CN1015486B - Fluid compressor - Google Patents
Fluid compressorInfo
- Publication number
- CN1015486B CN1015486B CN 90100434 CN90100434A CN1015486B CN 1015486 B CN1015486 B CN 1015486B CN 90100434 CN90100434 CN 90100434 CN 90100434 A CN90100434 A CN 90100434A CN 1015486 B CN1015486 B CN 1015486B
- Authority
- CN
- China
- Prior art keywords
- cylinder
- working chamber
- groove
- cylindrical surface
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 19
- 230000008859 change Effects 0.000 claims description 25
- 230000007423 decrease Effects 0.000 claims description 14
- 230000007704 transition Effects 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 description 22
- 230000006835 compression Effects 0.000 description 21
- 239000003507 refrigerant Substances 0.000 description 20
- 238000000465 moulding Methods 0.000 description 17
- 238000005057 refrigeration Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
本发明是关于流体压缩机的,例如压缩冷冻循环制冷剂气体的流体压缩机。This invention relates to fluid compressors, such as those for compressing refrigerant gas in a refrigeration cycle.
迄今为止,人们已知有往复式和旋转式等多种形式的压缩机。但是,在这些压缩机中,将回转力传递至压缩机部分的曲轴等的驱动部分和压缩部分的结构复杂而且零件数多。另外,现有的压缩机为了提高压缩效率而必须在其输出侧设止回阀。然而由于这种止回阀二侧的压力差非常大,所以气体容易从止回阀处泄漏。结果压缩效率降低。为了解决这些问题,就有必要提高零件的尺寸精度和装配精度,这样一来就增加了生产成本。So far, various types of compressors such as reciprocating type and rotary type are known. However, in these compressors, the structure of the driving part and the compression part such as the crankshaft which transmits the rotational force to the compressor part is complicated and the number of parts is large. In addition, in order to improve the compression efficiency of the existing compressor, it is necessary to install a check valve on the output side. However, since the pressure difference on both sides of the check valve is very large, the gas is easy to leak from the check valve. As a result, compression efficiency decreases. In order to solve these problems, it is necessary to improve the dimensional accuracy and assembly accuracy of the parts, which increases the production cost.
美国专利2,401,189中揭示了一种具有圆柱形旋转体的螺旋泵,该圆柱形旋转体具有输入侧端头部分和输出侧端头部分。该旋转体设于空心轴内且其外柱面上形成了螺旋状的槽。同时,嵌合于该槽中的螺旋状嵌条可以任意滑动。这样,随着驱动旋转体旋转,将封闭于旋转体的外柱面和空心轴的内柱面之间并介于螺旋状嵌条的相邻二圈之间的空间内的流体,从空心轴的一端送到另一端。也就是说,上述螺旋泵仅仅是将流体从一端送至另一端,并不具备压缩流体的机构。U.S. Patent No. 2,401,189 discloses a screw pump having a cylindrical rotating body having an input-side head portion and an output-side head portion. The rotating body is arranged in the hollow shaft and a helical groove is formed on the outer cylindrical surface. At the same time, the helical moldings fitted in the grooves can slide freely. In this way, as the rotating body is driven to rotate, the fluid enclosed in the space between the outer cylindrical surface of the rotating body and the inner cylindrical surface of the hollow shaft and between two adjacent turns of the helical fillet will flow from the hollow shaft to the inner cylindrical surface of the hollow shaft. from one end to the other. That is to say, the above-mentioned screw pump only sends the fluid from one end to the other end, and does not have a mechanism for compressing the fluid.
此外,在上述螺旋泵中,流体的输送量与螺旋状槽和螺旋状嵌条的螺距成比例。因此,槽和嵌条的螺距越大,泵所输送的流体量也就越大。但是在这种情况下,随着槽和嵌条的螺距的增大,旋转 体和空心轴等的尺寸也会增大,结果使泵的整体变大。In addition, in the above-mentioned screw pump, the delivery amount of the fluid is proportional to the pitch of the helical groove and the helical fillet. Therefore, the greater the pitch of the grooves and fillets, the greater the volume of fluid delivered by the pump. But in this case, as the pitch of the slot and fillet increases, the rotation The size of the body and the hollow shaft etc. will also increase, resulting in an overall larger pump.
本发明鉴于上述情况,其目的在于利用比较简单的结构提供一种流体压缩机,该种流体压缩机在提高其密闭性且能高效率压缩流体的同时,使机形小而容量大。In view of the above circumstances, an object of the present invention is to provide a fluid compressor with a relatively simple structure, which has a small size and a large capacity while improving its airtightness and compressing fluid efficiently.
为了达到上述目的,本发明的压缩机包括:具有输入侧和输出侧的汽缸;圆柱形旋转体,其一部分与汽缸的内柱面保持接触,该旋转体同时还能相对于上述汽缸旋转并且是在汽缸内沿着汽缸轴的方向、偏心地设置的,该旋转体的外柱面上有螺旋状的槽,该槽的螺距从上述汽缸的输入端到输出端;按照一定的变化率变小,另外,上述槽具有包括始点、变换点和终点的扩张部分,该扩张部分包括第1部分和第2部分,该第1部分由上述始点伸延至变换点且其螺距以小于上述一定的变化率的变化率而变化,该第2部分从上述变换点伸延至终点且其螺距以大于上述一定的变化率的变化率而变化;螺旋状嵌条,该嵌条嵌入上述槽内,但它可以沿着上述汽缸的径向自由滑动,同时它的外周面又与上述汽缸的内柱面紧贴着,将上述汽缸的内柱面与旋转体的外柱面之间的空间分为多个工作室;驱动部件,使上述汽缸和旋转体相对旋转,将从上述输入侧流入上述工作室的流体依次送至汽缸的输出侧的工作室,从汽缸的输出侧向外部输出。In order to achieve the above object, the compressor of the present invention includes: a cylinder having an input side and an output side; a cylindrical rotating body, a part of which is kept in contact with the inner cylindrical surface of the cylinder, and the rotating body can also rotate relative to the above-mentioned cylinder at the same time and is It is arranged eccentrically along the direction of the cylinder axis in the cylinder. There is a helical groove on the outer cylindrical surface of the rotating body. The pitch of the groove is from the input end to the output end of the above-mentioned cylinder; it becomes smaller according to a certain rate of change. , In addition, the above-mentioned groove has an expanding part including a starting point, a changing point and an ending point, and the expanding part includes a first part and a second part, and the first part extends from the starting point to the changing point and its pitch is less than the above-mentioned certain rate of change The rate of change varies, the second part extends from the above-mentioned conversion point to the end point and its pitch changes at a rate of change greater than the above-mentioned certain rate of change; the helical fillet is embedded in the above-mentioned groove, but it can be along the The radial direction of the above-mentioned cylinder slides freely, and at the same time its outer peripheral surface is in close contact with the inner cylindrical surface of the above-mentioned cylinder, and the space between the inner cylindrical surface of the above-mentioned cylinder and the outer cylindrical surface of the rotating body is divided into a plurality of working chambers. The driving part makes the above-mentioned cylinder and the rotating body relatively rotate, and the fluid flowing into the above-mentioned working chamber from the above-mentioned input side is sequentially sent to the working chamber on the output side of the cylinder, and output from the output side of the cylinder to the outside.
结构如上所述的本发明的流体压缩机的槽的螺距从上述汽缸的输入侧向输出端按照一定的变化率变小。因此,通过工作室将流体从汽缸的输入侧送至输出侧,无需用止回阀等也可以高效率的压缩流体。In the fluid compressor of the present invention having the above structure, the groove pitch decreases at a constant rate from the input side to the output side of the cylinder. Therefore, the fluid is sent from the input side of the cylinder to the output side through the working chamber, and the fluid can be compressed efficiently without using a check valve or the like.
另外,上述槽具有扩张部,所以与槽的螺距依一定的变化率减 小的压缩机相比,可以增加流体的排出容积。于是无需使装置体积增大即可实现大容量的压缩机。In addition, the above-mentioned groove has an expanding portion, so the pitch of the groove decreases at a certain rate of change. Compared with smaller compressors, the discharge volume of fluid can be increased. Thus, a large-capacity compressor can be realized without increasing the volume of the device.
图1至图10D表示了本发明流体压缩机的一个实施例:Fig. 1 shows an embodiment of fluid compressor of the present invention to Fig. 10D:
图1是上述压缩机整体的剖面图;Figure 1 is a sectional view of the overall compressor;
图2是旋转体的侧视图;Fig. 2 is the side view of rotating body;
图3是嵌条的侧视图;Figure 3 is a side view of the fillet;
图4是上述压缩机的压缩部分的剖面图;Fig. 4 is the sectional view of the compressing part of above-mentioned compressor;
图5是图4中沿Ⅴ-Ⅴ线的剖面图;Fig. 5 is a sectional view along the line V-V in Fig. 4;
图6是为说明螺旋槽的形状的上述旋转体的平面图;Fig. 6 is the plan view of the above-mentioned rotating body for illustrating the shape of spiral groove;
图7是上述旋转体的侧视图,其中一部分是剖面;Fig. 7 is the side view of above-mentioned rotating body, wherein a part is section;
图8表示了上述螺旋槽与工作室容积的关系;Fig. 8 has shown the relation of above-mentioned helical groove and working chamber volume;
图9A至图9C分别为上述螺旋槽的不同部分放大了的平面图;9A to 9C are respectively enlarged plan views of different parts of the above-mentioned spiral groove;
图10A至图10D分别为制冷剂气体的压缩过程;10A to 10D are the compression process of the refrigerant gas;
图11A至图11D分别为表示上述压缩行程中的汽缸与旋转体的相对位置的剖面图;11A to 11D are respectively sectional views showing the relative positions of the cylinder and the rotating body in the above-mentioned compression stroke;
图12表示了关于变形实施例的螺旋槽与工作室的容积之间的关系;Figure 12 has shown the relationship between the volume of the spiral groove and the working chamber about the modified embodiment;
图13和图14是关于该变形实施例的旋转杆的平面图和侧面图。13 and 14 are a plan view and a side view of the rotary rod concerning this modified embodiment.
下面参照附图对本发明的实施例作详细说明。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1表示了一个实施例,说明本发明适用于压缩冷冻循环制冷剂的封闭式压缩机。Fig. 1 shows an embodiment illustrating the application of the present invention to a hermetic compressor for compressing a refrigerant in a refrigerating cycle.
压缩机包括密闭外壳10、设置于该外壳内的电动机部分12和压缩部分14。电动机部分12包括固定于外壳10里面的大约
为环状的定子16和设于定子内侧的环状转子18。The compressor includes a
如图1及图4所示,压缩部分14有汽缸20,转子18同轴地固定在该汽缸的外柱面上。汽缸20的两端分别由固定于外壳10里面的轴承22a和22b支承,既可以自由旋转同时又是密闭的。特别是,汽缸20的右端部即输入侧部嵌入轴承22a的外柱面部分且可自由旋转,汽缸的左端部即输出侧部嵌入轴承22b的外柱面部分且可自由旋转。因此,汽缸20和固定于其上的转子18通过轴承22a和22b与定子16受到同轴支承。As shown in Figures 1 and 4, the
在汽缸20内的轴方向上设置了一个直径比汽缸内径小的圆柱形旋转杆24。杆24的中心轴A对汽缸20的中心轴B以偏距e偏心设置,同时其外柱面的一部分与汽缸的内柱面保持接触。这样,旋转杆24的两端部分别由轴承22a和22b可自由旋转地支承着。A
如图1和图4所示,在旋转杆24的输入侧的端部外柱面上形成配合槽26,从汽缸20的内柱面上突出的驱动销28可以沿汽缸的径向进退自由地插入该配合槽内。因此,当电动机部分12通电使汽缸20与转子18一同转动时,汽缸的回转力通过销28传至旋转杆24,结果,杆24的一部分与汽缸20的内柱面以保持接触的状态在汽缸内转动。As shown in Figures 1 and 4, a fitting groove 26 is formed on the outer cylindrical surface of the end of the input side of the
如图1和图2所示,在旋转杆24的外柱面上形成在杆的二端之间伸延的螺旋状槽30。而且,如图2所示的那样,除了后面将要说到的扩张部之外,该槽30的螺距从汽缸20的右端至左端,也就是从汽缸的输入侧向输出侧以一定的变化率渐渐地变小。槽30的圈数以4~7圈为好,本实施例中采用4圈。As shown in FIGS. 1 and 2 , a
在该槽30中嵌入了图3所示的螺旋状嵌条32。嵌条32由“弹伏龙”(商标)等弹性材料制成,利用该弹性将其拧入槽30内。嵌条32的厚度t大致与槽30的宽度一致。因而嵌条的各部分沿着槽30的形状而发生弹性变形并且相对于槽30可以沿着旋转杆24的径向自由进退。另外,嵌条32的外柱面与汽缸20的内柱面紧贴着汽缸的内柱面上滑动。A
因而如图1和图4所示那样,由于嵌条32把汽缸20的内柱面和杆24的外柱面之间的空间分成了多个工作室34。各工作室34由嵌条32的相邻的二圈限定,如图5所示,沿着嵌条,从杆24和汽缸20的内柱面的接触部分伸延至下一圈嵌条的接触部分,从而形成一个大致为初三月芽的形状。而工作室34的容积从汽缸20的输入侧向输出侧渐渐变小。Thus, as shown in FIGS. 1 and 4 , the space between the inner cylindrical surface of the
如图1和图4所示那样,在支承着汽缸20的输入侧部的轴承22a上,沿着汽缸20的轴向贯穿地开设了一个吸入孔36。该吸入孔的一端开口在汽缸20的输入侧部内,另一端与冷冻循环的吸入管38连接。另外,在支承着汽缸20的输出侧部的轴承22b上形成一个沿汽缸20轴向伸展的排出孔40。排出孔40的一端开口在汽缸20的输出侧部内,另一端开口在外壳10的内部。排出孔40也可以开在汽缸20上。另外,在杆24的内部形成有一个压力导入通路42,从杆的左端伸展至靠近右端。通路42的左端通过在轴承22b上所形成的通路44与外壳10的内部连通,更精确地说是与其底部连通。通路42的右端的开口形成在旋转杆24上的槽30的底部,外壳10的底部存放润滑油41。因此,外壳10内压力上升时,润滑油41通过通路44和42进入槽30的底部与嵌条32之间的空间。As shown in FIGS. 1 and 4 , in the bearing 22 a supporting the input side of the
图1中的标号46表示与外壳10的内部连通的排出管。
下面对螺旋状槽30的形状和工作室34进行详细说明。Next, the shape of the
如图6所示,螺旋槽30从旋转杆24的右端向左端伸展,共有4圈。因此,由嵌合于槽30的嵌条32限定了三个工作室34a、34b和34c。图6中的点划线C表示旋转杆24的外柱面与汽缸20的内柱面的接触位置。这样,工作室34a至34c分别由线C1、C2、C3和C4分隔开。As shown in FIG. 6 , the
如图8所示,槽30的形状使工作室34a至34c的容积渐渐地变小。图8中的纵轴表示沿旋转杆24的轴向从旋转杆24的右端到槽30间的距离,横轴表示沿旋转杆外柱面推进的槽30的相位。另外,图8的线A和B表示槽30的螺距的变化状态,线B相对于线A的相位错开360°。图6和图8中的斜线部分分别表示工作室34的面积,在下面的叙述中将上述斜线部分看作各工作室的容积。As shown in FIG. 8, the
如图6和图8所示,除第1圈外,槽30的螺距从汽缸20的输入侧向输出侧按一定的变化率减小。而槽30的第1圈形成了本发明的扩张部50。扩张部50有:与第1圈的始点一致的始点50a,与第1圈的终点一致的终点50b,位于上述始点和终点间的变换点50C。从始点50a伸至变换点50C的第1部分52a的螺距以小于上述一定的变化率的变化率减小;而从变换点50C伸至终点50b的第2部分52b的螺距以大于上述一定的变化率的变化率增大。另外,图6和图8中,双点划线54表示从槽30的始端至终端以上述一定的变化率变化情况下的槽的第1圈。从这些图中可以知道,由于槽30上有了扩张部,因此与槽30的螺距从槽的始端向终端按一定的变化率减小的情况相比,可使第1
工作室34a的容积扩大了由线54和扩张部50所包围的面积56这一部分容积。As shown in FIGS. 6 and 8 , except for the first turn, the pitch of the
若将第1工作室34a的容积表示为Vi,第3工作室34c的容积表示为Vo,那么压缩机的压缩率就由上述容积之比Vo/Vi决定。另外,在压缩机置于某一冷冻循环中时,要求在吸入孔36的制冷剂气体的吸入压力与排出孔40的制冷剂气体的排出压力设定在一定范围内。也就是说,如以pi表示吸入压力,Po表示排出压力,该压力比Po/Pi要求对应于制冷剂气体的种类及冷冻循环的种类,设定为3~12。因而为了得到所希望的压力比Po/Pi,就有必要使压缩机的压缩率与该压力比一致。为此,工作室34a和34c的容积比Vo/Vi应当是3~12。If the volume of the first working chamber 34a is expressed as Vi and the volume of the third working chamber 34c is expressed as Vo, the compression ratio of the compressor is determined by the volume ratio Vo/Vi. In addition, when the compressor is placed in a refrigerating cycle, it is required that the suction pressure of the refrigerant gas at the suction port 36 and the discharge pressure of the refrigerant gas at the discharge port 40 be set within a certain range. That is, if pi represents the suction pressure and Po represents the discharge pressure, the pressure ratio Po/Pi is required to be set at 3-12 corresponding to the type of refrigerant gas and the type of refrigeration cycle. Therefore, in order to obtain a desired pressure ratio Po/Pi, it is necessary to make the compression rate of the compressor match the pressure ratio. For this reason, the volume ratio Vo/Vi of the working chambers 34a and 34c should be 3-12.
如图6和图7所示,在旋转杆24的外柱面上形成一条导入槽60,该槽60沿杆的轴向从杆的输入侧部伸至输出侧部。该导入槽60比槽30深,从嵌条32的下面延伸通过。吸入汽缸20内的制冷剂气体通过导入槽60导入第1工作室34a。因此在旋转杆24的旋转方向为R时,第1工作室34a的始端由导入槽60的端缘60a限定。因而工作室34a的容积可以根据调整导入槽60的形成位置而任意设定。另外,工作室34a和34b的容积基本上是根据槽30的螺距在设计压缩机时确定的,但如上所述那样调整导入槽60的形成位置进而调整第1工作室34a的容积,就可以对应于冷冻循环所要求的压力比Po/Pi,将工作室的容积比Vo/Vi设定为一定的值。As shown in FIGS. 6 and 7, an introduction groove 60 is formed on the outer cylindrical surface of the
螺旋槽30的螺距从汽缸20的输入侧向输出侧变小。在此情况下,图9B中示出的位于输入侧的那部分槽的倾斜角,也就是
螺旋升角β比图9A中示出的位于输出侧的那部分槽30的螺旋升角大。为此,嵌条32为要在输入侧的槽30内沿旋转杆24的径向移动,嵌条的变形量也就需要变大。变形量变大时,槽30与嵌条32间的摩擦也增大,结果会妨碍嵌条顺当地移动。于是在嵌条32与汽缸20间产生间隙而成为漏气的原因。另外,如图9c所示,即使槽30的升角β相同,当槽的深度l2比图9B所示的槽的深度l1大的情况下,嵌条32的变形量也会进一步加大。因此就更易于使嵌条32移动不良。The pitch of the
根据本发明,槽30的形成是这样的:随着深度的增加,槽30的升角使槽30与嵌条32之间的间隙增加。因此,即使位于汽缸20的输入侧,也可以降低嵌条32的动作失误。另外,槽30的升角β是汽缸20的输入侧即低压侧大,适当地选择上述间隙就可以防止气体泄漏。According to the invention, the
下面对上述结构的压缩机的动作加以说明。Next, the operation of the compressor configured as above will be described.
首先,当电动机部分12通电时转子18就转动,与其为一体的汽缸20也转动。同时,旋转杆24在其外柱面的一部分与汽缸20的内柱面接触的状态下也被驱动而旋转。旋转杆24与汽缸20的这种相对旋转运动由销28和配合槽26构成的限制手段保证。因而嵌条32也旋转杆24成一体地旋转。First, when the
因为嵌条32以其外柱面与汽缸20的内柱面保持接触的状态旋转,所以嵌条32的各部分在接近旋转杆24的外柱面和汽缸20的内柱面的接触部分时被压入槽30内,而在离开接触部分时从槽向外移动。另一方面,当压缩部分14工作时,通过吸入管38和吸入孔36将制冷剂气体吸入汽缸20。该气体通过导入槽
60,首先被封闭到位于最靠近汽缸20的输入侧的第1工作室34a内。于是,如图10A至图10D所示那样,随着旋转杆24的旋转,上述气体在封闭于嵌条32相邻二圈内的空间状态下依次被送至第2和第3工作室34b和34c。于是,因为工作室34的容积从汽缸20的输入侧向输出侧渐渐地变小,所以制冷剂气体在被送向输出侧时渐渐地被压缩。然后经过压缩的制冷剂气体从轴承22上所形成的排出孔40排到外壳10内,再通过排出管46返回冷冻循环。另外,在上述压缩动作的过程中,汽缸20和旋转杆24的相对位置的变化如图11A至图11D所示。Since the
结构如上所述的压缩机中,在旋转杆24上所形成的槽30的螺距从汽缸20的输入侧向输出侧渐渐变小。也就是由嵌条32分隔出来的工作室34,向着输出侧一方而容积渐渐变小。因此,通过工作室34,在将制冷剂气体从汽缸20的输入侧向输出侧运送的过程中可以压缩制冷剂气体。另外,因为是在封闭于工作室34内的状态下运送并压缩制冷剂气体,所以即使在压缩机的输出侧不设排出阀也可以高效率地压缩气体。In the compressor configured as described above, the pitch of the
排出阀的省略可以简化压缩机的结构并减少构件的数目。另外,由于电动机部分12的转子18是由压缩部分14的汽缸20支承的,所以也就没有必要设置专用于支承转子的旋转轴和轴承等部件。因此,可以进一步地简化压缩机的结构并减少部件的数目。The omission of the discharge valve can simplify the structure of the compressor and reduce the number of components. In addition, since the
汽缸20和旋转杆24以相互向着同一方向旋转的状态相互接触。于是,其部件材料间的摩擦小,分别可以顺当地旋转,其结果是振动和噪音也小。The
压缩机的输送容量是由嵌条32的最初螺距也就是位于汽缸
20的输入端一侧的第1工作室34a的容积确定的。本实施例的螺旋槽30的第1圈构成了扩张部50,与槽30的螺距从槽的始端向终端以一定的变化率减小的情况相比,可以使第1工作室34a的容积也就是排出容积增大。为此,同旋转杆和螺旋槽的全长以及槽的圈数与之相等的其他压缩机相比,可以将排出容积设定得大一些。其结果是不用增大装置的体积就可以得到大容量的压缩机,可以提高冷冻循环的能力。The delivery capacity of the compressor is determined by the initial pitch of the
另外,压缩机的压缩比,也就是第1工作室34a与第2工作室34c的容积比Vo/Vi,可以对应于压缩机置于冷冻循环所要求的压力比Po/Pi的范围,设定在3~12的范围内,特别是可以设定成与所要求的压力比相同的值。为此,由压缩机压缩排入冷冻循环中的制冷剂气体几乎是不发生压力变化地被顺当地排出。也就是说,可以在不产生压缩过剩和压缩不足的情况下用适应于冷冻循环的压缩能力来压缩制冷剂气体。于是,可以利用改变旋转杆24的导入槽60的形成位置,也就是改变第1工作室34a的容积在一定的范围内自由变更压缩机的压缩能力。因此在压缩机的制造和装配时,能够容易地满足冷冻循环中压缩机的压缩能力的设计要求(性能要求)。由此可以提供具备现有压缩机所没有的能力可变性的压缩机。In addition, the compression ratio of the compressor, that is, the volume ratio Vo/Vi of the first working chamber 34a and the second working chamber 34c, can be set corresponding to the range of the pressure ratio Po/Pi required by the compressor to be placed in the refrigeration cycle. In the range of 3 to 12, in particular, it can be set to the same value as the required pressure ratio. For this reason, the refrigerant gas compressed by the compressor and discharged into the refrigerating cycle is smoothly discharged with almost no change in pressure. That is, it is possible to compress refrigerant gas with a compression capacity suitable for a refrigeration cycle without generating overcompression and undercompression. Therefore, the compression capacity of the compressor can be freely changed within a certain range by changing the formation position of the introduction groove 60 of the
另外,压缩机的嵌条32有4圈,最少可形成二个工作室,实施例中形成了三个工作室。而且,因为这些工作室34a至34c的容积是渐渐地减小的,所以制冷剂气体在通过这些工作室的过程中渐渐地被压缩。于是,为了完成一个压缩行程,旋转杆24和汽缸20必须旋转三圈。这样,一般是制成三个工作室,由于延长压
缩行程,以此可使相邻工作室内的制冷剂气体压力差比较小并且使作用于嵌条32上的压力变化较小。另外,相对于旋转杆24和汽缸20转一圈时,电动机部分12的负荷也可以相应减小。In addition, the
与此相反,当嵌条32的圈数小于4时,例如为3时,工作室最多为二个,在某些情况下只有一个。这种情况下工作室之间的压力差变大,作用于嵌条上的压力也发生大变化。因此,压力会集中作用于嵌条的一部分因而使嵌条产生变形,这种嵌条的变形即成为制冷剂气体泄漏的原因。更进一步,必须以旋转杆和汽缸一圈或二圈完成一个压缩行程,这使电动机部分增大负荷。为此就必须要大型的电动机部分。On the contrary, when the number of turns of the
根据本实施例,上述嵌条与3圈以下的情况进行比较,可以不产生大的压力变化而顺当地压缩制冷制气体,结果就可以减少泄气的发生。同时可以降低电动机部分12所要求的驱动转矩,可以用小型电动机高效率地进行压缩。更进一步,由于作用于嵌条的压力变化小,所以可以延长嵌条的寿命。According to this embodiment, compared with the case of 3 turns or less, the above-mentioned fillet can smoothly compress the refrigeration gas without causing a large pressure change, and as a result, the occurrence of gas leakage can be reduced. At the same time, the drive torque required by the
此外,嵌条32的圈数也不限于4圈,5圈以上也可以得到与上述实施例相同的长处。不过,工作室为5时可以获得充分效果,如果所设的工作室超过该数,嵌条32与槽30之间的摩擦损失就会增大。为此,随着电动机部分12所要求的驱动转矩的增大,就无法希望提高压缩效率。也就是说,嵌条的圈数若超过7时就会产生上述不良现象。因此可知,为了尽可能地使压缩机小型化轻量化并提高压缩效率,显然嵌条32的圈数以4至7最为合适。In addition, the number of turns of the
另外,本发明并不限于上述实施例,在本发明的范围内可以作出种种变形。In addition, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
例如象图12所示那样,螺旋槽30的一部分也可以制成等螺距部分62。这些等螺距部分62相对于旋转杆24的轴形成一定的倾斜度。于是可以利用等螺距部分62,调整在工作室内被压缩的制冷剂气体的压力变化的程度。For example, as shown in FIG. 12, a part of the
另外,在上述实施例中,槽30的扩张部分50设于槽的第1圈,但该扩张部分的全长也可以比第1圈的全长大或小。于是利用对扩张部分50的全长进行调整就可以容易地调整压缩机的压缩能力。In addition, in the above-mentioned embodiment, the expanded portion 50 of the
如图13和图14所示,对于将制冷剂气体导入第1工作室34a的导入槽,也可以用导入孔64代替。导入孔64沿着旋转杆轴向形成在旋转杆24内,具有开口于旋转杆的输入侧的端面的导入口64a和形成在旋转杆的外柱面的导出口64b。于是,第1工作室34a的始端由位于旋转杆24的旋转方向R的上流侧的导出口64b端缘限定。即使在这样的结构中也同上述实施例相同,可以利用调整导出口64b的开口位置,来调整第1工作室的容积,也就是压缩机的排出容积。As shown in FIGS. 13 and 14 , the introduction hole 64 may be used instead of the introduction groove for introducing the refrigerant gas into the first working chamber 34 a. The introduction hole 64 is formed in the
另外,本发明的压缩机不限于使用于冷冻循环,也可适用于其它用途。In addition, the compressor of the present invention is not limited to use in a refrigeration cycle, and can be applied to other applications.
Claims (9)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20216/89 | 1989-01-30 | ||
JP1020216A JP2804060B2 (en) | 1989-01-30 | 1989-01-30 | Fluid compressor |
JP19639/89 | 1989-01-31 | ||
JP19640/89 | 1989-01-31 | ||
JP1019640A JP3058332B2 (en) | 1989-01-31 | 1989-01-31 | Fluid compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1044701A CN1044701A (en) | 1990-08-15 |
CN1015486B true CN1015486B (en) | 1992-02-12 |
Family
ID=26356490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 90100434 Expired CN1015486B (en) | 1989-01-30 | 1990-01-26 | Fluid compressor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1015486B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1047272A (en) * | 1996-07-30 | 1998-02-17 | Toshiba Ave Corp | Fluid machinery |
-
1990
- 1990-01-26 CN CN 90100434 patent/CN1015486B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CN1044701A (en) | 1990-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1030967A (en) | fluid compressor | |
US11306720B2 (en) | Helical trochoidal rotary machines | |
CN1210205A (en) | scroll compressor | |
CN1012386B (en) | Fluid compressor | |
CN1115485C (en) | Hermetic compressor | |
CN1230622C (en) | Radial vortex compressor | |
CN1127848A (en) | Fluid mechanism | |
CN1231675C (en) | Transmission pin structure of swirl compressor | |
CN1350121A (en) | Scroll compressor | |
CN1045162A (en) | fluid compressor | |
US4997352A (en) | Rotary fluid compressor having a spiral blade with an enlarging section | |
CN1015486B (en) | Fluid compressor | |
CN1041428A (en) | fluid compressor | |
CN1080389C (en) | fluid compressor | |
CN1095942C (en) | Helical impeller compressor | |
JPH0732952Y2 (en) | Fluid compressor | |
JPH0732951Y2 (en) | Fluid compressor | |
JPH0219683A (en) | Fluid compressor | |
JPH0219682A (en) | Fluid compressor | |
JP2804060B2 (en) | Fluid compressor | |
JP2598033B2 (en) | Fluid compressor | |
CN1374456A (en) | fluid machinery | |
CN1014255B (en) | Fluid compressor | |
JP2928596B2 (en) | Fluid compressor | |
RU2200253C2 (en) | Rotary compressor (versions) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C13 | Decision | ||
GR02 | Examined patent application | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
OR01 | Other related matters | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |