出陶瓷坯泥在(x,y,z)处的内部应力
Figure FDA0000139110710000032
其中,y1、y2、y3分别代表陶瓷坯泥在径向、切向和轴向的应力, 
Figure FDA0000139110710000033
是神经网络的激励函数,wni及wxi、wyi、wzi是神经网络输入层与隐层之间的连接权值。 
CN2009100230765A 2009-06-26 2009-06-26 陶瓷坯泥内应力在线软测量方法 Expired - Fee Related CN101581718B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100230765A CN101581718B (zh) 2009-06-26 2009-06-26 陶瓷坯泥内应力在线软测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100230765A CN101581718B (zh) 2009-06-26 2009-06-26 陶瓷坯泥内应力在线软测量方法

Publications (2)

Publication Number Publication Date
CN101581718A CN101581718A (zh) 2009-11-18
CN101581718B true CN101581718B (zh) 2012-07-25

Family

ID=41363959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100230765A Expired - Fee Related CN101581718B (zh) 2009-06-26 2009-06-26 陶瓷坯泥内应力在线软测量方法

Country Status (1)

Country Link
CN (1) CN101581718B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502576A (zh) * 2014-11-03 2015-04-08 苏州精创光学仪器有限公司 塑料制品的内应力检测方法
CA2979069A1 (en) * 2015-04-21 2016-10-27 Q.E.D. Environmental Systems, Inc. Devices and methods for landfill gas well monitoring and control
CN107414676B (zh) * 2017-05-17 2019-06-21 中国科学院上海光学精密机械研究所 环抛过程沥青抛光模应力分布实时测量装置及测量方法
TWI719353B (zh) * 2018-10-29 2021-02-21 緯創資通股份有限公司 具判斷使用意圖的助行器及其操作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948719A (zh) * 2005-10-14 2007-04-18 通用电气公司 用于控制陶瓷基复合材料制品中的热应力的组件
JP2008286689A (ja) * 2007-05-18 2008-11-27 Japan Agengy For Marine-Earth Science & Technology 応力履歴測定方法およびセメントを主体とした複合材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948719A (zh) * 2005-10-14 2007-04-18 通用电气公司 用于控制陶瓷基复合材料制品中的热应力的组件
JP2008286689A (ja) * 2007-05-18 2008-11-27 Japan Agengy For Marine-Earth Science & Technology 応力履歴測定方法およびセメントを主体とした複合材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨学贵等.二相粒子复合陶瓷内应力的有限元分析及其增韧机理.《无机材料学报》.1998,第13卷(第3期), *

Also Published As

Publication number Publication date
CN101581718A (zh) 2009-11-18

Similar Documents

Publication Publication Date Title
CN101581718B (zh) 陶瓷坯泥内应力在线软测量方法
CN102880905B (zh) 一种常顶油干点在线软测量方法
CN104236768A (zh) 一种基于有限元校正系数的钻孔法测量残余应力的方法
Oh et al. Nondestructive concrete strength estimation based on electro-mechanical impedance with artificial neural network
CN106770648B (zh) 一种复合材料刚度系数的无损测量方法
CN108387470A (zh) 一种连续压痕法测量残余应力和金属材料弹塑性力学性能的方法
CN108388749B (zh) 具有微结构电介质层的电容压力传感器的微结构设计方法
CN108414371B (zh) 一种沥青路面裂缝状况的无损检测方法
Zhu et al. A two-step impact localization method for composite structures with a parameterized laminate model
CN101533423A (zh) 一种金属塑料复合材料结构的优化方法
CN102929147B (zh) 真空玻璃加工在线控制系统及方法
CN113378386A (zh) 一种基于残余应力修正的3d打印管道补偿设计方法
CN105365179B (zh) 一种注塑过程在线质量检测方法
CN106524988A (zh) 基于八面体的三维应变花装置及测试方法
CN201876207U (zh) 工件检测用通规
CN103075981A (zh) 一种超声波测厚方法
CN112858072A (zh) 一种混凝土温度应力的测试方法
CN102982244A (zh) 地质强度指标的模糊综合评判方法
CN111579582B (zh) 一种堆石混凝土绝热温升的确定方法
CN1180229C (zh) 一种静态破裂剂膨胀压力的测试方法及测试装置
CN104598970A (zh) 一种爬架组的工作状态检测方法
CN102489574A (zh) 一种板材渐进成形加工控制回弹的方法
CN107398582B (zh) 基于机械参数特性的墙体检测电钻及检测方法
CN108716959A (zh) 有效预测压电薄膜与梯度非均匀基底界面应力分布的方法
CN101545819B (zh) 一种测量旋转体表压时标定pvdf电压系数的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120725

Termination date: 20150626

EXPY Termination of patent right or utility model