CN101567520A - Hollow beam pumping emission semiconductor laser of vertical external chamber surface - Google Patents
Hollow beam pumping emission semiconductor laser of vertical external chamber surface Download PDFInfo
- Publication number
- CN101567520A CN101567520A CNA2009100670125A CN200910067012A CN101567520A CN 101567520 A CN101567520 A CN 101567520A CN A2009100670125 A CNA2009100670125 A CN A2009100670125A CN 200910067012 A CN200910067012 A CN 200910067012A CN 101567520 A CN101567520 A CN 101567520A
- Authority
- CN
- China
- Prior art keywords
- cavity surface
- output
- external cavity
- laser
- epitaxial wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Lasers (AREA)
Abstract
本发明提供了空心光束泵浦垂直外腔面发射半导体激光器,其包括半导体激光器(1)、传输光纤(2)、准直透镜(3)、卡塞格林望远系统(4)、耦合透镜(5)、分光棱镜(6)、外腔面发射外延片(7)、铜热沉(8)和输出镜(9)组成。采用空心光束作为泵浦光,利用其具有暗斑尺寸可调、无加热效应和传播不变性等特点,使泵浦区与激射区中心相分离来降低外腔面发射外延片激射区的热效应和微应变,提高光光转换效率和输出功率,改善输出光束质量和输出光谱稳定度。在抽运功率为2W时,比普通高斯光束作为泵浦源转换效率提高11%,输出圆对称近衍射极限光束,光束质量M2≈1。可用于刑事侦察、光信息存储、影像显示、医学仪器和水下探测。
The invention provides a hollow beam pumped vertical external cavity surface-emitting semiconductor laser, which includes a semiconductor laser (1), a transmission fiber (2), a collimator lens (3), a Cassegrain telescopic system (4), a coupling lens ( 5), a beam splitting prism (6), an external cavity surface emitting epitaxial wafer (7), a copper heat sink (8) and an output mirror (9). The hollow beam is used as the pumping light, and the pumping area is separated from the center of the lasing area to reduce the laser area of the external cavity surface emitting epitaxial wafer by taking advantage of its characteristics of adjustable dark spot size, no heating effect and propagation invariance. Thermal effect and micro-strain, improve light-to-light conversion efficiency and output power, improve output beam quality and output spectrum stability. When the pumping power is 2W, the conversion efficiency is 11% higher than that of the common Gaussian beam as the pump source, and the output is a circularly symmetric near-diffraction-limited beam with a beam quality M 2 ≈1. It can be used in criminal investigation, optical information storage, image display, medical instrument and underwater detection.
Description
技术领域 technical field
本发明专利涉及空心光束泵浦垂直外腔面发射半导体激光器。The patent of the present invention relates to a hollow beam pumped vertical external cavity surface emitting semiconductor laser.
背景技术 Background technique
光泵浦垂直腔面发射半导体激光器具有良好的空间光强分布、大的输出功率范围、体积小、光束质量好等突出优点,使光泵浦垂直外腔面发射半导体激光器具有广阔的应用范围。光泵浦垂直外腔面发射半导体激光器结合了半导体泵浦固体激光器和垂直外腔面发射半导体激光器的构造方法,吸取了二者的优点,既能输出面发射激光器的优质基模高斯光束,又能获得可与边发射激光器相比拟的高功率。具有芯片结构简单,无PN结,无电接触,极大地简化了的生长过程,提高了可靠性;没有电流注入,消除了附加电阻上相应的热效应;芯片用非掺杂的半导体材料生长,减少了自由载流子吸收导致的光损耗,较低的对泵浦元件损伤性、较高的可靠性和大的输出功率范围等突出优点,使得输出功率稳定性更高;从光泵浦激光器的谐振腔设计角度来看,它类似于半导体泵浦固体薄片激光器,降低了热效应,但波长上可以灵活设计;同时,泵浦的效率上亦可得到较大的改善,可有效地提高转换效率和阈值功率,比半导体泵浦固体薄片激光器的设计更加灵活。Optically pumped vertical cavity surface emitting semiconductor lasers have outstanding advantages such as good spatial light intensity distribution, large output power range, small size, and good beam quality, which make optically pumped vertical external cavity surface emitting semiconductor lasers have a wide range of applications. Optically pumped vertical external cavity surface emitting semiconductor lasers combine the construction methods of semiconductor pumped solid-state lasers and vertical external cavity surface emitting semiconductor lasers, absorbing the advantages of both, can output high-quality fundamental mode Gaussian beams of surface emitting lasers, and High power comparable to edge-emitting lasers can be obtained. The chip has a simple structure, no PN junction, no electrical contact, which greatly simplifies the growth process and improves reliability; there is no current injection, which eliminates the corresponding thermal effect on the additional resistance; the chip is grown with non-doped semiconductor materials, reducing The optical loss caused by free carrier absorption is eliminated, the outstanding advantages such as low damage to the pumping element, high reliability and large output power range make the output power stability higher; from the optical pump laser From the perspective of resonator design, it is similar to semiconductor-pumped solid-state thin-film lasers, which reduces the thermal effect, but the wavelength can be flexibly designed; at the same time, the pumping efficiency can also be greatly improved, which can effectively improve the conversion efficiency and The threshold power is more flexible than the design of semiconductor-pumped solid-state thin-film lasers.
散热问题是光泵浦垂直外腔面发射激光器向高功率拓展的瓶颈,同时也是影响光-光转换效率的关键问题。引起面发射半导体芯片增益降低的主要因素有两个:一是温升导致的单个量子阱的峰值增益降低;二是热效应使激光场的波腹与量子阱的位置错开,从而致使吸收效率降低,耦合强度减弱。面发射半导体芯片的热效应影响着器件的正常工作,对光泵浦垂直外腔面发射激光器有效的热管理是提高其输出激光功率、效率和改善光束质量的关键问题之一。Heat dissipation is the bottleneck for the expansion of optically pumped vertical external-cavity surface-emitting lasers to high power, and it is also a key issue that affects the light-to-light conversion efficiency. There are two main factors that cause the gain reduction of the surface-emitting semiconductor chip: one is that the peak gain of a single quantum well is reduced due to temperature rise; the other is that the thermal effect makes the antinode of the laser field and the position of the quantum well stagger, thereby reducing the absorption efficiency. The coupling strength is weakened. The thermal effect of the surface-emitting semiconductor chip affects the normal operation of the device. Effective thermal management of the optically pumped vertical external cavity surface-emitting laser is one of the key issues to improve its output laser power, efficiency and beam quality.
随着泵浦光功率的加大,热效应问题也变得愈来愈严重,克服热效应,获得良好的输出激光特性已经成为研究的热点。研究人员先后报道了如下几种通过改善其热特性的方法来提高激光输出特性,如通过减薄面发射半导体芯片衬底[Peter Brick,Stephan Lutgen,Tony Albrecht,etal.High-efficiency high-power semiconductor disclaser.Proc of SPIE.4993(2003):50-56]、改善热沉与芯片以及芯片出光面与高导热的透明材料间的键合工艺[William J Alford,Thomas D Raymond,and Andrew AAllerman.Highpower and good beam quality at 980nm from a vertical external-cavity surface-emitting laser.J.Opt.Soc.Am.B.2002,19(4):663-666]等方法来实现良好的散热;通过采用双反射带型反射镜[Ki-Sung Kim,Jaeryung Yoo,Gibum Kim,et al.Enhancement of Pumping Efficiency in aVertical-External-Cavity Surface-Emitting Laser IEEE PHOTONIC S TECHNOLOGYLETTERS.2007,19(23):1925-1927]和应变补偿量子阱结构[Li Fan,Jorg Hader,MarcSchillgalies,etal.High-Power Optically Pumped VECSEL Using a Double-Well Resonant PeriodicGain Structure.IEEE Photonics Technology Letters.2005,17(9):1764-1766]等降低热效应方法来改善激光器的输出特性。上述改善面发射半导体芯片热特性的方法在一定程度上缓解了热效应对输出激光特性的影响,但距离实际应用中对高功率、高效率和高光束质量的追求还有一定的差距。With the increase of the pump light power, the problem of thermal effect becomes more and more serious. Overcoming the thermal effect and obtaining good output laser characteristics have become a research hotspot. Researchers have successively reported the following methods to improve laser output characteristics by improving its thermal characteristics, such as by thinning the surface-emitting semiconductor chip substrate [Peter Brick, Stephan Lutgen, Tony Albrecht, et al. High-efficiency high-power semiconductor disclaser .Proc of SPIE.4993(2003):50-56], Improving the bonding process between the heat sink and the chip and the light-emitting surface of the chip and the transparent material with high thermal conductivity [William J Alford, Thomas D Raymond, and Andrew AAllerman.Highpower and good beam quality at 980nm from a vertical external-cavity surface-emitting laser.J.Opt.Soc.Am.B.2002,19(4):663-666] and other methods to achieve good heat dissipation; Type reflector [Ki-Sung Kim, Jaeryung Yoo, Gibum Kim, et al. Enhancement of Pumping Efficiency in a Vertical-External-Cavity Surface-Emitting Laser IEEE PHOTONIC S TECHNOLOGYLETTERS.2007, 19(23): 1925-1927] and strain Compensation quantum well structure [Li Fan, Jorg Hader, Marc Schillgalies, et al. High-Power Optically Pumped VECSEL Using a Double-Well Resonant Periodic Gain Structure. IEEE Photonics Technology Letters. 2005, 17(9): 1764-1766] and other methods to reduce thermal effects To improve the output characteristics of the laser. The above method of improving the thermal characteristics of surface-emitting semiconductor chips alleviates the influence of thermal effects on output laser characteristics to a certain extent, but there is still a certain gap between the pursuit of high power, high efficiency and high beam quality in practical applications.
常规的光泵浦垂直外腔面发射激光器是基于普通高斯光束作为泵浦源,泵浦区和激射区相重叠,产生较大的热效应,在泵浦功率较大时,面发射半导体芯片的温度升高将会使激光器的有效增益减小,输出功率达到饱和,严重时将会出现荧光猝灭。Conventional optically pumped vertical external-cavity surface-emitting lasers are based on ordinary Gaussian beams as the pumping source. The pumping region and the lasing region overlap, resulting in a large thermal effect. When the pumping power is large, the surface-emitting semiconductor chip An increase in temperature will reduce the effective gain of the laser, and the output power will reach saturation, and in severe cases, fluorescence quenching will occur.
发明内容 Contents of the invention
为了克服光泵浦垂直外腔面发射激光器的泵浦区和激射区重叠,热效应严重问题,进而改善激光器的输出特性,本发明提供了一种空心光束泵浦直外腔面发射激光器。In order to overcome the overlapping of the pumping area and the lasing area of the optically pumped vertical external cavity surface emitting laser and the serious problem of thermal effect, and improve the output characteristics of the laser, the invention provides a hollow beam pumped vertical external cavity surface emitting laser.
如附图1和附图2所示,本发明的空心光束泵浦垂直外腔面发射半导体激光器包括半导体激光器1、传输光纤2、准直透镜3、卡塞格林望远系统4、耦合透镜5、分光棱镜6、外腔面发射外延片7、铜热沉8和输出镜9组成;其中,半导体激光器1发出的泵浦激光束经过传输光纤2输出,准直透镜3将光纤输出的激光束进行准直,卡塞格林望远系统4将准直后的光束变换成空心光束再经过耦合透镜5进行聚焦,聚焦光经过分光棱镜6入射到外腔面发射外延片7上进行泵浦激励,外腔面发射外延片7受到激励后产生的荧光在外延片7的布拉格反射镜、分光棱镜6的倾斜面和输出镜9间振荡形成激光输出;As shown in accompanying drawings 1 and 2, the hollow beam pumped vertical external cavity surface emitting semiconductor laser of the present invention includes a semiconductor laser 1, a transmission fiber 2, a collimating lens 3, a Cassegrain telescopic system 4, and a coupling lens 5 , beam splitting prism 6, external cavity surface emitting epitaxial wafer 7, copper heat sink 8 and output mirror 9; wherein, the pump laser beam emitted by the semiconductor laser 1 is output through the transmission fiber 2, and the collimator lens 3 outputs the laser beam output by the fiber For collimation, the Cassegrain telescopic system 4 converts the collimated beam into a hollow beam and then focuses it through the coupling lens 5, and the focused light is incident on the external cavity surface-emitting epitaxial wafer 7 through the beam splitter 6 for pumping excitation. The fluorescence generated after the external cavity surface emitting epitaxial wafer 7 is excited oscillates between the Bragg reflector of the epitaxial wafer 7, the inclined surface of the dichroic prism 6 and the output mirror 9 to form a laser output;
所述的卡塞格林望远系统4由一片凸面反射镜和一片中空的凹面反射镜组成,入射到凸面反射镜上的光束发散后被凹面反射镜反射输出形成空心光束;The Cassegrain telescopic system 4 is composed of a convex reflector and a hollow concave reflector, and the light beam incident on the convex reflector diverges and is reflected by the concave reflector to form a hollow light beam;
所述的分光棱镜6是两个等腰直角棱镜组成的正方体,对泵浦激光束的透过率高于99%,两个等腰直角棱镜分界面对45度入射激射荧光高反射;The beam-splitting prism 6 is a cube composed of two isosceles right-angle prisms, the transmittance of the pump laser beam is higher than 99%, and the interface of the two isosceles right-angle prisms is highly reflective to the 45-degree incident laser fluorescence;
如图2所示,所述的外腔面发射外延片7由衬底11、缓冲保护层12、窗口层13、垒区14、量子阱有源区15和布拉格反射镜16构成;所述的衬底11上依次采用分子束外延法生长缓冲保护层12、窗口层13、垒区14、量子阱有源区15、垒区14和布拉格反射镜16;所述的缓冲保护层12是为了避免窗口层13与空气直接接触的氧化和晶格失配;窗口层13以防垒区14产生的载流子扩散到材料表面;量子阱有源区15选择应变补偿量子阱结构,每个周期都生长一层垒区用于对泵浦光的吸收,量子阱处于1/2波长的整数倍处,生长多个周期,量子阱数量为3-15个;布拉格反射镜16采用25对以上1/4波长厚度高低折射率材料交替结构,以保证对激射光具有高于99%的反射率;As shown in Figure 2, described external cavity surface emitting epitaxial wafer 7 is made of
所述的外腔面发射外延片7的出光表面键合透明金刚石膜10,背面键合在铜热沉8上实现将自身产生的废热导出。The light-emitting surface of the external cavity surface-emitting epitaxial wafer 7 is bonded to a
有益效果:本发明采用空心光束作为泵浦光,利用其具有暗斑尺寸可调、无加热效应和传播不变性等特点,使泵浦区与激射区中心相分离来降低外腔面发射外延片激射区的热效应和微应变,提高光光转换效率和输出功率,改善输出光束质量和输出光谱稳定度,不失为一种有效的方法。在抽运功率为2W时,空心光束作为泵浦源比普通高斯光束作为泵浦源,转换效率提高了11%,输出圆对称近衍射极限光束,光束质量M2≈1。其可为刑事侦察、光信息存储、影像显示、生物医学仪器、水下探测等光电子信息产业提供了良好的光源。Beneficial effects: the present invention adopts the hollow beam as the pumping light, utilizes its features such as adjustable dark spot size, no heating effect, and propagation invariance, so that the center of the pumping area is separated from the center of the lasing area to reduce the surface emission epitaxy of the external cavity. It is an effective method to improve the light-to-light conversion efficiency and output power, improve the output beam quality and output spectrum stability by controlling the thermal effect and micro-strain in the lasing region of the chip. When the pumping power is 2W, the conversion efficiency is increased by 11% when the hollow beam is used as the pumping source than the ordinary Gaussian beam as the pumping source. It can provide a good light source for optoelectronic information industries such as criminal investigation, optical information storage, image display, biomedical instruments, and underwater detection.
附图说明 Description of drawings
图1是空心光束泵浦垂直外腔面发射半导体激光器的构成示意框图。Fig. 1 is a schematic block diagram of a hollow beam pumped vertical external cavity surface emitting semiconductor laser.
图2是外腔面发射外延片7的构成示意图。FIG. 2 is a schematic diagram of the structure of an external-cavity surface-emitting epitaxial wafer 7 .
具体实施方式 Detailed ways
实施例1如附图1和附图2所示,本发明的空心光束泵浦垂直外腔面发射半导体激光器由半导体激光器1、传输光纤2、准直透镜3、卡塞格林望远系统4、耦合透镜5、分光棱镜6、外腔面发射外延片7、铜热沉8和输出镜9组成;其中,半导体激光器1发出的泵浦激光束经过传输光纤2输出,准直透镜3将光纤输出的激光束进行准直,卡塞格林望远系统4将准直后的光束变换成空心光束再经过耦合透镜5进行聚焦,聚焦光经过分光棱镜6入射到外腔面发射外延片7上进行泵浦激励。外腔面发射外延片7受到激励后产生的荧光在外延片7的布拉格反射镜、分光棱镜6的倾斜面和输出镜9间振荡形成激光输出。Embodiment 1 As shown in the accompanying drawings 1 and 2, the hollow beam pumped vertical external cavity surface emitting semiconductor laser of the present invention consists of a semiconductor laser 1, a transmission fiber 2, a collimating lens 3, a Cassegrain telescopic system 4, The coupling lens 5, the beam splitting prism 6, the external cavity surface emitting epitaxial wafer 7, the copper heat sink 8 and the output mirror 9 are composed; wherein, the pump laser beam emitted by the semiconductor laser 1 is output through the transmission optical fiber 2, and the collimating lens 3 outputs the optical fiber The laser beam is collimated, and the Cassegrain telescopic system 4 transforms the collimated beam into a hollow beam, which is then focused by a coupling lens 5. The focused light is incident on an external-cavity surface-emitting epitaxial wafer 7 through a beam splitter 6 for pumping. Pu incentives. The fluorescence generated after the external cavity surface emitting epitaxial wafer 7 is excited oscillates between the Bragg reflector of the epitaxial wafer 7 , the inclined surface of the dichroic prism 6 and the output mirror 9 to form laser output.
半导体激光器1为808nm边发射激光器。The semiconductor laser 1 is an 808 nm edge-emitting laser.
传输光纤2为石英光纤,光纤的芯径为400um,数值孔径为0.22。The transmission fiber 2 is a silica fiber with a core diameter of 400um and a numerical aperture of 0.22.
卡塞格林望远系统4由一片凸面反射镜和一片中空的凹面反射镜组成,入射到凸面反射镜上的光束发散后被凹面反射镜反射输出形成空心光束,反射面的反射率均高于99%。The Cassegrain Telescope System 4 is composed of a convex mirror and a hollow concave mirror. The beam incident on the convex mirror diverges and is reflected by the concave mirror to form a hollow beam. The reflectivity of the reflecting surface is higher than 99%. %.
分光棱镜6是两个等腰直角棱镜组成的正方体,对泵浦激光束的透过率高于99%,两个等腰直角棱镜分界面对45度入射激射荧光高反射,反射率高于99.8%。Dichroic prism 6 is a cube composed of two isosceles right-angle prisms, the transmittance of the pump laser beam is higher than 99%, and the interface of the two isosceles right-angle prisms is highly reflective to the 45-degree incident laser fluorescence, and the reflectivity is higher than 99.8%.
如图2所示,外腔面发射外延片7由衬底11、缓冲保护层12、窗口层13、垒区14、量子阱有源区15和布拉格反射镜16构成;其中,衬底11上依次分子束外延法生长缓冲保护层12、窗口层13、垒区14、量子阱有源区15、垒区14和布拉格反射镜16;所述的衬底11是GaAs或InP,外腔面发射外延片7制备完毕后采用化学腐蚀将衬底11减薄至500um。缓冲保护层12是为了避免窗口层13与空气直接接触的氧化和晶格失配。窗口层13以防垒区14产生的载流子扩散到材料表面。量子阱有源区15选择应变补偿量子阱结构,每个周期都生长一层垒区用于对泵浦光的吸收,量子阱处于1/2波长的整数倍处,生长多个周期,量子阱数量为3-15个。布拉格反射镜16采用25对以上1/4波长厚度高低折射率材料交替生长结构,以保证对激射光具有高于99%的反射率。As shown in Figure 2, the external-cavity surface-emitting epitaxial wafer 7 is composed of a
外腔面发射外延片7的出光表面键合透明金刚石膜10,背面键合在铜热沉8上从而实现将自身产生的废热导出。The light emitting surface of the external cavity surface-emitting epitaxial wafer 7 is bonded to a
在抽运功率为2W时,空心光束作为泵浦源比普通高斯光束作为泵浦源,转换效率提高了11%,输出圆对称近衍射极限光束,光束质量M2≈1。When the pumping power is 2W, the conversion efficiency is increased by 11% when the hollow beam is used as the pumping source than the ordinary Gaussian beam as the pumping source.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100670125A CN101567520B (en) | 2009-05-26 | 2009-05-26 | Hollow beam pumped vertical external cavity surface emitting semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100670125A CN101567520B (en) | 2009-05-26 | 2009-05-26 | Hollow beam pumped vertical external cavity surface emitting semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101567520A true CN101567520A (en) | 2009-10-28 |
CN101567520B CN101567520B (en) | 2010-09-29 |
Family
ID=41283553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100670125A Expired - Fee Related CN101567520B (en) | 2009-05-26 | 2009-05-26 | Hollow beam pumped vertical external cavity surface emitting semiconductor laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101567520B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950915A (en) * | 2010-09-07 | 2011-01-19 | 长春理工大学 | Resonant cavity capable of obtaining hollow laser beams |
CN103594910A (en) * | 2013-11-28 | 2014-02-19 | 长春理工大学 | Solid laser for end face pumping through annular light |
CN109343075A (en) * | 2018-10-23 | 2019-02-15 | 长春理工大学 | Laser polarization detection system for distinguishing underwater targets |
CN112753145A (en) * | 2018-09-19 | 2021-05-04 | 新墨西哥大学雨林创新 | Broadband active mirror architecture of high-power optically pumped semiconductor disc laser |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102570262B (en) * | 2012-02-29 | 2013-11-20 | 中国科学院上海光学精密机械研究所 | Hollow ring-shaped light beam output solid laser and using method therefor |
-
2009
- 2009-05-26 CN CN2009100670125A patent/CN101567520B/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950915A (en) * | 2010-09-07 | 2011-01-19 | 长春理工大学 | Resonant cavity capable of obtaining hollow laser beams |
CN103594910A (en) * | 2013-11-28 | 2014-02-19 | 长春理工大学 | Solid laser for end face pumping through annular light |
CN112753145A (en) * | 2018-09-19 | 2021-05-04 | 新墨西哥大学雨林创新 | Broadband active mirror architecture of high-power optically pumped semiconductor disc laser |
CN109343075A (en) * | 2018-10-23 | 2019-02-15 | 长春理工大学 | Laser polarization detection system for distinguishing underwater targets |
Also Published As
Publication number | Publication date |
---|---|
CN101567520B (en) | 2010-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chilla et al. | Recent advances in optically pumped semiconductor lasers | |
KR100754402B1 (en) | Vertical external resonator type surface emitting laser | |
US7764723B2 (en) | High brightness laser module | |
US20210351569A1 (en) | Semiconductor laser | |
US7548569B2 (en) | High-power optically end-pumped external-cavity semiconductor laser | |
WO2010023094A3 (en) | Optoelectronic systems providing high-power high-brightness laser light based on field coupled arrays, bars and stacks of semiconductor diode lasers | |
CN101567520A (en) | Hollow beam pumping emission semiconductor laser of vertical external chamber surface | |
US8406267B2 (en) | Grazing-incidence-disk laser element | |
JP2007194589A (en) | Externally-resonated surface emitting laser | |
US20060078031A1 (en) | InGaN LED pumped II-VI semiconductor laser | |
JP2017530554A (en) | Laser active medium and manufacturing method thereof | |
JP5926340B2 (en) | LD module | |
US20160099544A1 (en) | Laser apparatus | |
CN101388522A (en) | Electrically Pumped Top-Emitting Vertical External-Cavity Surface-Emitting Laser | |
KR100773540B1 (en) | Light pumping surface emitting laser | |
US8995482B1 (en) | High energy semiconductor laser | |
Ebadi et al. | Multisection waveguide method for facet temperature reduction and improved reliability of high-power laser diodes | |
CN110289555A (en) | semiconductor laser light source | |
Yang et al. | 48W continuous-wave output power with high efficiency from a single emitter laser diode at 915nm | |
CN112615252A (en) | Semiconductor laser and optical fiber coupling structure | |
CN101145673A (en) | A Vertical External Cavity Surface Emitting Semiconductor Laser | |
JP6145194B2 (en) | LD module | |
An et al. | Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application | |
CN113471812B (en) | Gain device, semiconductor laser and manufacturing method of semiconductor laser | |
CN117424069A (en) | Vertical external cavity surface emitting semiconductor laser based on surface grating and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100929 Termination date: 20130526 |