CN101537371B - Modification method for titanium-silicon molecular sieve - Google Patents
Modification method for titanium-silicon molecular sieve Download PDFInfo
- Publication number
- CN101537371B CN101537371B CN2008101023043A CN200810102304A CN101537371B CN 101537371 B CN101537371 B CN 101537371B CN 2008101023043 A CN2008101023043 A CN 2008101023043A CN 200810102304 A CN200810102304 A CN 200810102304A CN 101537371 B CN101537371 B CN 101537371B
- Authority
- CN
- China
- Prior art keywords
- titanium
- molecular sieve
- accordance
- noble metal
- protective agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种钛硅分子筛的改性方法。The invention relates to a method for modifying a titanium-silicon molecular sieve.
背景技术Background technique
钛硅分子筛是上世纪八十年代初开发的新型杂原子分子筛。目前已合成的有MFI型结构的TS-1、MEL型结构的TS-2、MWW型结构的MCM-22以及具有较大孔结构的TS-48等。钛硅分子筛可以用于催化多种有机氧化反应,例如烯烃环氧化、烷烃部分氧化、醇类氧化、酚类羟基化、环酮氨氧化等,且反应中,可采用无污染的低浓度过氧化氢作为氧化剂,反应的选择性高,工艺较为简单,具有传统氧化体系无可比拟的节能、经济和环境友好等优点。钛硅分子筛作为有机物选择性氧化催化剂,被认为是分子筛催化领域的一个里程碑。Titanium silicate molecular sieve is a new type of heteroatom molecular sieve developed in the early 1980s. At present, TS-1 with MFI structure, TS-2 with MEL structure, MCM-22 with MWW structure and TS-48 with larger pore structure have been synthesized. Titanium-silicon molecular sieves can be used to catalyze various organic oxidation reactions, such as olefin epoxidation, alkane partial oxidation, alcohol oxidation, phenol hydroxylation, cyclic ketone ammoxidation, etc. As an oxidant, hydrogen oxide has high reaction selectivity and relatively simple process, and has the incomparable advantages of energy saving, economy and environmental friendliness compared with traditional oxidation systems. As a catalyst for the selective oxidation of organic matter, titanium-silicon molecular sieves are considered to be a milestone in the field of molecular sieve catalysis.
H2O2是公认的绿色氧化剂,其氧化副产物只有水,但H2O2极不稳定,遇热、光、粗糙表面、重金属及其它杂质会分解,且具有腐蚀性,在包装、储存、运输中要采取特别的安全措施。因此考虑将H2O2就地应用,或将H2O2的生产工艺与使用H2O2的下游工艺相结合。H 2 O 2 is a recognized green oxidant, and its oxidation by-product is only water, but H 2 O 2 is extremely unstable and will decompose when exposed to heat, light, rough surfaces, heavy metals and other impurities, and is corrosive. 1. Special safety measures should be taken during transportation. Therefore, consider the application of H2O2 on site, or combine the production process of H2O2 with the downstream process of using H2O2 .
利用H2和O2直接合成H2O2,原子利用率达100%,进而人们考虑利用H2和O2原位合成H2O2再氧化有机原料,以解决直接利用H2O2氧化的成本和安全问题。Pt、Pd、Au等贵金属是H2和O2合成H2O2的有效催化组分,许多文献报道用其对钛硅材料进行改性,用于催化H2和O2原位生成H2O2的有机物选择性氧化反应。例如,Meiers R.等(J.Catal.,1998,176:376-386)以Pt-Pd/TS-1为催化剂对丙烯气相环氧化进行了研究;US6867312B1以及US6884898B1披露了贵金属改性TS-1分子筛上丙烯氧化的方法。该工艺反应条件温和,存在的问题是催化剂活性低、稳定性差。Using H 2 and O 2 to directly synthesize H 2 O 2 , the atomic utilization rate reaches 100%, and then people consider using H 2 and O 2 to synthesize H 2 O 2 in situ and then oxidize organic raw materials to solve the problem of directly using H 2 O 2 oxidation costs and safety issues. Noble metals such as Pt, Pd, and Au are effective catalytic components for the synthesis of H 2 O 2 from H 2 and O 2 , and many literatures have reported using them to modify titanium-silicon materials to catalyze the in situ generation of H 2 from H 2 and O 2 Selective Oxidation of Organics with O2 . For example, Meiers R. et al. (J.Catal., 1998,176:376-386) used Pt-Pd/TS-1 as a catalyst to study the gas-phase epoxidation of propylene; US6867312B1 and US6884898B1 disclosed noble metal modified TS- 1 Method for propylene oxidation on molecular sieves. The reaction conditions of the process are mild, but the problems of the catalyst are low catalyst activity and poor stability.
CN 1245090A公开了一种钛硅分子筛(TS-1)的改性方法,该方法包括将已合成出的TS-1分子筛、酸性化合物和水混合均匀,并在5~95℃下反应5分钟至6小时,得到酸处理的TS-1分子筛;将所得经酸处理的TS-1分子筛、有机碱和水混合均匀,并在密封反应釜中于120~200℃的温度和自生压力下反应2小时至8天时间,然后将所得产物过滤、洗涤并干燥;该方法所得TS-1分子筛由于脱除了部分分子筛孔道中骨架外钛,减少了氧化剂的无效分解,从而使其催化氧化活性与现有技术相比明显提高,同时具有较好的催化活性稳定性。CN 1245090A discloses a method for modifying titanium-silicon molecular sieve (TS-1), which comprises mixing the synthesized TS-1 molecular sieve, acidic compound and water, and reacting at 5-95°C for 5 minutes to After 6 hours, the acid-treated TS-1 molecular sieve was obtained; the obtained acid-treated TS-1 molecular sieve, organic base and water were mixed evenly, and reacted in a sealed reaction kettle at a temperature of 120-200°C and autogenous pressure for 2 hours to 8 days, then the resulting product is filtered, washed and dried; the TS-1 molecular sieve obtained by this method reduces the invalid decomposition of the oxidant due to the removal of part of the titanium in the pores of the molecular sieve, so that its catalytic oxidation activity is comparable to that of the prior art It is significantly improved compared with that, and has better stability of catalytic activity at the same time.
发明内容Contents of the invention
本发明的目的是提供一种新的钛硅分子筛材料改性方法。The purpose of the present invention is to provide a new method for modifying titanium-silicon molecular sieve materials.
本发明提供一种钛硅分子筛改性方法,包括以下步骤:The invention provides a method for modifying a titanium-silicon molecular sieve, comprising the following steps:
(1)将钛硅分子筛、保护剂、碱源、贵金属源、水按照100∶(0.0001~5)∶(0.005~5)∶(0.005~10)∶(500~10000)的比例混合,其中钛硅分子筛以克计,贵金属源以贵金属单质的克数计,保护剂、碱源、水以摩尔计,所述的保护剂选自聚丙烯、聚乙二醇、聚苯乙烯、聚氯乙烯、聚乙烯及它们的衍生物、葡萄糖、环糊精、阴离子表面活性剂、阳离子表面活性剂以及非离子表面活性剂中的一种或几种;(1) Mix titanium-silicon molecular sieve, protective agent, alkali source, precious metal source, and water according to the ratio of 100: (0.0001-5): (0.005-5): (0.005-10): (500-10000), wherein titanium The silicon molecular sieve is calculated in grams, the noble metal source is calculated in grams of precious metal simple substance, and the protective agent, alkali source, and water are calculated in moles, and the protective agent is selected from polypropylene, polyethylene glycol, polystyrene, polyvinyl chloride, One or more of polyethylene and its derivatives, glucose, cyclodextrin, anionic surfactant, cationic surfactant and nonionic surfactant;
(2)将步骤(1)所得的混合物水热处理,然后回收分子筛。(2) hydrothermally treating the mixture obtained in step (1), and then recovering molecular sieves.
本发明提供的钛硅分子筛改性方法,能使分子筛骨架外钛进入骨架,从而使骨架外钛减少,骨架钛增加(通常采用红外光谱中960cm-1处吸收峰和550cm-1处吸收峰强度比值I960/I550来表征钛硅分子筛骨架中的相对钛含量,根据此值的大小来判断骨架中的相对钛含量,值越大骨架中相对钛含量越高);并且可以得到具有薄壁空心结构的改性钛硅分子筛晶粒,这种晶粒有利于反应物和产物分子的扩散。本发明方法操作简单易行,过程容易控制。与现有方法制备的改性钛硅分子筛相比,本发明方法制备的改性钛硅分子筛用于有机物氧化反应,活性、选择性和稳定性提高。The titanium-silicon molecular sieve modification method provided by the present invention can make the titanium outside the framework of the molecular sieve enter the framework, thereby reducing the titanium outside the framework and increasing the titanium in the framework (usually using the absorption peak intensity at 960cm - 1 and 550cm -1 in the infrared spectrum Ratio I 960 /I 550 to characterize the relative titanium content in the framework of the titanium-silicon molecular sieve, judge the relative titanium content in the framework according to the size of this value, the larger the value is, the higher the relative titanium content in the framework); Modified titanium-silicon molecular sieve grains with a hollow structure, which is conducive to the diffusion of reactant and product molecules. The method of the invention is simple and easy to operate, and the process is easy to control. Compared with the modified titanium-silicon molecular sieve prepared by the existing method, the modified titanium-silicon molecular sieve prepared by the method of the present invention is used for the oxidation reaction of organic matter, and the activity, selectivity and stability are improved.
附图说明Description of drawings
图1为实施例1所得样品的透射电子显微镜(TEM)照片。Figure 1 is a transmission electron microscope (TEM) photo of the sample obtained in Example 1.
具体实施方式Detailed ways
本发明提供的改性方法中,步骤(1)中钛硅分子筛、保护剂、碱、贵金属源、水的比例优选为100∶(0.005~1)∶(0.01~2)∶(0.01~5)∶(500~5000),其中钛硅分子筛以克数计,贵金属源贵金属单质的克数计,保护剂、碱源、水以摩尔数计。In the modification method provided by the present invention, the ratio of titanium silicon molecular sieve, protective agent, alkali, precious metal source, and water in step (1) is preferably 100: (0.005~1): (0.01~2): (0.01~5) : (500-5000), wherein the titanium-silicon molecular sieve is measured in grams, the noble metal source noble metal is measured in grams, and the protective agent, alkali source, and water are measured in moles.
本发明提供的改性方法中,所述的聚乙烯、聚乙二醇、聚苯乙烯、聚氯乙烯、聚丙烯的衍生物,为它们的吡咯烷酮、乙烯醇、乙醚、嘧啶衍生物,优选为聚丙烯醇、聚丙烯乙醚、聚丙烯嘧啶、聚乙二醇吡咯烷酮、聚乙二醇乙醚、聚乙二醇嘧啶、聚苯乙烯吡咯烷酮、聚苯乙烯醇、聚苯乙烯乙醚、聚苯乙烯嘧啶、聚氯乙烯吡咯烷酮、聚氯乙烯醇、聚氯乙烯乙醚、聚氯乙烯嘧啶、聚乙烯吡咯烷酮、聚乙烯醇、聚乙烯乙醚、聚乙烯嘧啶。In the modification method provided by the present invention, the derivatives of polyethylene, polyethylene glycol, polystyrene, polyvinyl chloride, and polypropylene are their pyrrolidone, vinyl alcohol, ether, and pyrimidine derivatives, preferably Polypropylene alcohol, polypropylene ether, polyacrylpyrimidine, polyethylene glycol pyrrolidone, polyethylene glycol ether, polyethylene glycol pyrimidine, polystyrene pyrrolidone, polystyrene alcohol, polystyrene ether, polystyrene pyrimidine, Polyvinyl chloride pyrrolidone, polyvinyl chloride alcohol, polyvinyl chloride ethyl ether, polyvinyl chloride pyrimidine, polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl ether, polyvinyl pyrimidine.
本发明提供的改性方法中,所述的阴离子表面活性剂例如脂肪酸盐、硫酸酯盐、磷酸酯盐、烷基苯磺酸盐、α-烯烃磺酸盐、烷基磺酸盐、α-磺基单羧酸酯、脂肪酸磺烷基酯、琥珀酸酯磺酸盐、烷基萘磺酸盐、石油磺酸盐、木质素磺酸盐、烷基甘油醚磺酸盐;阳离子表面活性剂例如脂肪胺类季铵盐阳离子表面活性剂、环状阳离子表面活性剂、十六烷基三甲基溴化铵、十二烷基二甲基氧化胺、三辛(壬)基甲基氯(溴)化铵;非离子表面活性剂例如脂肪醇聚氧乙烯醚、嵌段聚氧乙烯-聚氧丙烯醚、烷基醇酰胺、多元醇酯类、吐温系列、司盘系列、氟碳表面活性剂系列。In the modification method provided by the present invention, the anionic surfactant such as fatty acid salt, sulfate ester salt, phosphate ester salt, alkylbenzene sulfonate, α-olefin sulfonate, alkyl sulfonate, α -Sulfomonocarboxylates, fatty acid sulfoalkyl esters, succinate sulfonates, alkylnaphthalene sulfonates, petroleum sulfonates, lignosulfonates, alkyl glyceryl ether sulfonates; cationic surfactants Agents such as fatty amine quaternary ammonium salt cationic surfactants, cyclic cationic surfactants, cetyltrimethylammonium bromide, dodecyldimethylamine oxide, trioctyl (nonyl) methyl chloride (Bromium) ammonium; non-ionic surfactants such as fatty alcohol polyoxyethylene ether, block polyoxyethylene-polyoxypropylene ether, alkyl alcohol amides, polyol esters, Tween series, Span series, fluorocarbon Surfactant series.
本发明所提供的改性方法中,步骤(1)所述的贵金属源选自贵金属的氧化物、卤化物、碳酸盐、硝酸盐、硝酸铵盐、醋酸盐、氯化氨盐、氢氧化物以及贵金属的其它络合物中的一种或几种。所述其它络合物例如贵金属与乙酰丙酮的络合物、贵金属与环辛二烯和环辛三烯的络合物。例如当所述贵金属为钯时,可以是氧化钯、碳酸钯、氯化钯、硝酸钯、硝酸氨钯、氯化氨钯、氢氧化钯、醋酸钯、乙酰丙酮钯中的一种或几种。优选的贵金属为钯和/或铂。In the modification method provided by the present invention, the noble metal source described in step (1) is selected from oxides, halides, carbonates, nitrates, ammonium nitrate salts, acetates, ammonium chloride salts, hydrogen One or more of oxides and other complexes of noble metals. The other complexes are, for example, complexes of noble metals with acetylacetone, complexes of noble metals with cyclooctadiene and cyclooctatriene. For example, when the noble metal is palladium, it can be one or more of palladium oxide, palladium carbonate, palladium chloride, palladium nitrate, palladium ammonium nitrate, palladium ammonium chloride, palladium hydroxide, palladium acetate, palladium acetylacetonate . Preferred noble metals are palladium and/or platinum.
本发明提供的改性方法中,步骤(1)所述碱为无机碱或有机碱。其中无机碱为氨水、氢氧化钠、氢氧化钾、氢氧化钡中的一种或几种;有机碱源为尿素、季胺碱类化合物、脂肪胺类化合物、醇胺类化合物中的一种或几种。In the modification method provided by the present invention, the base in step (1) is an inorganic base or an organic base. Among them, the inorganic alkali is one or more of ammonia water, sodium hydroxide, potassium hydroxide, and barium hydroxide; the organic alkali source is one of urea, quaternary ammonium base compounds, fatty amine compounds, and alcohol amine compounds. or several.
所述的季铵碱类化合物其通式为(R1)4NOH,其中R1为具有1~4个碳原子的烷基,优选的为丙基。The general formula of the quaternary ammonium base compound is (R 1 ) 4 NOH, wherein R 1 is an alkyl group with 1-4 carbon atoms, preferably a propyl group.
所述的脂肪胺类化合物其通式为R2(NH2)n,其中R2选自具有1~6个碳原子的烷基或者亚烷基,n=1或2。优选为乙胺、正丁胺、丁二胺或己二胺。The general formula of the aliphatic amine compound is R 2 (NH 2 ) n , wherein R 2 is selected from an alkyl group or an alkylene group with 1-6 carbon atoms, and n=1 or 2. Preference is given to ethylamine, n-butylamine, butylenediamine or hexamethylenediamine.
所述的醇胺类化合物其通式为(HOR3)mNH(3-m);其中R3选自具有1~4个碳原子的烷基;m=1、2或3。所述的醇胺类化合物例如单乙醇胺、二乙醇胺或三乙醇胺。The general formula of the alcohol amine compound is (HOR 3 ) m NH (3-m) ; wherein R 3 is selected from an alkyl group with 1-4 carbon atoms; m=1, 2 or 3. The alcohol amine compound such as monoethanolamine, diethanolamine or triethanolamine.
本发明提供的改性方法中,步骤(1)所述将钛硅分子筛、保护剂、贵金属源、碱源和水混合的加料顺序为将钛硅分子筛、保护剂和贵金属源加入到含有碱源的溶液中。In the modification method provided by the present invention, the order of adding titanium-silicon molecular sieve, protective agent, noble metal source, alkali source and water in step (1) is to add titanium-silicon molecular sieve, protective agent and noble metal source to the mixture containing alkali source in the solution.
本发明提供的改性方法中,步骤(2)所述的水热处理和回收可按照现有钛硅分子筛合成或改性中水热处理和回收的方法进行。所述水热处理包括在温度80~200℃及自生压力下保持2~360h。所述回收包括过滤、洗涤、干燥、焙烧的步骤。洗涤可用蒸馏水或去离子水洗涤;干燥的条件包括:温度为室温~200℃,时间为3~24h,空气气氛中;焙烧条件包括:温度300~600℃,时间3~24h,氮气或空气气氛中。In the modification method provided by the present invention, the hydrothermal treatment and recovery in step (2) can be carried out according to the existing methods of hydrothermal treatment and recovery in the synthesis or modification of titanium silicon molecular sieves. The hydrothermal treatment includes keeping at a temperature of 80-200° C. and autogenous pressure for 2-360 hours. The recovery includes the steps of filtering, washing, drying and roasting. Washing can be done with distilled water or deionized water; drying conditions include: temperature is room temperature to 200°C, time is 3 to 24 hours, in an air atmosphere; roasting conditions include: temperature is 300 to 600°C, time is 3 to 24 hours, nitrogen or air atmosphere middle.
本发明提供的改性方法可用于钛硅分子筛改性,所述钛硅分子筛例如TS-1、TS-2、Ti-BETA、Ti-MCM-22、Ti-MCM-41、Ti-MCM-48,尤其适于TS-1分子筛改性。所述的钛硅分子筛可以是按照现有技术中的各种方法合成出的分子筛,也可以是现有方法制备的改性钛硅分子筛,它们可以经过或不经过焙烧处理,即可以含或不含有机模板剂。步骤(2)回收得到的改性钛硅分子筛还可进一步用本发明方法改性。The modification method provided by the present invention can be used for the modification of titanium-silicon molecular sieves, such as TS-1, TS-2, Ti-BETA, Ti-MCM-22, Ti-MCM-41, Ti-MCM-48 , especially suitable for TS-1 molecular sieve modification. The described titanium-silicon molecular sieves can be molecular sieves synthesized according to various methods in the prior art, or modified titanium-silicon molecular sieves prepared by existing methods. They can be processed or not roasted, that is, can contain or not Contains organic templating agent. The modified titanium-silicon molecular sieve recovered in step (2) can be further modified by the method of the present invention.
以下的实施例将对本发明作进一步的说明,但并不因此限制本发明。实施例中所用到的试剂均为市售的化学纯试剂。对比例以及实施例中所用的钛硅分子筛TS-1是按Zeolites,1992,Vol.12第943~950页中所描述的方法制备。样品的透射电子显微镜照片(TEM)是在荷兰FEI公司TecnaiG2F20S-TWIN型透射电子显微镜上获得,加速电压20kV。分子筛样品骨架红外光谱在Nicolet 8210型傅立叶红外光谱仪上测量,KBr压片,测试范围400~4000cm-1。TS-1、对比例以及实施例所制备样品的I960/I550数据列于表1。The following examples will further illustrate the present invention, but do not limit the present invention thereby. The reagents used in the examples are commercially available chemically pure reagents. The titanium-silicon molecular sieve TS-1 used in the comparative examples and examples was prepared according to the method described in Zeolites, 1992, Vol.12, pages 943-950. The transmission electron micrograph (TEM) of the sample was obtained on a Tecnai G2F20S-TWIN transmission electron microscope of the Netherlands FEI company, with an accelerating voltage of 20kV. The infrared spectrum of the molecular sieve sample skeleton was measured on a Nicolet 8210 Fourier transform infrared spectrometer, KBr pellets, and the test range was 400-4000cm -1 . The I 960 /I 550 data of the samples prepared by TS-1, Comparative Examples and Examples are listed in Table 1.
对比例1Comparative example 1
本对比例说明常规方法制备负载型钯/钛硅分子筛催化剂(0.5%Pd/TS-1)的过程。This comparative example illustrates the process of preparing supported palladium/titanium silicate molecular sieve catalyst (0.5%Pd/TS-1) by conventional method.
取20克钛硅分子筛TS-1以及浓度为0.05g/mL(以钯原子计)的硝酸氨钯络合物溶液2.0mL加入到20mL去离子水中,搅拌均匀,密封,在温度40℃下浸渍24h,然后自然干燥,并在300℃下、氢气气氛中还原活化5h,即得传统负载型钯/钛硅分子筛催化剂(0.5%Pd/TS-1)DB-1。Take 20 grams of titanium-silicon molecular sieve TS-1 and 2.0 mL of ammonium nitrate palladium complex solution with a concentration of 0.05 g/mL (calculated as palladium atoms), add it to 20 mL of deionized water, stir evenly, seal it, and soak it at a temperature of 40 ° C 24h, then dried naturally, and reduced activation at 300°C in a hydrogen atmosphere for 5h to obtain the traditional supported palladium/titanium silicate molecular sieve catalyst (0.5%Pd/TS-1) DB-1.
实施例1Example 1
取20克钛硅分子筛TS-1、浓度为0.05g/mL(以钯原子计)的硝酸氨钯络合物溶液和十六烷基三甲基溴化铵加入到四丙基氢氧化铵的水溶液(质量百分比浓度16%)中,搅拌均匀,其中钛硅分子筛(克)∶十六烷基三甲基溴化铵(摩尔)∶四丙基氢氧化铵(摩尔)∶硝酸氨钯络合物(克,以钯计)∶水(摩尔)=100∶0.005∶0.5∶2.0∶1000。然后放入不锈钢密封反应釜,在150℃和自生压力下水热处理48h,然后过滤、洗涤,室温干燥8小时,500℃下焙烧5h,得经过改性的微孔钛硅材料A,其透射电子显微镜照片显示出其为空心结构(图1)。Get 20 grams of titanium-silicon molecular sieves TS-1, concentration is the ammonium nitrate palladium complex solution of 0.05g/mL (in terms of palladium atoms) and hexadecyltrimethylammonium bromide to join the tetrapropylammonium hydroxide In the aqueous solution (mass percentage concentration 16%), stir evenly, wherein titanium silicon molecular sieve (gram): hexadecyltrimethylammonium bromide (mole): tetrapropyl ammonium hydroxide (mole): ammonium nitrate palladium complex Matter (gram, calculated as palladium): water (mol)=100:0.005:0.5:2.0:1000. Then put it into a stainless steel sealed reaction kettle, hydrothermally treat it at 150°C and autogenous pressure for 48h, then filter, wash, dry at room temperature for 8 hours, and roast at 500°C for 5h to obtain the modified microporous titanium-silicon material A. Its transmission electron microscope The photographs show that it is a hollow structure (Fig. 1).
实施例2Example 2
将20克钛硅分子筛TS-1、浓度为0.05g/mL(以钯原子计)的氯化钯溶液和聚乙烯吡咯烷酮(相对分子量为30000)加入到氢氧化钠的水溶液(质量百分比浓度15%)中,搅拌均匀,其中钛硅分子筛(克)∶聚乙烯吡咯烷酮(摩尔)∶氢氧化钠(摩尔)∶氯化钯(克,以钯计)∶水(摩尔)=100∶0.9∶1.8∶0.1∶4600。然后放入不锈钢密封反应釜,在180℃的温度和自生压力下水热处理24h,过滤、洗涤、室温干燥,在500℃下焙烧5h得经过改性的微孔钛硅材料B。20 grams of titanium-silicon molecular sieve TS-1, palladium chloride solution and polyvinylpyrrolidone (relative molecular weight is 30000) with a concentration of 0.05g/mL (as palladium atoms) were added to the aqueous solution of sodium hydroxide (mass percentage concentration 15%) ), stir evenly, wherein titanium silicon molecular sieve (gram): polyvinylpyrrolidone (mol): sodium hydroxide (mol): palladium chloride (gram, calculated as palladium): water (mol) = 100: 0.9: 1.8: 0.1:4600. Then put it into a sealed stainless steel reaction kettle, hydrothermally treat it at 180°C and autogenous pressure for 24h, filter, wash, dry at room temperature, and roast at 500°C for 5h to obtain the modified microporous titanium-silicon material B.
实施例3Example 3
取20克钛硅分子筛TS-1、浓度为0.05g/mL(以钯原子计)的乙酸钯溶液和吐温80加入到四丙基氢氧化铵和丁二胺的水溶液(质量百分比浓度20%)中搅拌混合均匀,其中钛硅分子筛(克)∶碱源(摩尔)∶钯源(克,以钯计)∶保护剂(摩尔)∶水(摩尔)=100∶0.5∶0.05∶0.02∶550,然后放入密封反应釜,在120℃的温度和自生压力下水热处理120h,然后过滤、洗涤、室温自然干燥,在500℃下焙烧5h,得经过改性的微孔钛硅材料C。Get 20 grams of titanium silicon molecular sieve TS-1, concentration is the palladium acetate solution of 0.05g/mL (as palladium atom) and Tween 80 joins the aqueous solution (mass percentage concentration 20% of tetrapropyl ammonium hydroxide and butanediamine) ) and stir and mix evenly, wherein titanium-silicon molecular sieve (gram): alkali source (mole): palladium source (gram, calculated as palladium): protective agent (mole): water (mole) = 100: 0.5: 0.05: 0.02: 550 , and then placed in a sealed reactor, hydrothermally treated at 120°C and autogenous pressure for 120h, then filtered, washed, dried naturally at room temperature, and calcined at 500°C for 5h to obtain the modified microporous titanium-silicon material C.
实施例4Example 4
将20克钛硅分子筛TS-1、浓度为0.05g/mL(以钯原子计)的氯化氨钯溶液以及聚乙烯吡咯烷酮(相对分子质量为15000)加入到四丙基氢氧化铵的水溶液(质量百分比浓度15%)中搅拌混合均匀,其中钛硅分子筛(克)∶保护剂(摩尔)∶碱源(摩尔)∶钯源(克,以钯计)∶水(摩尔)=100∶0.01∶2.0∶0.5∶2500,然后放入不锈钢密封反应釜,在150℃的温度和自生压力下水热处理96h,将所得物过滤、洗涤,室温下自然干燥,在600℃下焙烧3h得经过改性的微孔钛硅材料D。20 grams of titanium-silicon molecular sieve TS-1, a concentration of 0.05g/mL (as palladium atoms) ammonium chloride palladium solution and polyvinylpyrrolidone (relative molecular mass is 15000) were added to the aqueous solution of tetrapropylammonium hydroxide ( Concentration of 15% by mass percentage) stirring and mixing uniformly, wherein titanium silicon molecular sieve (gram): protective agent (mole): alkali source (mole): palladium source (gram, in palladium): water (mole)=100: 0.01: 2.0:0.5:2500, then put it into a sealed stainless steel reaction kettle, hydrothermally treat it at a temperature of 150°C and an autogenous pressure for 96 hours, filter and wash the resultant, dry it naturally at room temperature, and roast it at 600°C for 3 hours to obtain the modified micro Porous titanium silicon material D.
实施例5Example 5
取20克钛硅分子筛TS-1、浓度为0.05g/mL(以钯原子计)的乙酸钯溶液和葡萄糖加入到丁二胺的水溶液(质量百分比浓度10%)中搅拌混合均匀,其中钛硅分子筛(克)∶葡萄糖(摩尔)∶丁二胺(摩尔)∶乙酸钯(克,以钯计)∶水(摩尔)=100∶0.1∶0.02∶4.0∶3500。然后放入不锈钢密封反应釜,在120℃的温度和自生压力下水热处理120h,过滤、洗涤、室温下自然干燥,在400℃下焙烧8h,得经过改性的微孔钛硅材料E。Take 20 grams of titanium-silicon molecular sieve TS-1, a palladium acetate solution with a concentration of 0.05 g/mL (calculated as palladium atoms), and glucose, and add it to an aqueous solution of butanediamine (10% by mass concentration) and stir and mix evenly, wherein the titanium-silicon Molecular sieve (gram): glucose (mol): butylenediamine (mol): palladium acetate (gram, calculated as palladium): water (mol) = 100: 0.1: 0.02: 4.0: 3500. Then put it into a stainless steel sealed reaction kettle, hydrothermally treat it at 120°C and autogenous pressure for 120h, filter, wash, dry naturally at room temperature, and bake at 400°C for 8h to obtain the modified microporous titanium-silicon material E.
实施例6Example 6
取20克钛硅分子筛TS-1、浓度为0.02g/mL(以钯原子计)的氯化氨钯溶液和十二烷基苯磺酸钠加入到四丙基氢氧化铵的水溶液(质量百分比浓度10%)中搅拌混合均匀,其中钛硅分子筛(克)∶十二烷基苯磺酸钠(摩尔)∶四丙基氢氧化铵(摩尔)∶氯化氨钯(克,以钯计)∶水(摩尔)=100∶0.5∶1.1∶4.8∶2000。然后放入不锈钢密封反应釜,在90℃的温度和自生压力下水热处理240h,过滤、洗涤、室温自然干燥,在500℃下焙烧5h得经过改性的微孔钛硅材料F。Get 20 grams of titanium-silicon molecular sieves TS-1, concentration is 0.02g/mL (in terms of palladium atoms) ammonium chloride palladium solution and sodium dodecylbenzenesulfonate join the aqueous solution of tetrapropyl ammonium hydroxide (mass percent Concentration 10%), stirring and mixing uniformly, wherein titanium silicon molecular sieve (gram): sodium dodecylbenzenesulfonate (mole): tetrapropyl ammonium hydroxide (mole): ammonium chloride palladium (gram, in palladium) : water (mol)=100:0.5:1.1:4.8:2000. Then put it into a stainless steel sealed reaction kettle, hydrothermally treat it at 90°C and autogenous pressure for 240h, filter, wash, dry naturally at room temperature, and roast at 500°C for 5h to obtain the modified microporous titanium-silicon material F.
实施例7Example 7
将20克钛硅分子筛TS-1、浓度为0.01g/mL(以钯原子计)的乙酸钯溶液和十六烷基三甲基溴化铵加入到四丙基氢氧化铵(质量百分比浓度13%)中搅拌混合均匀,其中钛硅分子筛(克)∶保护剂(摩尔)∶碱源(摩尔)∶钯源(克,以钯计)∶水(摩尔)=100∶0.2∶0.1∶0.02∶800,然后放入不锈钢密封反应釜,在160℃的温度和自生压力下水热处理120h,将所得物取出过滤,洗涤,然后室温干燥,在500℃下焙烧5h得经过改性的微孔钛硅材料G。Add 20 grams of titanium-silicon molecular sieve TS-1, palladium acetate solution with a concentration of 0.01 g/mL (calculated as palladium atoms) and cetyltrimethylammonium bromide to tetrapropylammonium hydroxide (mass percentage concentration 13 %), stirring and mixing evenly, wherein titanium silicon molecular sieve (gram): protective agent (mol): alkali source (mol): palladium source (gram, calculated as palladium): water (mol)=100: 0.2: 0.1: 0.02: 800, then put it into a stainless steel sealed reaction kettle, hydrothermally treat it at a temperature of 160°C and an autogenous pressure for 120h, take out the resultant, filter it, wash it, then dry it at room temperature, and roast it at 500°C for 5h to obtain a modified microporous titanium-silicon material g.
实施例8Example 8
将20克钛硅分子筛TS-1、浓度为0.02g/mL(以钯原子计)的硝酸氨钯溶液和β-环糊精加入到四丙基氢氧化铵的水溶液(质量百分比浓度15%)中搅拌混合均匀,其中钛硅分子筛(克)∶保护剂(摩尔)∶碱源(摩尔)∶钯源(克,以钯计)∶水(摩尔)=100∶0.1∶0.9∶4.5∶4800,然后放入不锈钢密封反应釜,在150℃的温度和自生压力下水热处理96h,过滤、洗涤,110℃干燥3小时,550℃下焙烧5h得经过改性的微孔钛硅材料H。20 grams of titanium-silicon molecular sieve TS-1, a concentration of 0.02g/mL (in terms of palladium atoms) ammonium palladium nitrate solution and β-cyclodextrin were added to the aqueous solution of tetrapropylammonium hydroxide (mass percentage concentration 15%) Stir and mix evenly in medium, wherein titanium-silicon molecular sieve (gram): protective agent (mol): alkali source (mol): palladium source (gram, calculated as palladium): water (mol) = 100: 0.1: 0.9: 4.5: 4800, Then put it into a sealed stainless steel reactor, hydrothermally treat it at 150°C and autogenous pressure for 96 hours, filter, wash, dry at 110°C for 3 hours, and roast at 550°C for 5 hours to obtain the modified microporous titanium-silicon material H.
实施例9Example 9
取20克钛硅分子筛、浓度为0.05g/mL(以钯原子计)的乙酸钯的乙醇溶液和聚乙二醇(相对分子质量为20000)加入到三乙醇胺的水溶液(质量百分比浓度18%)中搅拌混合均匀,其中钛硅分子筛(克)∶聚乙二醇(摩尔)∶三乙醇胺(摩尔)∶乙酸钯(克,以钯计)∶水(摩尔)=100∶0.02∶1.2∶1.0∶1500。然后放入反应釜,在130℃的温度和自生压力下水热处理320h,过滤、洗涤、120℃下干燥3小时,500℃下焙烧5h得经过改性的微孔钛硅材料I。Get 20 grams of titanium-silicon molecular sieves, a concentration of 0.05g/mL (in terms of palladium atoms) in ethanol solution of palladium acetate and polyethylene glycol (relative molecular mass is 20000) to the aqueous solution of triethanolamine (mass percentage concentration 18%) Stir and mix evenly in medium, wherein titanium silicon molecular sieve (gram): polyethylene glycol (mol): triethanolamine (mol): palladium acetate (gram, calculated as palladium): water (mol) = 100: 0.02: 1.2: 1.0: 1500. Then put it into a reaction kettle, hydrothermally treat it at 130°C and autogenous pressure for 320h, filter, wash, dry at 120°C for 3 hours, and roast at 500°C for 5h to obtain the modified microporous titanium-silicon material I.
实施例10Example 10
将20克钛硅分子筛TS-1、浓度为0.01g/mL(以钯原子计)的乙酸钯溶液和十六烷基三甲基氯化铵加入到四丙基氢氧化铵(质量百分比浓度13%)中,搅拌使之混合均匀,其中钛硅分子筛(克)∶保护剂(摩尔)∶碱源(摩尔)∶钯源(克,以钯计)∶水(摩尔)=100∶0.12∶0.1∶5.0∶3000,然后放入不锈钢密封反应釜,在160℃的温度和自生压力下水热处理120h,然后过滤,洗涤,110℃干燥4小时,500℃下焙烧5h,得经过改性的微孔钛硅材料J。20 grams of titanium-silicon molecular sieve TS-1, palladium acetate solution and hexadecyltrimethylammonium chloride with a concentration of 0.01g/mL (as palladium atoms) were added to tetrapropylammonium hydroxide (mass percentage concentration 13 %), stir to make it evenly mixed, wherein titanium silicon molecular sieve (gram): protective agent (mole): alkali source (mole): palladium source (gram, calculated as palladium): water (mole) = 100: 0.12: 0.1 : 5.0: 3000, then put into a stainless steel sealed reactor, hydrothermally treat at 160°C and autogenous pressure for 120h, then filter, wash, dry at 110°C for 4 hours, and roast at 500°C for 5h to obtain modified microporous titanium Silicon Materials J.
对比例2Comparative example 2
本对比例说明常规浸渍改性方法制备负载型钯-铂/钛硅分子筛(0.5%Pd,0.5%Pt/TS-1)的过程。This comparative example illustrates the process of preparing supported palladium-platinum/titanium silicate molecular sieve (0.5%Pd, 0.5%Pt/TS-1) by conventional impregnation modification method.
取20克钛硅分子筛TS-1以及浓度为0.05g/mL(以钯原子计)的硝酸氨钯和浓度为0.05g/mL(以铂原子计)硝酸氨铂络合物溶液各2.0mL加入到20mL去离子水中搅拌均匀后,密封,在40℃温度下浸渍24h,自然干燥,于300℃氢气气氛中进行还原活化5h,即得传统负载型钯-铂/钛硅分子筛催化剂(0.5%Pd,0.5%Pt/TS-1)DB-2。Take 20 grams of titanium-silicon molecular sieve TS-1 and a concentration of 0.05g/mL (calculated by palladium atoms) of ammonium palladium nitrate and a concentration of 0.05g/mL (calculated by platinum atoms) ammonium nitrate-platinum complex solution, add 2.0mL each Stir evenly in 20mL deionized water, seal, soak at 40°C for 24h, dry naturally, and perform reduction activation in 300°C hydrogen atmosphere for 5h to obtain the traditional supported palladium-platinum/titanium silicon molecular sieve catalyst (0.5%Pd , 0.5% Pt/TS-1) DB-2.
实施例11Example 11
取20克钛硅分子筛TS-1、浓度为0.01g/mL(以钯原子计)的硝酸氨钯和浓度为0.01g/mL(以铂原子计)硝酸氨铂络合物溶液和十六烷基三甲基溴化铵加入到四丙基氢氧化铵的水溶液(质量百分比浓度16%)中搅拌混合均匀,其中钛硅分子筛(克)∶十六烷基三甲基溴化铵(摩尔)∶四丙基氢氧化铵(摩尔)∶硝酸氨铂(克,以铂计)∶硝酸氨钯(克,以钯计)∶水(摩尔)=100∶0.1∶1.2∶0.5∶0.5∶1800,然后放入不锈钢密封反应釜,在160℃的温度和自生压力下水热处理72h,将所得产物过滤、洗涤、自然干燥,在500℃下焙烧5h,得到经过改性的微孔钛硅材料K。Get 20 grams of titanium-silicon molecular sieve TS-1, a concentration of 0.01g/mL (in terms of palladium atoms) of ammonium nitrate palladium and a concentration of 0.01g/mL (in terms of platinum atoms) of ammonium nitrate-platinum complex solution and hexadecane Trimethylammonium bromide is added to the aqueous solution of tetrapropylammonium hydroxide (mass percentage concentration 16%) and stirred and mixed evenly, wherein titanium silicon molecular sieve (gram): hexadecyltrimethylammonium bromide (mol) : tetrapropylammonium hydroxide (mole): ammonium ammonium nitrate (gram, in platinum): ammonium palladium nitrate (gram, in palladium): water (mole)=100: 0.1: 1.2: 0.5: 0.5: 1800, Then put it into a stainless steel sealed reaction kettle, hydrothermally treat it at 160°C and autogenous pressure for 72h, filter the obtained product, wash it, dry it naturally, and roast it at 500°C for 5h to obtain the modified microporous titanium-silicon material K.
表1Table 1
由表1可见,本发明方法制备的样品I960/I550值较TS-1以及对比例的I960/I550值大,说明本发明方法制备的样品骨架钛含量高。It can be seen from Table 1 that the value of I 960 /I 550 of the sample prepared by the method of the present invention is larger than that of TS-1 and the comparative example, indicating that the content of titanium in the skeleton of the sample prepared by the method of the present invention is high.
实施例12Example 12
本实施例说明本发明提供的实施例样品与对比例样品用于丙烯环氧化制备环氧丙烷(PO)反应的效果。This example illustrates the effect of the example sample and the comparative sample provided by the present invention for the reaction of propylene oxide to prepare propylene oxide (PO).
分别取上述实施例或对比例所制备的样品0.5g加入到含有甲醇80mL的环氧化反应容器中,通入丙烯、氧气、氢气和氮气,其中丙烯、氧气、氢气、氮气的摩尔比为1∶1∶1∶7,在温度60℃,压力1.0MPa,丙烯空速为10h-1的条件下,进行环氧化反应生成PO。Get the sample 0.5g prepared by above-mentioned embodiment or comparative example respectively and join in the epoxidation reaction container that contains methanol 80mL, pass into propylene, oxygen, hydrogen and nitrogen, wherein the mol ratio of propylene, oxygen, hydrogen, nitrogen is 1 : 1:1:7, under the conditions of temperature 60°C, pressure 1.0MPa, propylene space velocity 10h -1 , carry out epoxidation reaction to generate PO.
表2给出了反应2h及12h的丙烯转化率和PO选择性的数据。Table 2 shows the data of propylene conversion and PO selectivity for reaction 2h and 12h.
表2Table 2
由表2可见,本发明方法所得样品的活性、选择性高,具有较好的稳定性。As can be seen from Table 2, the activity and selectivity of the sample obtained by the method of the present invention are high, and have good stability.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101023043A CN101537371B (en) | 2008-03-20 | 2008-03-20 | Modification method for titanium-silicon molecular sieve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101023043A CN101537371B (en) | 2008-03-20 | 2008-03-20 | Modification method for titanium-silicon molecular sieve |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101537371A CN101537371A (en) | 2009-09-23 |
CN101537371B true CN101537371B (en) | 2011-04-20 |
Family
ID=41120891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101023043A Active CN101537371B (en) | 2008-03-20 | 2008-03-20 | Modification method for titanium-silicon molecular sieve |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101537371B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102476808B (en) * | 2010-11-25 | 2013-09-04 | 中国石油化工股份有限公司 | Modified titanium silicate molecular sieve material and preparation method thereof |
US20140356279A1 (en) * | 2011-10-31 | 2014-12-04 | Dalian University Of Technology | Method for modifying titanium silicon molecular sieves |
CN102728401B (en) * | 2012-06-13 | 2014-06-25 | 华东师范大学 | Post-processing modification method of Ti-Si molecular sieve |
CN107537559B (en) * | 2016-06-27 | 2020-08-18 | 中国石油化工股份有限公司 | Titanium-silicon-containing molecular sieve catalyst and preparation method and application thereof |
CN107552031B (en) * | 2016-07-01 | 2020-12-11 | 东联化学股份有限公司 | Preparation method and application of titanium-containing silicon oxide material |
CN107879354B (en) * | 2016-09-30 | 2020-09-22 | 中国石油化工股份有限公司 | Titanium-silicon molecular sieve, synthesis method and application thereof, and method for oxidizing cyclic ketone |
CN107879356B (en) * | 2016-09-30 | 2020-10-27 | 中国石油化工股份有限公司 | Titanium-silicon molecular sieve, synthesis method and application thereof, and method for oxidizing cyclic ketone |
CN106587091B (en) * | 2016-11-16 | 2018-12-04 | 大连理工大学 | Preparation method of mesoporous composite titanium-silicon molecular sieve TS-1 containing continuous mesopores |
CN110813372B (en) * | 2019-11-22 | 2021-09-24 | 大连理工大学 | A kind of modification method of gas-phase propylene epoxidation catalyst |
CN111153414A (en) * | 2020-01-16 | 2020-05-15 | 大连理工大学 | Rapid hydrothermal synthesis method of titanium silicalite TS-1 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1245090A (en) * | 1998-08-18 | 2000-02-23 | 中国石油化工集团公司 | Process for modifying Ti-Si molecular sieve |
US6555493B2 (en) * | 2000-12-07 | 2003-04-29 | Arco Chemical Technology, L.P. | Solid epoxidation catalyst and preparation |
CN1421389A (en) * | 2001-11-29 | 2003-06-04 | 中国石油化工股份有限公司 | Ti-Si molecular sieve modifying method |
US20060229192A1 (en) * | 2005-04-08 | 2006-10-12 | Mccarthy Stephen J | Single step decomposition and activation of noble metal complexes on catalytic supports |
-
2008
- 2008-03-20 CN CN2008101023043A patent/CN101537371B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1245090A (en) * | 1998-08-18 | 2000-02-23 | 中国石油化工集团公司 | Process for modifying Ti-Si molecular sieve |
US6555493B2 (en) * | 2000-12-07 | 2003-04-29 | Arco Chemical Technology, L.P. | Solid epoxidation catalyst and preparation |
CN1421389A (en) * | 2001-11-29 | 2003-06-04 | 中国石油化工股份有限公司 | Ti-Si molecular sieve modifying method |
US20060229192A1 (en) * | 2005-04-08 | 2006-10-12 | Mccarthy Stephen J | Single step decomposition and activation of noble metal complexes on catalytic supports |
Also Published As
Publication number | Publication date |
---|---|
CN101537371A (en) | 2009-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101537371B (en) | Modification method for titanium-silicon molecular sieve | |
RU2459661C2 (en) | Noble metal-bearing titanium-silicate material and method of its production | |
CN101850985B (en) | Method for modifying titanium-silicon zeolite material | |
CN101537372B (en) | Modification method for titanium-silicon molecular sieve | |
CN101623653B (en) | Method for modifying titanium-silicon molecular sieve material | |
CN101314577B (en) | Method for catalysis of pimelinketone oxamidine | |
CN101670298B (en) | A kind of method of modified titanium silicon molecular sieve | |
CN101658798B (en) | Method for modifying titanium silicate molecular sieve material | |
CN103182322B (en) | A kind of method processing deactivated titanium silicon molecular sieve | |
CN101434587B (en) | Method for synthesizing epoxy styrene by catalytic oxidation of phenylethylene | |
CN106031882A (en) | Noble metal-containing molecular sieve, its preparation method and application, and a method for direct oxidation of olefins | |
CN101654256B (en) | Method for in situ synthesis of titanium-silicon molecular sieve material containing noble metal | |
CN101618338A (en) | Method for modifying titanium-silicon molecular sieve | |
CN101665256A (en) | Method for treating titanium silicate molecular sieve by using noble metal source | |
CN101618339A (en) | Method for modifying titanium-silicon molecular sieve | |
CN101664696A (en) | Modification treatment method for titanium silicate molecular sieve | |
CN101658791B (en) | Post-treatment method of titanium silicate molecular sieve material | |
CN103183357B (en) | The modified with noble metals method of HTS | |
CN103183356B (en) | Method for modifying titanium silicalite molecular sieve by precious metal source | |
CN101397240B (en) | Method for preparing p-dihydroxy benzene and pyrocatechol by phenol hydroxylation | |
CN101850267B (en) | Preparation method for precious-metal-containing titanium silicalite material | |
CN101850266B (en) | A method for preparing noble metal-containing titanium silicalite | |
CN101654255B (en) | Method for synthesizing titanium-silicon material containing noble metal | |
CN105293517B (en) | HTS and its preparation method and application and a kind of method of alkene direct oxidation | |
CN101481119A (en) | Micropore titanium silicon molecular sieve material and preparation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |