CN101555548A - Method for improving bioleaching effect of municipal solid waste incineration flying ash - Google Patents
Method for improving bioleaching effect of municipal solid waste incineration flying ash Download PDFInfo
- Publication number
- CN101555548A CN101555548A CNA200910082674XA CN200910082674A CN101555548A CN 101555548 A CN101555548 A CN 101555548A CN A200910082674X A CNA200910082674X A CN A200910082674XA CN 200910082674 A CN200910082674 A CN 200910082674A CN 101555548 A CN101555548 A CN 101555548A
- Authority
- CN
- China
- Prior art keywords
- fly ash
- bioleaching
- waste incineration
- solid waste
- municipal solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000000694 effects Effects 0.000 title claims abstract description 16
- 238000004056 waste incineration Methods 0.000 title claims abstract description 15
- 239000010813 municipal solid waste Substances 0.000 title claims abstract description 10
- 241000894006 Bacteria Species 0.000 claims abstract description 23
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000002386 leaching Methods 0.000 claims abstract description 15
- 241000228245 Aspergillus niger Species 0.000 claims abstract description 13
- 239000007788 liquid Substances 0.000 claims description 20
- 239000002609 medium Substances 0.000 claims description 19
- 229930006000 Sucrose Natural products 0.000 claims description 15
- 239000005720 sucrose Substances 0.000 claims description 15
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 239000001963 growth medium Substances 0.000 claims description 10
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000011218 seed culture Methods 0.000 claims description 5
- 230000012010 growth Effects 0.000 claims description 3
- 229920001817 Agar Polymers 0.000 claims description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- 244000061456 Solanum tuberosum Species 0.000 claims description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 2
- 239000008272 agar Substances 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 239000000428 dust Substances 0.000 claims 5
- 235000015097 nutrients Nutrition 0.000 claims 3
- 235000003239 Guizotia abyssinica Nutrition 0.000 claims 1
- 230000004913 activation Effects 0.000 claims 1
- 230000009514 concussion Effects 0.000 claims 1
- 239000002054 inoculum Substances 0.000 claims 1
- 239000010881 fly ash Substances 0.000 abstract description 62
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 29
- 238000004090 dissolution Methods 0.000 abstract description 12
- 239000002920 hazardous waste Substances 0.000 abstract description 7
- 231100000419 toxicity Toxicity 0.000 abstract description 5
- 230000001988 toxicity Effects 0.000 abstract description 5
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 4
- 150000004706 metal oxides Chemical class 0.000 abstract description 4
- 229910003439 heavy metal oxide Inorganic materials 0.000 abstract description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 3
- 239000011707 mineral Substances 0.000 abstract description 3
- 150000007524 organic acids Chemical class 0.000 abstract description 3
- 238000009630 liquid culture Methods 0.000 description 4
- 150000004760 silicates Chemical class 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000010791 domestic waste Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 101000765308 Aspergillus niger N-(5'-phosphoribosyl)anthranilate isomerase Proteins 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 125000000185 sucrose group Chemical group 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000002906 medical waste Substances 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000009270 solid waste treatment Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000010926 waste battery Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
一种提高城市生活垃圾焚烧飞灰生物淋滤效果的方法,涉及一种生物脱硅与生物淋滤联合浸出垃圾焚烧飞灰中重金属的方法。具体步骤是:利用硅酸盐细菌对飞灰进行生物脱硅处理,破坏飞灰中的矿物晶格释放出更多的金属氧化物;利用黑曲霉对脱硅处理后的飞灰进行生物淋滤,由于有更多的重金属氧化物能够与黑曲霉菌体产出的有机酸充分接触反应,从而显著提高了生物淋滤过程中的重金属溶出效果。该方法操作简便,效率高,经济可行,安全,是一种环境友好的去除垃圾焚烧飞灰中重金属的有效方法,并且浸出毒性远远低于危险废物鉴别标准,飞灰可进入填埋场或进一步资源化利用。
The invention discloses a method for improving the biological leaching effect of municipal solid waste incineration fly ash, which relates to a method for combining biological desiliconization and bioleaching to leach heavy metals in waste incineration fly ash. The specific steps are: use silicate bacteria to carry out biological desilication treatment of fly ash, destroy the mineral lattice in fly ash to release more metal oxides; use Aspergillus niger to carry out bioleaching of fly ash after desilication treatment , because more heavy metal oxides can fully contact and react with the organic acid produced by Aspergillus niger, thus significantly improving the dissolution effect of heavy metals in the bioleaching process. The method is easy to operate, high in efficiency, economically feasible and safe, and is an environmentally friendly and effective method for removing heavy metals in waste incineration fly ash, and the leaching toxicity is far lower than the hazardous waste identification standard, and fly ash can enter landfill or further utilization of resources.
Description
技术领域 technical field
本发明涉及一种提高城市生活垃圾焚烧飞灰生物淋滤处理中重金属去除效果的方法。The invention relates to a method for improving the heavy metal removal effect in the biological leaching treatment of municipal solid waste incineration fly ash.
背景技术 Background technique
随着中国经济的持续高速增长,人民生活水平迅速提高,城市生活垃圾处理问题已经成为中国最严重的公害之一。因此,垃圾焚烧发电技术在国内的迅速发展也带来了垃圾飞灰的产量也呈明显增加。With the continuous rapid growth of China's economy and the rapid improvement of people's living standards, the problem of municipal solid waste disposal has become one of the most serious public hazards in China. Therefore, the rapid development of waste incineration power generation technology in China has also brought about a significant increase in the output of waste fly ash.
垃圾焚烧过程中产生大量的灰渣,包括炉渣(80~90%)和飞灰(10~20%),但是飞灰中的重金属含量比炉渣要大几倍甚至几百倍。飞灰中的重金属主要来源于生活中的废纸、废电池以及建筑装饰材料、清道垃圾等,特别是我国垃圾分类体系很不完善,经常有工业垃圾、医疗垃圾混合在城市生活垃圾中,使得重金属污染物在焚烧过程中发生迁移和转化,使飞灰中富集了较高浓度的重金属等污染物。若将飞灰直接进行填埋或处理不当,在自然环境下由于酸雨等因素的作用,酸性环境下重金属将逐渐渗滤出来,重新进入环境,污染地下水源而危害人类,因此《国家危险废物名录》已经明确规定生活垃圾焚烧飞灰为危险废物,即编号为HW18,并且飞灰的处置必须严格按照危险废物处置的规范进行。A large amount of ash is produced in the process of waste incineration, including slag (80-90%) and fly ash (10-20%), but the content of heavy metals in fly ash is several times or even hundreds of times larger than that of slag. The heavy metals in fly ash mainly come from waste paper, waste batteries, building decoration materials, and road cleaning garbage in daily life. In particular, the waste classification system in my country is not perfect, and industrial waste and medical waste are often mixed in urban domestic waste, making Heavy metal pollutants migrate and transform during the incineration process, which enriches the fly ash with high concentrations of heavy metals and other pollutants. If the fly ash is directly landfilled or handled improperly, in the natural environment, due to the effects of acid rain and other factors, the heavy metals will gradually leach out in the acidic environment, re-enter the environment, pollute the groundwater source and endanger human beings. Therefore, the "National Hazardous Waste List" "It has been clearly stipulated that the fly ash of domestic waste incineration is hazardous waste, that is, the code is HW18, and the disposal of fly ash must be carried out in strict accordance with the specifications of hazardous waste disposal.
国内外学者尝试将生物湿法冶金技术(Biohydrometallurgy Technology)应用到处理固体废物领域,即生物淋滤法(Bioleaching),即利用生物浸取剂或利用微生物代谢产物与焚烧飞灰作用,将其中的重金属从固相溶出到液相的方法。该方法优势在于反应温和、耗酸少、环境友好、无二次污染、运行成本较低。但相比传统的化学处理法仍存在处理负荷较低、处理时间长、重金属溶出率不理想等缺点。Scholars at home and abroad have tried to apply Biohydrometallurgy Technology to the field of solid waste treatment, that is, Bioleaching, which uses bioleaching agents or microbial metabolites to interact with incineration fly ash to remove the A method of leaching heavy metals from a solid phase to a liquid phase. The method has the advantages of mild reaction, less acid consumption, environmental friendliness, no secondary pollution, and low operating cost. However, compared with the traditional chemical treatment method, there are still disadvantages such as lower treatment load, long treatment time, and unsatisfactory heavy metal dissolution rate.
飞灰有类似于矿石的结构和组成,主要是金属氧化物和硅酸盐。在生物淋滤的过程中,很大一部分包裹于Si-O晶格中的金属氧化物与菌体代谢产物-有机酸很难充分接触,从而影响了金属溶出效果。Fly ash has a structure and composition similar to ores, mainly metal oxides and silicates. In the process of bioleaching, a large part of the metal oxides wrapped in the Si-O lattice is difficult to fully contact with the bacterial metabolites-organic acids, thus affecting the metal dissolution effect.
发明内容 Contents of the invention
本发明的目的是利用该类细菌能破坏飞灰中硅酸盐组分Si-O键的特点,采用生物脱硅预处理与生物淋滤联合浸出的方式,使飞灰中被包裹的金属氧化物裸露出来,充分与生物淋滤时的菌体代谢产物-有机酸接触,从而提高生物淋滤的金属溶出效果。The purpose of the present invention is to use the characteristics of such bacteria that can destroy the Si-O bond of the silicate component in the fly ash, and adopt the method of combined leaching of biological desilication pretreatment and biological leaching to oxidize the wrapped metal in the fly ash The material is exposed and fully contacted with the organic acid, the metabolite of the bacteria during bioleaching, so as to improve the metal dissolution effect of bioleaching.
本发明的具体步骤如下:Concrete steps of the present invention are as follows:
(一)利用硅酸盐细菌对飞灰进行生物脱硅处理(1) Biological desilication of fly ash using silicate bacteria
(a)选取一环活化好的硅酸盐细菌斜面菌种接入10~50mL种子培养基中,在25~35℃,140~220r/min的条件下恒温振荡培养40~55h。(a) Select a ring of activated silicate bacterial slant strains and insert them into 10-50mL seed culture medium, and culture them with constant temperature shaking at 25-35°C and 140-220r/min for 40-55h.
硅酸盐细菌种子培养基的成分为:蔗糖4.0~10.0g/L,酵母粉0.5~2.0g/L,K2HPO41.0~3.0g/L,MgSO4·7H2O 0.2~0.6g/L,CaCO3 0.1~0.2g/L,FeCl3·6H2O 0.005~0.010g/L,pH值7.5~8.5。The composition of silicate bacteria seed medium is: sucrose 4.0~10.0g/L, yeast powder 0.5~2.0g/L, K 2 HPO 4 1.0~3.0g/L, MgSO 4 7H 2 O 0.2~0.6g/L L, CaCO 3 0.1~0.2g/L, FeCl 3 ·6H 2 O 0.005~0.010g/L, pH 7.5~8.5.
(b)将上述种子液以1~5%(v/v)的接种量接入硅酸盐细菌液体培养基中,培养基的装液量控制在培养容器的15~30%(v/v),在25~35℃,140~220r/min的条件下恒温振荡培养2~7天。待其中的硅酸盐细菌进入对数生长期后,加入10~30g/L飞灰,继续震荡培养5~7天,进行脱硅处理。(b) above-mentioned seed liquid is inserted in the silicate bacteria liquid culture medium with the inoculation amount of 1~5% (v/v), and the filling liquid quantity of culture medium is controlled at 15~30% (v/v) of culture container ), at 25-35° C., 140-220 r/min, constant temperature shaking culture for 2-7 days. After the silicate bacteria enter the logarithmic growth phase, add 10-30g/L fly ash, continue shaking culture for 5-7 days, and carry out desilication treatment.
硅酸盐细菌液体培养基的成分为:蔗糖5.0~10.0g/L,酵母粉10.0~15.0g/L,Na2HPO41.0~3.0g/L,MgSO4·7H2O 0.2~0.8g/L,FeCl3·6H2O 0.005~0.010g/L,CaCO3 0.05~0.15g/L,调节pH值到6.0~8.0。The composition of silicate bacteria liquid culture medium is: sucrose 5.0~10.0g/L, yeast powder 10.0~15.0g/L, Na 2 HPO 4 1.0~3.0g/L, MgSO 4 7H 2 O 0.2~0.8g/L L, FeCl 3 ·6H 2 O 0.005-0.010g/L, CaCO 3 0.05-0.15g/L, adjust the pH value to 6.0-8.0.
(二)利用黑曲霉对脱硅处理后的飞灰进行生物淋滤(2) Bioleaching of desiliconized fly ash by Aspergillus niger
(c)黑曲霉用PDA培养基进行斜面培养,在25~35℃培养5~7天,长出成熟孢子,用无菌去离子水洗脱孢子。孢子悬液用血球计数器计数,并用无菌去离子水调节孢子浓度至1×107~2×108个/mL。其中,PDA斜面培养基的成分为:马铃薯200~400g/L、葡萄糖15~25g/L、琼脂15~25g/L。(c) Aspergillus niger is cultured on a slant with PDA medium, cultured at 25-35° C. for 5-7 days, mature spores grow, and the spores are washed with sterile deionized water. The spore suspension was counted with a hemocytometer, and the spore concentration was adjusted to 1×10 7 -2×10 8 /mL with sterile deionized water. Among them, the components of the PDA slant medium are: 200-400 g/L of potatoes, 15-25 g/L of glucose, and 15-25 g/L of agar.
(d)将黑曲霉孢子悬液(c)接入蔗糖液体培养基中,使孢子浓度为0.5~2.5×107个/mL,在25~35℃、140~220r/min条件下恒温振荡培养。待黑曲霉生长2~8天并进入产酸期后,按每L液体培养基投加飞灰10~80g的比例投加脱硅后飞灰(b),在25~35℃、140~220r/min转速下恒温振荡淋滤15~25天。(d) Put the Aspergillus niger spore suspension (c) into the sucrose liquid culture medium to make the spore concentration 0.5-2.5× 107 /mL, and cultivate it under constant temperature shaking at 25-35°C and 140-220r/min . After Aspergillus niger grows for 2-8 days and enters the acid production period, add fly ash (b) after desiliconization at a rate of 10-80 g of fly ash per L of liquid medium. Oscillating and leaching at constant temperature for 15 to 25 days at a rotating speed of 1/min.
蔗糖液体培养基的成分为:蔗糖100~150g/L、NaNO3 1.0~1.5g/L、KH2PO40.5~0.8g/L、MgSO4·7H2O 0.02~0.03g/L、KCl 0.02~0.03g/L、NH4Cl 3~5g/L。The composition of the sucrose liquid medium is:
本发明的优点是,利用硅酸盐细菌对飞灰进行生物脱硅处理,破坏飞灰中的矿物晶格释放出更多的金属氧化物,提高生物淋滤法对生活垃圾焚烧飞灰重金属溶出率。该方法操作简便,效率高,经济可行,安全,是一种环境友好的去除垃圾焚烧飞灰中重金属的有效方法。使用该方法处理后的飞灰其重金属被有效去除,并且浸出毒性远远低于危险废物鉴别标准,飞灰可进入填埋场或进一步资源化利用。The advantages of the present invention are that the fly ash is biologically desiliconized by using silicate bacteria, destroying the mineral lattice in the fly ash to release more metal oxides, and improving the dissolution of heavy metals from domestic waste incineration fly ash by bioleaching Rate. The method is easy to operate, high in efficiency, economical, feasible and safe, and is an environmentally friendly and effective method for removing heavy metals from waste incineration fly ash. The heavy metals of the fly ash treated by this method are effectively removed, and the leaching toxicity is far lower than the hazardous waste identification standard, and the fly ash can be put into landfill or further resource utilization.
附图说明 Description of drawings
图1为未脱硅飞灰经AS 3.879生物淋滤液后重金属溶出浓度及其溶出率。Figure 1 shows the concentration and dissolution rate of heavy metals dissolved in non-desiliconized fly ash after AS 3.879 bioleachate.
图2为脱硅后飞灰经AS 3.879生物淋滤液后重金属溶出浓度及其溶出率。Figure 2 shows the concentration and dissolution rate of heavy metals dissolved in fly ash after desiliconization through AS 3.879 bioleachate.
图3为未脱硅飞灰和脱硅飞灰经AS 3.879生物淋滤后重金属溶出率对比。Figure 3 is a comparison of the dissolution rate of heavy metals after AS 3.879 bioleaching of non-desiliconized fly ash and desiliconized fly ash.
具体实施方式 Detailed ways
实施例1Example 1
(一)利用硅酸盐细菌对飞灰进行生物脱硅(1) Biological desilication of fly ash using silicate bacteria
(a)挑取一环活化好的硅酸盐细菌SDB6斜面菌种接入50mL种子培养基中,28℃,180r/min恒温振荡培养48h。其中,硅酸盐细菌种子培养基的成分为:蔗糖5.0g/L,酵母粉1.0g/L,K2HPO4 2.0g/L,MgSO4·7H2O 0.5g/L,CaCO3 0.1g/L,FeCl3·6H2O 0.005g/L,pH值8.0。(a) Pick a ring of the activated silicate bacteria SDB6 slant strain and inoculate it into 50 mL of seed culture medium, and incubate at 28° C. and 180 r/min constant temperature shaking for 48 hours. Among them, the composition of silicate bacteria seed medium is: sucrose 5.0g/L, yeast powder 1.0g/L, K 2 HPO 4 2.0g/L, MgSO 4 7H 2 O 0.5g/L, CaCO 3 0.1g /L, FeCl 3 ·6H 2 O 0.005g/L, pH 8.0.
(b)将种子液(a)以2%(v/v)的体积比接入硅酸盐细菌液体培养基中,培养基的装液量控制在培养容器的20%(v/v),在温度30℃,转速180r/min的条件下恒温振荡培养3天。然后,向该锥形瓶中加入10g/L的飞灰脱硅处理5天。其中,硅酸盐细菌液体培养基的成分为:蔗糖5.0g/L,酵母粉10.0g/L,Na2HPO4 2.0g/L,MgSO4·7H2O 0.5g/L,FeCl3·6H2O 0.005g/L,CaCO3 0.1g/L,调节pH值到7.0。以不加飞灰的试样作为空白对照,分析未脱硅处理飞灰和脱硅处理后飞灰的重金属含量(见表1)。结果表明:经过脱硅后的飞灰中重金属含量与脱硅前区别不大,说明硅酸盐细菌SDB6的代谢产物不能与重金属氧化物反应,对飞灰仅具有脱硅作用。(b) the seed liquid (a) is inserted in the silicate bacteria liquid medium with a volume ratio of 2% (v/v), and the liquid filling amount of the medium is controlled at 20% (v/v) of the culture container, Under the conditions of temperature 30° C. and rotational speed 180 r/min, constant temperature shaking culture was carried out for 3 days. Then, 10 g/L fly ash was added to the Erlenmeyer flask for desiliconization treatment for 5 days. Among them, the composition of silicate bacteria liquid medium is: sucrose 5.0g/L, yeast powder 10.0g/L, Na 2 HPO 4 2.0g/L, MgSO 4 7H 2 O 0.5g/L, FeCl 3 6H 2 O 0.005g/L, CaCO 3 0.1g/L, adjust the pH value to 7.0. The sample without fly ash was used as a blank control to analyze the heavy metal content of fly ash without desiliconization treatment and fly ash after desiliconization treatment (see Table 1). The results showed that the content of heavy metals in fly ash after desiliconization was not much different from that before desilication, which indicated that the metabolites of silicate bacteria SDB6 could not react with heavy metal oxides and had only desilication effect on fly ash.
(二)利用黑曲霉AS 3.879对脱硅处理后的飞灰进行生物淋滤(2) Using Aspergillus niger AS 3.879 to carry out bioleaching of fly ash after desiliconization
(c)黑曲霉AS 3.879用PDA培养基进行斜面培养,在28℃培养5天,长出成熟孢子,用无菌去离子水洗脱孢子。孢子悬液用血球计数器计数,并用无菌去离子水调节孢子浓度至所需。(c) Aspergillus niger AS 3.879 was cultured on a slant with PDA medium, cultured at 28°C for 5 days, mature spores grew, and the spores were washed with sterile deionized water. The spore suspension was counted with a hemocytometer, and the spore concentration was adjusted to the desired value with sterile deionized water.
(d)将黑曲霉孢子悬液(c)接入蔗糖液体培养基中,使孢子浓度为1.7×107个/mL,在30℃、140r/min条件下恒温振荡培养。其中,蔗糖液体培养基的成分为:蔗糖120g/L、NaNO3 1.5g/L、KH2PO4 0.5g/L、MgSO4·7H2O 0.025g/L、KCl 0.025g/L、NH4Cl 4g/L,待黑曲霉生长4天并进入产酸期后,按每L液体培养基投加飞灰70g的比例分别投加未脱硅飞灰和脱硅后飞灰(b),在30℃、140r/min转速下恒温振荡淋滤20天。(d) Inoculate the Aspergillus niger spore suspension (c) into the sucrose liquid medium to make the spore concentration 1.7×10 7 /mL, and cultivate at constant temperature and shaking at 30°C and 140r/min. Among them, the composition of sucrose liquid medium is: sucrose 120g/L, NaNO 3 1.5g/L, KH 2 PO 4 0.5g/L, MgSO 4 7H 2 O 0.025g/L, KCl 0.025g/L, NH 4 Cl 4g/L, after Aspergillus niger grows for 4 days and enters the acid production period, add non-desiliconized fly ash and desiliconized fly ash (b) at the rate of 70g of fly ash per L of liquid medium, respectively. Constant temperature oscillation leaching at 30°C and 140r/min for 20 days.
分析未脱硅飞灰和脱硅后飞灰的生物淋滤液中重金属含量(见图1、图2)。结果表明飞灰用SDB6生物脱硅后,再用黑曲霉菌株AS 3.879对其进行生物淋滤,其组合处理的重金属溶出效果显著。与未脱硅处理相比,Cu、Mn、Cr、Zn以及Fe的溶出率分别提高了49%、48%、35%、26%和21%。总的重金属溶出率也从未脱硅的41%提高到了50%,淋滤液中重金属总量达到了1102.9mg/L。这是因为脱硅处理后的飞灰矿物结构被破坏,更多的重金属氧化物能够与菌体产出的有机酸充分接触反应,从而显著提高了生物淋滤过程中的重金属溶出效果。脱硅再经生物淋滤后的飞灰中重金属含量大大降低(见表1)。处理后飞灰经毒性浸出程序(TCLP)测试后发现,其重金属浸出毒性远远低于国家标准(见表2)。Analyze the content of heavy metals in the biological leachate of non-desiliconized fly ash and fly ash after desiliconization (see Figure 1 and Figure 2). The results showed that the fly ash was biologically desiliconized by SDB6, and then bioleached by Aspergillus niger strain AS 3.879, and the combined treatment had a significant effect on the dissolution of heavy metals. Compared with non-desilication treatment, the dissolution rate of Cu, Mn, Cr, Zn and Fe increased by 49%, 48%, 35%, 26% and 21%, respectively. The total heavy metal dissolution rate also increased from 41% to 50% from undesiliconized, and the total amount of heavy metals in the leachate reached 1102.9mg/L. This is because the mineral structure of the fly ash after desiliconization is destroyed, and more heavy metal oxides can fully contact and react with the organic acids produced by the bacteria, thus significantly improving the dissolution effect of heavy metals in the bioleaching process. The content of heavy metals in the fly ash after desilication and bioleaching is greatly reduced (see Table 1). After the fly ash was tested by the toxic leaching procedure (TCLP), it was found that the leaching toxicity of heavy metals was far lower than the national standard (see Table 2).
实施例2Example 2
(a)步骤与实施例1相同; (b)将种子液(a)以2%(v/v)的体积比接入硅酸盐细菌液体培养基中,培养基的装液量控制在培养容器的20%(v/v),在温度25℃,转速150r/min的条件下恒温振荡培养5天。然后,向该锥形瓶中加入20g/L的飞灰脱硅处理5天。其中,硅酸盐细菌液体培养基的成分与实施例1相同,调节培养基的pH值到7.5。(c)和(d)步骤均与实施例1相同。图3表示未脱硅飞灰和脱硅后飞灰的生物淋滤液中重金属的溶出率,由此可知:脱硅后飞灰中重金属的生物淋滤效果比未脱硅飞灰显著提高。(a) the steps are the same as in Example 1; (b) the seed liquid (a) is inserted into the silicate bacteria liquid culture medium with a volume ratio of 2% (v/v), and the liquid filling amount of the culture medium is controlled at 20% (v/v) of the container was cultured with constant temperature shaking at a temperature of 25° C. and a rotation speed of 150 r/min for 5 days. Then, 20 g/L fly ash was added to the Erlenmeyer flask for desiliconization for 5 days. Wherein, the composition of the silicate bacteria liquid medium is the same as that in Example 1, and the pH value of the medium is adjusted to 7.5. (c) and (d) steps are all identical with
表1未脱硅飞灰、脱硅后飞灰和脱硅再经AS 3.879生物淋滤后Table 1 Non-desiliconized fly ash, desiliconized fly ash and desiliconized fly ash after AS 3.879 bioleaching
飞灰中重金属含量的平均值(mg/g)Average value of heavy metal content in fly ash (mg/g)
表2 脱硅再经AS 3.879生物淋滤后飞灰TCLP浸出毒性(mg/L)Table 2 TCLP leaching toxicity of fly ash after desilication and AS 3.879 bioleaching (mg/L)
ND:未检出;NS:未列入ND: not detected; NS: not listed
a危险废物鉴别标准(浸出毒性鉴别):GB 5085.3-2007a Hazardous waste identification standard (leaching toxicity identification): GB 5085.3-2007
b危险废物填埋污染控制标准:GB 18598-2001b Hazardous waste landfill pollution control standard: GB 18598-2001
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910082674XA CN101555548B (en) | 2009-04-24 | 2009-04-24 | Method for improving bioleaching effect of municipal solid waste incineration flying ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910082674XA CN101555548B (en) | 2009-04-24 | 2009-04-24 | Method for improving bioleaching effect of municipal solid waste incineration flying ash |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101555548A true CN101555548A (en) | 2009-10-14 |
CN101555548B CN101555548B (en) | 2011-08-10 |
Family
ID=41173825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910082674XA Expired - Fee Related CN101555548B (en) | 2009-04-24 | 2009-04-24 | Method for improving bioleaching effect of municipal solid waste incineration flying ash |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101555548B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2448176C2 (en) * | 2010-07-09 | 2012-04-20 | Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Method for extracting scandium from pyroxenite raw material |
CN102861674A (en) * | 2012-09-29 | 2013-01-09 | 北京科技大学 | Floatation processing method of pyrolusite |
CN102992557A (en) * | 2012-11-15 | 2013-03-27 | 沈阳大学 | Method for effectively removing heavy metal from bottom mud |
RU2478725C1 (en) * | 2011-09-13 | 2013-04-10 | Учреждение Российской академии наук Институт химии твердого тела Уральского отделения РАН | Method of producing scandium oxide |
RU2536714C1 (en) * | 2013-08-06 | 2014-12-27 | Общество с ограниченной ответственностью "Объдиненная Копания РУСАЛ Инженерно-технологический центр" | Method of producing scandium-bearing concentrate from red mud |
CN105039692A (en) * | 2015-06-30 | 2015-11-11 | 南华大学 | Aspergillus niger granulating and leaching method of copper tailings |
RU2582425C1 (en) * | 2014-12-10 | 2016-04-27 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Method of extracting scandium from scandium-bearing material |
CN106111659A (en) * | 2016-06-22 | 2016-11-16 | 浙江理工大学 | Utilize the method that bacillus firmus reduces incineration of refuse flyash Leaching |
RU2613246C1 (en) * | 2016-06-09 | 2017-03-15 | Акционерное общество "Научно-исследовательский, проектный и конструкторский институт горного дела и металлургии цветных металлов" (АО "Гипроцветмет") | Method for scandium extraction from productive solutions |
RU2630183C1 (en) * | 2016-11-11 | 2017-09-05 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Scandium recovery method from red mud |
CN108202075A (en) * | 2017-11-29 | 2018-06-26 | 洛阳理工学院 | The method of radioactive element in a kind of desiliconization-extraction two-part bioleaching red mud |
RU2684663C1 (en) * | 2018-05-07 | 2019-04-11 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Method of producing scandium concentrate from scandium-containing solution |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100486926C (en) * | 2005-05-25 | 2009-05-13 | 同济大学 | Method of using town refuse incinoration flyash as resource |
CN101073895B (en) * | 2006-05-16 | 2011-08-31 | 重庆大学 | Method for forming refuse-firing flyash |
CN101081397B (en) * | 2006-06-01 | 2010-04-21 | 宜兴市张泽浇注耐火材料厂 | Permanent innocent treatment method of city life rubbish, industrial refuse and incineration fly ash |
CN101357840B (en) * | 2007-08-03 | 2012-01-04 | 天津壹生环保科技有限公司 | Baking-free type refuse burning flyash haydite and manufacturing method thereof |
-
2009
- 2009-04-24 CN CN200910082674XA patent/CN101555548B/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2448176C2 (en) * | 2010-07-09 | 2012-04-20 | Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Method for extracting scandium from pyroxenite raw material |
RU2478725C1 (en) * | 2011-09-13 | 2013-04-10 | Учреждение Российской академии наук Институт химии твердого тела Уральского отделения РАН | Method of producing scandium oxide |
CN102861674A (en) * | 2012-09-29 | 2013-01-09 | 北京科技大学 | Floatation processing method of pyrolusite |
CN102861674B (en) * | 2012-09-29 | 2014-11-19 | 北京科技大学 | A kind of flotation method of soft manganese ore |
CN102992557A (en) * | 2012-11-15 | 2013-03-27 | 沈阳大学 | Method for effectively removing heavy metal from bottom mud |
RU2536714C1 (en) * | 2013-08-06 | 2014-12-27 | Общество с ограниченной ответственностью "Объдиненная Копания РУСАЛ Инженерно-технологический центр" | Method of producing scandium-bearing concentrate from red mud |
RU2582425C1 (en) * | 2014-12-10 | 2016-04-27 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Method of extracting scandium from scandium-bearing material |
CN105039692A (en) * | 2015-06-30 | 2015-11-11 | 南华大学 | Aspergillus niger granulating and leaching method of copper tailings |
RU2613246C1 (en) * | 2016-06-09 | 2017-03-15 | Акционерное общество "Научно-исследовательский, проектный и конструкторский институт горного дела и металлургии цветных металлов" (АО "Гипроцветмет") | Method for scandium extraction from productive solutions |
CN106111659A (en) * | 2016-06-22 | 2016-11-16 | 浙江理工大学 | Utilize the method that bacillus firmus reduces incineration of refuse flyash Leaching |
RU2630183C1 (en) * | 2016-11-11 | 2017-09-05 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Scandium recovery method from red mud |
CN108202075A (en) * | 2017-11-29 | 2018-06-26 | 洛阳理工学院 | The method of radioactive element in a kind of desiliconization-extraction two-part bioleaching red mud |
CN108202075B (en) * | 2017-11-29 | 2020-11-27 | 洛阳理工学院 | A method for desiliconization-leaching two-stage biological leaching of radioactive elements in red mud |
RU2684663C1 (en) * | 2018-05-07 | 2019-04-11 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Method of producing scandium concentrate from scandium-containing solution |
Also Published As
Publication number | Publication date |
---|---|
CN101555548B (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101555548B (en) | Method for improving bioleaching effect of municipal solid waste incineration flying ash | |
CN107138521B (en) | Microbial remediation method for cadmium-polluted bottom mud | |
CN109277404B (en) | A method for bacterial in situ remediation of arsenic-contaminated soil | |
CN1155696C (en) | Ferrous oxide theobacillus and sludge heavy-metal eliminating method therewith | |
CN101898861B (en) | Microorganism detoxification, and solidification and hazard-free treatment method for metal substrate sludge | |
CN107716519B (en) | Method for harmless treatment of waste incineration fly ash and heavy metal recycling | |
CN110484275B (en) | A method and reagent for anaerobic sulfate-reducing bacteria to synergize with iron-based materials to remediate mercury and chromium deep contaminated soil | |
CN1887382B (en) | A Method for Effectively Removing Heavy Metals in Waste Incineration Fly Ash | |
CN102285740A (en) | Non-waste treatment method for garbage leachate | |
CN109022414A (en) | A kind of bloodstone coupled biological charcoal and the application in removal percolate organic matter | |
CN110078332A (en) | A method of promoting excess sludge anaerobic fermentation and acid production using modified steel scoria | |
CN114769308A (en) | Method for in-situ remediation of arsenic and antibiotic contaminated soil by bacteria | |
CN101624300A (en) | Method for removing heavy metal in solid organic waste compost | |
CN109226233A (en) | Height repairs target heavy-metal contaminated soil administering method | |
CN107626732A (en) | The method for repairing chromium-polluted soil using mineralized waste and/or composting production | |
CN107971336A (en) | A kind of Lead Pollution in Soil biology in situ renovation method | |
CN102441558B (en) | Environment-induced material | |
CN108866105B (en) | Method for producing nano cadmium sulfide by using enterobacter LY6 | |
CN106337061B (en) | A kind of method of anaerobism promotor and the general solid waste of processing | |
CN104817243A (en) | Bioleaching-Fenton-like oxidation combined bottom mud heavy metal removal and dehydration method | |
CN104805038A (en) | Acrylic resin degrading bacteria and screening enrichment method thereof | |
CN111548952B (en) | Method for domesticating microbial flora for degrading efficient sulfur-series malodorous substances | |
CN104004691B (en) | A kind of bacterial strain repaired for As polluted soil and application process thereof | |
CN106282244B (en) | The method removed the inorganic agent of methane backeria mortifier and handle general solid waste | |
CN114308987A (en) | Method for in-situ passivation of heavy metals in solid waste generated in mining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110810 Termination date: 20140424 |