CN101540357B - Growth method for controlling nucleation of self-organization In-Ga-As quantum dots - Google Patents
Growth method for controlling nucleation of self-organization In-Ga-As quantum dots Download PDFInfo
- Publication number
- CN101540357B CN101540357B CN2008101021989A CN200810102198A CN101540357B CN 101540357 B CN101540357 B CN 101540357B CN 2008101021989 A CN2008101021989 A CN 2008101021989A CN 200810102198 A CN200810102198 A CN 200810102198A CN 101540357 B CN101540357 B CN 101540357B
- Authority
- CN
- China
- Prior art keywords
- ingaas
- layer
- growth
- quantum dots
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000006911 nucleation Effects 0.000 title claims abstract description 34
- 238000010899 nucleation Methods 0.000 title claims abstract description 34
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 15
- 238000001451 molecular beam epitaxy Methods 0.000 claims abstract description 13
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 238000009736 wetting Methods 0.000 claims abstract description 9
- 238000000151 deposition Methods 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical group [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 12
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052738 indium Inorganic materials 0.000 claims description 8
- 230000007704 transition Effects 0.000 claims description 8
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- -1 indium gallium arsenic quantum dots Chemical class 0.000 claims description 6
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 4
- 239000012808 vapor phase Substances 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 23
- 230000001276 controlling effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 229910052785 arsenic Inorganic materials 0.000 description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000002189 fluorescence spectrum Methods 0.000 description 4
- 229910000673 Indium arsenide Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 238000000097 high energy electron diffraction Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004335 scaling law Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Images
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Luminescent Compositions (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明一种控制自组织铟镓砷量子点成核的生长方法,其特征在于,包括如下步骤:步骤1:选择一衬底;步骤2:在衬底上采用分子束外延或金属有机物化学气相淀积的方法淀积缓冲层,来隔离衬底中的杂质和位错,并使生长表面更加平整;步骤3:在缓冲层上淀积应力缓减层,来缓减缓冲层与铟镓砷材料之间的应变;步骤4:在应力缓减层上依序淀积第一层铟镓砷、超薄砷化铝和第二层铟镓砷层,形成铟镓砷浸润层和铟镓砷量子点层,完成生长的制备。
A growth method for controlling the nucleation of self-organized InGaAs quantum dots in the present invention is characterized in that it comprises the following steps: step 1: select a substrate; step 2: use molecular beam epitaxy or metal organic chemical vapor phase on the substrate The deposition method deposits a buffer layer to isolate impurities and dislocations in the substrate, and to make the growth surface smoother; step 3: deposit a stress relief layer on the buffer layer to relieve the buffer layer and InGaAs Strain between materials; step 4: sequentially deposit the first layer of InGaAs, ultra-thin AlAs and the second layer of InGaAs on the stress relief layer to form the InGaAs wetting layer and InGaAs Quantum dot layer to complete the preparation for growth.
Description
技术领域technical field
本发明涉及一种控制自组织铟镓砷量子点成核的生长方法。更确切的说,是在生长量子点的过程中铟镓砷材料从层状生长到岛状生长(2D-3D)转变的临界厚度附近引入一个超薄砷化铝层来调控量子点的成核过程的生长方法。The invention relates to a growth method for controlling the nucleation of self-organized indium gallium arsenic quantum dots. More precisely, an ultra-thin AlAs layer is introduced near the critical thickness of the InGaAs material from layer growth to island growth (2D-3D) transition during the growth of quantum dots to regulate the nucleation of quantum dots The growth method of the process.
背景技术Background technique
由于纳米量子结构中的受限电子、光子呈现出许多与体材料结构中十分不同的物理内涵、十分丰富的新量子现象和效应,这也就为新原理的电子、光电子器件的发展提供了新机遇,如发展基于不同应用目标、工作于不同波段的量子阱、量子线和量子点激光器、调制器和探测器等,由于其多维的限制,产生很多优越性,如量子点激光器则有窄发射线宽、高调制频率、高温度稳定性和低阈值电流密度等独特的优越特性。Because the confined electrons and photons in the nano-quantum structure present many physical connotations that are very different from those in the bulk material structure, and are very rich in new quantum phenomena and effects, this also provides new opportunities for the development of electronic and optoelectronic devices with new principles. Opportunities, such as the development of quantum wells, quantum wires and quantum dot lasers, modulators and detectors based on different application goals and working in different wavelength bands, etc., have many advantages due to their multi-dimensional limitations, such as quantum dot lasers have narrow emission Unique superior characteristics such as line width, high modulation frequency, high temperature stability and low threshold current density.
目前,以分子束外延技术和金属有机物化学气相淀积技术等为代表的低维材料生长新技术获得了巨大进展,并成功地生长出了一系列纳米结构材料。经多年的努力,在这两种技术的基础上,现已发展了多种半导体量子点材料的制备方法,归纳起来包括“自上而下”、“自下而上”和两种相结合的制备技术。其中“自上而下”的方法,是利用电子、离子或光学微细加工技术,通过刻蚀直接制备量子点。这种方法制备的量子点,虽然其尺寸、形状和密度可控,但加工带来的界面损伤以及工艺过程中引入的杂质污染等,使其相关的器件性能与理论预期相差甚远。而这种方法与“自下而上”的方法相结合后,虽然一定程度上提高了器件性能,但还是与理论预期存在一定距离。“自下而上”的方法一般又称为自组织生长方法。这种生长方法是利用SK(Stranski-Krastanow)生长模式在晶格失配的衬底上生长量子点,这种量子点几乎没有位错,具有较好的电学和光学性能。但是自组织方法生长的量子点,由于在Sk转变(即从层状生长模式转变到岛状生长模式(2D-3D))过程中量子点成核的随机性,一般都存在一定的尺寸分布,这会造成量子点光谱的非均匀展宽(20-100meV)。这种尺寸不均匀效应破坏了基于量子点独特的零维电子能态结构(δ函数态密度)所带来的优异性能,故如何提高量子点尺寸分布的均匀性成为了近年来的研究热点之一。At present, new low-dimensional material growth technologies represented by molecular beam epitaxy and metal-organic chemical vapor deposition have made great progress, and a series of nanostructure materials have been successfully grown. After years of hard work, on the basis of these two technologies, a variety of preparation methods for semiconductor quantum dot materials have been developed, including "top-down", "bottom-up" and a combination of the two Preparation technology. Among them, the "top-down" method is to use electronic, ion or optical microfabrication technology to directly prepare quantum dots by etching. Although the size, shape and density of the quantum dots prepared by this method are controllable, the interface damage caused by processing and the impurity contamination introduced during the process make the related device performance far from the theoretical expectation. However, the combination of this method and the "bottom-up" method improves the performance of the device to a certain extent, but there is still a certain distance from the theoretical expectation. The "bottom-up" approach is also generally referred to as the self-organizing growth approach. This growth method uses the SK (Stranski-Krastanow) growth mode to grow quantum dots on a lattice-mismatched substrate. This kind of quantum dots has almost no dislocations and has good electrical and optical properties. However, the quantum dots grown by the self-organization method generally have a certain size distribution due to the randomness of the nucleation of quantum dots during the Sk transition (that is, from the layered growth mode to the island growth mode (2D-3D)), This results in a non-uniform broadening (20-100 meV) of the quantum dot spectrum. This size inhomogeneity effect destroys the excellent performance based on the unique zero-dimensional electronic energy state structure (delta function density of states) of quantum dots, so how to improve the uniformity of quantum dot size distribution has become one of the research hotspots in recent years. one.
此外,低密度量子点可用于制备单光子源和单电子器件,也成为了近年来研究热点之一。而光子能量在1.3μm和1.5μm附近(长波长)的单光子源在量子通讯领域尤其应用广泛。而采用低生长速率、低砷压和较低的生长温度可以实现室温荧光在1.3μm左右的低密度量子点,但其生长条件范围极窄,细微的生长条件的变化就可能导致实验的失败。In addition, low-density quantum dots can be used to prepare single-photon sources and single-electron devices, which has become one of the research hotspots in recent years. Single photon sources with photon energies around 1.3 μm and 1.5 μm (long wavelength) are especially widely used in the field of quantum communication. However, low growth rate, low arsenic pressure, and low growth temperature can achieve low-density quantum dots with room temperature fluorescence of about 1.3 μm, but the range of growth conditions is extremely narrow, and slight changes in growth conditions may lead to experimental failure.
基于现有技术生长的铟镓砷量子点样品的生长方法也主要分为两类,请参阅图1(a)和(b)所示的现有技术结构A样品和结构B样品的结构示意图。现有技术结构A样品的生长步骤为:在衬底10’上采用分子束外延或金属有机物化学气相淀积的方法淀积缓冲层20’;在缓冲层20’上淀积应力缓减层30’;在应力缓减层30’上淀积铟镓砷材料来形成铟镓砷浸润层40’和铟镓砷量子点层50’。现有技术结构B样品的生长步骤类似于图1(a)的步骤,只是缺少淀积应力缓减层30’的步骤,从图1(a)和(b)可以看出量子点层50’是不均匀的凸起。基于现有技术生长铟镓砷量子点时,通过调节量子点的生长条件(如生长温度、生长速率和砷压等)和生长结构(dot-in-well结构或迭层量子点结构等)可以在一定范围内调控量子点的尺寸、形状、密度以及组分等。比如采用生长停顿的方法,可以利用量子点的尺寸自限制效用来提高量子点尺寸分布的均匀性;另外采用迭层量子点结构也可以得到窄光谱的量子点。而本文提供的这种在生长量子点的过程中引入一个超薄砷化铝层的方法(当铟镓砷的厚度处于2D-3D转变的临界厚度附近时引入超薄砷化铝层),利用了铝原子的迁移率低于镓原子的迁移率以及铝原子加入铟镓砷表面会使表面能提高这两个性质,来改变生长前沿的表面状况,使得从层状生长模式转变到岛状生长模式(2D-3D)转变提前,并促使3D岛在富铝区域均匀成核,从而调节量子点的成核密度以及提高量子点尺寸分布的均匀性。另外因为此方法可以控制3D岛在富铝区优先成核,所以可以通过控制超薄砷化铝层的引入量这一个额外参数来拓宽室温荧光在1.3μm左右的低密度量子点的生长条件的可选择范围。本方法思想新颖,相应生长工艺便于掌握和优化。The growth methods of InGaAs quantum dot samples grown based on the prior art are also mainly divided into two categories, please refer to the schematic diagrams of the structure A sample and the structure B sample of the prior art shown in Fig. 1 (a) and (b). The growth steps of the sample of structure A in the prior art are as follows: a buffer layer 20' is deposited on the substrate 10' by molecular beam epitaxy or metal-organic chemical vapor deposition; a
发明内容Contents of the invention
本发明的目的是提供一种控制自组织铟镓砷量子点成核的生长方法,其可实现在InxGa1-xAs生长前沿上生长InyGa1-yAs量子点时量子点成核机制的改变(0≤x<y≤1),促使量子点均匀成核,从而实现自组织铟镓砷量子点尺寸均匀性的提高及其成核密度的调控。The object of the present invention is to provide a growth method for controlling the nucleation of self-organized indium gallium arsenic quantum dots, which can realize the growth of In y Ga 1-y As quantum dots on the growth front of In x Ga 1-x As . The change of the nuclear mechanism (0≤x<y≤1) promotes the uniform nucleation of the quantum dots, thereby realizing the improvement of the size uniformity of the self-organized InGaAs quantum dots and the regulation of the nucleation density.
发明技术方案为:The technical solution of the invention is:
本发明提供一种控制自组织铟镓砷量子点成核的生长方法,其特征在于,包括如下步骤:The invention provides a growth method for controlling the nucleation of self-organized InGaAs quantum dots, which is characterized in that it comprises the following steps:
步骤1:选择一衬底;Step 1: Select a substrate;
步骤2:在衬底上采用分子束外延或金属有机物化学气相淀积的方法淀积缓冲层,来隔离衬底中的杂质和位错,并使生长表面更加平整;Step 2: Deposit a buffer layer on the substrate by molecular beam epitaxy or metal organic chemical vapor deposition to isolate impurities and dislocations in the substrate and make the growth surface smoother;
步骤3:在缓冲层上淀积应力缓减层,来缓减缓冲层与铟镓砷材料之间的应变;Step 3: Depositing a stress relief layer on the buffer layer to relieve the strain between the buffer layer and the InGaAs material;
步骤4:在应力缓减层上依序淀积第一层铟镓砷、超薄砷化铝和第二层铟镓砷层,形成铟镓砷浸润层和铟镓砷量子点层,完成生长的制备。Step 4: Deposit the first layer of InGaAs, ultra-thin AlAs and the second layer of InGaAs in sequence on the stress relief layer to form an InGaAs wetting layer and an InGaAs quantum dot layer to complete the growth preparation.
其中所述的衬底为砷化镓或磷化铟或硅衬底。Wherein said substrate is gallium arsenide or indium phosphide or silicon substrate.
其中所述的铟镓砷层的化学式为InxGa1-xAs,其中0<x≤1。The chemical formula of the InGaAs layer described therein is In x Ga 1-x As, where 0<x≤1.
其中所述的依序淀积的第一层铟镓砷的厚度与铟镓砷材料生长在应力缓减层上时从层状生长模式转变到岛状生长模式的临界厚度大致相同。The thickness of the sequentially deposited first layer of InGaAs described therein is approximately the same as the critical thickness for transitioning from layered growth mode to island growth mode when the InGaAs material is grown on the stress relief layer.
其中所述的超薄砷化铝的厚度小于1ML。The thickness of the ultra-thin aluminum arsenide is less than 1ML.
本发明提供一种控制自组织铟镓砷量子点成核的生长方法,其特征在于,包括如下步骤:The invention provides a growth method for controlling the nucleation of self-organized InGaAs quantum dots, which is characterized in that it comprises the following steps:
步骤1:选择一衬底;Step 1: Select a substrate;
步骤2:在衬底上采用分子束外延或金属有机物化学气相淀积的方法淀积缓冲层,来隔离衬底中的杂质和位错,并使生长表面更加平整;Step 2: Deposit a buffer layer on the substrate by molecular beam epitaxy or metal organic chemical vapor deposition to isolate impurities and dislocations in the substrate and make the growth surface smoother;
步骤3:在缓冲层上依序淀积第一层铟镓砷、超薄砷化铝和第二层铟镓砷层,形成铟镓砷浸润层和铟镓砷量子点层,完成生长的制备。Step 3: Deposit the first layer of InGaAs, ultra-thin AlAs and the second layer of InGaAs on the buffer layer in sequence to form an InGaAs wetting layer and an InGaAs quantum dot layer to complete the growth preparation .
其中所述的衬底为砷化镓或磷化铟衬底。The substrate mentioned therein is gallium arsenide or indium phosphide substrate.
其中所述的铟镓砷,其化学式为InxGa1-xAs,其中0<x≤1。The indium gallium arsenic mentioned therein has a chemical formula of In x Ga 1-x As, where 0<x≤1.
其中所述的依序淀积的第一层铟镓砷的厚度与铟镓砷材料生长在缓冲层上时从层状生长模式转变到岛状生长模式的临界厚度大致相同。The thickness of the sequentially deposited first layer of InGaAs described therein is approximately the same as the critical thickness for transitioning from layered growth mode to island growth mode when the InGaAs material is grown on the buffer layer.
其中所述的超薄砷化铝的厚度小于1ML。The thickness of the ultra-thin aluminum arsenide is less than 1ML.
本发明具有的意义:The significance that the present invention has:
本发明采用引入超薄砷化铝层这一简单的方式提供了一种改变自组织铟镓砷量子点成核机制的新方法,为控制量子点的尺寸、形状和密度等提供了一个新的可调参数,提高了自组织铟镓砷尺寸分布的均匀性,并拓宽了实现低密度量子点(室温荧光位于1.3μm左右)的生长条件的可选择范围。The invention provides a new method for changing the nucleation mechanism of self-organized InGaAs quantum dots by introducing an ultra-thin aluminum arsenide layer, and provides a new method for controlling the size, shape and density of quantum dots. The adjustable parameters improve the uniformity of the size distribution of self-organized InGaAs, and widen the selectable range of growth conditions for achieving low-density quantum dots (room temperature fluorescence at about 1.3 μm).
附图说明Description of drawings
为进一步说明本发明的具体技术内容,以下结合实施例及附图详细说明如后,其中:In order to further illustrate the specific technical content of the present invention, below in conjunction with embodiment and accompanying drawing detailed description as follows, wherein:
图1(a)是现有技术结构A样品的结构示意图;(b)是现有技术结构B样品的结构示意图;Fig. 1 (a) is the structural representation of prior art structure A sample; (b) is the structural representation of prior art structure B sample;
图2是本发明第一实施例样品的结构示意图;Fig. 2 is the structural representation of the sample of the first embodiment of the present invention;
图3是本发明第二实施例样品的结构示意图;Fig. 3 is the structural representation of the sample of the second embodiment of the present invention;
图4(a)是现有技术结构A样品的原子力照片(2×2μm2)以及相应的高度分布柱状图;(b)是本发明第一实施例样品的原子力照片(2×2μm2)以及相应的高度分布柱状图;Fig. 4 (a) is the atomic force photograph (2 * 2 μ m ) of prior art structure A sample and corresponding height distribution histogram; (b) is the atomic force photograph (2 * 2 μ m ) of the sample of the first embodiment of the present invention and corresponding Height distribution histogram;
图5(a)是现有技术结构A样品中小量子点集的尺寸标度分布(实心方块)同理论标度函数f1(u)(虚线)的比较;(b)是现有技术样品B中大量子点集的尺寸标度分布(实心方块)同理论标度函数f3(u)(虚线)的比较;Fig. 5 (a) is the comparison of the size scale distribution (solid square) of the small quantum dot set in the prior art structure A sample with the theoretical scaling function f 1 (u) (dotted line); (b) is the prior art sample B Comparison of the size scaling distribution (solid squares) of medium and large quantum point sets with the theoretical scaling function f 3 (u) (dashed line);
图6是本发明中所有量子点的尺寸标度分布(实心方块)同理论标度函数f3(u)(虚线)的比较;Fig. 6 is the comparison of the size scale distribution (solid square) of all quantum dots in the present invention with the theoretical scale function f 3 (u) (dotted line);
图7是本发明第二实施例样品的低温荧光光谱(80K),图中虚线代表高斯拟合峰;Fig. 7 is the low-temperature fluorescence spectrum (80K) of the sample of the second embodiment of the present invention, in which the dotted line represents the Gaussian fitting peak;
图8是现有技术结构B样品的低温荧光光谱(80K),图中虚线代表高斯拟合峰。Fig. 8 is the low-temperature fluorescence spectrum (80K) of the structure B sample in the prior art, and the dotted line in the figure represents the Gaussian fitting peak.
具体实施方式Detailed ways
请参阅图2所示,为本发明的第一实施例。Please refer to FIG. 2 , which is the first embodiment of the present invention.
本发明一种控制自组织铟镓砷量子点成核的生长方法,包括如下步骤:A growth method for controlling the nucleation of self-organized indium gallium arsenic quantum dots of the present invention comprises the following steps:
步骤1:选择一衬底10,所述的衬底10为砷化镓(001)衬底;Step 1: Select a
步骤2:在衬底10上采用分子束外延的方法生长缓冲层20,本例样品的生长在Riber 32p分子束外延设备中进行,所述的缓冲层20为400nm厚的砷化镓缓冲层,其生长温度为610℃,高温生长的砷化镓缓冲层可以使生长表面尽量平整,并可尽量减小衬底材料中杂质和位错对量子点层的光电性质的影响;Step 2: grow a
步骤3:在缓冲层20上,淀积应力缓减层30,所述的应力缓减层30为2nm厚的In0.15Ga0.85As应力缓减层,其生长温度降为510℃,此应力缓减层的生长可以减小铟原子和镓原子之间的互换作用;Step 3: Deposit a
步骤4:在应力缓冲层30上,依序淀积第一层铟镓砷、超薄砷化铝和第二层铟镓砷层,形成铟镓砷浸润层40和铟镓砷量子点层50,完成生长的制备。所述的铟镓砷,所选为砷化铟(化学式为InxGa1-xAs,x=0),所述的依序淀积的第一层铟镓砷的厚度为0.9ML,所述的超薄砷化铝的厚度为0.02ML,所述的第二层铟镓砷的厚度为0.2ML,本步骤生长温度仍为510℃,铟镓砷和砷化铝的淀积速率均为0.01ML/s。Step 4: On the
本实施例每个步骤的生长均采用As2气压,并一直保持在3.6×10-6Torr。The growth of each step in this embodiment adopts As 2 gas pressure, and keeps it at 3.6×10 -6 Torr.
为了比较,还生长了类似于本实施例样品结构的现有技术结构A样品(请参阅图1(b)),两样品的每步生长条件一样,以便于比较。For comparison, a prior art structure A sample (see FIG. 1(b)) similar to the sample structure of this embodiment was also grown, and the growth conditions of each step of the two samples were the same for comparison.
在生长样品之前,已经通过装配在分子束外延设备上的反射式高能电子衍射装置(RHEED)事先确定了,衬底温度为510℃时,2nm-In0.15Ga0.85As/GaAs上砷化铟材料2D-3D转变的临界厚度位于0.9ML-1.0ML之间。Before growing the sample, it has been determined in advance by the reflective high-energy electron diffraction device ( RHEED ) installed on the molecular beam epitaxy equipment. The critical thickness of 2D-3D transformation is between 0.9ML-1.0ML.
样品生长完成后,将衬底温度迅速冷却至室温,取出样品并对其进行原子力测量,结果在图4中给出。After the growth of the sample was completed, the substrate temperature was rapidly cooled to room temperature, and the sample was taken out for atomic force measurement. The results are shown in Figure 4.
根据图4,可以看出两个样品的表面形貌区别很大。现有技术结构A样品的表面量子点由两组量子点构成:一组是高度在0.9-3.5nm的小量子点,密度约为9.7×109cm-2,另一组是高度在7-14nm的大量子点,密度约为5.3×108m-2;而本发明第一实施例样品的表面量子点只包含一个模式,其密度约为5.5×109cm-2,高度分布可用一个高斯峰来拟合。According to Figure 4, it can be seen that the surface morphology of the two samples is very different. The surface quantum dots of the structure A sample in the prior art consist of two groups of quantum dots: one group is small quantum dots with a height of 0.9-3.5nm and a density of about 9.7×10 9 cm -2 , and the other group is a group of small quantum dots with a height of 7-3.5 nm. 14nm large quantum dots, the density is about 5.3×10 8 m -2 ; while the surface quantum dots of the sample of the first embodiment of the present invention only contain one mode, its density is about 5.5×10 9 cm -2 , and the height distribution can be a Gaussian peak to fit.
引进动力学标度理论来分析两个样品的成核过程。按照经典的成核理论,若3D岛的尺寸分布服从一定的标度规律(scalinglaw),则The kinetic scaling theory was introduced to analyze the nucleation process of the two samples. According to the classical nucleation theory, if the size distribution of 3D islands obeys a certain scaling law, then
N(u)=(θ/<s>2)f(u)N(u)=(θ/<s> 2 )f(u)
式中,θ是外延层的有效覆盖度,u=s/<s>,<s>是3D岛的平均尺寸,N(u)是尺寸为s的3D岛的数量密度,f(u)是标度函数,只依赖于u的大小。当u=1时,f(u)达到最大值。动力学标度理论起初被用来描述2D岛的成核过程,并在同质外延和异质外延中的理论模拟以及实验研究中得到了证实。只要比较实验测量的量子点的尺寸分布同理论函数即可得出临界成核数i的大小。另外经推导,当
图5(a)和(b)分别给出了现有技术结构A样品中小量子点和大量子点的尺寸标度分布。小量子点的尺寸标度分布的最大值处,u<1,其形状介于i=0和i=1的标度函数之间。一个系统的临界成核数i=0,意味着In原子一旦沉积到生长表面则立刻自发成核。这样的行为可能是因为生长表面中缺陷的存在,如台阶等。而现有技术结构A样品中大量子点的尺寸标度分布与小量子点的完全不一,其形状接近理论函数f3(u)。大小量子点的尺寸标度分布的不同表明,两者处于不同的演进发展阶段并且不可能同时成核。Figure 5(a) and (b) show the size scale distributions of small quantum dots and large quantum dots in the structure A sample of the prior art, respectively. At the maximum value of the size scale distribution of the small quantum dot, u<1, its shape is between the scale function of i=0 and i=1. The critical nucleation number i=0 for a system means that In atoms nucleate spontaneously as soon as they are deposited on the growth surface. Such behavior may be due to the presence of defects in the growth surface, such as steps, etc. However, the size scale distribution of large quantum dots in the structure A sample of the prior art is completely different from that of small quantum dots, and its shape is close to the theoretical function f 3 (u). The difference in the size scale distribution of large and small quantum dots indicates that the two are at different stages of evolutionary development and simultaneous nucleation is unlikely.
本发明第一实施例样品中的量子点的尺寸标度分布在图4中给出,其形状也是一个类i=3的函数,这说明本发明第一实施例样品中所有量子点都处于同一个演进阶段,可能同时成核。The size scale distribution of the quantum dots in the sample of the first embodiment of the present invention is provided in Fig. 4, and its shape is also a function of class i=3, which shows that all the quantum dots in the sample of the first embodiment of the present invention are at the same An evolutionary stage, possibly simultaneous nucleation.
现有技术结构A样品和本发明第一实施例样品中量子点的原子力形貌直观表现的差异及其尺度标度分布的区别,说明超薄砷化铝确实改变了自组织铟镓砷量子点在2D-3D转变初级阶段的成核过程,改变了量子点的成核密度,并促使量子点均匀成核,提高了量子点尺寸分布的均匀性。The difference between the atomic force morphology and the scale distribution of the quantum dots in the prior art structure A sample and the first embodiment sample of the present invention shows that the ultra-thin aluminum arsenide does change the self-organized indium gallium arsenide quantum dots The nucleation process in the initial stage of 2D-3D transformation changes the nucleation density of quantum dots, promotes uniform nucleation of quantum dots, and improves the uniformity of quantum dot size distribution.
请参阅图3,为本发明的第二实施例(其中第二实施例与第一实施例的相同部分采用了相同标号)。Please refer to FIG. 3 , which is a second embodiment of the present invention (wherein the same parts of the second embodiment and the first embodiment use the same reference numerals).
本发明一种控制自组织铟镓砷量子点成核的生长方法,包括如下步骤:A growth method for controlling the nucleation of self-organized indium gallium arsenic quantum dots of the present invention comprises the following steps:
步骤1:选择一衬底10,所述的衬底10为砷化镓(001)衬底;Step 1: Select a
步骤2:在衬底10上采用分子束外延淀积缓冲层20,本例样品的生长在Riber 32p分子束外延设备中进行,所述的缓冲层20为400nm厚的砷化镓缓冲层,其生长温度为610℃,高温生长的砷化镓缓冲层可以使生长表面尽量平整,并可尽量减小衬底材料中杂质和位错对量子点层的光电性质的影响;Step 2: On the
步骤3:在缓冲层20上依序淀积第一层铟镓砷、超薄砷化铝和第二层铟镓砷层,形成铟镓砷浸润层40和铟镓砷量子点层50。所述的铟镓砷,所选为砷化铟(化学式为InxGa1-xAs,x=0),所述的依序淀积的第一层铟镓砷的厚度为1.6ML,所述的超薄砷化铝的厚度为0.02ML,所述的第二层铟镓砷的厚度为0.3ML本步骤生长温度仍为490℃,铟镓砷淀积速率为0.00375ML/s,砷化铝的淀积速率为0.01ML/s。Step 3: sequentially depositing a first layer of InGaAs, an ultra-thin AlAs and a second layer of InGaAs on the
完成步骤3的生长后,依序在生长温度为490℃时继续生长了5nm厚的In0.15Ga0.85As和10nm厚的砷化镓低温盖层,接着温度升至610℃继续生长了240nm的砷化镓高温间隔层,完成样品的制备。本步生长其目的在于使样品更利于研究本发明量子点的光学性质的研究。After completing the growth in
本实施例每个步骤的生长均采用As2气压,除步骤3中As2气压保持在0.9×10-6Torr之外,其他步骤都保持在4×10-6Torr左右。The growth of each step in this embodiment adopts As 2 gas pressure, except that the As 2 gas pressure in
为了比较,还生长了类似于本实施例样品结构的现有技术结构B样品(请参阅图1(b)),两样品的每步生长条件一样,以便于比较。For comparison, a prior art structure B sample similar to the sample structure of this embodiment was also grown (see FIG. 1(b)), and the growth conditions of each step of the two samples were the same for comparison.
在生长样品的同时,通过装配在分子束外延设备上的反射式高能电子衍射装置(RHEED)观察,知道衬底温度为490℃时,砷化镓上砷化铟材料2D-3D转变的临界厚度略大于1.6ML。While growing the sample, observe the reflective high-energy electron diffraction device (RHEED) installed on the molecular beam epitaxy equipment, and know the critical thickness of the 2D-3D transition of the indium arsenide material on the gallium arsenide when the substrate temperature is 490°C Slightly larger than 1.6ML.
样品生长完成后,将衬底温度迅速冷却至室温,取出样品并对其进行平面透射电镜和低温光致发光测量(80K)。After the sample growth was completed, the substrate temperature was rapidly cooled to room temperature, and the sample was taken out for plane transmission electron microscopy and low-temperature photoluminescence measurement (80K).
本实施例中铟镓砷浸润层40和铟镓砷量子点层50的生长采用了低生长温度、低生长速率和低砷压条件,其目的在于研究本发明控制自组织铟镓砷量子点成核的生长方法在生长长波长低密度量子点方面的作用。In this embodiment, the growth of the
对样品进行平面透射电镜测试后,发现本发明第二实施例样品中量子点的面密度约为5×109cm-2,而现有技术结构B样品中量子点的面密度约为1.5×1010cm-2。可见后者的密度约为前者的三倍,超薄砷化铝的引入有效的降低了量子点的面密度。After the plane transmission electron microscope test was carried out on the sample, it was found that the areal density of the quantum dots in the sample of the second embodiment of the present invention was about 5×10 9 cm -2 , while the areal density of the quantum dots in the sample of structure B of the prior art was about 1.5× 10 10 cm -2 . It can be seen that the density of the latter is about three times that of the former, and the introduction of ultra-thin aluminum arsenide effectively reduces the areal density of quantum dots.
图7给出了本发明第二实施例样品的低温荧光光谱(80K,激发功率为10mW),经高斯拟合发现光谱包含E0(峰位=1.26μm,半高宽=28meV)和E1(峰位=1.18μm)两个峰,通过与高激发功率下的光谱比较,发现E0为量子点基态发光,E1为量子点激发态发光,这说明第二实施例样品只存在单模分布的量子点。Fig. 7 shows the low-temperature fluorescence spectrum (80K, excitation power is 10mW) of the sample of the second embodiment of the present invention, through Gaussian fitting, it is found that the spectrum comprises E0 (peak position=1.26 μm, full width at half maximum=28meV) and E1 (peak Bit=1.18μm) two peaks, by comparing with the spectrum under high excitation power, it is found that E0 is the quantum dot ground state light emission, and E1 is the quantum dot excited state light emission, which shows that there are only single-mode distribution quantum dots in the sample of the second embodiment .
图8给出了现有技术结构B样品的低温荧光光谱(80K,激发功率为10mW),经高斯拟合发现,光谱包含E0(峰位=1.27μm,半高宽=29meV)、E`0(峰位=1.16μm,半高宽=17meV)、E1(峰位=1.19μm)和E`1(峰位=1.16μm)两个峰,通过与高激发功率下的光谱比较,发现E0和E`0分别为样品中两个量子点集的基态发光,E1和E`1分别为样品中两个量子点集的激发态发光,这说明现有技术结构B样品中量子点的分布是双模的。Fig. 8 has provided the low-temperature fluorescence spectrum (80K, excitation power is 10mW) of prior art structure B sample, finds through Gaussian fitting, spectrum comprises E0 (peak position=1.27 μ m, full width at half maximum=29meV), E`0 (peak position=1.16μm, full width at half maximum=17meV), E1 (peak position=1.19μm) and E`1 (peak position=1.16μm) two peaks, by comparing with the spectrum under high excitation power, it is found that E0 and E`0 is the ground state luminescence of two quantum dot sets in the sample respectively, and E1 and E`1 are the excited state luminescence of the two quantum dot sets in the sample respectively, which shows that the distribution of quantum dots in the prior art structure B sample is double Die.
经过以上分析,可以说明超薄砷化铝的引入确实有效地降低了量子点的面密度并提高了量子点尺寸分布的均匀性,有利于实现长波长低密度量子点。After the above analysis, it can be shown that the introduction of ultra-thin aluminum arsenide does effectively reduce the surface density of quantum dots and improve the uniformity of quantum dot size distribution, which is conducive to the realization of long-wavelength and low-density quantum dots.
虽然参照上述实施例详细地描述了本发明,但是应该理解本发明并不限于所公开的实施例,对于本专业领域的技术人员来说,可对其形式和细节进行各种改变。本发明意欲涵盖所附权利要求书的精神和范围内的各种变形。While the present invention has been described in detail with reference to the foregoing embodiments, it is to be understood that the invention is not limited to the disclosed embodiments and that various changes in form and details will occur to those skilled in the art. The present invention is intended to cover modifications within the spirit and scope of the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101021989A CN101540357B (en) | 2008-03-19 | 2008-03-19 | Growth method for controlling nucleation of self-organization In-Ga-As quantum dots |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101021989A CN101540357B (en) | 2008-03-19 | 2008-03-19 | Growth method for controlling nucleation of self-organization In-Ga-As quantum dots |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101540357A CN101540357A (en) | 2009-09-23 |
CN101540357B true CN101540357B (en) | 2010-09-01 |
Family
ID=41123441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101021989A Expired - Fee Related CN101540357B (en) | 2008-03-19 | 2008-03-19 | Growth method for controlling nucleation of self-organization In-Ga-As quantum dots |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101540357B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102931233B (en) * | 2011-08-08 | 2016-03-16 | 中芯国际集成电路制造(上海)有限公司 | Nmos pass transistor and forming method thereof |
GB201612419D0 (en) * | 2016-07-18 | 2016-08-31 | Cambridge Entpr Ltd | A scalable quantum-confined device |
FR3079070B1 (en) | 2018-03-13 | 2020-02-28 | Soitec | METHOD FOR MANUFACTURING A PLURALITY OF CRYSTALLINE SEMICONDUCTOR ISLANDS HAVING A VARIETY OF MESH PARAMETERS |
FR3079071B1 (en) | 2018-03-13 | 2020-02-28 | Soitec | METHOD FOR MANUFACTURING A PLURALITY OF CRYSTALLINE SEMICONDUCTOR ISLANDS HAVING A VARIETY OF MESH PARAMETERS |
CN110447100B (en) * | 2017-03-17 | 2023-07-18 | 索泰克公司 | Growth substrate for forming optoelectronic devices, method for manufacturing same and use of same especially in the field of microdisplays |
CN114907848B (en) * | 2022-04-25 | 2023-04-07 | 苏州大学 | Growth method of dual-mode-size InAs/GaAs quantum dot, quantum dot and quantum dot composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1187689A (en) * | 1997-09-04 | 1999-03-30 | Fujitsu Ltd | Manufacturing method of quantum dots |
CN1549411A (en) * | 2003-05-21 | 2004-11-24 | 中国科学院半导体研究所 | Fabrication method of self-organized indium arsenide/gallium arsenide disk quantum dot material |
JP2005109366A (en) * | 2003-10-02 | 2005-04-21 | Hitachi Cable Ltd | Semiconductor device and manufacturing method thereof |
CN1786107A (en) * | 2004-12-09 | 2006-06-14 | 中国科学院半导体研究所 | 1.3 micron high density guantum point structure and its preparation method |
-
2008
- 2008-03-19 CN CN2008101021989A patent/CN101540357B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1187689A (en) * | 1997-09-04 | 1999-03-30 | Fujitsu Ltd | Manufacturing method of quantum dots |
CN1549411A (en) * | 2003-05-21 | 2004-11-24 | 中国科学院半导体研究所 | Fabrication method of self-organized indium arsenide/gallium arsenide disk quantum dot material |
JP2005109366A (en) * | 2003-10-02 | 2005-04-21 | Hitachi Cable Ltd | Semiconductor device and manufacturing method thereof |
CN1786107A (en) * | 2004-12-09 | 2006-06-14 | 中国科学院半导体研究所 | 1.3 micron high density guantum point structure and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN101540357A (en) | 2009-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Høiaas et al. | GaN/AlGaN nanocolumn ultraviolet light-emitting diode using double-layer graphene as substrate and transparent electrode | |
CN101540357B (en) | Growth method for controlling nucleation of self-organization In-Ga-As quantum dots | |
KR101209151B1 (en) | Method for fabricating quantum dot and semiconductor structure containing quantum dot | |
Tatebayashi et al. | Site-controlled formation of InAs/GaAs quantum-dot-in-nanowires for single photon emitters | |
CN102420277B (en) | Method for preparing active layer structure with high-density gallium nitride quantum dots | |
Seravalli et al. | Design and growth of metamorphic InAs/InGaAs quantum dots for single photon emission in the telecom window | |
CN109103070B (en) | Method for preparing high-quality thick film AlN based on nano-pattern silicon substrate | |
DE102015102592A1 (en) | A method of growing a nitride single crystal and a method of manufacturing a nitride semiconductor device | |
Li et al. | Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays | |
CN105088181A (en) | MOCVD preparation method for silicon-based quantum dot laser material | |
Hasan et al. | Encapsulation study of MOVPE grown InAs QDs by InP towards 1550 nm emission | |
Semenova et al. | Epitaxial growth of Quantum Dots on InP for device applications operating in the 1.55 µm wavelength range | |
CN103820848B (en) | A kind of method at InP substrate Epitaxial growth II type GaSb/InGaAs quantum dot | |
CN104157759B (en) | High density and high uniformity InGaN quantum dot structure and growth method thereof | |
CN114743864B (en) | Ordered semiconductor quantum dot preparation method and device | |
Cherkashin et al. | Control over the parameters of InAs-GaAs quantum dot arrays in the Stranski-Krastanow growth mode | |
Hanna et al. | MOCVD growth and optical characterization of strain-induced quantum dots with InP island stressors | |
WO2023168356A2 (en) | Hybrid covalent-van der waals system 2d heterostructures by dative epitaxy | |
Zhao et al. | Cost-effective selective-area growth of GaN-based nanocolumns on silicon substrates by molecular-beam epitaxy | |
Nguyen | Sillicon photonics based on monolithic integration of III-V nanostructures on silicon | |
Dai et al. | Annealing effect on the formation of In (Ga) As quantum rings from InAs quantum dots | |
Schupp et al. | Growth of cubic GaN quantum dots | |
Li et al. | Selective area growth of InGaAs/InP quantum well nanowires on SOI substrate | |
Park et al. | Synthesis of hybrid nanowires comprising uniaxial and coaxial InGaN/GaN MQWs with a nano-cap | |
CN100468802C (en) | Nanostructure of indium arsenide and gallium arsenide and its fabrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100901 Termination date: 20140319 |