CN101555236B - Nano-SiO2 or zeolite molecular sieve material catalyzed olefin and H2O2 liquid-phase high-selectivity epoxidation method - Google Patents
Nano-SiO2 or zeolite molecular sieve material catalyzed olefin and H2O2 liquid-phase high-selectivity epoxidation method Download PDFInfo
- Publication number
- CN101555236B CN101555236B CN2009100621701A CN200910062170A CN101555236B CN 101555236 B CN101555236 B CN 101555236B CN 2009100621701 A CN2009100621701 A CN 2009100621701A CN 200910062170 A CN200910062170 A CN 200910062170A CN 101555236 B CN101555236 B CN 101555236B
- Authority
- CN
- China
- Prior art keywords
- reaction
- epoxidation
- nano
- zeolite molecular
- molecular sieve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006735 epoxidation reaction Methods 0.000 title claims abstract description 53
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 title claims abstract description 37
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 24
- 239000010457 zeolite Substances 0.000 title claims abstract description 24
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 22
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 22
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000007791 liquid phase Substances 0.000 title claims abstract description 17
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 15
- 229910052681 coesite Inorganic materials 0.000 title claims abstract description 13
- 229910052906 cristobalite Inorganic materials 0.000 title claims abstract description 13
- 229910052682 stishovite Inorganic materials 0.000 title claims abstract description 13
- 229910052905 tridymite Inorganic materials 0.000 title claims abstract description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 47
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 30
- 239000003054 catalyst Substances 0.000 claims abstract description 26
- 230000003197 catalytic effect Effects 0.000 claims abstract description 24
- 239000002904 solvent Substances 0.000 claims abstract description 16
- 230000035484 reaction time Effects 0.000 claims abstract description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 15
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 239000007800 oxidant agent Substances 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 9
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 claims description 8
- -1 methyl acrylate ester Chemical class 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 8
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 claims description 7
- 239000004913 cyclooctene Substances 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 5
- KWKAKUADMBZCLK-UHFFFAOYSA-N methyl heptene Natural products CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims description 5
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 claims description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 4
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 claims description 4
- 239000007810 chemical reaction solvent Substances 0.000 claims description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 4
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 claims description 3
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 claims description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 3
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 claims description 3
- IWTYTFSSTWXZFU-QPJJXVBHSA-N [(e)-3-chloroprop-1-enyl]benzene Chemical compound ClC\C=C\C1=CC=CC=C1 IWTYTFSSTWXZFU-QPJJXVBHSA-N 0.000 claims description 3
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 claims description 3
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 claims description 3
- 229930006722 beta-pinene Natural products 0.000 claims description 3
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 3
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 claims description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 3
- AVTYONGGKAJVTE-OLXYHTOASA-L potassium L-tartrate Chemical compound [K+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O AVTYONGGKAJVTE-OLXYHTOASA-L 0.000 claims description 3
- 239000001472 potassium tartrate Substances 0.000 claims description 3
- 229940111695 potassium tartrate Drugs 0.000 claims description 3
- 235000011005 potassium tartrates Nutrition 0.000 claims description 3
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 claims description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 2
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 claims description 2
- 239000001433 sodium tartrate Substances 0.000 claims description 2
- 229960002167 sodium tartrate Drugs 0.000 claims description 2
- 235000011004 sodium tartrates Nutrition 0.000 claims description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract description 10
- 238000007254 oxidation reaction Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 10
- 239000002994 raw material Substances 0.000 abstract description 9
- 229910052723 transition metal Inorganic materials 0.000 abstract description 9
- 150000003624 transition metals Chemical class 0.000 abstract description 9
- 125000000524 functional group Chemical group 0.000 abstract description 8
- 230000008901 benefit Effects 0.000 abstract description 5
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 4
- 239000007809 chemical reaction catalyst Substances 0.000 abstract 1
- 150000002118 epoxides Chemical class 0.000 abstract 1
- 150000002924 oxiranes Chemical class 0.000 description 13
- 239000000047 product Substances 0.000 description 10
- 239000006227 byproduct Substances 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000002638 heterogeneous catalyst Substances 0.000 description 5
- 238000003760 magnetic stirring Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229910018540 Si C Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012847 fine chemical Substances 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical group CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 2
- 241000269350 Anura Species 0.000 description 2
- 230000010718 Oxidation Activity Effects 0.000 description 2
- 239000002262 Schiff base Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 150000001925 cycloalkenes Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OFASYGONGSPXPQ-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy hypochlorite Chemical compound CC(C)(C)OOCl OFASYGONGSPXPQ-UHFFFAOYSA-N 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- 229910002018 Aerosil® 300 Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 229910004339 Ti-Si Inorganic materials 0.000 description 1
- 229910010978 Ti—Si Inorganic materials 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 150000003944 halohydrins Chemical class 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- JYJVVHFRSFVEJM-UHFFFAOYSA-N iodosobenzene Chemical compound O=IC1=CC=CC=C1 JYJVVHFRSFVEJM-UHFFFAOYSA-N 0.000 description 1
- 150000002561 ketenes Chemical class 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Epoxy Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
本发明涉及不使用任何含过渡金属类的催化剂而仅使用催化剂通过多相催化氧化制备环氧化物的化学反应过程,具体地说是一种纳米SiO2或者沸石分子筛材料催化的烯烃与H2O2液相高选择性环氧化方法,使用纳米SiO2材料、或经过表面改性的带有机功能基的活化SiO2材料、或者沸石分子筛直接作为反应的催化剂,和反应底物、溶剂形成“SiO2-烯烃-溶剂-H2O2/H2O”多相催化环氧化反应体系中催化广泛烯烃环氧化反应,用作环氧化氧化试剂是市售H2O2,反应温度控制在0~100℃,反应时间为0.5~24h。本发明的优点为:不使用任何含过渡金属类的催化剂,原料的转化率高,目标产物的选择性好,反应时间短,效率高、反应条件温和,操作易于控制、成本低,整个过程环境友好。The present invention relates to a chemical reaction process for preparing epoxides through heterogeneous catalytic oxidation without using any catalyst containing transition metals, specifically a kind of nano- SiO2 or zeolite molecular sieve material catalyzed olefin and H2O 2 Liquid-phase high-selectivity epoxidation method, using nano- SiO2 materials, or surface-modified activated SiO2 materials with organic functional groups, or zeolite molecular sieves directly as reaction catalysts, and reaction substrates and solvents to form " SiO 2 -alkene-solvent-H 2 O 2 /H 2 O" heterogeneous catalytic epoxidation reaction system catalyzes a wide range of olefin epoxidation reactions, and the epoxidation oxidation reagent is commercially available H 2 O 2 , the reaction temperature The temperature is controlled at 0-100°C, and the reaction time is 0.5-24h. The advantages of the present invention are: no catalyst containing transition metals is used, the conversion rate of raw materials is high, the selectivity of the target product is good, the reaction time is short, the efficiency is high, the reaction conditions are mild, the operation is easy to control, the cost is low, and the whole process environment friendly.
Description
技术领域 technical field
本发明涉及不使用任何含过渡金属类的催化剂而仅使用无机催化剂通过多相催化氧化制备环氧化物的化学反应过程,具体地说是一种纳米SiO2材料催化的烯烃与30%H2O2液相高选择性环氧化方法。The present invention relates to a chemical reaction process for the preparation of epoxides through heterogeneous catalytic oxidation using only inorganic catalysts without using any catalysts containing transition metals, specifically a nano -SiO2 material catalyzed olefin with 30% H2O 2 Liquid phase highly selective epoxidation method.
背景技术 Background technique
烯烃环氧化产物是一类用途极广的有机原料和中间体,广泛应用于石油化工、精细化工和有机合成等领域。然而,除环氧乙烷外,目前工业上大部分环氧化合物如环氧丙烷、环氧苯乙烷等的生产方法还是传统的对环境有害的卤醇法和哈康法(又称间接氧化法)。Olefin epoxidation products are a class of organic raw materials and intermediates with a wide range of uses, and are widely used in petrochemical, fine chemical and organic synthesis fields. However, in addition to ethylene oxide, the production methods of most epoxy compounds such as propylene oxide and styrene oxide in the industry are still the traditional halohydrin method and Haakon method (also known as indirect oxidation method) which are harmful to the environment. Law).
烃类的高选择性氧化是二十一世纪最重要的任务之一[(a)C.L.Hill,Nature 1999,401,436;(b)D.E.de Vos;B.F.Sels;P.A.Jacobs,Adv.Catal.2001,46,1],烯烃化合物在温和条件下的催化环氧化反应一直是精细化工领域中的研究重点。对于烯烃类化合物的催化环氧化,匀相催化过程有其明显的缺点,这就是催化剂的分离、回收和再循环是非常困难的。科学家一直在努力设计和制备合适的多相催化剂,这是因为这样的催化体系很容易克服匀相体系所遇到的典型困难[Z.W.Xi etal.,Science 2001,292,1139]。多相催化剂由于其具有易从反应体系中分离的特点而在化学和精细化工过程中发挥着重要的作用。众所周知,多相催化剂的粒度越小它们表现出的催化活性越高,纳米尺度的催化剂由于具有较大的比表面积,表面裸露有大量的活性位点,使反应物分子可以和催化剂活性位在近“分子水平”上充分接触,从而显示出远远优越于相应的块体材料的催化活性,相关的报道也非常多。近年来开发的催化环氧化技术,使用30%H2O2作为氧化剂是非常普遍的,因其作为氧化剂相对来说价廉易得,而且活性氧含量高,反应后的副产物仅仅是水,环保性好,但氧化活性低,需要加入高性能催化剂[K.Jahnisch,V.Hessel,H.Lowe,M.Baerns,Angew.Chem.Int.Ed.2004,43,406]。例如中国专利CN1172922CGO公布了一种在含钛分子筛催化剂和一种盐存在下烯烃与过氧化氢反应的环氧化方法,以及中国专利CN1330642C公布了在一种沸石基催化剂和一种溶剂的存在下,由烯烃与过氧化物进行反应来制备环氧化物的方法。另外,据报道磷钨杂多酸催化剂在相转移条件下能通过反应控制有效催化丙烯与H2O2环氧化制环氧环丙烷;SiO2负载的金属Schiff-base配合物能有效催化乙烯环氧化生成1,2-环氧乙烷;用cis-MoO2(L)(solv)[L=水杨基水杨酰肼]和Y分子筛形成的复合催化剂在温和条件下环氧化苯乙烯;钒的Schiff-base配合物能有效催化苯乙烯和环己烯与H2O2氧化剂的环氧化[(a)S.N.Rao,K.N.Munshi,N.N.Rao,J.Mol.Catal.A:Chem.2000,156,205;(b)D.M.Boghaei;S.Mohebi,J.Mol.Catal.A:Chem.2002,179,41;(c)T.Punniyamurthy;S.Velusamy;J.Iqbal,Chem.Rev.2005,105,2329.]。然而,这些传统体系要获得高的催化活性,使用用于烯烃环氧化反应的试剂主要有过氧酸、过氧叔丁醇、次氯酸盐、亚碘酰苯、添加剂+H2O2等作为氧化剂。Highly selective oxidation of hydrocarbons is one of the most important tasks in the 21st century [(a) CL Hill, Nature 1999, 401, 436; (b) DEde Vos; BFSels; PA Jacobs, Adv.Catal.2001, 46, 1 ], the catalyzed epoxidation reaction of olefin compounds under mild conditions has always been the focus of research in the field of fine chemicals. For the catalytic epoxidation of olefinic compounds, the homogeneous catalytic process has its obvious disadvantage, which is that the separation, recovery and recycling of the catalyst are very difficult. Scientists have been working hard to design and prepare suitable heterogeneous catalysts, because such catalytic systems can easily overcome the typical difficulties encountered in homogeneous systems [ZWXi et al., Science 2001, 292, 1139]. Heterogeneous catalysts play an important role in chemical and fine chemical processes due to their easy separation from the reaction system. As we all know, the smaller the particle size of heterogeneous catalysts, the higher their catalytic activity. Due to the large specific surface area of nanoscale catalysts, a large number of active sites are exposed on the surface, so that the reactant molecules can be close to the active sites of the catalyst. Sufficient contact at the "molecular level" shows a catalytic activity far superior to that of the corresponding bulk material, and there are many related reports. The catalytic epoxidation technology developed in recent years, using 30% H 2 O 2 as the oxidant is very common, because it is relatively cheap and easy to obtain as an oxidant, and the content of active oxygen is high, and the by-product after the reaction is only water , good environmental protection, but low oxidation activity, need to add high-performance catalyst [K. Jahnisch, V. Hessel, H. Lowe, M. Baerns, Angew. Chem. Int. Ed. 2004, 43, 406]. For example, Chinese patent CN1172922CGO discloses a method for epoxidation of olefins with hydrogen peroxide in the presence of a titanium-containing molecular sieve catalyst and a salt, and Chinese patent CN1330642C discloses an epoxidation method in the presence of a zeolite-based catalyst and a solvent , A method for preparing epoxides by reacting olefins with peroxides. In addition, it is reported that phosphotungstic heteropolyacid catalysts can effectively catalyze the epoxidation of propylene and H2O2 to epoxycyclopropane through reaction control under phase transfer conditions; SiO2 supported metal Schiff-base complexes can effectively catalyze ethylene Epoxidation to generate 1,2-oxirane; use cis-MoO 2 (L)(solv)[L=salicyl salicylhydrazide] and Y molecular sieve to form a composite catalyst to epoxidize styrene under mild conditions; vanadium Schiff-base complexes can effectively catalyze the epoxidation of styrene and cyclohexene with H2O2 oxidants [(a) SNRao, KNMunshi, NNRao, J.Mol.Catal.A:Chem.2000, 156 , 205; (b) DM Boghaei; S. Mohebi, J. Mol. Catal. A: Chem. 2002, 179, 41; (c) T. Punniyamurthy; S. Velusamy; ]. However, in order to obtain high catalytic activity in these traditional systems, the reagents used for epoxidation of olefins mainly include peroxyacid, tert-butanol peroxy, hypochlorite, iodosobenzene, additive + H 2 O 2 etc. as an oxidizing agent.
利用钛硅分子筛催化剂,可以使用质量分数为30%的工业H2O2做氧化剂,对环境友好,所以含钛沸石催化剂TS-1的出现及应用在当时被誉为传统匀相过程多相化的里程碑;至今该催化剂体系已经扩展到TS-1、Ti-β、Ti-MWW、Ti-MCM-41、Ti-MCM-48、Ti-SBA-15、植入型Ti-SiO2等,国内郭新闻、吴鹏、李灿、夏清华等均涉及这类研究[(a)B.Notari,Adv.Catal.1996,41,23;(b)Q.H.Xia,X.Chen,T.Tatsumi,J.Mol.Catal.A:Chem.2001,176,179;(c)P.Wu,T.Tatsumi,Chem.Commun.2001,1714;(d)X.W.Guo,X.S.Wang,Catal.Today 2002,74,65;(e)Q.H.Yang,Can Li,J.Catal.1999,183,128.]。这一催化体系的催化活性可比拟于性能最优异的匀相络合物和模拟酶催化体系;并且它的优点也是特别的明显,因为这些多相催化剂能被多次的过滤回收并循环使用,且可以使用30%H2O2作为氧化剂,氧化效率高、副产物少、无污染无腐蚀且符合绿色环保的要求,具有较高的应用价值。但是,对于化学工业大规模的工艺过程来说,含钛沸石的合成成本仍然比较高,并且不同孔径的沸石分子筛对底物分子具有显著的择形选择性(例如,TS-1分子筛孔径约对较大分子的反应催化活性差),导致了相关技术在精细化工领域的应用受到限制,以致于难以工业化。Using titanium-silicon molecular sieve catalysts, industrial H 2 O 2 with a mass fraction of 30% can be used as an oxidant, which is environmentally friendly, so the appearance and application of titanium-containing zeolite catalyst TS-1 was known as the heterogeneous process of traditional homogeneous processes at that time. milestone; so far the catalyst system has been extended to TS-1, Ti-β, Ti-MWW, Ti-MCM-41, Ti-MCM-48, Ti-SBA-15, implanted Ti-SiO 2 , etc., domestic Guo News, Wu Peng, Li Can, Xia Qinghua, etc. are all involved in this kind of research [(a) B.Notari, Adv.Catal.1996, 41, 23; (b) QHXia, X.Chen, T.Tatsumi, J.Mol .Catal.A: Chem.2001, 176, 179; (c) P.Wu, T.Tatsumi, Chem.Commun.2001, 1714; (d) XWGuo, XSWang, Catal.Today 2002, 74, 65; (e ) QHYang, Can Li, J. Catal. 1999, 183, 128.]. The catalytic activity of this catalytic system can be compared to the most excellent homogeneous complexes and simulated enzyme catalytic systems; and its advantages are also particularly obvious, because these heterogeneous catalysts can be recovered by multiple filtration and recycled, And 30% H 2 O 2 can be used as the oxidizing agent, the oxidation efficiency is high, the by-products are few, the pollution-free and corrosion-free and meet the requirements of green environmental protection, and have high application value. However, for large-scale processes in the chemical industry, the synthesis cost of titanium-containing zeolites is still relatively high, and zeolite molecular sieves with different pore sizes have significant shape selectivity for substrate molecules (for example, TS-1 molecular sieves have a pore size of about The reaction catalytic activity to larger molecules is poor), which has led to the limitation of the application of related technologies in the field of fine chemicals, so that it is difficult to industrialize.
上述的环氧化催化体系的催化活性都较高,但是均涉及了过渡金属配合物、或者含金属Ti、Mg、Al的多孔合成材料活性中心,催化剂的制备成本较高、回收利用困难且易失活、易造成环境污染,在催化机理的解释方面也没有太大不同:即过渡金属离子与H2O2作用形成活性中间体。二氧化硅作为惰性催化剂载体和分子筛的骨架成分,被广泛使用在多相催化剂的制备和多孔沸石分子筛材料的合成中,但没有任何研究提及不含过渡金属的二氧化硅及其它多孔硅基材料具有催化氧化活性。现在,我们首次发现,在“SiO2-烯烃-溶剂-H2O2/H2O”组成的多相催化反应体系中,不含过渡金属的纳米SiO2材料(经SEM-EDX、ICP、AAS分析不含过渡金属)的加入对于显著提高底物转化率和环氧化选择性起着关键的作用,初步结果显示对于功能化烯烃、环烯烃及线性烯烃作用良好,可以很好克服传统沸石材料孔道尺寸择形性的限制,并可反复离心分离、洗涤、干燥、回收使用,且底物转化率、环氧化选择性均能保持,这是一个令人惊异、令人感兴趣的发现,该体系简单、廉价,符合目前的催化技术发展趋势。The catalytic activities of the above-mentioned epoxidation catalytic systems are all relatively high, but they all involve transition metal complexes or porous synthetic material active centers containing metal Ti, Mg, Al, and the preparation cost of the catalyst is relatively high, and recycling is difficult and easy. Inactivation, easy to cause environmental pollution, and there is not much difference in the interpretation of the catalytic mechanism: that is, transition metal ions interact with H 2 O 2 to form active intermediates. Silica, as an inert catalyst carrier and a framework component of molecular sieves, is widely used in the preparation of heterogeneous catalysts and the synthesis of porous zeolite molecular sieve materials, but no research has mentioned silica and other porous silicon-based materials without transition metals. The material has catalytic oxidation activity. Now, we found for the first time that in the heterogeneous catalytic reaction system composed of "SiO 2 -alkene-solvent-H 2 O 2 /H 2 O", nano-SiO 2 materials without transition metals (via SEM-EDX, ICP, The addition of AAS analysis without transition metal) plays a key role in significantly improving the substrate conversion rate and epoxidation selectivity. Preliminary results show that it has a good effect on functionalized olefins, cycloolefins and linear olefins, and can well overcome traditional zeolites. The limitation of material pore size shape selectivity, and repeated centrifugation, washing, drying, and recycling, and the substrate conversion rate and epoxidation selectivity can be maintained. This is an amazing and interesting discovery , the system is simple and cheap, and conforms to the current development trend of catalytic technology.
发明内容 Contents of the invention
本发明为克服上述环氧化体系中普遍存在的主要缺点,而提出一种环氧化烯烃的方法,即纳米SiO2材料催化的烯烃与H2O2液相高选择性环氧化方法。The present invention proposes a method for epoxidizing olefins in order to overcome the main shortcomings commonly found in the above-mentioned epoxidation systems, that is, a method for highly selective epoxidation of olefins and H 2 O 2 in liquid phase catalyzed by nano-SiO 2 materials.
纳米SiO2或者沸石分子筛催化的烯烃与H2O2液相高选择性环氧化方法,它是将它是将纳米SiO2材料、或经过表面改性的带有机功能基的活化SiO2材料、或者沸石分子筛直接作为反应的催化剂,和反应底物烯烃、溶剂形成“SiO2-烯烃-溶剂-H2O2/H2O”多相催化环氧化反应体系中催化烯烃环氧化反应,用作环氧化氧化剂是H2O2,反应温度控制在60℃,反应时间为0.5~24h,所述烯烃为苯乙烯、环己烯、环辛烯、降冰片烯、α-蒎烯、β-蒎烯、肉桂基氯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯醇、丙烯腈、1-辛烯等烯烃中的一种。Nano-SiO 2 or zeolite molecular sieve catalyzed olefin and H 2 O 2 liquid-phase high-selectivity epoxidation method, it is the nano-SiO 2 material, or activated SiO 2 material with organic functional groups after surface modification , or zeolite molecular sieve directly as the catalyst of the reaction, and the reaction substrate olefin and solvent to form "SiO 2 - olefin - solvent - H 2 O 2 /H 2 O" heterogeneous catalytic epoxidation reaction system to catalyze olefin epoxidation reaction , the oxidant used for epoxidation is H 2 O 2 , the reaction temperature is controlled at 60°C, and the reaction time is 0.5 to 24 hours. The olefins are styrene, cyclohexene, cyclooctene, norbornene, α-pinene , β-pinene, cinnamyl chloride, methyl acrylate, ethyl acrylate, butyl acrylate, allyl alcohol, acrylonitrile, 1-octene and other olefins.
该方法包括:The method includes:
(1)不同粒子尺寸SiO2催化的烯烃与H2O2液相高选择性环氧化方法;(1) Liquid-phase highly selective epoxidation method of olefins and H 2 O 2 catalyzed by SiO 2 with different particle sizes;
(2)不同来源、不同比表面积、不同粒径SiO2催化的烯烃与H2O2液相高选择性环氧化方法;(2) Highly selective epoxidation method of olefins and H 2 O 2 in liquid phase catalyzed by SiO 2 with different sources, different specific surface areas, and different particle sizes;
(3)各种SiO2粉末材料表面经过不同带有机功能基的硅酸酯类或其它硅烷化试剂的适当改性处理,制得的一系列表面带硅烷功能基团的活化SiO2材料催化的烯烃与H2O2液相高选择性环氧化方法;(3) The surface of various SiO2 powder materials is properly modified by different silicates with organic functional groups or other silylating agents, and a series of activated SiO2 materials with silane functional groups on the surface are prepared. Highly selective epoxidation method of olefins and H 2 O 2 in liquid phase;
(4)各种低成本制备的不同比表面积、不同孔径的沸石分子筛材料催化的烯烃与H2O2液相高选择性环氧化方法。(4) A method for highly selective epoxidation of olefins and H 2 O 2 in liquid phase catalyzed by various low-cost prepared zeolite molecular sieve materials with different specific surface areas and different pore sizes.
本发明的详细描述Detailed description of the invention
在本发明的方法中,使纳米SiO2材料催化的烯烃与H2O2的液相选择性环氧化反应,形成相应的高选择性的环氧化产物。经过一系列催化反应及相关表征研究,SiO2材料催化烯烃化合物与H2O2的环氧化作用机理可以概括为:表面吸附作用促进的双分子环氧化(Surface Adsorption assisted biMolecular Epoxidation(SAME)),即这些具有比较高的比表面积(通常大于200m2/g)的硅基材料表面均具有两亲性(亲水-亲油),可以同时将有机相中的烯烃底物分子和水相中的活性氧化剂分子吸附到一起,克服了界面张力并使之发生环氧化反应。In the method of the present invention, the liquid-phase selective epoxidation reaction of olefins catalyzed by the nanometer SiO2 material and H2O2 forms corresponding highly selective epoxidation products. After a series of catalytic reactions and related characterization studies, the mechanism of epoxidation of olefin compounds and H 2 O 2 catalyzed by SiO 2 materials can be summarized as: Surface Adsorption assisted biMolecular Epoxidation (SAME) ), that is, the surface of these silicon-based materials with a relatively high specific surface area (usually greater than 200m 2 /g) has amphiphilicity (hydrophilic-lipophilic), which can simultaneously combine the olefin substrate molecules in the organic phase and the aqueous phase The active oxidant molecules in the adsorbed together overcome the interfacial tension and allow the epoxidation reaction to occur.
本发明使用的高比表面积、纳米粒径的SiO2材料可以从以下几个途径获取:(1)直接购买的国外Aldrich、Degussa、Alfa等专业公司的aerosil-200、aerosil-300等不同规格的商品,这些材料的比表面积介于200~350m2/g,粒径介于10~20nm;(2)直接购买国内厂家的同类产品,俗称白炭黑或者fumed silica(由有机硅高温焚烧而得),通常被使用来作为水热合成高纯度的杂原子沸石分子筛的原材料;(3)实验室利用超声、高速剪切、微乳化环境水解技术从有机硅出发,经低温水解、喷雾干燥、焙烧自制的纳米SiO2材料(粒度小于20nm);(4)表面改性的SiO2材料:使用以下带有有机功能基的硅酸酯类或其它硅烷化试剂(有(EtO)3Si-C3H6NH2、(MeO)3Si-C3H6NH2、CH3(EtO)2Si-C3H6NH2、(EtO)3Si-(CH2)3-NHC2H4NH2、CH3Si(OCH3)3、(CH3)3Si-Cl、HMDS、CH3(MeO)2Si-C3H6NHC2H4NH2等)直接与粉末纳米SiO2材料反应从而使其表面进行适当改性处理,制得一系列表面带有机功能基团的活化SiO2材料;(5)以简单方法低成本制备的不同比表面积、不同孔径的分子筛材料,如4A、ZSM-5、丝光沸石、beta、SBA-15系列、Y、MCM-41系列、MCM-22、SAPOs系列、AlPOs系列等材料;(6)各类硅胶材料,如层析用硅胶、除水干燥用硅胶等(100-300目)。The SiO2 material of the high specific surface area that the present invention uses, nanometer particle size can obtain from the following several ways: (1) aerosil-200, aerosil-300 etc. of different specifications such as foreign professional companies such as Aldrich, Degussa, Alfa that directly buy Commodities, the specific surface area of these materials is between 200-350m 2 /g, and the particle size is between 10-20nm; (2) Directly purchase similar products from domestic manufacturers, commonly known as white carbon black or fumed silica (obtained by high-temperature incineration of organic silicon) ), usually used as a raw material for hydrothermal synthesis of high-purity heteroatom zeolite molecular sieves; (3) the laboratory uses ultrasonic, high-speed shearing, and microemulsification environmental hydrolysis technology to start from organic silicon, through low-temperature hydrolysis, spray drying, roasting Self-made nano-SiO 2 material (particle size is less than 20nm); (4) surface-modified SiO 2 material: use the following silicates or other silylating agents with organic functional groups (with (EtO) 3 Si-C 3 H 6 NH 2 , (MeO) 3 Si-C 3 H 6 NH 2 , CH 3 (EtO) 2 Si-C 3 H 6 NH 2 , (EtO) 3 Si-(CH 2 ) 3 -NHC 2 H 4 NH 2. CH 3 Si (OCH 3 ) 3 , (CH 3 ) 3 Si-Cl, HMDS, CH 3 (MeO) 2 Si-C 3 H 6 NHC 2 H 4 NH 2 etc.) directly react with powder nano-SiO 2 material So that the surface can be properly modified to prepare a series of activated SiO2 materials with organic functional groups on the surface; (5) molecular sieve materials with different specific surface areas and different pore sizes prepared by simple methods at low cost, such as 4A, ZSM -5. Mordenite, beta, SBA-15 series, Y, MCM-41 series, MCM-22, SAPOs series, AlPOs series and other materials; (6) Various silica gel materials, such as silica gel for chromatography, dehydration and drying Silica gel, etc. (100-300 mesh).
在本发明的方法中,催化烯烃与H2O2的液相选择性环氧化反应的反应溶剂选择的均是常用溶剂,价格低廉,并且反应条件易控制。其中溶剂为以下之一:CH3OH、EtOH、ButOH、MeCOMe、MeCOEt、环己酮、CH3CN、DMF、DMA、CHCl3、CH2Cl2、DMSO、环己烷、THF、Ether等。另外,与反应溶剂配合共同作为环氧化反应体系添加剂的是常用的、廉价的各种盐类,通过配制水溶液的质量浓度范围为0.01~1mol/L的盐溶液与反应溶剂共同作用提供一个更适合烯烃环氧化的反应介质。其中盐类为下列之一:K2CO3、Na2CO3、KHCO3、NaHCO3、CH3COONa、CH3COOK、NaH2PO4、Na2HPO4、Na3PO4、酒石酸钾、酒石酸钾、酒石酸纳、微溶性CaSO4和MgSO4等单一碱金属/碱土金属或混合盐类。In the method of the present invention, the reaction solvents used to catalyze the liquid-phase selective epoxidation reaction of olefins and H2O2 are common solvents, the price is low, and the reaction conditions are easy to control. The solvent is one of the following: CH 3 OH, EtOH, But OH, MeCOMe, MeCOEt, cyclohexanone, CH 3 CN, DMF, DMA, CHCl 3 , CH 2 Cl 2 , DMSO, cyclohexane, THF, Ether wait. In addition, commonly used and inexpensive various salts are commonly used as additives for the epoxidation reaction system in combination with the reaction solvent, and a salt solution with a concentration range of 0.01-1mol/L in the aqueous solution is prepared to work together with the reaction solvent to provide a more Suitable reaction medium for olefin epoxidation. The salt is one of the following: K 2 CO 3 , Na 2 CO 3 , KHCO 3 , NaHCO 3 , CH3COONa, CH 3 COOK, NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 , potassium tartrate, potassium tartrate , sodium tartrate, slightly soluble CaSO 4 and MgSO 4 and other single alkali metal/alkaline earth metal or mixed salts.
所述H2O2和烯烃的摩尔比为0.5~5。The molar ratio of H 2 O 2 to olefin is 0.5-5.
所述溶剂和盐的水溶液的体积比为:3~1/3。The volume ratio of the solvent and the aqueous salt solution is 3˜1/3.
所述催化剂沸石分子筛选用4A、ZSM-5、丝光沸石、beta、SBA-15系列、Y、MCM-41系列、MCM-22、SAPOs系列和AlPOs中的一种。The catalyst zeolite molecular screening is one of 4A, ZSM-5, mordenite, beta, SBA-15 series, Y, MCM-41 series, MCM-22, SAPOs series and AlPOs.
所述反应温度为0~80℃Described reaction temperature is 0~80 ℃
所述反应时间为0.5~6h。The reaction time is 0.5-6h.
在本发明的方法中,反应过程十分简单易行,而且可以高效率地催化各种烯烃高选择性的环氧化,烯烃适宜选择直链或支链的端烯、内烯、环状内烯以及带官能团的烯烃,本发明专利主要选取了苯乙烯类、环烯烃类、丙烯酸酯类、烯酮类、线性烯烃类等烯烃。In the method of the present invention, the reaction process is very simple and easy, and can efficiently catalyze the highly selective epoxidation of various olefins, and the olefins are suitable for linear or branched terminal olefins, internal olefins, and cyclic internal olefins. As well as olefins with functional groups, the invention patent mainly selects olefins such as styrenes, cycloolefins, acrylates, ketenes, and linear olefins.
本发明具有如下优点:The present invention has the following advantages:
(1)不使用任何过渡金属类的催化剂。本发明仅使用商业化或简单方法自制的纳米SiO2材料、或经过表面改性的带有机功能基的活化SiO2材料、或者低成本的普通沸石分子筛直接作为反应的催化剂,可以带来显著的效应,避免了高成本的Ti-Si沸石、水滑石催化剂的水热合成及后处理过程,避免了有机络合物催化剂的繁琐有机合成及纯化、避免过渡金属资源的浪费及污染等。这些SiO2材料在反应后经简单后处理、活化后继续被用来催化烯烃环氧化反应,循环使用性好,大大节约成本。(1) No transition metal catalysts are used. The present invention only uses the nanometer SiO2 material of commercialization or self-made by simple method, or through the activated SiO2 material of organic functional group through surface modification, or the common zeolite molecular sieve of low cost directly as the catalyzer of reaction, can bring remarkable effect, avoiding the hydrothermal synthesis and post-treatment process of high-cost Ti-Si zeolite and hydrotalcite catalysts, avoiding the tedious organic synthesis and purification of organic complex catalysts, and avoiding the waste and pollution of transition metal resources. These SiO 2 materials can be used to catalyze the epoxidation reaction of olefin after simple post-treatment and activation after the reaction, which has good recyclability and greatly saves cost.
(2)原料的转化率高,目标产物的选择性好。现有技术原料的转化率一般在60-80%左右,存在转化不完全,并且有其他副产品,给分离带来困难。本发明在温和条件下,对多种类型烯烃催化氧化生成环氧化物时,原料的转化率高,甚至可以完全转化,并且产物仅为目标环氧化产物,没有其他副产品,反应的选择性好,收率高。(2) The conversion rate of the raw material is high, and the selectivity of the target product is good. The conversion rate of raw materials in the prior art is generally about 60-80%, and there are incomplete conversion and other by-products, which bring difficulties to the separation. When the present invention catalyzes and oxidizes various types of olefins to generate epoxides under mild conditions, the conversion rate of raw materials is high, and even can be completely converted, and the product is only the target epoxidation product without other by-products, and the selectivity of the reaction is good. , high yield.
(3)反应时间短,效率高。在本发明条件下,催化氧化官能化烯烃生成环氧化物的反应时间为0.5~24h,较佳的反应时间为0.5~6h,同其他催化氧化制备环氧化物的方法相比较,具有反应时间短,反应效率高的优点。(3) The reaction time is short and the efficiency is high. Under the conditions of the present invention, the reaction time for catalytic oxidation of functionalized olefins to generate epoxides is 0.5 to 24 hours, and the preferred reaction time is 0.5 to 6 hours. Compared with other methods for preparing epoxides by catalytic oxidation, the reaction time is short , the advantage of high reaction efficiency.
(4)反应条件温和,操作易于控制。本发明反应在有机溶剂中进行,反应温度控制在0~100℃,温度是影响反应时间和选择性的重要因素,在本催化氧化体系中,温度每升高10℃,反应速率就增加0.5~2倍,但温度过高,会增加能量消耗,还会造成生成目标产物的选择性变差,使产物分布复杂化,副产物增多,因此必须选择合适的温度。(4) The reaction conditions are mild and the operation is easy to control. The reaction of the present invention is carried out in an organic solvent, and the reaction temperature is controlled at 0-100°C. Temperature is an important factor affecting the reaction time and selectivity. In this catalytic oxidation system, every time the temperature increases by 10°C, the reaction rate increases by 0.5-100°C. 2 times, but if the temperature is too high, it will increase the energy consumption, and it will also cause the selectivity of the target product to deteriorate, complicate the product distribution, and increase the by-products, so it is necessary to choose a suitable temperature.
(5)成本低。现有技术主要采用次氯酸钠、过氧酸和烷基过氧化氢作为氧化剂,生产成本较高;在反应的过程中,它们生成的副产物,会给环境造成一定的危害和污染;而它们都较不稳定,易分解,且存在运输,储存和使用的不安全等缺点。本发明所用作环氧化氧化试剂是市售30%H2O2,原料价廉易得。同一系列有机过氧化物或次氯酸钠等作环氧化试剂相比较,具有使用安全,便于运输贮藏等优点。利用该发明提供得环氧化方法制备环氧化物时不需要特殊设备,具有反应条件温和,操作方便,成本相对较低的特点,具有较好的工业应用前景。(5) Low cost. The prior art mainly adopts sodium hypochlorite, peroxyacid and alkyl hydroperoxide as oxidant, and the production cost is higher; in the process of reaction, the by-products they generate will cause certain harm and pollution to the environment; and they are relatively It is unstable, easy to decompose, and has disadvantages such as unsafe transportation, storage and use. The epoxidation oxidation reagent used in the present invention is commercially available 30% H 2 O 2 , and the raw material is cheap and easy to obtain. Compared with a series of organic peroxides or sodium hypochlorite as epoxidation reagents, it has the advantages of safe use, convenient transportation and storage. The epoxidation method provided by the invention does not require special equipment when preparing epoxides, has the characteristics of mild reaction conditions, convenient operation and relatively low cost, and has good industrial application prospects.
(6)整个过程对环境友好,反应后的有机溶剂可以通过蒸馏的方法回收再利用,是一种绿色化学合成方法。该方法所消耗的原料只是烯烃、H2O2,产品为单一的环氧化物,流程简单,氧化剂消耗量很低,是一条适合于工业上大规模生产的新途径。(6) The whole process is environmentally friendly, and the organic solvent after the reaction can be recovered and reused by distillation, which is a green chemical synthesis method. The raw materials consumed by the method are only olefins and H 2 O 2 , the product is a single epoxide, the process is simple, and the oxidant consumption is very low, and it is a new way suitable for large-scale industrial production.
具体实施方式 Detailed ways
以下通过几个具体的实施例对本发明的技术方案作进一步描述。以下实施例不构成对本发明的限定。The technical solution of the present invention will be further described below through several specific examples. The following examples are not intended to limit the present invention.
实施例1:Example 1:
在25ml的圆底烧瓶中,先后加入5ml的溶剂乙腈、5ml 0.2mol/L K2CO3水溶液、20mg纳米SiO2、0.21g苯乙烯(2.0mmol)、0.34g H2O2(3.0mmol,30%水溶液,n过氧化氢∶n苯乙烯=1.5∶1),然后在快速磁力搅拌下反应器升温至60℃反应6h(圆底烧瓶配冷凝管),萃取后回收SiO2、洗涤、真空干燥。溶液用色谱进行定量分析。苯乙烯转化率95.0mol%,环氧化物选择性99.8%。In a 25ml round bottom flask, add 5ml of solvent acetonitrile, 5ml of 0.2mol/L K 2 CO 3 aqueous solution, 20mg of nano-SiO 2 , 0.21g of styrene (2.0mmol), 0.34g of H 2 O 2 (3.0mmol, 30 % aqueous solution, n hydrogen peroxide: n styrene = 1.5:1), and then the reactor was heated to 60°C under rapid magnetic stirring for 6 hours (round bottom flask equipped with a condenser tube), and SiO 2 was recovered after extraction, washed, and vacuum-dried . The solution was quantitatively analyzed by chromatography. The conversion rate of styrene is 95.0 mol%, and the selectivity of epoxide is 99.8%.
实施例2:Example 2:
在50ml的圆底烧瓶中,先后加入10ml的溶剂特丁醇、10ml0.1mol/L NaHCO3水溶液、50mg纳米SiO2、1.36g降冰片烯(10mmol)、1.36g H2O2(12mmol,30%水溶液,n过氧化氢∶n苯乙烯=1.2∶1),然后在快速磁力搅拌下反应器升温至60℃反应6h(圆底烧瓶配冷凝管),离心后回收SiO2、洗涤、真空干燥。溶液用色谱进行定量分析。降冰片烯转化率97.2mol%,环氧化物选择性100%。In a 50ml round bottom flask, add 10ml of solvent tert-butanol, 10ml of 0.1mol/L NaHCO 3 aqueous solution, 50mg of nano-SiO 2 , 1.36g of norbornene (10mmol), 1.36g of H 2 O 2 (12mmol, 30 % aqueous solution, n hydrogen peroxide: n styrene = 1.2:1), then the reactor was heated to 60°C under rapid magnetic stirring to react for 6h (round-bottomed flask equipped with a condenser tube), recovered SiO 2 after centrifugation, washed, and vacuum-dried . The solution was quantitatively analyzed by chromatography. The norbornene conversion rate was 97.2 mol%, and the epoxide selectivity was 100%.
实施例3Example 3
在500ml的圆底烧瓶中,先后加入100ml的溶剂甲醇、100ml 0.2mol/L Na3PO4水溶液、100mg纳米SiO2、11.0g环辛烯(100mmol)、17.0g H2O2(150mmol,30%水溶液,n过氧化氢∶n苯乙烯=1.5∶1),然后在快速磁力搅拌下反应器升温至60℃反应6h(圆底烧瓶配冷凝管),过滤后回收SiO2、洗涤、真空干燥。溶液用色谱进行定量分析。环辛烯转化率95.3mol%,环氧化物选择性100%。In a 500ml round bottom flask, add 100ml of solvent methanol, 100ml of 0.2mol/L Na 3 PO 4 aqueous solution, 100mg of nano-SiO 2 , 11.0g of cyclooctene (100mmol), 17.0g of H 2 O 2 (150mmol, 30 % aqueous solution, n hydrogen peroxide: n styrene = 1.5:1), and then the reactor was heated up to 60°C under rapid magnetic stirring for 6 hours of reaction (round-bottomed flask equipped with a condenser), recovered SiO 2 after filtration, washed, and vacuum-dried . The solution was quantitatively analyzed by chromatography. The cyclooctene conversion rate was 95.3 mol%, and the epoxide selectivity was 100%.
实施例4Example 4
在100ml的圆底烧瓶中,先后加入20ml的溶剂乙腈、20ml0.2mol/L CH3COOK水溶液、150mg ZSM-5(SiO2/Al2O3=25)、1.04g苯乙烯(10mmol)、1.36g H2O2(12mmol,30%水溶液,n过氧化氢∶n苯乙烯=1.2∶1),然后在快速磁力搅拌下反应器升温至60℃反应6h(圆底烧瓶配冷凝管),离心后回收ZSM-5、洗涤、真空干燥。溶液用色谱进行定量分析。苯乙烯转化率92.5mol%,环氧化物选择性99.6%。In a 100ml round bottom flask, add 20ml of solvent acetonitrile, 20ml of 0.2mol/L CH 3 COOK aqueous solution, 150mg of ZSM-5 (SiO 2 /Al 2 O 3 =25), 1.04g of styrene (10mmol), 1.36 g H 2 O 2 (12mmol, 30% aqueous solution, n hydrogen peroxide: n styrene = 1.2:1), then the reactor was heated to 60°C for 6h under rapid magnetic stirring (round-bottomed flask equipped with a condenser tube), centrifuged Afterwards, ZSM-5 was recovered, washed, and vacuum-dried. The solution was quantitatively analyzed by chromatography. The conversion rate of styrene is 92.5 mol%, and the selectivity of epoxide is 99.6%.
实施例5Example 5
在100ml的圆底烧瓶中,先后加入20ml的溶剂乙腈、20ml0.2mol/L MgSO4水溶液、150mg SBA-15、1.10g环辛烯(10mmol)、1.36g H2O2(12mmol,30%水溶液,n过氧化氢∶n苯乙烯=1.2∶1),然后在快速磁力搅拌下反应器升温至60℃反应6h(圆底烧瓶配冷凝管),离心后回收SBA-15、洗涤、真空干燥。溶液用色谱进行定量分析。环辛烯转化率98.3mol%,环氧化物选择性100%。In a 100ml round bottom flask, add 20ml of solvent acetonitrile, 20ml of 0.2mol/L MgSO 4 aqueous solution, 150mg of SBA-15, 1.10g of cyclooctene (10mmol), 1.36g of H 2 O 2 (12mmol, 30% aqueous solution , n hydrogen peroxide: n styrene = 1.2:1), then the reactor was heated to 60°C for 6h under rapid magnetic stirring (round-bottomed flask equipped with a condenser tube), and SBA-15 was recovered after centrifugation, washed, and vacuum-dried. The solution was quantitatively analyzed by chromatography. The cyclooctene conversion rate was 98.3 mol%, and the epoxide selectivity was 100%.
实施例6~22Embodiment 6-22
下面以表格的形式给出有代表性的实施例,催化剂优选商业化或简单方法自制的纳米SiO2材料、或经过表面改性的带有机功能基的活化SiO2材料、或者低成本的普通沸石分子筛,烯烃优选苯乙烯、环己烯、环辛烯、降冰片烯、α-蒎烯、β-蒎烯、肉桂基氯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯醇、丙烯腈、1-辛烯等烯烃。实施例6为空白反应实验例,即不加催化剂SiO2,其实验方法和步骤遵循实施例1-5;实施例7~22的实验方法和步骤同样遵循实施例1-5,100mg SiO2或沸石分子筛,50ml的溶剂乙腈、50ml盐溶液(浓度范围为0.05~1mol/L),这些结果例不构成对本发明的限定。Representative examples are provided below in the form of tables, and the catalyst is preferably commercialized or self-made nano- SiO2 material by simple method, or activated SiO2 material with organic functional groups through surface modification, or low-cost common zeolite Molecular sieves, preferably styrene, cyclohexene, cyclooctene, norbornene, α-pinene, β-pinene, cinnamyl chloride, methyl acrylate, ethyl acrylate, butyl acrylate, propenyl alcohol, acrylonitrile , 1-octene and other alkenes. Example 6 is a blank reaction experiment example, that is, no catalyst SiO 2 is added, and its experimental method and steps follow Example 1-5; the experimental method and steps of Example 7-22 also follow Example 1-5, 100mg SiO 2 or Zeolite molecular sieve, 50ml solvent acetonitrile, 50ml salt solution (concentration range is 0.05~1mol/L), these result examples do not constitute limitation to the present invention.
由上述的结果例表明,按照本发明所提供的反应条件,可以选择性的将广泛的底物氧化为环氧化物,该方法具有反应条件温和,操作易于控制,原料转化率高,目标产物的选择性好,反应时间短,效率高,成本低,整个过程环保绿色的特点,具有较好的应用前景。Show by above-mentioned result example, according to the reaction conditions provided by the present invention, can selectively oxidize a wide range of substrates to epoxides, the method has mild reaction conditions, easy to control operation, high conversion rate of raw materials, target product The selectivity is good, the reaction time is short, the efficiency is high, the cost is low, and the whole process is environmentally friendly and green, so it has a good application prospect.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100621701A CN101555236B (en) | 2009-05-22 | 2009-05-22 | Nano-SiO2 or zeolite molecular sieve material catalyzed olefin and H2O2 liquid-phase high-selectivity epoxidation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100621701A CN101555236B (en) | 2009-05-22 | 2009-05-22 | Nano-SiO2 or zeolite molecular sieve material catalyzed olefin and H2O2 liquid-phase high-selectivity epoxidation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101555236A CN101555236A (en) | 2009-10-14 |
CN101555236B true CN101555236B (en) | 2012-05-16 |
Family
ID=41173536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100621701A Expired - Fee Related CN101555236B (en) | 2009-05-22 | 2009-05-22 | Nano-SiO2 or zeolite molecular sieve material catalyzed olefin and H2O2 liquid-phase high-selectivity epoxidation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101555236B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102755908B (en) * | 2011-04-28 | 2014-05-14 | 中国科学院大连化学物理研究所 | Alkene epoxidation method |
CN103539761A (en) * | 2012-07-18 | 2014-01-29 | 湖北大学 | Method for preparing monocyclic oxide through catalyzing diolefin liquid epoxidation reaction with SBA-15 |
CN106699694B (en) * | 2015-11-18 | 2019-07-30 | 浙江新化化工股份有限公司 | A kind of method that australene epoxidation prepares 2,3- epoxypinane |
CN107879898B (en) * | 2016-09-29 | 2022-11-22 | 中国石油化工股份有限公司 | Method for synthesizing o-diol compound by using bifunctional catalyst |
CN106699693A (en) * | 2016-12-05 | 2017-05-24 | 扬州大学 | Method for synthesizing epoxy phenyl ethane through styrene epoxidation |
CN111318299B (en) * | 2018-12-14 | 2022-07-12 | 万华化学集团股份有限公司 | Modified molecular sieve catalyst and preparation method thereof, and preparation method of styrene oxide |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1376152A (en) * | 1999-09-28 | 2002-10-23 | 阿科化学技术公司 | Heterogeneous epoxidation catalyst |
CN1681798A (en) * | 2002-09-20 | 2005-10-12 | 阿克奥化学技术有限公司 | Process for direct oxidation of propylene to propylene oxide and large particle size titanium silicalite catalysts for use therein |
CN101279262A (en) * | 2008-05-29 | 2008-10-08 | 湖北大学 | Preparation method of nanocomposite oxides catalyzed by highly selective epoxidation of olefins and air |
-
2009
- 2009-05-22 CN CN2009100621701A patent/CN101555236B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1376152A (en) * | 1999-09-28 | 2002-10-23 | 阿科化学技术公司 | Heterogeneous epoxidation catalyst |
CN1681798A (en) * | 2002-09-20 | 2005-10-12 | 阿克奥化学技术有限公司 | Process for direct oxidation of propylene to propylene oxide and large particle size titanium silicalite catalysts for use therein |
CN101279262A (en) * | 2008-05-29 | 2008-10-08 | 湖北大学 | Preparation method of nanocomposite oxides catalyzed by highly selective epoxidation of olefins and air |
Also Published As
Publication number | Publication date |
---|---|
CN101555236A (en) | 2009-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101555236B (en) | Nano-SiO2 or zeolite molecular sieve material catalyzed olefin and H2O2 liquid-phase high-selectivity epoxidation method | |
Corma et al. | Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems | |
Hulea et al. | Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies | |
Wu et al. | A novel titanosilicate with MWW structure: III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2 | |
CN103586069B (en) | For the preparation method of catalyzer and the method for epoxidation of olefins of epoxidation reaction of olefines | |
Chen et al. | Propylene epoxidation with hydrogen peroxide catalyzed by molecular sieves containing framework titanium | |
Wilde et al. | Epoxidation of biodiesel with hydrogen peroxide over Ti-containing silicate catalysts | |
Qi et al. | Catalytic epoxidation of alkenes with 30% H2O2 over Mn2+-exchanged zeolites | |
WO2015051689A1 (en) | Catalyst for benzene hydroxylation-based phenol preparation and preparation method thereof | |
Timofeeva et al. | Titanium and cerium-containing mesoporous silicate materials as catalysts for oxidative cleavage of cyclohexene with H2O2: A comparative study of catalytic activity and stability | |
Ren et al. | Dual-component sodium and cesium promoters for Au/TS-1: enhancement of propene epoxidation with hydrogen and oxygen | |
CN102875491A (en) | Method for highly selectively catalyzing epoxidation between olefin and air by cobalt-loaded zeolite molecular sieve | |
Fareghi-Alamdari et al. | Recyclable, green and efficient epoxidation of olefins in water with hydrogen peroxide catalyzed by polyoxometalate nanocapsule | |
Selvaraj et al. | Epoxidation of styrene over mesoporous Zr–Mn-MCM-41 | |
Dias et al. | A recyclable hybrid manganese (III) porphyrin magnetic catalyst for selective olefin epoxidation using molecular oxygen | |
Jinka et al. | Epoxidation of cycloalkenes with cobalt (II)-exchanged zeolite X catalysts using molecular oxygen | |
CN102295524B (en) | Method for preparing cyclohexanol and cyclohexanone by selective oxidation of cyclohexane | |
Rode et al. | Alkali promoted selective epoxidation of styrene to styrene oxide using TS-1 catalyst | |
Zhao et al. | Environmentally friendly and highly efficient alkenes epoxidation system consisting of [π-C5H5N (CH2) 11CH3] 3PW4O32/H2O2/ethyl acetate/olefin | |
Pillai et al. | Epoxidation of olefins and α, β-unsaturated ketones over sonochemically prepared hydroxyapatites using hydrogen peroxide | |
CN104447204B (en) | A kind of method for preparing diol | |
CN112920142B (en) | Preparation method of styrene oxide | |
CN111978274B (en) | Method for preparing butylene oxide | |
CN102294272A (en) | Catalyst for preparing phenol by hydroxylation of benzene and preparation method | |
CN104707655A (en) | Metalloporphyrin catalyst and chloropropene epoxidation catalysis method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120516 Termination date: 20140522 |