[go: up one dir, main page]

CN101551864A - Image classification method based on feature correlation of frequency domain direction - Google Patents

Image classification method based on feature correlation of frequency domain direction Download PDF

Info

Publication number
CN101551864A
CN101551864A CNA2009100225038A CN200910022503A CN101551864A CN 101551864 A CN101551864 A CN 101551864A CN A2009100225038 A CNA2009100225038 A CN A2009100225038A CN 200910022503 A CN200910022503 A CN 200910022503A CN 101551864 A CN101551864 A CN 101551864A
Authority
CN
China
Prior art keywords
image
correlation
frequency
test sample
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100225038A
Other languages
Chinese (zh)
Other versions
CN101551864B (en
Inventor
钟桦
焦李成
杨晓鸣
王爽
王桂婷
缑水平
马文萍
公茂果
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN2009100225038A priority Critical patent/CN101551864B/en
Publication of CN101551864A publication Critical patent/CN101551864A/en
Application granted granted Critical
Publication of CN101551864B publication Critical patent/CN101551864B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种基于频域方向特征相关性的图像分类方法,主要解决现有方法计算复杂度高,分类精度低,对图像尺寸变化鲁棒性差的缺点。其实现过程包括:(1)选取纹理样本图像,并分为训练样本和测试样本两个图像数据集;(2)对训练样本图像进行2维快速傅立叶变换,并根据傅立叶平面的频率和方向划分频域方向子带,得到频域方向特征矩阵;(3)根据频域方向特征矩阵子带特征间的相关性,求得相关对序列;(4)应用一元线性回归模型计算各相关对的分类特征参数,构成分类器;(5)将测试样本图像的频域方向特征与分类器参数进行拟合,得到测试样本的类标;(6)重复步骤(5),得到所有测试样本图像的类标。本发明可用于对Brodatz纹理图像和SAR图像的分类。

Figure 200910022503

The invention discloses an image classification method based on frequency-domain direction feature correlation, which mainly solves the shortcomings of the existing method, such as high computational complexity, low classification accuracy, and poor robustness to image size changes. The implementation process includes: (1) selecting texture sample images and dividing them into two image data sets of training samples and test samples; (2) performing 2-dimensional fast Fourier transform on the training sample images, and dividing them according to the frequency and direction of the Fourier plane (3) According to the correlation between the subband features of the frequency domain direction feature matrix, obtain the correlation pair sequence; (4) apply the unary linear regression model to calculate the classification of each correlation pair The feature parameters form a classifier; (5) the frequency domain direction feature of the test sample image is fitted with the classifier parameters to obtain the class label of the test sample; (6) repeat step (5) to obtain the class of all test sample images mark. The invention can be used to classify Brodatz texture images and SAR images.

Figure 200910022503

Description

基于频域方向特征相关性的图像分类方法 Image Classification Method Based on Directional Feature Correlation in Frequency Domain

技术领域 technical field

本发明属于图像处理技术领域,特别是涉及一种图像分类方法,可用于对纹理图像和合成孔径雷达(SAR)图像的分类。The invention belongs to the technical field of image processing, in particular to an image classification method which can be used for classifying texture images and synthetic aperture radar (SAR) images.

背景技术 Background technique

图像分类是模式识别的一个重要分支,是根据不同类别的目标在图像信息中所反映的不同特征,把它们区分开来的图像处理方法。图像分类的主要研究内容是如何对图像进行适当的描述,提取能够有效表示图像属性的特征,提出有效的分类识别方法,并在此基础上对图像进行准确高效的分类。Image classification is an important branch of pattern recognition. It is an image processing method that distinguishes different types of objects according to their different features reflected in image information. The main research content of image classification is how to properly describe images, extract features that can effectively represent image attributes, propose effective classification and recognition methods, and classify images accurately and efficiently on this basis.

图像分类的应用领域主要有以下几个方面:图像纹理分析、图像内容检索、目标检测和识别等。其中图像的纹理分析和分类问题是图像处理和模式识别中的一个重要研究方向,在图像分类、分割、计算机图形学和图像编码等领域都起着至关重要的作用。20世纪80年代产生了很多传统的分类方法,如灰度共生矩阵,二阶统计方法,高斯-马尔可夫随机场,局部线性变换等。随着对人类视觉系统研究的深入,许多多分辨纹理分析模型开始发展起来,如小波变换,Gabor变换,Brushlet,轮廓波(Contourlet)等。研究者们结合多通道Gabor滤波、小波变换等方法,对纹理分析提出了大量创新和改进,很大程度上提高了纹理分析的精度。如Jasperetal采用适合纹理分析的小波基对纺织品纹理进行缺损检测,Ajay Kumar和Granthan K.H Pang等人将Gabor滤波用于有纹理现象的物体结构缺损检测,K.N.Bhanu Prakash等人利用灰度共生矩阵对母体内胎儿的肺部超生图像检测其是否已到成熟期。大量实验证明这种多分辨分析的方法能得到较好的分类效果,因此在图像分析和分类研究中得到了广泛的应用。The application fields of image classification mainly include the following aspects: image texture analysis, image content retrieval, target detection and recognition, etc. Among them, image texture analysis and classification is an important research direction in image processing and pattern recognition, and plays a vital role in the fields of image classification, segmentation, computer graphics and image coding. In the 1980s, many traditional classification methods were produced, such as gray co-occurrence matrix, second-order statistical method, Gauss-Markov random field, local linear transformation, etc. With the deepening of the research on the human visual system, many multi-resolution texture analysis models have been developed, such as wavelet transform, Gabor transform, Brushlet, Contourlet and so on. Researchers combined multi-channel Gabor filtering, wavelet transform and other methods to propose a lot of innovations and improvements to texture analysis, which greatly improved the accuracy of texture analysis. For example, Jasperetal uses the wavelet base suitable for texture analysis to detect textile texture defects, Ajay Kumar and Grantan K.H Pang et al. use Gabor filtering for object structure defect detection with texture phenomena, and K.N.Bhanu Prakash et al. use gray-scale co-occurrence matrix to detect matrix Ultrasound images of the lungs of the inner fetus to detect whether it has reached maturity. A large number of experiments have proved that this multi-resolution analysis method can get better classification results, so it has been widely used in image analysis and classification research.

传统的图像分类方法一般是利用纹理特征的向量距离或统计差别来判断类别属性,而基于特征相关性的图像分类则是基于这一事实:图像是由特定频带和方向的纹理信息组合而成,这在视觉上反映为不同类别的图像在不同的特征通道上具有明显不同的相关性。因此,该相关性是区分不同类别纹理的一个显著特征。Zhi-Zhong Wang和Jun-Hai Yong等人对小波包各子带间的相关性进行了分析并提出相应的图像检索方法。该方法首先得到各子带的能量特征,然后分析各特征通道间的相关性求得到分类参数。测试时通过比较测试样本与训练样本相关性模型的拟合程度,依次排除直至获得正确的类标。与这一思路类似的方法包括利用小波、轮廓波等变换进行特征提取及相关性分析,但是这一类变换的共同缺点是框架固定而且变换后的子带在频率、方向等方面划分不够细致。这些缺点导致特征相关性不够明显,分类性能有限而且对图像的大小变化表现不够鲁棒,计算复杂度较高。Traditional image classification methods generally use the vector distance or statistical difference of texture features to judge category attributes, while image classification based on feature correlation is based on the fact that an image is composed of texture information of a specific frequency band and direction. This is visually reflected as images of different classes have significantly different correlations on different feature channels. Therefore, this correlation is a salient feature to distinguish different classes of textures. Zhi-Zhong Wang and Jun-Hai Yong et al. analyzed the correlation between the subbands of the wavelet packet and proposed corresponding image retrieval methods. This method first obtains the energy characteristics of each sub-band, and then analyzes the correlation between each feature channel to obtain the classification parameters. During the test, by comparing the fitting degree of the correlation model between the test sample and the training sample, they are excluded in turn until the correct class label is obtained. Methods similar to this idea include using wavelet, contourlet and other transformations for feature extraction and correlation analysis, but the common disadvantage of this type of transformation is that the frame is fixed and the sub-bands after transformation are not divided carefully in terms of frequency and direction. These shortcomings lead to insufficient feature correlation, limited classification performance and insufficient robustness to image size changes, and high computational complexity.

发明内容 Contents of the invention

本发明的目的在于克服上述已有技术的不足,提出一种不受限于小波、小波包等变换以及多尺度几何分析工具框架的基于频域方向特征相关性的图像分类方法,以提高对图像尺寸变化的鲁棒性和分类的正确率,降低计算复杂度。The purpose of the present invention is to overcome above-mentioned deficiencies in prior art, propose a kind of image classification method based on frequency domain direction characteristic correlation not limited to transformation such as wavelet, wavelet packet and multi-scale geometric analysis tool frame, to improve image classification The robustness of size changes and the accuracy of classification reduce the computational complexity.

本发明的技术方案是,对训练样本集合中的子图分别进行2维快速傅立叶变换,然后根据频率和方向将傅立叶平面划分为不同频域方向子带,计算各子带能量特征,分析特征间的相关性,并利用一元线性回归获得分类参数,最后通过比较测试子图的特征与各类图像的分类参数模型的拟合程度,得到分类结果。具体实现过程如下:The technical solution of the present invention is to perform 2-dimensional fast Fourier transform on the sub-graphs in the training sample set, and then divide the Fourier plane into sub-bands in different frequency domain directions according to the frequency and direction, calculate the energy characteristics of each sub-band, and analyze the relationship between the features. Correlation, and using linear regression to obtain classification parameters, and finally by comparing the characteristics of the test sub-graph and the classification parameter models of various types of images, the classification results are obtained. The specific implementation process is as follows:

(1)选取各类纹理的样本图像,并将这些样本图像分为训练样本图像和测试样本图像两个数据集;(1) Select sample images of various textures, and divide these sample images into two data sets of training sample images and test sample images;

(2)对训练样本图像数据集分别进行2维快速傅立叶变换,根据傅立叶平面的频率和方向将傅立叶平面划分为不同的频域方向子带;(2) Carry out 2-dimensional fast Fourier transform respectively to the training sample image data set, divide the Fourier plane into different frequency domain direction subbands according to the frequency and direction of the Fourier plane;

(3)计算各子带的能量特征,得到图像的频域方向特征矩阵M;(3) Calculate the energy characteristics of each subband to obtain the frequency domain direction feature matrix M of the image;

(4)计算频域方向特征矩阵M各子带特征间的相关系数,根据各子带对的相关系数进行降序排列,得到相关对序列;(4) Calculate the correlation coefficient between each sub-band feature of the frequency-domain direction feature matrix M, and arrange in descending order according to the correlation coefficient of each sub-band pair to obtain a correlation pair sequence;

(5)应用一元线性回归模型求得相关对序列中各特征相关对的分类特征参数,构成分类器;(5) Apply the linear regression model of one element to obtain the classification feature parameters of each feature correlation pair in the correlation pair sequence to form a classifier;

(6)将测试样本图像的频域方向特征与分类器中所有参数的拟合程度进行比较,计算该测试样本属于每一类图像的概率,取概率最大值对应的类标作为该样本的类标;(6) Compare the frequency-domain direction feature of the test sample image with the fitting degree of all parameters in the classifier, calculate the probability that the test sample belongs to each type of image, and take the class label corresponding to the maximum probability as the class of the sample mark;

(7)重复步骤(6),得到测试样本图像数据集中所有样本图像的类标。(7) Step (6) is repeated to obtain the class labels of all sample images in the test sample image dataset.

本发明与现有的技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:

1.由于本发明对傅立叶平面的直接操作和扇区调整,克服了小波、小波包等变换的框架限制,使得特征在多频带、多方向等方面划分更细致,基于相关性的分类性能得到显著提高;1. Due to the direct operation and sector adjustment of the Fourier plane in the present invention, the framework limitations of wavelet, wavelet packet and other transformations are overcome, so that features can be divided more carefully in multi-frequency bands, multi-directions, etc., and the classification performance based on correlation is remarkable improve;

2.由于本发明的频域方向特征提取方法子带参数可调,使得该发明对图像的最小尺寸没有限制,而且对不同大小的图像具有更好的鲁棒性;2. Since the sub-band parameters of the frequency domain direction feature extraction method of the present invention are adjustable, the invention does not limit the minimum size of the image, and has better robustness to images of different sizes;

3.由于本发明采用快速傅立叶变换,使得计算复杂度大大降低,特征提取时间明显低于其他几种变换。3. Since the present invention adopts fast Fourier transform, the computational complexity is greatly reduced, and the feature extraction time is significantly lower than other transforms.

附图说明 Description of drawings

图1是本发明的实现流程示意图;Fig. 1 is the realization flow schematic diagram of the present invention;

图2是本发明中频域方向子带划分示意图;Fig. 2 is a schematic diagram of subband division in the frequency domain direction in the present invention;

图3是本发明中当α取不同值时,对应的子带中心位置r(n)的示意图;3 is a schematic diagram of the corresponding subband center position r(n) when α takes different values in the present invention;

图4是Brodatz纹理图像D6的子带相关对28和29的特征分布示意图;Fig. 4 is a schematic diagram of the feature distribution of subband correlation pairs 28 and 29 of Brodatz texture image D6;

图5是仿真实验所使用的SAR纹理数据图。Fig. 5 is the SAR texture data map used in the simulation experiment.

具体实施方式 Detailed ways

参照图1,本发明的具体实施过程如下:With reference to Fig. 1, the concrete implementation process of the present invention is as follows:

步骤1,选取各类纹理的样本图像,并将这些样本图像分为训练样本图像和测试样本图像两个数据集。Step 1, select sample images of various textures, and divide these sample images into two data sets of training sample images and test sample images.

本发明应用两个图像数据集进行性能测试:Brodatz纹理图像和SAR纹理图像。The present invention uses two image data sets for performance testing: Brodatz texture image and SAR texture image.

1a)Brodatz纹理图像样本数据集的选取方法说明如下:1a) The selection method of the Brodatz texture image sample dataset is described as follows:

选取标准Brodatz纹理库中的77类均匀纹理图像作为测试数据,这77类纹理是:D1,D3,D4,D5,D6,D8,D9,D11,D14,D16,D17,D18,D19,D20,D21,D22,D23,D24,D25,D26,D27,D28,D29,D32,D33,D34,D35,D36,D37,D38,D46,D47,D48,D49,D50,D51,D52,D53,D54,D55,D56,D57,D64,D65,D66,D68,D74,D75,D76,D77,D78,D79,D80,D81,D82,D83,D84,D85,D87,D88,D92,D93,D94,D95,D96,D98,D100,D101,D102,D103,D104,D105,D106,D109,D110,D111,D112。Select 77 types of uniform texture images in the standard Brodatz texture library as test data. These 77 types of textures are: D1, D3, D4, D5, D6, D8, D9, D11, D14, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D32, D33, D34, D35, D36, D37, D38, D46, D47, D48, D49, D50, D51, D52, D53, D54, D55, D56, D57, D64, D65, D66, D68, D74, D75, D76, D77, D78, D79, D80, D81, D82, D83, D84, D85, D87, D88, D92, D93, D94, D95, D96, D98, D100, D101, D102, D103, D104, D105, D106, D109, D110, D111, D112.

上述每幅纹理图像大小为640×640,根据以下两种子图选取方式,将77类均匀纹理图像分别建立两个数据库,如表1所示:The size of each texture image above is 640×640. According to the following two sub-image selection methods, two databases are established for 77 types of uniform texture images, as shown in Table 1:

表1Brodatz纹理数据集设置Table 1 Brodatz texture dataset settings

  测试数据库 test database   纹理类数 Number of texture classes   子图大小 subplot size   每类样本个数 Number of samples for each category   总样本个数 Total number of samples   每类测试/训练样本个数 The number of test/training samples per class   纹理库128 texture library 128   77 77   128×128 128×128   25 25   1925 1925   10/15 10/15   纹理库64 texture library 64   77 77   64×64 64×64   100 100   7700 7700   40/60 40/60

表1中,纹理库128是将所述77类图像均匀的切分为不重叠的25幅子图,每幅子图的大小为128×128,其子图总数为1925幅,25幅子图中,10幅作为训练样本,15幅作为测试样本,即训练样本图像数据集内子图总数为770幅,测试样本图像数据集内子图总数为1155幅;纹理库64是将所述77类图像均匀的切分为不重叠的100幅子图,每幅子图的大小为64×64,其子图总数为7700幅,100幅子图中,40幅作为训练样本,60幅作为测试样本,即训练样本图像数据集包含子图3080幅,测试样本图像数据集包含子图4620幅。In Table 1, the texture library 128 evenly divides the 77 types of images into 25 non-overlapping sub-images, the size of each sub-image is 128×128, the total number of sub-images is 1925, and 25 sub-images Among them, 10 images are used as training samples, and 15 images are used as test samples, that is, the total number of sub-images in the training sample image data set is 770, and the total number of sub-images in the test sample image data set is 1155; is divided into 100 non-overlapping sub-images, the size of each sub-image is 64×64, and the total number of sub-images is 7700, of which 100 sub-images, 40 are used as training samples, and 60 are used as test samples, that is The training sample image dataset contains 3080 subimages, and the test sample image dataset contains 4620 subimages.

1b)SAR图像样本数据集的选取方法说明如下:1b) The selection method of the SAR image sample data set is described as follows:

SAR图像分类数据库取自3幅真实SAR图像的不同纹理区域,其中包括5类纹理,图5显示了实验中所用的这5类SAR纹理数据图,从上到下从左到右分别是山脉、水域、农田以及高、低分辨率下的城区。分别在这5类均匀的SAR纹理区域中随机的取2000个点,进行滑窗提取子图的操作,子图大小为128×128的数据库记为SAR128,子图大小为64×64的数据库记为SAR64,每类纹理都包含2000个子图,500幅作为训练样本,1500幅作为测试样本,因此SAR128和SAR64中子图总数均为10000幅,其中训练样本图像数据集包含2500幅子图,测试样本图像数据集包含7500幅子图,如表2所示:The SAR image classification database is taken from different texture regions of 3 real SAR images, including 5 types of textures. Figure 5 shows the data maps of these 5 types of SAR textures used in the experiment. From top to bottom, from left to right are mountains, Water, farmland, and urban areas in high and low resolution. Randomly select 2000 points in these five types of uniform SAR texture regions, and perform the operation of sliding window to extract subimages. The database with a subimage size of 128×128 is recorded as SAR128, and the database with a subimage size of 64×64 is recorded as SAR128. For SAR64, each type of texture contains 2000 subimages, 500 are used as training samples, and 1500 are used as test samples. Therefore, the total number of subimages in SAR128 and SAR64 is 10,000, of which the training sample image data set contains 2500 subimages, and the test The sample image dataset contains 7500 subimages, as shown in Table 2:

表2SAR图像数据集设置Table 2 SAR image dataset settings

  测试数据库 test database   纹理类数 Number of texture classes   子图大小 subplot size   每类样本个数 Number of samples for each category   总样本个数 Total number of samples   每类测试/训练样本个数 The number of test/training samples per class   SAR128 SAR128   5 5   128×128 128×128   2000 2000   10000 10000   500/1500 500/1500   SAR64 SAR64   5 5   64×64 64×64   2000 2000   10000 10000   500/1500 500/1500

步骤2,对给定训练样本图像进行2维快速傅立叶变换,并根据傅立叶平面的频率和方向对傅立叶平面进行频域方向子带划分。Step 2, perform 2-dimensional fast Fourier transform on the given training sample image, and divide the Fourier plane into frequency-domain direction subbands according to the frequency and direction of the Fourier plane.

将图像进行2维快速傅立叶变换后,得到傅立叶平面,以傅立叶平面的直流分量为中心,将傅立叶上半平面按照频域方向子带划分的方法得到K个频域方向子带,其具体实现过程如下:After the 2-dimensional fast Fourier transform is performed on the image, the Fourier plane is obtained. With the DC component of the Fourier plane as the center, K frequency domain direction subbands are obtained by dividing the upper half of the Fourier plane according to the frequency domain direction subbands. The specific implementation process as follows:

2a)将傅立叶平面上半部分按极坐标划分为N个频带,D个方向,得到K=N×D+2个扇区,每个扇区表示从低频到高频的不同频带和方向信息,构成不同的子带,如图2所示。图2中D=8,图2中扇区13和26所在的位置,由于包含的信息不多,作为一个子带进行处理,D一般取16,N一般取6;2a) The upper half of the Fourier plane is divided into N frequency bands and D directions according to polar coordinates, and K=N×D+2 sectors are obtained, and each sector represents different frequency bands and direction information from low frequency to high frequency, Constitute different sub-bands, as shown in Figure 2. D=8 in Fig. 2, the positions where sectors 13 and 26 are located in Fig. 2, because the contained information is not much, it is processed as a sub-band, D generally takes 16, and N generally takes 6;

2b)按照下式计算每个子带中心点(rn,θd)的位置:2b) Calculate the position of each subband center point (r n , θ d ) according to the following formula:

rr nno == (( nno NN )) αα (( RR -- 11 )) ++ 11 ,, nno == 11 ,, ·&Center Dot; ·&Center Dot; ·· ,, NN

θθ dd == ππ DD. ·&Center Dot; dd ,, dd == 11 ,, ·&Center Dot; ·· ·&Center Dot; ,, DD.

其中n表示频带,N为频带的总个数,d表示傅立叶上半平面的极坐标方向,D为总的方向数,R表示傅立叶平面的最大半径,α为可调的参数。图3表示α取不同值时,对应的半径rn值,当α=1时,rn为线性函数,表示在半径上均匀取点,当α增大时,rn转为非线性函数,使得低频位置取点更为密集,而高频部分取点稀疏,符合多尺度几何分析中的子带划分的思想。多次实验结果表明,取α=1.5,D=16,N=6时结果较为稳健;Among them, n represents the frequency band, N is the total number of frequency bands, d represents the polar coordinate direction of the upper half plane of Fourier, D is the total number of directions, R represents the maximum radius of the Fourier plane, and α is an adjustable parameter. Figure 3 shows the corresponding radius r n values when α takes different values. When α=1, r n is a linear function, which means that points are evenly taken on the radius. When α increases, r n turns into a nonlinear function. The low-frequency position is made denser, and the high-frequency part is sparsely selected, which is in line with the idea of sub-band division in multi-scale geometric analysis. The results of multiple experiments show that the results are more robust when α=1.5, D=16, and N=6;

2c)根据下式计算每个子带的大小Δrn2c) Calculate the size Δr n of each subband according to the following formula:

Δrn=rn-rn-1,n=1,…,NΔr n =r n -r n-1 , n=1,...,N

其中,同一频带不同方向上的子带大小相同。Wherein, the subbands in different directions of the same frequency band have the same size.

步骤3,按照下式计算K个子带的能量特征,得到特征向量V={vk,k=1,...,K}:Step 3, calculate the energy features of the K subbands according to the following formula, and obtain the feature vector V={v k , k=1,...,K}:

vv kk == 11 || AA kk || ΣΣ jj ∈∈ AA kk || cc jj ||

其中|cj|表示子带系数的绝对值,Ak为第k个子带的系数坐标集合,|·|表示集合大小。Where |c j | represents the absolute value of the sub-band coefficients, A k is the coefficient coordinate set of the kth sub-band, and |·| represents the set size.

步骤4,重复步骤2~3,对每一类纹理,计算所有训练样本的特征向量,以特征向量为列向量构成特征矩阵M。Step 4, repeat steps 2-3, calculate the feature vectors of all training samples for each type of texture, and use the feature vectors as column vectors to form a feature matrix M.

步骤5,计算每一类图像的相关对序列。Step 5, calculate the correlation pair sequence of each type of image.

5a)计算某类特征矩阵M的协方差矩阵C,矩阵C中的系数cij为子带i和子带j的相关系数,子带i、j构成子带对;5a) Calculating the covariance matrix C of a certain type of characteristic matrix M, the coefficient c ij in the matrix C is the correlation coefficient of subband i and subband j, and subband i and j form a subband pair;

5b)将各子带对按相关系数ρ进行降序排列,选择其中ρ>Tα即相关性显著的相关对放入相关对序列中,输出相关对序列,这里,考虑到速度和精度的要求,一般取Tα=0.4;5b) Arrange each subband pair in descending order according to the correlation coefficient ρ, select the correlation pair with significant correlation where ρ>T α , and put it into the correlation pair sequence, and output the correlation pair sequence. Here, considering the requirements of speed and accuracy, Generally take T α =0.4;

5c)重复步骤5a)~5b),计算每一类图像的相关对序列。5c) Steps 5a) to 5b) are repeated to calculate the correlation pair sequence of each type of image.

步骤6,求分类参数矩阵X,构成分类器。Step 6: Find the classification parameter matrix X to form a classifier.

6a)应用一元线性回归模型,计算每一类纹理的相关对序列中各相关对的分类模型参数,设第i个相关对的参数为ai,bi,μi,σi,计算公式如下:6a) Apply the unary linear regression model to calculate the classification model parameters of each relevant pair in the relevant pair sequence of each type of texture. Let the parameters of the i-th relevant pair be a i , b i , μ i , σ i , and the calculation formula is as follows :

aa ii == mm ΣΣ hh == 11 mm xx ihi h ythe y ihi h -- ΣΣ hh == 11 mm xx ihi h ΣΣ hh == 11 mm ythe y ihi h mm ΣΣ hh == 11 mm xx ihi h 22 -- (( ΣΣ hh == 11 mm xx ihi h )) 22 bb ii == 11 mm ΣΣ hh == 11 mm ythe y ihi h -- aa mm ΣΣ hh == 11 mm xx ihi h

μμ ii == ΣΣ hh == 11 mm (( ythe y ihi h -- ythe y ^^ ihi h )) mm σσ ii == ΣΣ hh == 11 mm (( ythe y ihi h -- ythe y ^^ ihi h )) 22 mm -- 22

其中,xih,yih分别代表某类图像第h个样本的第i个相关对两个子带能量,

Figure A20091002250300086
是由线性回归方程 y ^ i = a i × x i + b i 得到的该相关对对应子带能量yih的估计值,m为样本大小,当两个子带相关性较高时,线性回归方程可以很好的拟合两个子带间的关系,图4是纹理图像D6的相关对28和29的能量分布图,其相关系数为0.9952,图4中直线是线性回归方程得到的,可以看到,该直线可以很好的拟合子带相关对间的关系;Among them, x ih , y ih respectively represent the energy of two subbands of the i-th correlation pair of the h-th sample of a certain type of image,
Figure A20091002250300086
is given by the linear regression equation the y ^ i = a i × x i + b i The obtained correlation pair corresponds to the estimated value of sub-band energy y ih , m is the sample size, when the correlation between the two sub-bands is high, the linear regression equation can well fit the relationship between the two sub-bands, Figure 4 is the texture The energy distribution diagram of the correlation pair 28 and 29 of the image D6 has a correlation coefficient of 0.9952. The straight line in Fig. 4 is obtained by a linear regression equation. It can be seen that the straight line can well fit the relationship between the sub-band correlation pairs;

6b)按照相关系数的降序,将每一类纹理各相关对的参数a,b,μ,σ,相关对标号及相关系数ρ这些参数放入分类参数矩阵X中,作为各类纹理的分类特征参数,构成分类器。6b) According to the descending order of the correlation coefficient, put the parameters a, b, μ, σ, correlation pair label and correlation coefficient ρ of each type of texture into the classification parameter matrix X as the classification features of each type of texture Parameters that make up the classifier.

步骤7,对给定测试样本图像进行2维快速傅立叶变换,然后按前述步骤2~3所述的频域方向特征提取的方法,计算其频域方向特征向量V;Step 7, perform 2-dimensional fast Fourier transform on the given test sample image, and then calculate its frequency-domain direction feature vector V according to the frequency-domain direction feature extraction method described in steps 2-3 above;

步骤8,将给定测试样本的特征向量V与分类器中所有参数的拟合程度进行比较,得到该测试样本的类标。Step 8: Compare the feature vector V of a given test sample with the fitting degree of all parameters in the classifier to obtain the class label of the test sample.

8a)取出第j类图像第i个相关对的一元线性回归模型分类参数ai,bi,μi,σi及测试样本特征中该相关对对应的子带特征(xi,yi);8a) Take the unary linear regression model classification parameters a i , b i , μ i , σ i of the i-th correlation pair of the j-th image type and the sub-band features (x i , y i ) corresponding to the correlation pair in the test sample features ;

8b)按照一元线性回归方程 y ^ = a × x + b 求得子带特征yi的估计值计算误差

Figure A20091002250300093
8b) According to the linear regression equation of one variable the y ^ = a × x + b Find the estimated value of the subband feature y i Calculation error
Figure A20091002250300093

8c)按照下式得到测试样本符合第j类图像每一个相关对分类参数模型的概率pij8c) According to the following formula, the probability p ij of the test sample conforming to each relevant pair classification parameter model of the image of the jth class is obtained:

pp ijij == 11 ,, ifif || ythe y ii -- ythe y ^^ ii -- &mu;&mu; ii || << 33 &sigma;&sigma; ii 00 ,, ifif || ythe y ii -- ythe y ^^ ii -- &mu;&mu; ii || >> 33 &sigma;&sigma; ii ,, ii == 11 ,, &CenterDot;&Center Dot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; ,, LL ,,

其中L是第j类图像相关对序列中相关对的总个数;Wherein L is the total number of correlation pairs in the jth type image correlation pair sequence;

8d)计算测试样本属于第j类图像的概率Pj8d) Calculate the probability P j that the test sample belongs to the image of the jth category:

PP jj == 11 LL &Sigma;&Sigma; ii == 11 LL pp ijij ;;

8e)重复步骤8a)~8d),计算出该测试样本属于每一类图像的概率,得到概率集P={Pj,j=1,…,S},其中S为图像集的总类别数;8e) Repeat steps 8a) to 8d), calculate the probability that the test sample belongs to each type of image, and obtain the probability set P={P j , j=1,...,S}, where S is the total number of categories in the image set ;

8f)将步骤8e)得到的概率集P按降序排列,若最大概率值Pmax唯一,则将测试样本归为最大概率对应的类;若Pmax不唯一,则将该测试样本归入拒绝域,表明该样本的类标不确定。8f) Arrange the probability set P obtained in step 8e) in descending order, if the maximum probability value P max is unique, then classify the test sample into the class corresponding to the maximum probability; if P max is not unique, then classify the test sample into the rejection domain , indicating that the class label of the sample is uncertain.

步骤9,重复步骤8,求测试样本图像数据集中所有测试样本图像的类标并输出。Step 9, repeat step 8, find and output the class labels of all test sample images in the test sample image dataset.

本发明的效果可通过以下仿真实验进一步说明。The effects of the present invention can be further illustrated by the following simulation experiments.

1.仿真内容:本发明以及小波、小波包、轮廓波的Brodatz纹理图像及SAR图像分类实验。1. Simulation content: the present invention and Brodatz texture image and SAR image classification experiments of wavelet, wavelet packet, and contourlet.

2.仿真条件:Intel(R)Pentium(R)4CPU,3.00GHz,Windows XP系统,Matlab7.4.0运行平台。2. Simulation conditions: Intel(R) Pentium(R) 4CPU, 3.00GHz, Windows XP system, Matlab7.4.0 operating platform.

3.仿真实验结果:3. Simulation results:

实验中分别对纹理图像和SAR图像进行分类。In the experiment, the texture image and the SAR image are classified respectively.

A.Brodatz纹理图像分类A. Brodatz Texture Image Classification

实验参数设置如表3所示。考虑到小波、小波包变换的鲁棒性,其子带最小尺寸为16×16,因此数据库128和数据库64的分解层数不同,分别取3层和2层变换。轮廓波分解的方向数和层数根据实验结果,取的是最优参数。对于本发明的频域方向分解,多个数据库的多次实验表明,取参数α=1.5,D=16,N=6时分类结果比较稳健。The experimental parameter settings are shown in Table 3. Considering the robustness of wavelet and wavelet packet transform, the minimum sub-band size is 16×16, so the decomposition layers of database 128 and database 64 are different, and 3-layer and 2-layer transformations are used respectively. According to the experimental results, the number of directions and layers of contourlet decomposition is the optimal parameter. For the frequency-domain direction decomposition of the present invention, multiple experiments on multiple databases show that the classification results are relatively robust when the parameters α=1.5, D=16, and N=6 are set.

表3Brodatz纹理分类实验参数设置Table 3 Brodatz texture classification experiment parameter settings

Figure A20091002250300101
Figure A20091002250300101

随机选取10组训练、测试样本进行实验,求10次分类的平均结果,有如下实验结果:Randomly select 10 groups of training and test samples for experiments, and find the average result of 10 classifications. The experimental results are as follows:

1)应用相关性分类的方法对Brodatz纹理库128和纹理库64进行分类,得到如下表4、5所示的实验结果。1) The Brodatz texture library 128 and the texture library 64 are classified by using the correlation classification method, and the experimental results shown in Tables 4 and 5 below are obtained.

表4Brodatz纹理库128的相关性分类结果Table 4 Correlation classification results of Brodatz texture library 128

  特征 features   正确 correct   拒绝 reject   错误 mistake   标准差 standard deviation   小波3层分解 Wavelet 3-layer decomposition   85.82 85.82   5.95 5.95   8.23 8.23   1.74 1.74   小波包3层分解 3-layer decomposition of wavelet packet   87.64 87.64   0 0   12.36 12.36   2.00 2.00   轮廓波2层分解,方向数4,8 Contour wave 2-layer decomposition, number of directions 4, 8   83.51 83.51   5.31 5.31   11.19 11.19   3.15 3.15   本发明(α=1.5,D=16,N=6) The present invention (α=1.5, D=16, N=6)   96.04 96.04   0 0   3.96 3.96   0.87 0.87

表5Brodatz纹理库64的相关性分类结果Table 5 Correlation classification results of Brodatz texture library 64

  特征 Features   正确 correct   拒绝 reject   错误 mistake   标准差 standard deviation   小波2层分解 Wavelet 2-layer decomposition   23.95 23.95   73.79 73.79   2.26 2.26   5.04 5.04   小波包2层分解 2-layer decomposition of wavelet packet   52.72 52.72   38.72 38.72   8.56 8.56   1.26 1.26   轮廓波2层分解,方向数4,8 Contour wave 2-layer decomposition, number of directions 4, 8   46.00 46.00   48.68 48.68   5.32 5.32   1.45 1.45   本发明(α=1.5,D=16,N=6) The present invention (α=1.5, D=16, N=6)   83.43 83.43   0 0   16.57 16.57   0.74 0.74

从表4、表5可知,将本发明的频域方向特征应用到相关性分类方法中,能得到很好的分类效果。同应用广泛的基于小波变换的分类方法及多尺度几何分析方法轮廓波比较,本发明得到的分类正确率提高显著,对于纹理库128,本发明的分类正确率至少提高近9个百分点,对于纹理库64,优势更加明显,正确率至少提高24%,这一结果充分验证了本发明的特征在频率和方向上划分更细致,分类性能好的优点。It can be seen from Table 4 and Table 5 that applying the frequency domain direction feature of the present invention to the correlation classification method can obtain a good classification effect. Compared with the widely used classification method based on wavelet transform and the multi-scale geometric analysis method contourlet, the classification accuracy rate obtained by the present invention is significantly improved. For the texture library 128, the classification accuracy rate of the present invention is at least increased by nearly 9 percentage points. For texture Library 64, the advantages are more obvious, and the correct rate is increased by at least 24%. This result fully verifies that the features of the present invention are divided more carefully in frequency and direction, and the advantages of better classification performance.

通过比较纹理库128和纹理库64的分类结果,我们发现,随着子图尺寸的减小,本发明的分类性能下降远远低于其他几种变换。究其原因,是由于频域方向特征提取方法在频域直接操作,且参数可调,子带大小可变,因此图像尺寸的变化对该方法影响不大,而其他几种变换受到变换框架的影响,考虑到鲁棒性,一般对子带尺寸要求较高,因此对图像的最小尺寸有限制。实验结果充分说明了本发明的分类性能优于其他几种方法,而且对图像尺寸具有较好的稳健性。By comparing the classification results of Texture Library 128 and Texture Library 64, we found that as the size of the submap decreases, the classification performance of the present invention drops much lower than that of other transformations. The reason is that the frequency domain direction feature extraction method operates directly in the frequency domain, and the parameters are adjustable, and the subband size is variable, so the change of the image size has little effect on the method, while other transformations are affected by the transformation framework. Influence, considering the robustness, the sub-band size is generally required higher, so there is a limit to the minimum size of the image. The experimental results fully demonstrate that the classification performance of the present invention is superior to several other methods, and it has better robustness to image size.

2)特征提取时间,本发明的频域方向特征提取的时间明显低于其他几种变换,其计算复杂度低。下表是对一幅1024×1024大小的纹理图像进行变换,提取其能量特征所用的时间。2) Feature extraction time, the frequency domain direction feature extraction time of the present invention is obviously lower than other transformations, and its computational complexity is low. The table below shows the time taken to transform a 1024×1024 texture image and extract its energy features.

表6各种变换的特征提取时间,图像大小为1024*1024Table 6 Feature extraction time of various transformations, image size is 1024*1024

  变换 transform   小波3层分解 Wavelet 3-layer decomposition   小波包3层分解 3-layer decomposition of wavelet packet 轮廓波2层分解,方向数4,8 Contour wave 2-layer decomposition, number of directions 4, 8   本发明(α=1.5,D=16,N=6) The present invention (α=1.5, D=16, N=6)   特征提取时间 Feature extraction time   1.07s 1.07s   4.38s 4.38s 5.76s 5.76s   0.73s 0.73s

表5所示是几种变换的特征提取时间,实验结果充分说明,由于本发明应用快速傅立叶变换来实现,因此特征提取时间明显低于其他几种变换,计算复杂度大大的降低。Table 5 shows the feature extraction time of several transformations. The experimental results fully demonstrate that since the present invention is realized by fast Fourier transform, the feature extraction time is significantly lower than other transformations, and the computational complexity is greatly reduced.

B.SAR图像分类B. SAR image classification

实验参数设置如表7所示。SAR图像分类实验的参数设置和Brodatz纹理图像类似。The experimental parameter settings are shown in Table 7. The parameter setting of the SAR image classification experiment is similar to that of the Brodatz texture image.

表7SAR分类实验参数设置Table 7 SAR classification experiment parameter settings

Figure A20091002250300111
Figure A20091002250300111

对SAR图像的两个数据库SAR128和SAR64进行分类,得到如表8、表9所示为10次平均的分类结果。Classify the two databases SAR128 and SAR64 of SAR images, and get the classification results of 10 averages as shown in Table 8 and Table 9.

表8数据库SAR128的相关性分类结果Table 8 Correlation classification results of database SAR128

  特征 features   正确 correct   拒绝 reject   错误 mistake   标准差 standard deviation   小波3层分解 Wavelet 3-layer decomposition   95.3 95.3   2.94 2.94   1.76 1.76   0.41 0.41   小波包3层分解 3-layer decomposition of wavelet packet   79.18 79.18   8.32 8.32   12.5 12.5   4.50 4.50   轮廓波2层分解,方向数4,8 Contour wave 2-layer decomposition, number of directions 4, 8   84.00 84.00   12.66 12.66   3.34 3.34   8.60 8.60   本发明(α=1.5,D=16,N=6) The present invention (α=1.5, D=16, N=6)   96.43 96.43   0 0   3.57 3.57   0.34 0.34

表9数据库SAR64的相关性分类结果Table 9 Correlation classification results of database SAR64

  特征 features   正确 correct   拒绝 reject   错误 mistake   标准差 standard deviation   小波2层分解 Wavelet 2-layer decomposition   58.87 58.87   38.20 38.20   2.93 2.93   7.81 7.81   小波包2层分解 2-layer decomposition of wavelet packet   55.48 55.48   39.57 39.57   4.95 4.95   1.24 1.24   轮廓波2层分解,方向数4,8 Contour wave 2-layer decomposition, number of directions 4, 8   58.02 58.02   36.64 36.64   5.34 5.34   1.50 1.50   本发明(α=1.5,D=16,N=6) The present invention (α=1.5, D=16, N=6)   92.49 92.49   0 0   7.51 7.51   0.70 0.70

表8、表9所示的结果表明,本发明的频域方向分解的分类效果是最好的。对于数据库SAR128,本发明的分类正确率比小波变换高1.13%,比轮廓波变换高12.43%,比小波包变换高17.25%;数据库SAR64,本发明分类结果优势更显著,比其他三种变换高出30多个百分点,充分验证了本发明的有效性。The results shown in Table 8 and Table 9 show that the classification effect of the frequency domain direction decomposition of the present invention is the best. For the database SAR128, the classification accuracy rate of the present invention is 1.13% higher than the wavelet transform, 12.43% higher than the contourlet transform, and 17.25% higher than the wavelet packet transform; the database SAR64, the classification result advantage of the present invention is more significant, higher than the other three transforms Out of more than 30 percentage points, fully verified the effectiveness of the present invention.

此外,由于64×64大小的子图包含的纹理信息不如128×128子图丰富,相对更难于区分纹理的类别,因此分类正确率将下降。但本发明仅下降了4%,而其他方法下降显著,至少降低24%。这一实验结果进一步验证了,本发明对于图像尺寸的变化有较好的鲁棒性。In addition, since the texture information contained in the 64×64 submap is not as rich as that of the 128×128 submap, it is relatively more difficult to distinguish the texture category, so the classification accuracy will decrease. But the present invention only decreased by 4%, while other methods decreased significantly, at least 24%. This experimental result further verifies that the present invention has better robustness to image size changes.

Claims (4)

1、基于频域方向特征相关性的图像分类方法,具体实现过程如下:1. An image classification method based on frequency domain direction feature correlation, the specific implementation process is as follows: (1)选取各类纹理的样本图像,并将这些样本图像分为训练样本图像和测试样本图像两个数据集;(1) Select sample images of various textures, and divide these sample images into two data sets of training sample images and test sample images; (2)对训练样本图像数据集分别进行2维快速傅立叶变换,根据傅立叶平面的频率和方向将傅立叶平面划分为不同的频域方向子带;(2) Carry out 2-dimensional fast Fourier transform respectively to the training sample image data set, divide the Fourier plane into different frequency domain direction subbands according to the frequency and direction of the Fourier plane; (3)计算各子带的能量特征,得到图像的频域方向特征矩阵M;(3) Calculate the energy characteristics of each subband to obtain the frequency domain direction feature matrix M of the image; (4)计算频域方向特征矩阵M各子带特征间的相关系数,根据各子带对的相关系数进行降序排列,得到相关对序列;(4) Calculate the correlation coefficient between each sub-band feature of the frequency-domain direction feature matrix M, and arrange in descending order according to the correlation coefficient of each sub-band pair to obtain a correlation pair sequence; (5)应用一元线性回归模型求得相关对序列中各特征相关对的分类特征参数,构成分类器;(5) Apply the linear regression model of one element to obtain the classification feature parameters of each feature correlation pair in the correlation pair sequence to form a classifier; (6)将测试样本图像的频域方向特征与分类器中所有参数的拟合程度进行比较,计算该测试样本属于每一类图像的概率,取概率最大值对应的类标作为该样本的类标;(6) Compare the frequency-domain direction feature of the test sample image with the fitting degree of all parameters in the classifier, calculate the probability that the test sample belongs to each type of image, and take the class label corresponding to the maximum probability as the class of the sample mark; (7)重复步骤(6),得到测试样本图像数据集中所有样本图像的类标。(7) Step (6) is repeated to obtain the class labels of all sample images in the test sample image dataset. 2、根据权利要求1所述的图像分类方法,其中步骤(2)所述的根据傅立叶平面的频率和方向将傅立叶平面划分为不同的频域方向子带,按如下步骤进行:2, the image classification method according to claim 1, wherein according to the frequency and direction of Fourier plane described in step (2) Fourier plane is divided into different frequency domain direction sub-bands, carry out as follows: 2a)以傅立叶平面的直流分量为中心,将傅立叶上半平面按极坐标的半径和方向划分为N个频带和D个方向,得到K=N×D+2个扇区,每个扇区表示从低频到高频的不同频带和方向信息,构成不同的子带;2a) Taking the DC component of the Fourier plane as the center, divide the upper half of the Fourier plane into N frequency bands and D directions according to the radius and direction of polar coordinates, and obtain K=N×D+2 sectors, and each sector represents Different frequency bands and direction information from low frequency to high frequency constitute different subbands; 2b)利用下式计算每个子带中心点(rn,θd)的位置:2b) Use the following formula to calculate the position of each subband center point (r n , θ d ): r n = ( n N ) &alpha; ( R - 1 ) + 1 , n=1,…,N r no = ( no N ) &alpha; ( R - 1 ) + 1 , n=1,...,N &theta; d = &pi; D &CenterDot; d , d=1,…,D &theta; d = &pi; D. &Center Dot; d , d=1,...,D 其中n表示频带,N为频带的总个数,d表示傅立叶上半平面的极坐标方向,D为总的方向数,R表示傅立叶平面的最大半径,α为可调的参数,D一般取16,N一般取6,α一般取1.5;Among them, n represents the frequency band, N is the total number of frequency bands, d represents the polar coordinate direction of the upper half plane of Fourier, D is the total number of directions, R represents the maximum radius of the Fourier plane, α is an adjustable parameter, and D generally takes 16 , N generally takes 6, α generally takes 1.5; 2c)根据下式计算每个频带上的子带大小Δrn2c) Calculate the subband size Δr n on each frequency band according to the following formula: Δrn=rn-rn-1,n=1,…,N,Δr n =r n -r n-1 , n=1,...,N, 其中,同一频带不同方向上的子带大小相同;Wherein, the subbands in different directions of the same frequency band have the same size; 2d)以(rn,θd)为子带中心,Δrn为子带大小进行划窗,得到K个频域方向子带。2d) Taking (r n , θ d ) as the center of the subband, and Δr n as the size of the subband, windowing is performed to obtain K subbands in the frequency domain direction. 3、根据权利要求1所述的图像分类方法,其中的步骤(6)所述的计算该测试样本属于每一类图像的概率,按如下过程进行:3. The image classification method according to claim 1, wherein the calculation of the test sample belonging to the probability of each type of image in the step (6) is carried out as follows: 3a)取出某类图像第i个相关对的一元线性回归模型分类参数ai,bi,μi,σi及测试样本特征中该相关对对应的子带特征(xi,yi);3a) Take the unary linear regression model classification parameters a i , b i , μ i , σ i of the i-th correlation pair of a certain type of image and the subband features (xi , y i ) corresponding to the correlation pair in the test sample features; 3b)按照一元线性回归方程 y ^ = a &times; x + b 求得子带特征yi的估计值计算误差
Figure A2009100225030003C3
3b) According to the linear regression equation of one variable the y ^ = a &times; x + b Find the estimated value of the subband feature y i Calculation error
Figure A2009100225030003C3
3c)按照下式得到测试样本符合该类每一个相关对分类参数模型的概率Pi3c) According to the following formula, the probability P i that the test sample conforms to the classification parameter model of each relevant pair of the class is obtained: P i = 1 , if | y i - y ^ i - &mu; i | < 3 &sigma; i 0 , if | y i - y ^ i - &mu; i | > 3 &sigma; i , i=1,…,L, P i = 1 , if | the y i - the y ^ i - &mu; i | < 3 &sigma; i 0 , if | the y i - the y ^ i - &mu; i | > 3 &sigma; i , i=1,...,L, 其中L是第j类图像相关对序列中相关对的总个数;Wherein L is the total number of correlation pairs in the jth type image correlation pair sequence; 3d)计算测试样本属于该类图像的概率P:3d) Calculate the probability P that the test sample belongs to this type of image: PP == 11 LL &Sigma;&Sigma; ii == 11 LL PP ii ;; 3e)重复步骤3a)~3d),计算出该测试样本属于每一类图像的概率。3e) Steps 3a) to 3d) are repeated to calculate the probability that the test sample belongs to each type of image.
4、根据权利要求1所述的图像分类方法,其中步骤(6)所述的取概率最大值对应的类标作为样本的类标,是将所有得到的概率按降序排列,若最大概率值Pmax唯一,则将测试样本归为Pmax对应的类;若Pmax不唯一,则将该测试样本归入拒绝域。4. The image classification method according to claim 1, wherein the class label corresponding to the maximum probability value in step (6) is used as the class label of the sample, and all obtained probabilities are arranged in descending order, if the maximum probability value P max is unique, the test sample is classified into the class corresponding to P max ; if P max is not unique, the test sample is classified into the rejection domain.
CN2009100225038A 2009-05-13 2009-05-13 Image Classification Method Based on Directional Feature Correlation in Frequency Domain Expired - Fee Related CN101551864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100225038A CN101551864B (en) 2009-05-13 2009-05-13 Image Classification Method Based on Directional Feature Correlation in Frequency Domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100225038A CN101551864B (en) 2009-05-13 2009-05-13 Image Classification Method Based on Directional Feature Correlation in Frequency Domain

Publications (2)

Publication Number Publication Date
CN101551864A true CN101551864A (en) 2009-10-07
CN101551864B CN101551864B (en) 2012-01-04

Family

ID=41156102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100225038A Expired - Fee Related CN101551864B (en) 2009-05-13 2009-05-13 Image Classification Method Based on Directional Feature Correlation in Frequency Domain

Country Status (1)

Country Link
CN (1) CN101551864B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894269A (en) * 2010-07-16 2010-11-24 西安电子科技大学 Synthetic aperture radar automatic target identification method based on multi-classifier system
CN102542064A (en) * 2012-01-04 2012-07-04 西安电子科技大学 Dynamic texture retrieval method based on Surfacelet conversion
CN102663418A (en) * 2012-03-21 2012-09-12 清华大学 An image set modeling and matching method based on regression model
CN102880861A (en) * 2012-09-05 2013-01-16 西安电子科技大学 High-spectrum image classification method based on linear prediction cepstrum coefficient
CN103530647A (en) * 2013-10-10 2014-01-22 哈尔滨工程大学 Texture classification method on basis of fractional Fourier transform (FrFT)
CN104834933A (en) * 2014-02-10 2015-08-12 华为技术有限公司 Method and device for detecting salient region of image
CN105488531A (en) * 2015-11-30 2016-04-13 中国科学院信息工程研究所 Judgment method for firmware decompression success of embedded device
CN107219300A (en) * 2017-05-23 2017-09-29 徐工集团工程机械股份有限公司 A kind of compactness detection on locomotive system based on the degree of correlation
CN109492592A (en) * 2018-11-15 2019-03-19 杭州芯影科技有限公司 Mm-wave imaging image processing method
CN110084827A (en) * 2019-04-17 2019-08-02 江阴芗菲服饰有限公司 A kind of Fabric Texture Classification method based on frequency domain character
CN110443171A (en) * 2019-07-25 2019-11-12 腾讯科技(武汉)有限公司 Classification method, device, storage medium and the terminal of video file
CN111239083A (en) * 2020-02-26 2020-06-05 东莞市晶博光电有限公司 Mobile phone glass ink infrared transmittance testing device and correlation algorithm
CN111307798A (en) * 2018-12-11 2020-06-19 成都智叟智能科技有限公司 Article checking method adopting multiple acquisition technologies

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894269A (en) * 2010-07-16 2010-11-24 西安电子科技大学 Synthetic aperture radar automatic target identification method based on multi-classifier system
CN102542064A (en) * 2012-01-04 2012-07-04 西安电子科技大学 Dynamic texture retrieval method based on Surfacelet conversion
CN102663418A (en) * 2012-03-21 2012-09-12 清华大学 An image set modeling and matching method based on regression model
CN102663418B (en) * 2012-03-21 2014-04-23 清华大学 A Regression Model-Based Image Collection Modeling and Matching Method
CN102880861A (en) * 2012-09-05 2013-01-16 西安电子科技大学 High-spectrum image classification method based on linear prediction cepstrum coefficient
CN102880861B (en) * 2012-09-05 2015-05-27 西安电子科技大学 High-spectrum image classification method based on linear prediction cepstrum coefficient
CN103530647A (en) * 2013-10-10 2014-01-22 哈尔滨工程大学 Texture classification method on basis of fractional Fourier transform (FrFT)
CN103530647B (en) * 2013-10-10 2017-02-08 哈尔滨工程大学 Texture classification method on basis of fractional Fourier transform (FrFT)
CN104834933B (en) * 2014-02-10 2019-02-12 华为技术有限公司 Method and device for detecting image saliency area
CN104834933A (en) * 2014-02-10 2015-08-12 华为技术有限公司 Method and device for detecting salient region of image
CN105488531A (en) * 2015-11-30 2016-04-13 中国科学院信息工程研究所 Judgment method for firmware decompression success of embedded device
CN105488531B (en) * 2015-11-30 2018-10-16 中国科学院信息工程研究所 A kind of successful judgment method of embedded device firmware decompression
CN107219300A (en) * 2017-05-23 2017-09-29 徐工集团工程机械股份有限公司 A kind of compactness detection on locomotive system based on the degree of correlation
CN107219300B (en) * 2017-05-23 2019-09-03 徐工集团工程机械股份有限公司 A kind of compactness detection on locomotive system based on the degree of correlation
CN109492592A (en) * 2018-11-15 2019-03-19 杭州芯影科技有限公司 Mm-wave imaging image processing method
CN111307798A (en) * 2018-12-11 2020-06-19 成都智叟智能科技有限公司 Article checking method adopting multiple acquisition technologies
CN110084827A (en) * 2019-04-17 2019-08-02 江阴芗菲服饰有限公司 A kind of Fabric Texture Classification method based on frequency domain character
CN110443171A (en) * 2019-07-25 2019-11-12 腾讯科技(武汉)有限公司 Classification method, device, storage medium and the terminal of video file
CN110443171B (en) * 2019-07-25 2022-11-29 腾讯科技(武汉)有限公司 Video file classification method and device, storage medium and terminal
CN111239083A (en) * 2020-02-26 2020-06-05 东莞市晶博光电有限公司 Mobile phone glass ink infrared transmittance testing device and correlation algorithm

Also Published As

Publication number Publication date
CN101551864B (en) 2012-01-04

Similar Documents

Publication Publication Date Title
CN101551864B (en) Image Classification Method Based on Directional Feature Correlation in Frequency Domain
CN101763514B (en) Image Segmentation Method Based on Ranked Spectral Clustering of Feature Importance
CN101510309B (en) Improved Watershed SAR Image Segmentation Method Based on Complex Wavelet Texture Region Merging
CN102663400B (en) LBP (length between perpendiculars) characteristic extraction method combined with preprocessing
CN113192076B (en) MRI Brain Tumor Image Segmentation Using Combined Classification Prediction and Multiscale Feature Extraction
CN101118593A (en) Texture Image Classification Method Based on SWBCT
CN105718889A (en) Face recognition method based on GB(2D)2PCANet deep convolution model
CN102508917B (en) Multi-dimensional object robust high-speed retrieval and positioning method for some feature images
CN102541954A (en) Method and system for searching trademarks
CN110702648B (en) Fluorescent spectrum pollutant classification method based on non-subsampled contourlet transformation
CN104636721A (en) Palm print identification method based on contour and edge texture feature fusion
CN104636755A (en) Face beauty evaluation method based on deep learning
CN106683104A (en) Prostate magnetic resonance image segmentation method based on integrated depth convolution neural network
CN101551854B (en) Unbalanced medical image processing system and its processing method
CN101030297A (en) Method for cutting complexity measure image grain
CN116310569A (en) A device for breast lesion detection and classification based on robust texture features
CN107478418A (en) A kind of rotating machinery fault characteristic automatic extraction method
CN104616016A (en) Global feature and local feature combined texture feature description method
CN100345152C (en) Face recognition method based on template matching
CN110059729A (en) A kind of result prediction method based on support vector machines and maximum cross-correlation entropy
Ran et al. Sketch-guided spatial adaptive normalization and high-level feature constraints based GAN image synthesis for steel strip defect detection data augmentation
CN103345636B (en) Based on the copper flotation site bubble condition recognition methods of multi-scale wavelet binaryzation
CN104268555B (en) Based on the Classification of Polarimetric SAR Image method for obscuring sparse LSSVM
CN106971392A (en) A kind of combination DT CWT and MRF method for detecting change of remote sensing image and device
CN107169407A (en) Hyperspectral image classification method based on joint bilateral filtering and extreme learning machine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120104

Termination date: 20170513