CN101538066B - Method for realizing mono-disperse modification and optimal orientation array of hypovanadic oxide nano wire - Google Patents
Method for realizing mono-disperse modification and optimal orientation array of hypovanadic oxide nano wire Download PDFInfo
- Publication number
- CN101538066B CN101538066B CN2008102374259A CN200810237425A CN101538066B CN 101538066 B CN101538066 B CN 101538066B CN 2008102374259 A CN2008102374259 A CN 2008102374259A CN 200810237425 A CN200810237425 A CN 200810237425A CN 101538066 B CN101538066 B CN 101538066B
- Authority
- CN
- China
- Prior art keywords
- nanowire
- stearic acid
- nanowires
- add
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000012986 modification Methods 0.000 title claims abstract description 9
- 230000004048 modification Effects 0.000 title claims abstract description 9
- 235000021355 Stearic acid Nutrition 0.000 claims abstract description 24
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims abstract description 24
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000008117 stearic acid Substances 0.000 claims abstract description 24
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 230000005291 magnetic effect Effects 0.000 claims abstract description 7
- 230000005298 paramagnetic effect Effects 0.000 claims abstract description 7
- 230000007704 transition Effects 0.000 claims abstract description 7
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 30
- 238000003756 stirring Methods 0.000 claims description 21
- 239000002356 single layer Substances 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 10
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 10
- 239000004530 micro-emulsion Substances 0.000 claims description 6
- 239000004094 surface-active agent Substances 0.000 claims description 6
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 5
- 239000012046 mixed solvent Substances 0.000 claims description 4
- GRUMUEUJTSXQOI-UHFFFAOYSA-N vanadium dioxide Chemical compound O=[V]=O GRUMUEUJTSXQOI-UHFFFAOYSA-N 0.000 abstract description 15
- 238000006557 surface reaction Methods 0.000 abstract description 3
- 229910021542 Vanadium(IV) oxide Inorganic materials 0.000 abstract description 2
- 238000001556 precipitation Methods 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract 1
- 230000010354 integration Effects 0.000 abstract 1
- 230000005693 optoelectronics Effects 0.000 abstract 1
- 238000005054 agglomeration Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Colloid Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
一种实现二氧化钒纳米线单分散修饰和择优取向排列的方法。方法是将VO2纳米线在经过硬脂酸及十六烷基三甲基溴化铵两步表面功能化处理后可以在氯仿中达到单分散,放置1个月而不产生沉淀。得到的VO2纳米线LB膜实现了(00l)晶面取向和局部区域定向排列,并具有准持续光电导及典型的磁相变和顺磁特性。该方法工艺十分简单,对设备要求低,重现性好,可控程度高,符合环境要求,该技术适用于传感、光电、生物等新型纳米器件的组装、集成及应用。
A method for realizing monodisperse modification and preferred orientation arrangement of vanadium dioxide nanowires. The method is that the VO 2 nanowires can be monodispersed in chloroform after two-step surface functionalization treatment of stearic acid and cetyltrimethylammonium bromide, and no precipitation occurs after being placed for 1 month. The obtained VO 2 nanowire LB film realized (00l) crystal plane orientation and local area alignment, and had quasi-sustained photoconductivity and typical magnetic phase transition and paramagnetic properties. The process of the method is very simple, low in equipment requirements, good in reproducibility, high in controllability, and in compliance with environmental requirements. This technology is suitable for assembly, integration and application of new nano-devices such as sensing, optoelectronics, and biology.
Description
技术领域technical field
本发明涉及一种利用常见的表面活性剂和简单可行的表面修饰方法实现VO2的纳米线单分散和择优取向排列,属于纳米材料和纳米技术领域。The invention relates to a method for realizing VO2 nanowire monodispersity and preferred orientation arrangement by using a common surfactant and a simple and feasible surface modification method, and belongs to the field of nanomaterials and nanotechnology.
背景技术Background technique
近年来,纳米科技蓬勃发展,纳米材料的应用受到各领域的广泛关注。但纳米粒子的粒径很小,其高的表面能使它易于团聚,分散性差,形成二次粒子,无法表现出其受人青睐的表面积效应、体积效应及量子尺寸效应等,严重影响其使用效果。因此,在实际应用中,如何对纳米粒子的表面进行功能化处理,避免纳米粒子的团聚,提高其分散性,并对其进行择优取向排列和有序组装,是纳米材料科学领域十分重要的研究课题,对于纳米材料的器件化和实用化具有重要意义。In recent years, nanotechnology has developed vigorously, and the application of nanomaterials has attracted widespread attention in various fields. However, the particle size of nanoparticles is very small, and its high surface energy makes it easy to agglomerate, poor dispersion, and the formation of secondary particles, which cannot show its favored surface area effect, volume effect and quantum size effect, which seriously affects its use. Effect. Therefore, in practical applications, how to functionalize the surface of nanoparticles, avoid the agglomeration of nanoparticles, improve their dispersion, and arrange their preferred orientation and orderly assembly is a very important research in the field of nanomaterials science. This topic is of great significance for the deviceization and practical application of nanomaterials.
发明内容Contents of the invention
本发明针对纳米领域内存在的团聚现象,提供一种简单可行的表面修饰方法,消除纳米粒子常见的团聚性以得到较好的单分散性,使得VO2纳米线获得良好的单分散性,并进行组装,实现VO2纳米线的择优取向排列和局部有序组装,得到的VO2纳米线LB膜具有较好的准持续光电导及典型的磁相变和顺磁特性。Aiming at the agglomeration phenomenon existing in the nanometer field, the present invention provides a simple and feasible surface modification method to eliminate the common agglomeration of nanoparticles to obtain better monodispersity, so that VO2 nanowires can obtain good monodispersity, and The assembly was carried out to realize the preferred orientation arrangement and local ordered assembly of VO 2 nanowires. The obtained VO 2 nanowire LB film has good quasi-sustained photoconductivity and typical magnetic phase transition and paramagnetic properties.
本发明所采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
一种实现VO2纳米线单分散修饰和择优取向排列的方法,其方法步骤如下:A method for realizing VO nanowire monodisperse modification and preferred orientation arrangement, the method steps are as follows:
1、量取40~60毫升甲苯移入100毫升烧杯中,向其中加入0.8~1.2毫摩尔的硬脂酸并剧烈搅拌,将烧杯在温度70℃、80℃或90℃水浴下加热,持续搅拌致硬脂酸溶解或熔融;向其中加入VO2纳米线,VO2纳米线与硬脂酸的摩尔比为1∶2,搅拌0.5~1.5小时后离心分离,用甲苯洗涤除去过量的硬脂酸,得到硬脂酸修饰过的VO2纳米线;1. Measure 40-60 ml of toluene into a 100-ml beaker, add 0.8-1.2 mmol of stearic acid into it and stir vigorously, heat the beaker in a water bath at a temperature of 70°C, 80°C or 90°C, and keep stirring until Stearic acid dissolves or melts; Add VO nanowire wherein, the mol ratio of VO nanowire and stearic acid is 1: 2, centrifuge after stirring for 0.5~1.5 hours, wash with toluene to remove excess stearic acid, Obtain stearic acid-modified VO nanowires ;
2、称取8~12克表面活性剂十六烷基三甲基溴化铵移入80毫升烧杯中,加入40毫升环己烷和10毫升去离子水;取0.08~0.12毫摩尔硬脂酸修饰过的VO2纳米线加入8~12毫升正丁醇中,超声分散5分钟,然后全部移入上述环己烷溶液中,剧烈搅拌得到一种澄清半透明的微乳液;持续搅拌1.5~2.5小时后离心分离,用体积比1∶1的异辛烷/氯仿混合溶剂洗涤8~12次;2. Weigh 8-12 grams of surfactant cetyltrimethylammonium bromide and transfer it into an 80-ml beaker, add 40 ml of cyclohexane and 10 ml of deionized water; take 0.08-0.12 mmol of stearic acid to modify Add the processed VO2 nanowires into 8-12 ml of n-butanol, ultrasonically disperse for 5 minutes, then transfer all of them into the above-mentioned cyclohexane solution, and stir vigorously to obtain a clear and translucent microemulsion; after continuous stirring for 1.5-2.5 hours, Centrifuged, washed 8 to 12 times with a mixed solvent of isooctane/chloroform with a volume ratio of 1:1;
3、将固态衬底处理成亲水;3. Treat the solid substrate to be hydrophilic;
4、用Langumir(朗格缪尔)水槽,控制水表面的经步骤2处理过的VO2纳米线单层膜的表面压力-表面积等温线,以形成的VO2纳米线单层膜;4, with Langumir (Langmuir) flume, control the surface pressure-surface area isotherm of the VO nanowire monolayer film that is processed through step 2 on the water surface, to form VO Nanowire monolayer film;
5、将步骤4形成的VO2纳米线单层膜,转移到步骤3处理过的固态衬底表面形成VO2纳米线Langumir-Blodget(朗格缪尔-布罗吉特)即LB膜,得到的VO2纳米线LB膜实现了(00l)晶面取向。5, the VO2nanowire monolayer film that step 4 forms is transferred to the solid substrate surface processed in step 3 to form VO2nanowire Langumir-Blodget (Langmuir-Blodget) i.e. LB film, to obtain The VO 2 nanowire LB film realized the (00 l ) crystal plane orientation.
本发明选用有机酸作为表面修饰剂有两条出发点:其一是羧基能够和VO2纳米线表面的羟基产生氢键,使得VO2纳米线表面羟基的数目减少,从而减小团聚;其二是作为阴离子型表面活性剂,其羧基会发生水解,为后面在有水的环境下进一步修饰提供方便。用微乳液法进行二次修饰是因为经过微乳液修饰后的VO2纳米线的单分散性会得到进一步的提升。VO2纳米线在经过两步表面功能化处理后可以在氯仿中达到单分散,放置1个月而不产生沉淀。得到的VO2纳米线LB膜实现了(00l)晶面取向和局部区域定向排列,并具有准持续光电导及典型的磁相变和顺磁特性。The present invention selects organic acid as the surface modifier and has two starting points: one is that the carboxyl group can generate hydrogen bonds with the hydroxyl groups on the surface of the VO2 nanowires, so that the number of hydroxyl groups on the surface of the VO2 nanowires is reduced, thereby reducing agglomeration; the other is that As an anionic surfactant, its carboxyl group will be hydrolyzed, which provides convenience for further modification in an aqueous environment. The secondary modification by microemulsion method is because the monodispersity of VO 2 nanowires modified by microemulsion will be further improved. The VO 2 nanowires could be monodispersed in chloroform after two-step surface functionalization treatment, and they were left for 1 month without precipitation. The obtained VO 2 nanowire LB film realized (00 l ) crystal plane orientation and local area alignment, and had quasi-sustained photoconductivity and typical magnetic phase transition and paramagnetic properties.
本发明能够使VO2纳米线得到更好的单分散和择优取向,有利于组装纳米器件并提高纳米器件的性能,为纳米材料的实用化提供一条可行的途径。The invention can make the VO2 nanowires obtain better monodispersity and preferred orientation, is beneficial to assemble nanometer devices and improve the performance of nanometer devices, and provides a feasible way for the practical application of nanometer materials.
附图说明:Description of drawings:
图1为实施例1VO2纳米线的表面功能化示意图Fig. 1 is the surface functionalization schematic diagram of embodiment 1VO 2 nanowires
图2为实施例1VO2纳米线LB膜的π-A等温曲线图Fig. 2 is the π-A isotherm graph of embodiment 1VO 2 nanowire LB film
图3为实施例1表面修饰后VO2纳米线40mN/m表面压下LB膜的SEM图像(插图为局部放大图)Fig. 3 is the SEM image of LB film under 40mN/m surface pressure of VO nanowire 40mN/m surface after the surface modification of embodiment 1 (insert is a partially enlarged view)
图4为实施例1VO2纳米线LB膜(a)和VO2纳米线粉末(b)的XRD图谱Fig. 4 is the XRD spectrum of embodiment 1VO2nanowire LB film (a) and VO2nanowire powder (b)
其图3表明VO2纳米线LB膜具有一定局部有序性。图4表明经过表面修饰和LB组装后实现了VO2纳米线的(00l)晶面择优取向。Its Figure 3 shows that the VO2 nanowire LB film has a certain local order. Figure 4 shows that the (00 l ) crystal plane preferred orientation of VO 2 nanowires is achieved after surface modification and LB assembly.
具体实施方式Detailed ways
下面通过实施例对本发明的方法作进一步说明。The method of the present invention will be further described below by way of examples.
实施例1:Example 1:
1、量取50毫升甲苯移入100毫升烧杯中,向其中加入1毫摩尔硬脂酸并剧烈搅拌,将烧杯在90℃水浴下加热,持续搅拌致硬脂酸溶解或熔融;向其中加入0.5毫摩尔VO2纳米线,搅拌1小时后离心分离,用甲苯洗涤除去过量的硬脂酸,得到硬脂酸修饰过的VO2纳米线;1. Measure 50 ml of toluene and transfer it into a 100 ml beaker, add 1 mmol of stearic acid into it and stir vigorously, heat the beaker in a water bath at 90°C, and keep stirring until the stearic acid dissolves or melts; add 0.5 mmol of stearic acid to it. Mole of VO2nanowires , centrifuged after stirring for 1 hour, washed with toluene to remove excess stearic acid, to obtain stearic acid-modified VO2nanowires ;
2、称取10克表面活性剂CTAB移入80毫升1烧杯中,加入40毫升环己烷和10毫升去离子水;取0.1毫摩尔硬脂酸修饰过的VO2纳米线加入10毫升正丁醇中超声分散5分钟,然后全部移入上述环己烷溶液中,剧烈搅拌得到一种黑色澄清半透明的微乳液,持续搅拌2小时后离心分离,用体积比1∶1的异辛烷/氯仿混合溶剂洗涤10次;2. Weigh 10 grams of surfactant CTAB and transfer to 80 ml of 1 beaker, add 40 ml of cyclohexane and 10 ml of deionized water; take 0.1 mmol of stearic acid-modified VO2 nanowires and add 10 ml of n-butanol Ultrasonic dispersion for 5 minutes, then all transferred to the above cyclohexane solution, stirred vigorously to obtain a black clear translucent microemulsion, centrifuged after continuous stirring for 2 hours, mixed with isooctane/chloroform at a volume ratio of 1:1 Solvent washing 10 times;
3、将固态衬底处理成亲水;3. Treat the solid substrate to be hydrophilic;
4、用Langumir水槽,控制水表面的经步骤2处理过的VO2纳米线单层膜的表面压力-表面积等温线,以形成VO2纳米线单层膜;4. With a Langumir tank, control the surface pressure - surface area isotherm of the VO nanowire monolayer film processed in step 2 on the water surface to form VO nanowire monolayer film;
5、将步骤4形成的VO2纳米线单层膜,转移到步骤3处理过的固态衬底表面形成VO2纳米线LB膜,实现了二氧化钒纳米线(00l)晶面取向和局部区域定向排列,并具有准持续光电导及典型的磁相变和顺磁特性。5. Transfer the VO 2 nanowire monolayer film formed in step 4 to the surface of the solid substrate treated in step 3 to form a VO 2 nanowire LB film, realizing the (00 l ) crystal plane orientation and local The regions are aligned and have quasi-sustained photoconductivity and typical magnetic phase transition and paramagnetic properties.
VO2纳米线LB膜的π-A等温曲线如图2。表面修饰后VO2纳米线40mN/m表面压下LB膜的SEM图像如图3,其中插图为局部放大图。VO2纳米线LB膜的XRD图谱如图4(a),VO2纳米线粉末的XRD图谱如图4(b)。The π-A isotherm curves of VO nanowire LB films are shown in Fig. 2. The SEM image of the LB film under the 40mN/m surface pressure of VO2 nanowires after surface modification is shown in Figure 3, where the inset is a partial enlarged view. The XRD pattern of VO 2 nanowire LB film is shown in Figure 4(a), and the XRD pattern of VO 2 nanowire powder is shown in Figure 4(b).
实施例2:Example 2:
1、量取40毫升甲苯移入100毫升烧杯中,向其中加入0.8毫摩尔硬脂酸并剧烈搅拌,将烧杯在70℃水浴下加热,持续搅拌致硬脂酸溶解或熔融;向其中加入0.4毫摩尔VO2纳米线,搅拌0.5小时后离心分离,用甲苯洗涤除去过量的硬脂酸,得到硬脂酸修饰过的VO2纳米线;1. Measure 40 ml of toluene and transfer it into a 100 ml beaker, add 0.8 mmol of stearic acid into it and stir vigorously, heat the beaker in a water bath at 70°C, and keep stirring until the stearic acid dissolves or melts; add 0.4 mmol of stearic acid to it. Mole of VO2nanowires , centrifuged after stirring for 0.5 hours, washed with toluene to remove excess stearic acid, to obtain stearic acid modified VO2nanowires ;
2、称取8克表面活性剂CTAB移入80毫升烧杯中,加入40毫升环己烷和10毫升去离子水;取0.08毫摩尔硬脂酸修饰过的VO2纳米线加入8毫升正丁醇中超声分散5分钟然后全部移入上述环己烷溶液中,剧烈搅拌得到一种黑色澄清半透明的微乳液,持续搅拌1.5h后离心分离,用体积比1∶1的异辛烷/氯仿混合溶剂洗涤8次;2. Weigh 8 grams of surfactant CTAB and transfer it to an 80-ml beaker, add 40 ml of cyclohexane and 10 ml of deionized water; take 0.08 mmol of stearic acid-modified VO2 nanowires and add them to 8 ml of n-butanol Ultrasonic dispersion for 5 minutes and then all transferred to the above cyclohexane solution, vigorously stirred to obtain a black clear translucent microemulsion, centrifuged after continuous stirring for 1.5h, washed with a mixed solvent of isooctane/chloroform with a volume ratio of 1:1 8 times;
3、将固态衬底处理成亲水;3. Treat the solid substrate to be hydrophilic;
4、用Langumir水槽,控制水表面的经步骤2处理过的VO2纳米线单层膜的表面压力-表面积等温线,以形成VO2纳米线单层膜;4. With a Langumir tank, control the surface pressure - surface area isotherm of the VO nanowire monolayer film processed in step 2 on the water surface to form VO nanowire monolayer film;
5、将步骤4形成的VO2纳米线单层膜,转移到步骤3处理过的固态衬底表面形成VO2纳米线LB膜,实现了二氧化钒纳米线(00l)晶面取向和局部区域定向排列,并具有准持续光电导及典型的磁相变和顺磁特性。5. Transfer the VO 2 nanowire monolayer film formed in step 4 to the surface of the solid substrate treated in step 3 to form a VO 2 nanowire LB film, realizing the (00 l ) crystal plane orientation and local The regions are aligned and have quasi-sustained photoconductivity and typical magnetic phase transition and paramagnetic properties.
实施例3:Example 3:
1、量取60毫升甲苯移入100毫升烧杯中,向其中加入1.2毫摩尔硬脂酸并剧烈搅拌,将烧杯在80℃水浴下加热,持续搅拌致硬脂酸溶解或熔融;向其中加入0.6毫摩尔VO2纳米线,搅拌1.5小时后离心分离,用甲苯洗涤除去过量的硬脂酸,得到硬脂酸修饰过的VO2纳米线;1.
2、称取12克表面活性剂CTAB移入80毫升烧杯中,加入40毫升环己烷和10毫升去离子水;取0.12毫摩尔硬脂酸修饰过的VO2纳米线加入12毫升正丁醇中超声分散5分钟,然后全部移入上述环己烷溶液中,剧烈搅拌得到一种澄清半透明的微乳液,持续搅拌2.5小时后离心分离,用体积比1∶1的异辛烷/氯仿混合溶剂洗涤12次;2. Weigh 12 grams of surfactant CTAB and transfer it to an 80-ml beaker, add 40 ml of cyclohexane and 10 ml of deionized water; take 0.12 mmol of stearic acid-modified VO2 nanowires and add it to 12 ml of n-butanol Ultrasonic dispersion for 5 minutes, then all transferred to the above cyclohexane solution, stirred vigorously to obtain a clear translucent microemulsion, centrifuged after continuous stirring for 2.5 hours, washed with a mixed solvent of isooctane/chloroform with a volume ratio of 1:1 12 times;
3、将固态衬底处理成亲水;3. Treat the solid substrate to be hydrophilic;
4、用Langumir水槽,控制水表面的经步骤2处理过的VO2纳米线单层膜的表面压力-表面积等温线,以形成VO2纳米线单层膜;4. With a Langumir tank, control the surface pressure - surface area isotherm of the VO nanowire monolayer film processed in step 2 on the water surface to form VO nanowire monolayer film;
5、将形成的VO2纳米线单层膜,转移到步骤3处理过的固态衬底表面形成VO2纳米线LB膜,实现了二氧化钒纳米线(00l)晶面取向和局部区域定向排列,并具有准持续光电导及典型的磁相变和顺磁特性。5. Transfer the formed VO2 nanowire monolayer film to the surface of the solid substrate treated in step 3 to form a VO2 nanowire LB film, realizing the crystal plane orientation and local area orientation of vanadium dioxide nanowires (00 l ) arrangement, and has quasi-sustained photoconductivity and typical magnetic phase transition and paramagnetic properties.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102374259A CN101538066B (en) | 2008-12-25 | 2008-12-25 | Method for realizing mono-disperse modification and optimal orientation array of hypovanadic oxide nano wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102374259A CN101538066B (en) | 2008-12-25 | 2008-12-25 | Method for realizing mono-disperse modification and optimal orientation array of hypovanadic oxide nano wire |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101538066A CN101538066A (en) | 2009-09-23 |
CN101538066B true CN101538066B (en) | 2010-11-03 |
Family
ID=41121502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102374259A Expired - Fee Related CN101538066B (en) | 2008-12-25 | 2008-12-25 | Method for realizing mono-disperse modification and optimal orientation array of hypovanadic oxide nano wire |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101538066B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101805131B (en) * | 2010-03-18 | 2012-05-30 | 中国科学院上海硅酸盐研究所 | Low-temperature preparation method and application of vanadium dioxide film |
CN103073942B (en) * | 2012-01-19 | 2014-09-10 | 中国科学院上海硅酸盐研究所 | Vanadium dioxide composite powder and preparation method thereof |
CN103173207B (en) * | 2013-04-17 | 2014-11-05 | 中国科学院上海硅酸盐研究所 | Thermochromic composite nanometer powder preparation method |
CN103820861A (en) * | 2014-03-18 | 2014-05-28 | 华北电力大学 | Orientation method of silver nanowire AgNWs material |
CN107764872A (en) * | 2017-09-25 | 2018-03-06 | 天津大学 | The nitrogen dioxide gas sensor preparation method of gold modification vanadium dioxide nanowire |
CN117923545B (en) * | 2024-01-26 | 2024-07-23 | 西北大学 | A method for orderly arranging vanadium pentoxide nanobelts or vanadium pentoxide hydrate nanobelts |
-
2008
- 2008-12-25 CN CN2008102374259A patent/CN101538066B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101538066A (en) | 2009-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101538066B (en) | Method for realizing mono-disperse modification and optimal orientation array of hypovanadic oxide nano wire | |
CN102343239B (en) | Graphene oxide or graphene/inorganic particle core/shell material and preparation method thereof | |
CN101372330B (en) | Method for coating carbon nano-tube with metal doped zinc oxide nano-particle | |
CN104402052B (en) | TiO 2quantum dot compound MoS 2nano flower heterojunction semiconductor material and preparation method thereof | |
CN103361044B (en) | A preparation method of graphene oxide sheet-wrapped zinc oxide quantum dot core-shell structure | |
CN103496693B (en) | The method and application of Fe3O4 nanoparticle/graphene composite material prepared by sol electrostatic self-assembly method | |
CN103028387B (en) | Preparation method of graphene/titanium dioxide photocatalyst | |
CN101850980A (en) | Preparation method of silicon dioxide-coated silver-doped zinc oxide nanocrystals | |
An et al. | Facile template-free synthesis and characterization of elliptic α-Fe2O3 superstructures | |
CN102321398B (en) | Method for preparing thermal conducting filler of carbon black coated carbon nano tube | |
CN102000834B (en) | Preparation method of metal and metal compound hollow nanospheres | |
CN104275196A (en) | Ferroferric oxide/carbon/cadmium sulfide composite nano material and preparation method thereof | |
CN103084582B (en) | A kind of method preparing atomic scale noble metal nano particles stable colloid suspension | |
CN105536877A (en) | Preparation of Superparamagnetic Fe3O4-PAMAM-ZnO/TiO2 Core-Composite Shell Nanoparticles | |
CN105478117A (en) | Gold@zinc oxide core-shell heterogeneous nanoparticles having strong sunlight absorption property, and preparation method thereof | |
CN111233048A (en) | Double-shell MnCo2O4Hollow nanosphere material and synthesis method thereof | |
CN103447549A (en) | Preparation method of cobalt nanosphere | |
CN103950985B (en) | Nanometer bismuth tungstate of a kind of middle short side spherical structure and preparation method thereof | |
CN106830080B (en) | Cu2MoS4Nano material and preparation method thereof | |
CN103408063B (en) | Take Sulfite lignin as the method for tensio-active agent hydro-thermal legal system for nano zine oxide | |
CN100545218C (en) | Method of coating iron oxide with silica | |
CN104439276A (en) | Method for fast preparing hollow porous silicon dioxide/silver nanoparticle composite and product | |
CN103482681A (en) | Method for preparing monodisperse spherical nano ZnO | |
CN101549406A (en) | A method for controllable growth of uniform nano nickel chain array induced by magnetic field | |
CN114105107B (en) | Highly monodisperse MoSe with different morphologies 2 Method for preparing nano material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: GE WEI Free format text: FORMER OWNER: WUHAN UNIVERSITY OF TECHNOLOGY Effective date: 20130916 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 430070 WUHAN, HUBEI PROVINCE TO: 474500 NANYANG, HENAN PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20130916 Address after: 474500 Henan province moat Xixia Chengguan Town Road No. 9 Patentee after: Ge Wei Address before: 430070 Hubei Province, Wuhan city Hongshan District Luoshi Road No. 122 Patentee before: Wuhan University of Technology |
|
ASS | Succession or assignment of patent right |
Owner name: WUHAN SCIENCE + ENGINEERING LIQIANG ENERGY CO.,LTD Free format text: FORMER OWNER: GE WEI Effective date: 20140507 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 474500 NANYANG, HENAN PROVINCE TO: 430000 WUHAN, HUBEI PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20140507 Address after: 430000 science and Technology Park, East Lake hi tech Development Zone, Hubei, Wuhan Patentee after: WUHAN LIGONG LIQIANG ENERGY CO., LTD. Address before: 474500 Henan province moat Xixia Chengguan Town Road No. 9 Patentee before: Ge Wei |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101103 Termination date: 20181225 |