CN101530974A - Thermal displacement correcting method of a machine tool and a termal displace ment correcting device - Google Patents
Thermal displacement correcting method of a machine tool and a termal displace ment correcting device Download PDFInfo
- Publication number
- CN101530974A CN101530974A CN200910128931A CN200910128931A CN101530974A CN 101530974 A CN101530974 A CN 101530974A CN 200910128931 A CN200910128931 A CN 200910128931A CN 200910128931 A CN200910128931 A CN 200910128931A CN 101530974 A CN101530974 A CN 101530974A
- Authority
- CN
- China
- Prior art keywords
- temperature
- screw shaft
- servo motor
- thermal displacement
- calorific value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000012937 correction Methods 0.000 claims abstract description 50
- 238000001514 detection method Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 8
- 238000002715 modification method Methods 0.000 claims 3
- 230000000630 rising effect Effects 0.000 claims 2
- 238000004364 calculation method Methods 0.000 abstract description 27
- 230000007246 mechanism Effects 0.000 abstract description 22
- 238000003754 machining Methods 0.000 abstract description 8
- 230000036760 body temperature Effects 0.000 description 23
- 230000020169 heat generation Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 5
- 230000001052 transient effect Effects 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/0003—Arrangements for preventing undesired thermal effects on tools or parts of the machine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
- B23Q17/0952—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
- B23Q17/0985—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring temperature
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/414—Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49209—Compensation by using temperature feelers on slide, base, workhead
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Automatic Control Of Machine Tools (AREA)
- Numerical Control (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
一种机床的热位移修正方法和热位移修正装置,用于对因机床运转中产生的滚珠丝杠机构的热位移而引起的误差进行修正。第一发热量运算部根据由速度检测器检测到的旋转速度,来运算因螺母而在丝杠轴上产生的第一发热量。第二发热量运算部根据由温度检测部检测到的温度上升,来运算因伺服马达而在丝杠轴上产生的第二发热量。温度分布运算部根据第一发热量和第二发热量,来计算将丝杠轴沿长度方向分割而形成的多个区间的温度分布。热位移量运算部根据由温度分布运算部计算出的温度分布,来计算各区间的热位移量。修正量运算部根据由热位移量运算部计算出的热位移量,来运算螺母的送进量计算用的加工数据的修正量。
A thermal displacement correction method and thermal displacement correction device of a machine tool are used for correcting errors caused by the thermal displacement of a ball screw mechanism generated during the operation of the machine tool. The first calorific value computing unit computes a first calorific value generated by the nut on the screw shaft based on the rotational speed detected by the speed detector. The second calorific value calculating unit calculates a second calorific value generated on the screw shaft by the servo motor based on the temperature rise detected by the temperature detecting unit. The temperature distribution calculation unit calculates the temperature distribution in a plurality of sections formed by dividing the screw shaft in the longitudinal direction based on the first calorific value and the second calorific value. The thermal displacement calculation unit calculates the thermal displacement in each section based on the temperature distribution calculated by the temperature distribution calculation unit. The correction amount calculation unit calculates the correction amount of the machining data for calculating the feeding amount of the nut based on the thermal displacement amount calculated by the thermal displacement amount calculation unit.
Description
技术领域 technical field
本发明涉及一种机床的热位移修正方法和热位移修正装置。更详细而言,本发明涉及对由机床运转中产生的滚珠丝杠机构的热位移而引起的误差进行修正的方法和装置。The invention relates to a thermal displacement correction method and a thermal displacement correction device of a machine tool. More specifically, the present invention relates to a method and an apparatus for correcting errors caused by thermal displacement of a ball screw mechanism during operation of a machine tool.
背景技术 Background technique
作为机床的定位机构,滚珠丝杠机构正在普及。滚珠丝杠机构的温度因丝杠轴与螺母的摩擦阻力、丝杠轴与轴承各部分的摩擦阻力、以及伺服马达的发热而上升。滚珠丝杠机构因上述的温度上升而产生热位移(伸长)。目前的数控机床的控制方式一般是半闭环式。在半闭环式的数控机床中,丝杠轴的热位移直接表现为定位误差。作为上述情况的对策,有预张力方式。预张力方式通过赋予丝杠轴预张力来吸收热膨胀。最近,数控机床使用粗的丝杠轴,且送进速度变得非常快。因此,发热量增大,在采用预张力方式时,不得不施加非常大的拉力。其结果是,存在滚珠丝杠机构的结构体产生变形的问题以及在推力轴承上作用不合理的力而产生烧结的问题等。Ball screw mechanisms are becoming popular as positioning mechanisms for machine tools. The temperature of the ball screw mechanism rises due to the frictional resistance between the screw shaft and the nut, the frictional resistance between the screw shaft and each part of the bearing, and the heat generated by the servo motor. The ball screw mechanism generates thermal displacement (elongation) due to the above-mentioned temperature rise. The current control mode of CNC machine tools is generally semi-closed loop. In a semi-closed-loop CNC machine tool, the thermal displacement of the screw shaft is directly expressed as a positioning error. As a countermeasure against the above situation, there is a pretension method. The pretension method absorbs thermal expansion by applying pretension to the screw shaft. Recently, CNC machine tools use thick screw shafts, and the feed speed has become very fast. Therefore, the calorific value increases, and when the pretension method is used, a very large tension has to be applied. As a result, there are problems that the structural body of the ball screw mechanism is deformed, and unreasonable force is applied to the thrust bearing to cause sintering.
在日本专利特开1988年第256336号公报提出的丝杠轴的热位移修正方法中,不赋予丝杠轴不合理的预张力,且不需要特别的测定装置。在该方法中,在生产中(in-process)修正热位移量。具体而言,在第一工序中,利用伺服马达的电枢电流和电压的积来求解丝杠轴的发热量。在第二工序中,用将丝杠轴分割成多个区间的模型,利用发热量来求解温度分布。在第三工序中,根据温度分布时时刻刻地预测丝杠轴的热位移量。在第四工序中,将热位移量作为间距错误修正赋予数控装置。In the thermal displacement correction method of the screw shaft proposed in Japanese Patent Laid-Open No. 256336 of 1988, unreasonable pretension is not applied to the screw shaft, and a special measuring device is not required. In this method, the thermal displacement is corrected in-process. Specifically, in the first step, the heat generation value of the screw shaft is obtained using the product of the armature current and the voltage of the servo motor. In the second step, the temperature distribution is obtained using the calorific value using a model in which the screw shaft is divided into sections. In the third step, the amount of thermal displacement of the screw shaft is estimated moment by moment based on the temperature distribution. In the fourth step, the amount of thermal displacement is given to the numerical control device as pitch error correction.
日本专利特开1992年第240045号公报着眼于上述公报(日本专利特开1988年第256336号公报)的方法存在的发热量包含伺服马达本身的加减速能量的问题。在该公报(日本专利特开1992年第240045号公报)所公开的热位移量修正方法中,利用伺服马达的旋转速度来计算丝杠轴的各区间的发热量。采用该方法时,可使根据不影响加减速能量的伺服马达的旋转速度计算出的修正量近似于丝杠轴的实际伸长量。Japanese Patent Application Laid-Open No. 240045 in 1992 focuses on the problem that the heat generated by the method of the above-mentioned publication (Japanese Patent Laid-Open No. 256336 in 1988) includes acceleration and deceleration energy of the servo motor itself. In the thermal displacement amount correction method disclosed in this publication (Japanese Patent Laid-Open No. 240045, 1992), the heat generation amount in each section of the screw shaft is calculated using the rotational speed of the servo motor. With this method, the correction amount calculated from the rotational speed of the servo motor that does not affect the acceleration/deceleration energy can be approximated to the actual elongation of the screw shaft.
在日本专利特开1992年第240045号公报的方法中,仅利用旋转速度来计算伺服马达的发热量。上述方法并未研究发热量因伺服马达的负载不同而不同这点。上述方法也没有公开在伺服马达的运转初期以及经过了一定时间后的修正量计算的条件。因此,上述方法在马达的运转初期即过渡状态下计算出的修正量可能与丝杠轴的实际伸长量(热位移量)不近似。In the method of Japanese Patent Application Laid-Open No. 240045 in 1992, only the rotational speed is used to calculate the calorific value of the servo motor. The above method does not consider the fact that the amount of heat generated differs depending on the load on the servo motor. The above methods also do not disclose the conditions for calculating the correction amount at the initial stage of operation of the servo motor and after a certain period of time has elapsed. Therefore, the above method may not approximate the actual elongation (thermal displacement) of the screw shaft with the correction amount calculated in the initial stage of motor operation, that is, in the transient state.
本发明的发明人实际运转伺服马达并测量了丝杠轴的端部的温度。本发明的发明人通过制作日本专利特开1992年第240045号公报所公开的热分布模型,进行了实际的丝杠轴端部的温度和使用热分布模型计算出的温度的比较实验。如图12所示,测量实际的丝杠轴的端部温度的机构包括:伺服马达201、丝杠轴203、螺母204、以及工作台205。伺服马达201与丝杠轴203通过联轴器202连接。螺母204用螺纹与丝杠轴203结合。螺母204可根据丝杠轴203的旋转沿前后方向(图12中的左右方向)移动。工作台205固定在螺母204上。工作台205可与螺母204一体地沿前后方向移动。设置在支撑台上的固定轴承206和可动轴承207将丝杠轴203可自由旋转地支撑。The inventors of the present invention actually operated the servo motor and measured the temperature of the end of the screw shaft. The inventors of the present invention created the heat distribution model disclosed in Japanese Patent Application Laid-Open No. 240045 in 1992, and conducted a comparison experiment between the actual temperature at the end of the screw shaft and the temperature calculated using the heat distribution model. As shown in FIG. 12 , the mechanism for measuring the actual temperature at the end of the screw shaft includes: a
进行的实验的条件如下所示。The conditions of the experiments performed are as follows.
(条件1)(Condition 1)
在工作台205移动中流经伺服马达201的平均电流和平均旋转速度是一定的。温度测定部位208(测定位置)被设定成丝杠轴端部即固定位置209。直到固定位置209的温度测定值稳定为止,工作台205以一定速度反复进行往返移动。The average current and the average rotational speed flowing through the
(条件2)(Condition 2)
工作台205在从固定轴承206充分离开的位置上进行移动,以使螺母204的发热不会给温度测定部位208带来影响。即,只有伺服马达201和固定轴承206会给温度测定部位208的温度带来影响。The table 205 moves to a position sufficiently separated from the fixed bearing 206 so that the heat generated by the
接着,本发明的发明人制作了热分布模型。由于流经伺服马达201的平均电流和平均旋转速度是一定的,因此从伺服马达201朝丝杠轴的端部传递的输入热量一定,通过求解日本专利特开1992年第240045号公报所公开的非稳态热传导方程式,计算出了各时刻的温度。Next, the inventors of the present invention produced a heat distribution model. Since the average current and average rotation speed flowing through the
图13表示了固定位置209(参照图12)的热位移的实验值和根据热分布模型计算出的计算值。曲线图的纵轴表示丝杠轴端部(固定位置209)的温度,曲线图的横轴表示经过时间。实线是实验值,虚线是计算值。根据该结果,可得出下面的结论。丝杠轴端部的温度上升稳定之后,实验值与计算值近似。在直到温度上升稳定为止的过渡状态的期间内,计算值的温度上升比实验值的温度上升快。因此,上述方法不能进行准确的预测。FIG. 13 shows experimental values of thermal displacement at the fixed position 209 (see FIG. 12 ) and calculated values calculated from the thermal distribution model. The vertical axis of the graph represents the temperature at the end of the screw shaft (fixed position 209 ), and the horizontal axis of the graph represents the elapsed time. The solid line is the experimental value, and the dashed line is the calculated value. From this result, the following conclusions can be drawn. After the temperature rise at the end of the screw shaft stabilizes, the experimental value is close to the calculated value. During the transitional state until the temperature rise stabilizes, the temperature rise of the calculated value is faster than the temperature rise of the experimental value. Therefore, the above method cannot make accurate predictions.
发明内容 Contents of the invention
本发明的目的在于提供一种在机床运转后直到温度上升稳定为止的过渡状态下可使修正量近似于丝杠轴的实际伸长量的机床的热位移修正方法和热位移修正装置。The object of the present invention is to provide a thermal displacement correction method and a thermal displacement correction device for a machine tool which can make the correction amount approximate to the actual elongation of the screw shaft in the transitional state after the machine tool is operated until the temperature rise is stabilized.
技术方案1的机床的热位移修正方法,是一种包括具有丝杠轴和螺母的送进驱动用滚珠丝杠机构、根据加工数据来计算所述丝杠轴对所述螺母的送进量的送进量控制设备、驱动所述丝杠轴旋转的伺服马达、以及根据所述加工数据来控制所述伺服马达的旋转速度的速度控制设备的机床的热位移修正方法,包括:根据所述旋转速度来求解因所述螺母的移动而在所述丝杠轴上产生的第一发热量的第一步骤;对所述伺服马达的温度上升进行检测、并根据所述温度上升来求解从所述伺服马达朝所述丝杠轴传递的第二发热量的第二步骤;根据所述第一发热量和所述第二发热量来运算将所述丝杠轴沿长度方向分割而形成的多个区间的温度分布的第三步骤;根据所述温度分布来运算所述多个区间各自的热位移量的第四步骤;以及根据所述热位移量来运算所述加工数据的修正量的第五步骤。The method for correcting thermal displacement of a machine tool according to
采用技术方案1的机床的热位移修正方法时,不仅使用因螺母的移动而在滚珠丝杠轴上产生的第一发热量,还使用与伺服马达的温度上升对应的第二发热量来运算滚珠丝杠轴的多个区间的温度分布,由此得到修正量。因此,即使是在直到伺服马达的温度稳定为止的过渡状态下,也能使修正量与滚珠丝杠轴的实际伸长量近似。从伺服马达朝滚珠丝杠轴传递的输入热量会受到伺服马达温度上升的影响,而伺服马达本身的温度上升是由负载等运转要素的影响而引起的。特别是在直到伺服马达的发热量与散热量均衡为止的期间内,伺服马达的温度时刻变化。机床的热位移修正方法通过在求解修正值的运算中使用与伺服马达的温度上升对应的第二发热量,可得到跟随马达温度变化的修正量。除了从伺服马达朝滚珠丝杠轴传递的输入热量之外,使用因螺母的移动而在滚珠丝杠轴上产生的第一发热量,针对多个区间中的每一个区间对热位移量进行运算。因此,机床的热位移修正方法可在不另行设置传感器的情况下得到精度高的修正量。When adopting the thermal displacement correction method of the machine tool of
在技术方案2的机床的热位移修正方法中,伺服马达上升温度根据伺服马达的旋转速度和驱动电流值中的至少一方进行检测。采用技术方案2的机床的热位移修正方法时,无需另行使用传感器等,可使用已有的传感器得到精度高的修正量。In the thermal displacement correction method of a machine tool according to
技术方案3的机床的热位移修正装置,是一种包括具有丝杠轴和螺母的送进驱动用滚珠丝杠机构、根据加工数据来计算所述丝杠轴对所述螺母的送进量的送进量控制设备、驱动所述丝杠轴旋转的伺服马达、以及根据所述加工数据来控制所述伺服马达的旋转速度的速度控制设备的机床的热位移修正装置,包括:对所述旋转速度进行检测的速度检测设备;对所述伺服马达的温度上升进行检测的温度检测部;根据由所述速度检测设备检测到的所述旋转速度来运算因所述螺母的移动而在所述丝杠轴上产生的第一发热量的第一发热量运算部;根据由所述温度检测部检测到的所述温度上升来运算从所述伺服马达朝所述丝杠轴传递的第二发热量的第二发热量运算部;根据由所述第一发热量运算部运算出的所述第一发热量以及由所述第二发热量运算部运算出的所述第二发热量、来运算将所述丝杠轴沿长度方向分割而形成的多个区间的温度分布的温度分布运算部;根据所述温度分布来运算所述多个区间各自的热位移量的热位移量运算部;以及根据由所述热位移量运算部运算出的所述热位移量来运算加工数据的修正量的修正量运算部。The thermal displacement correction device for a machine tool according to
采用技术方案3的机床的热位移修正装置时,具有对伺服马达的温度上升进行检测的温度检测部,使用与温度上升对应的第二发热量来运算滚珠丝杠轴的多个区间的温度分布,由此得到修正量。因此,即使是在直到伺服马达的温度上升稳定为止的过渡状态下,也能使修正量与滚珠丝杠轴的实际伸长量近似。除了从伺服马达朝滚珠丝杠轴传递的输入热量之外,可使用因螺母的移动而在滚珠丝杠轴上产生的发热量,针对多个区间中的每一个区间对热位移量进行运算。因此,可在不另行设置传感器的情况下得到精度高的修正量。When the thermal displacement correction device for a machine tool according to
在技术方案4的机床的热位移修正装置中,温度检测部根据伺服马达的旋转速度和驱动电流值中的至少一方来检测上升温度。采用技术方案4的机床的热位移修正装置时,无需另行使用传感器等,可使用已有的传感器得到精度高的修正量。In the thermal displacement correction device for a machine tool according to claim 4 , the temperature detection unit detects the temperature increase based on at least one of a rotation speed of the servo motor and a drive current value. When the thermal displacement correction device of the machine tool according to claim 4 is adopted, it is not necessary to use additional sensors and the like, and a high-precision correction amount can be obtained using existing sensors.
附图说明 Description of drawings
图1是本发明实施例的加工中心M的整体立体图。FIG. 1 is an overall perspective view of a machining center M according to an embodiment of the present invention.
图2是以加工中心M的主轴头部5和工具更换装置7为中心的主视图。FIG. 2 is a front view centering on the
图3是滚珠丝杠机构的结构图。Fig. 3 is a structural diagram of a ball screw mechanism.
图4是加工中心M的控制系统的方框图。FIG. 4 is a block diagram of a control system of the machining center M. As shown in FIG.
图5是分割丝杠轴来求解发热量时的说明图。Fig. 5 is an explanatory diagram for calculating the calorific value by dividing the screw shaft.
图6是温度分布运算回路19的数据区域的说明图。FIG. 6 is an explanatory diagram of the data area of the temperature distribution calculation circuit 19 .
图7是表示使马达的旋转速度和电流保持一定时马达本体温度与经过时间之间的关系的说明图。7 is an explanatory diagram showing the relationship between the temperature of the motor body and the elapsed time when the rotation speed and current of the motor are kept constant.
图8是对马达本体温度的计算方法进行说明的说明图,图8(A)是驱动开始后从0到t1为止的马达本体温度与经过时间之间的关系图,图8(B)是驱动开始后从t1到t2为止的马达本体温度与经过时间之间的关系图,图8(C)是驱动开始后从t2到t3为止的马达本体温度与经过时间之间的关系图,图8(D)是驱动开始后从0到t3为止的马达本体温度与经过时间之间的关系图。8 is an explanatory diagram for explaining the calculation method of the temperature of the motor body. FIG. 8(A) is a diagram showing the relationship between the temperature of the motor body and the elapsed time from 0 to t1 after the start of driving. FIG. The relationship between the temperature of the motor body and the elapsed time from t1 to t2 after the start, Fig. 8 (C) is the relationship between the temperature of the motor body and the elapsed time from t2 to t3 after the start of driving, Fig. D) is a graph showing the relationship between the temperature of the motor body and the elapsed time from 0 to t3 after the start of driving.
图9是对各部分的温度和输入各区间的发热量进行说明的图。FIG. 9 is a diagram for explaining the temperature of each part and the calorific value input into each section.
图10是表示各位置上的温度上升速度的图。Fig. 10 is a graph showing the temperature rise rate at each position.
图11是加工中心M的位置修正控制的流程图。FIG. 11 is a flowchart of position correction control of the machining center M. As shown in FIG.
图12是测量丝杠轴的端部温度用的实验装置的概略图。Fig. 12 is a schematic diagram of an experimental device for measuring the temperature of an end portion of a screw shaft.
图13是表示利用现有技术的方法得到的计算值和利用图12的实验装置得到的实验值的曲线图。FIG. 13 is a graph showing calculated values obtained by the method of the prior art and experimental values obtained by the experimental device of FIG. 12 .
具体实施方式 Detailed ways
下面,根据实施例来说明用于实施本发明的最佳形态。Next, the best mode for carrying out the present invention will be described based on examples.
实施例1Example 1
参照图1~图4对加工中心M(机床)的结构进行说明。图1所示的加工中心M是可通过使工件和工具相对移动来对工件实施期望的机械加工(例如“铣削”、“钻孔”、“切削”等)的机床。加工中心M主要包括:铸铁制的基台即底座1、设置在底座1上部的机床本体2、固定在底座1上部的保护挡板(未图示)。机床本体2进行工件的切削加工。保护挡板是将机床本体2和底座1的上部覆盖的箱状的盖。The configuration of the machining center M (machine tool) will be described with reference to FIGS. 1 to 4 . The machining center M shown in FIG. 1 is a machine tool capable of performing desired machining (such as "milling", "drilling", and "cutting") on a workpiece by relatively moving a workpiece and a tool. The machining center M mainly includes: a
底座1是Y轴方向上较长的大致长方体状的铸造品。在底座1下部的四个角落内分别设置有高度可调的脚部。The
下面说明机床本体2。如图1所示,机床本体2主要包括:柱4、主轴头部5、主轴(未图示)、工具更换装置7、以及工作台8。柱4固定在柱座部3的上表面上并朝铅垂上方延伸,柱座部3设置在底座1的后部。主轴头部5可沿柱4的前表面进行升降。主轴头部5在其内部可旋转地支撑有主轴。工具更换装置7设置在主轴头部5的右侧。工具更换装置7将安装在主轴前端的工具保持件更换成其它工具保持件。工具保持件安装有工具6。工作台8设置在底座1的上部。工作台8将工件可装拆地固定。在柱4的背面侧设置有箱状的控制箱9。控制箱9在其内侧具有控制加工中心M的动作的数控装置50。Next, the
下面说明工作台8的移动机构。伺服马达即X轴马达71(参照图4)和Y轴马达72(参照图4)使工作台8分别沿X轴方向(图1的机床本体2的左右方向)和Y轴方向(机床本体2的进深方向)移动。工作台8的移动机构具有下面的结构。在工作台8的下侧设置有长方体状的支撑台10。支撑台10在其上表面具有沿X轴方向延伸的一对X轴送进导轨。在一对X轴送进导轨上可移动地支撑有工作台8。如图3所示,在工作台8的下表面配置有螺母部8a。螺母部8a与从X轴马达71延伸出的X轴丝杠轴81螺合,由此构成滚珠丝杠机构。固定在支撑台10上的固定轴承91a对X轴丝杠轴81的X轴马达71侧的端部81a予以支撑。可动轴承91b对X轴丝杠轴81的X轴马达71相反侧的端部81b予以支撑。Next, the movement mechanism of the table 8 will be described. Servomotor is X-axis motor 71 (referring to Fig. 4) and Y-axis motor 72 (referring to Fig. 4) to make table 8 along X-axis direction (the left and right direction of
在底座1的上部沿长边方向延伸的一对Y轴送进导轨上可移动地支撑有支撑台10。设置在支撑台10上的X轴马达71沿着X轴送进导轨驱动工作台8沿X轴方向移动。设置在底座1上的Y轴马达72沿着Y轴送进导轨驱动工作台8沿Y轴方向移动。Y轴的移动机构与X轴的移动机构一样,也是滚珠丝杠机构(参照图3)。A support table 10 is movably supported on a pair of Y-axis feeding guide rails extending in the longitudinal direction on the upper portion of the
伸缩式收缩的伸缩盖11、12在工作台8的左右两侧覆盖X轴送进导轨。伸缩盖13和Y轴后盖在支撑台10的前后分别覆盖Y轴送进导轨。即使工作台8在X轴方向和Y轴方向中的任一方向上移动时,伸缩盖11、12、13和Y轴后盖也能始终覆盖X轴送进导轨和Y轴送进导轨。因此,伸缩盖11、12、13和Y轴后盖可防止从加工区域飞散出的切屑和冷却液等掉落到各导轨上。The telescopic retractable telescopic cover 11,12 covers the X-axis feeding guide rail on the left and right sides of the
下面说明主轴头部5的升降机构。在柱4的前面侧沿上下方向延伸的导轨(未图示)通过线性导向件(未图示)对主轴头部5进行引导,使其可自由升降。螺母(未图示)将主轴头部5与在柱4的前面侧沿上下方向延伸设置的Z轴丝杠轴(未图示)连结。Z轴马达73(参照图4)驱动Z轴丝杠轴朝正反方向旋转,从而主轴头部5沿上下方向升降驱动。Z轴控制部63a根据来自数控装置50的CPU51的控制信号来驱动Z轴马达73。通过Z轴马达73的驱动,主轴头部7升降驱动。Next, the elevating mechanism of the
如图1、图2所示,工具更换装置7包括工具库14和工具更换臂15。工具库14容纳有支撑工具6的多个工具保持件。工具更换臂15对安装在主轴上的工具保持件和其它工具保持件予以把持,并进行搬运、更换。工具库14在其内侧包括多个工具座(tool pot)(未图示)和搬运机构(未图示)。工具座支撑工具保持件。搬运机构在工具库14内搬运工具座。As shown in FIGS. 1 and 2 , the
图4表示了加工中心M的电气结构。作为控制部的控制装置50包括微型计算机。控制装置50包括:输入输出接口54,CPU51,ROM52,RAM53,轴控制部61a~64a、75a,伺服放大器61~64,以及微分器71b~74b等。伺服放大器61~64与X轴马达71、Y轴马达72、Z轴马达73、主轴马达74分别连接。轴控制部75a与库马达75连接。FIG. 4 shows the electrical structure of the machining center M. The
X轴马达71、Y轴马达72是用于使工作台8沿X轴方向、Y轴方向分别移动的马达。库马达75是用于使工具库14旋转移动的马达。主轴马达74是用于使上述主轴旋转的马达。下面,将X轴马达71、Y轴马达72、Z轴马达73和主轴马达74总称为马达71~74。马达71~74分别包括编码器71a~74a。The
轴控制部61a~64a接收来自CPU51的移动指令量,将电流指令(马达转矩指令值)分别朝伺服放大器61~64输出。伺服放大器61~64接收电流指令,分别朝马达71~74输出驱动电流。轴控制部61a~64a分别接收来自编码器71a~74a的位置反馈信号,进行位置反馈控制。微分器71b~74b分别对编码器71a~74a输出的位置反馈信号进行微分而将其转换成速度反馈信号,并将其作为速度反馈信号朝轴控制部61a~64a输出。The
轴控制部61a~64a分别根据微分器71b~74b输出的速度反馈信号进行速度反馈控制。电流检测器61b~64b分别对伺服放大器61~64朝马达71~74输出的驱动电流进行检测。电流检测器61b~64b分别将驱动电流朝轴控制部61a~64a反馈。轴控制部61a~64a根据得到了反馈的驱动电流,进行电流(转矩)控制。The
轴控制部75a接收来自CPU51的移动指令,驱动库马达75。The
RAM53存储有与机械构造相关的参数、与物理性质相关的参数、以及后述的热分配系数(比率)ηN、ηB等。作为与机械构造相关的参数,例如有丝杠轴81的长度、直径、后述的基准位置等。作为与物理性质相关的参数,例如有密度、比热、线膨胀系数、热容量、传热系数、在公式(3)和公式(4)中使用的γ等。如图6所示,RAM53对应于后述的螺母部移动区间的区间1~n,具有:存储发热量的数据区域、以及与总发热量和伺服马达的总旋转速度对应的数据区域。The RAM 53 stores parameters related to the mechanical structure, parameters related to physical properties, heat distribution coefficients (ratio) η N , η B , etc. to be described later. Parameters related to the mechanical structure include, for example, the length and diameter of the
下面,对在加工中心M的数值控制中使用的热位移量的计算方法进行说明。为了方便,以X轴的滚珠丝杠机构为例进行说明,但Y轴的滚珠丝杠机构和Z轴的滚珠丝杠机构也基本相同。在本计算方法中,求解丝杠轴的前部轴承部、螺母部移动区间和后部轴承部这三个区域的发热量。螺母部移动区间分割成多个区间。针对上述多个区间,求解每个区间的发热量。Next, a calculation method of the thermal displacement amount used in the numerical control of the machining center M will be described. For convenience, the X-axis ball screw mechanism will be described as an example, but the Y-axis ball screw mechanism and the Z-axis ball screw mechanism are basically the same. In this calculation method, the amount of heat generated in the three areas of the front bearing part of the screw shaft, the movement area of the nut part, and the rear bearing part are calculated. The movement section of the nut portion is divided into a plurality of sections. For the above-mentioned multiple intervals, the calorific value of each interval is solved.
(总发热量的计算)(calculation of total calorific value)
如图5所示,将螺母部移动区间(用L来表示长度)分割成n个。在本实施例中,每经过一定时间(例如50ms)就对螺母部存在于哪个区间进行判别,并根据伺服马达的实际旋转速度(送进速度)求解发热量(第一发热量)。求解出的发热量存储在RAM53的数据区域内。发热量可使用下式进行求解。As shown in FIG. 5 , the nut portion moving section (the length is represented by L) is divided into n pieces. In this embodiment, it is judged in which section the nut portion exists every time a certain period of time (for example, 50 ms) elapses, and the calorific value (first calorific value) is obtained from the actual rotation speed (feed speed) of the servo motor. The calculated calorific value is stored in the data area of RAM53. The calorific value can be found using the following equation.
Q=K1×FT …(1)Q=K 1 ×F T …(1)
在此,Q是发热量,F是送进速度,K1、T是系数。Here, Q is the calorific value, F is the feeding speed, and K 1 and T are coefficients.
在本实施例中,在一定时间内,每经过一定时间就对螺母部在各区间内移动而产生的发热量进行计算。在本实施例中,在6400ms的时间内,以50ms的间隔对发热量计算128次,针对每个区间将该计算出的发热量加在一起,并将其存储在与各区间1~n对应的RAM53的数据区域内。RAM53的数据区域存储有在6400ms时间内产生的各区间1~n的发热量1~n的总发热量QTTL和总旋转速度NTTL。In this embodiment, the amount of heat generated by the movement of the nut portion in each section is calculated every time a certain time elapses within a certain period of time. In this embodiment, the calorific value is calculated 128 times at intervals of 50 ms within 6400 ms, and the calculated calorific value is added for each section, and stored in a file corresponding to each
(总发热量的分配1)(distribution of total calorific value 1)
下面所示的总发热量QTTL的分配方法根据的是与日本专利特开1992年第240045号公报相同的方法。即,螺母部移动区间、前部轴承部和后部轴承部相互间不发生热传导,在热力学上视为近似独立。各热源部的发热量相对于总发热量的比率与送进速度的变化无关,大致一定。The allocation method of the total calorific value Q TTL shown below is based on the same method as in Japanese Patent Application Laid-Open No. 240045 in 1992. That is, the movement section of the nut portion, the front bearing portion, and the rear bearing portion do not conduct heat with each other, and are regarded as approximately independent from a thermodynamic point of view. The ratio of the calorific value of each heat source part to the total calorific value is substantially constant regardless of the change in the feeding speed.
根据上述方法,本实施例利用下式来计算螺母部移动区间发热量QN和后部轴承部发热量QB。According to the method described above, the present embodiment uses the following equations to calculate the calorific value Q N of the movement section of the nut portion and the calorific value Q B of the rear bearing portion.
QN=ηN×QTTL Q N =η N ×Q TTL
QB=ηB×QTTL Q B =η B × Q TTL
比率ηN是螺母部移动区间的发热量相对于总发热量的比率。比率ηB是后部轴承部的发热量相对于总发热量的比率。如上述方法所示,由于比率ηN、ηB是一定的,因此通过现场测定QN、QB来预先求解比率ηN、ηB。The ratio η N is the ratio of the calorific value in the movement section of the nut portion to the total calorific value. The ratio η B is the ratio of the calorific value of the rear bearing portion to the total calorific value. As shown in the above method, since the ratios η N and η B are constant, the ratios η N and η B are calculated in advance by measuring Q N and Q B on site.
(发热量在螺母部移动区间的各区间内的分配)(Distribution of heat generation in each section of the movement section of the nut part)
接着,本实施例求解螺母部移动区间的各区间的发热量。RAM53存储的发热量是在6400ms的时间内以50ms的间隔计算出的发热量的总计值。因此,在针对每个区间求解出了以50ms为间隔的平均发热量后,根据平均发热量和总发热量QTTL,利用下式来求解螺母部在各区间内的存在概率X1…Xi…Xn。Next, in this embodiment, the calorific value of each section in the movement section of the nut portion is calculated. The calorific value stored in the RAM 53 is the total value of the calorific value calculated at intervals of 50 ms for 6400 ms. Therefore, after obtaining the average calorific value at intervals of 50 ms for each section, the existence probability X 1 ...X i of the nut portion in each section is obtained using the following formula from the average calorific value and the total calorific value Q TTL ... X n .
X1=区间1的平均发热量/QTTL X 1 = average calorific value of
: :
Xi=区间i的平均发热量/QTTL X i = average calorific value of interval i/Q TTL
: :
XN=区间N的平均发热量/QTTL X N = average calorific value of interval N/Q TTL
在本实施例中,在求解出了螺母部在各区间内的存在概率X1…Xi…Xn后,根据该存在概率和上述螺母部移动区间发热量QN,利用下式来求解分配给各区间1~n的分配发热量QN1…QNi…QNn。In this embodiment, after the existence probabilities X 1 ... Xi ... X n of the nut parts in each interval are obtained, the distribution is obtained by using the following formula according to the existence probability and the calorific value Q N of the movement interval of the nut part Distributed calorific value Q N1 ... Q Ni ... Q Nn to each
QN1=X1×QN Q N1 =X 1 ×Q N
: :
QNi=Xi×QN QNi = Xi × QN
: :
QNn=Xn×QN Q Nn = X n × Q N
(总发热量的分配2)(distribution of total calorific value 2)
接着,本实施例计算前部轴承部发热量QF。前部轴承部发热量QF是因伺服马达温度上升所产生的输入热量而形成的。因此,本实施例计算伺服马达本体的温度。本实施例根据计算出的温度与丝杠轴端部的温度之间的差异,来求解输入丝杠轴端部的输入热量、即前部轴承部发热量QF(第二发热量)。Next, in this embodiment, the amount of heat generated by the front bearing portion Q F is calculated. The heat generated by the front bearing part Q F is generated by the input heat generated by the temperature rise of the servo motor. Therefore, this embodiment calculates the temperature of the servo motor body. In this embodiment, the heat input to the end of the screw shaft, that is, the heat generated by the front bearing portion Q F (second heat generated) is obtained from the difference between the calculated temperature and the temperature of the end of the screw shaft.
下面对伺服马达本体的温度的计算方法进行说明。参照图7,对伺服马达的旋转速度和驱动电流恒定时伺服马达的温度变化进行说明。在开始驱动加工中心M时,马达本体温度ΘM沿着曲线150上升,在一定温度下饱和。将该饱和时的温度称作饱和温度L1a。饱和温度L1a可用下式表示。The following describes how to calculate the temperature of the servo motor body. Referring to FIG. 7 , the temperature change of the servo motor when the rotational speed and the drive current of the servo motor are constant will be described. When the machining center M starts to be driven, the temperature ΘM of the motor body rises along the
L1a=K2·ω+K3·i2 …(2)L 1a =K 2 ·ω+K 3 ·i 2 ...(2)
K2、K3是伺服马达固有的常数,ω是马达旋转速度,i是伺服马达的驱动电流。K 2 and K 3 are constants inherent to the servo motor, ω is the rotational speed of the motor, and i is the driving current of the servo motor.
表示马达本体温度ΘM上升的曲线150可用下式表示。The
ΘM=L1a·{1—exp(—γ·t)} …(3)Θ M = L 1a ·{1—exp(—γ·t)} …(3)
γ是伺服马达固有的常数,t是从驱动开始起的经过时间。若在马达本体温度ΘM达到了饱和温度L1a后(图7中是t=8小时的时刻)停止加工中心M,则马达本体温度ΘM沿着曲线151下降。曲线151可用下式表示。γ is a constant inherent to the servo motor, and t is an elapsed time from the start of driving. When the machining center M is stopped after the motor body temperature ΘM reaches the saturation temperature L1a (time t=8 hours in FIG. 7), the motor body temperature ΘM falls along the
ΘM=L1a·exp(—γ·t) …(4)Θ M =L 1a ·exp(—γ·t) …(4)
γ是伺服马达固有的常数,t是从驱动停止起的经过时间。γ is a constant inherent to the servo motor, and t is the elapsed time from the drive stop.
根据上式(3),从加工中心M的驱动开始起a分钟后的马达本体温度ΘM1a可用下式表示。From the above formula (3), the motor body temperature ΘM1a after a minute from the start of driving the machining center M can be expressed by the following formula.
ΘM1a=L1a·{1—exp(—γ·a/60)}Θ M1a = L 1a ·{1—exp(—γ·a/60)}
根据上式(4),从加工中心M的驱动停止起a分钟后的马达本体温度ΘM-1a可用下式表示。From the above formula (4), the motor body temperature ΘM -1a after a minute from the stop of the driving of the machining center M can be expressed by the following formula.
ΘM-1a=L1a·exp(—γ·a/60)Θ M-1a = L 1a ·exp(—γ·a/60)
上面对伺服马达的旋转速度和驱动电流恒定时伺服马达的温度变化进行了说明,但在实际中驱动加工中心M时,伺服马达的旋转速度和驱动电流不一定稳定。特别是在运转初期的过渡状态下,旋转速度和驱动电流并不稳定。因此,在本实施例中,每经过规定的经过时间(具体而言是6400ms),就根据实际的旋转速度和驱动电流(具体而言是以50ms的间隔实测得到的旋转速度和驱动电流各自的平均值),使用式(2)来求解伺服马达的饱和温度。在本实施例中,根据饱和温度和经过时间,使用上述的式(3)和式(4)来求解伺服马达本体的温度变化。在本实施例中,通过将得到的温度变化相加,来求解实际的马达本体的温度。The temperature change of the servo motor when the rotation speed and drive current of the servo motor are constant has been described above, but when the machining center M is actually driven, the rotation speed and drive current of the servo motor are not always stable. Especially in the transient state at the beginning of operation, the rotation speed and drive current are not stable. Therefore, in this embodiment, every time a predetermined elapsed time (6400 ms specifically), the actual rotation speed and drive current (specifically, the rotation speed and drive current measured at intervals of 50 ms) average value), use equation (2) to solve the saturation temperature of the servo motor. In this embodiment, the temperature change of the servo motor body is obtained using the above-mentioned equations (3) and (4) from the saturation temperature and the elapsed time. In this embodiment, the actual temperature of the motor main body is obtained by adding the obtained temperature changes.
下面参照图8,对实际的伺服马达本体的温度的计算方法进行说明。在下面的说明中,假设在加工中心M的驱动开始后,时间经过时刻t1、t2、……(分钟)。即,时刻0、t1、t2、……之间的各个间隔是各个处理的经过时间。Next, a method of calculating the temperature of the actual servo motor body will be described with reference to FIG. 8 . In the following description, it is assumed that time t1, t2, . . . (minutes) elapses after the drive of the machining center M is started. That is, each interval between
在本实施例中,马达本体温度ΘM在上述经过时间内先根据上述的式(3)上升,之后根据式(4)下降。如图8(A)所示,基于从时刻0到时刻t1期间的经过时间的马达本体温度ΘMt1形成从时刻0到时刻t1上升、超过时刻t1便下降的曲线301。马达本体温度ΘMt1在时刻t1的值ΘMt1-1可根据式(3)如下地进行计算。In this embodiment, the motor body temperature ΘM first increases according to the above-mentioned equation (3) within the above-mentioned elapsed time, and then decreases according to the above-mentioned equation (4). As shown in FIG. 8(A), the motor body temperature θ Mt1 based on the elapsed time from
ΘMt1-1=Lt1·{1—exp(—γ·t1/60)}Θ Mt1-1 =L t1 ·{1—exp(—γ·t1/60)}
Lt1是根据从时刻0到时刻t1期间伺服马达的实际旋转速度和驱动电流求解的饱和温度。由于马达本体温度ΘMt1在时刻t1以后根据式(4)下降,因此时刻t2的马达本体温度ΘMt1的值ΘMt1-2可如下地进行计算。L t1 is the saturation temperature calculated from the actual rotation speed and drive current of the servo motor from
ΘMt1-2=ΘMt1-1·exp{—γ·(t2—t1)/60}Θ Mt1-2 =Θ Mt1-1 ·exp{—γ·(t2—t1)/60}
同样地,时刻t3、t4的马达本体温度ΘMt1的值ΘMt1-3、ΘMt1-4也可根据式(4)分别如下地进行计算。Similarly, the values Θ Mt1-3 and Θ Mt1-4 of the motor body temperature Θ Mt1 at times t3 and t4 can be calculated as follows, respectively, according to Equation (4).
ΘMt1-3=ΘMt1-1·exp{—γ·(t3—t1)/60}Θ Mt1-3 =Θ Mt1-1 ·exp{—γ·(t3—t1)/60}
ΘMt1-4=ΘMt1-1·exp{——γ·(t4—t1)/60}Θ Mt1-4 =Θ Mt1-1 ·exp{——γ·(t4—t1)/60}
如图8(B)所示,基于从时刻t1到时刻t2期间的经过时间的马达本体温度ΘMt2形成从时刻t1到时刻t2上升、超过时刻t2便下降的曲线302。由于可根据从时刻t1到时刻t2期间伺服马达的实际旋转速度和驱动电流来计算饱和温度Lt2,因此时刻t2、t3、t4的马达本体温度ΘMt2-1、ΘMt2-2、ΘMt2-3可使用式(3)和式(4)分别如下地进行计算。As shown in FIG. 8(B), the motor body temperature θ Mt2 based on the elapsed time from time t1 to time t2 forms a
ΘMt2-1=Lt2·[1—exp{—γ·(t2—t1)/60}]Θ Mt2-1 =L t2 ·[1—exp{—γ·(t2—t1)/60}]
ΘMt2-2=ΘMt2-1·exp{—γ·(t3—t2)/60}Θ Mt2-2 =Θ Mt2-1 ·exp{—γ·(t3—t2)/60}
ΘMt23=ΘMt2-1·exp{—γ·(t4—t2)/60}Θ Mt23 =Θ Mt2-1 ·exp{—γ·(t4—t2)/60}
如图8(C)所示,基于从时刻t2到时刻t3的经过时间的马达本体温度ΘMt3形成从时刻t2到时刻t3上升、超过时刻t3便下降的曲线303。可与上述的ΘMt1和ΘMt2时一样地求解时刻t3、t4、t5的马达本体温度ΘMt3-1,ΘMt3-2,ΘMt3-3。As shown in FIG. 8(C), the motor body temperature θ Mt3 based on the elapsed time from time t2 to time t3 forms a
通过将按上述方法计算出的马达本体温度ΘMt1、ΘMt2、ΘMt3……的各时刻的值相加,来计算实际的马达本体温度Θ。例如,假设根据时刻t1、t2、t3、……之间的经过时间计算出了用曲线301、302、303……(参照图8(A)~(C))例示的马达本体温度ΘMt1、ΘMt2、ΘMt3。这种情况下,时刻t1的马达本体温度Θ的值X1是ΘMt1-1。时刻t2的马达本体温度Θ的值X2是ΘMt1-2+ΘMt2-1。时刻t3的马达本体温度Θ的值X3是ΘMt1-3+ΘMt2-2+ΘMt3-1。若按同样的方法求解各时刻的马达本体温度Θ的值,则马达本体温度Θ像曲线304(参照图8(D))例示的那样进行变化。The actual motor body temperature Θ is calculated by adding the motor body temperatures Θ Mt1 , Θ Mt2 , Θ Mt3 . . . For example, it is assumed that the motor body temperatures Θ Mt1 , Θ Mt2 , Θ Mt3 . In this case, the value X1 of the motor body temperature Θ at time t1 is ΘMt1-1. The value X 2 of the motor body temperature Θ at time t2 is Θ Mt1-2 + Θ Mt2-1 . The value X3 of the motor body temperature Θ at time t3 is Θ Mt1-3 + Θ Mt2-2 + Θ Mt3-1 . When the value of the motor body temperature Θ is obtained at each time point in the same manner, the motor body temperature Θ changes as illustrated by the curve 304 (see FIG. 8(D)).
在本实施例中,根据下式(5),使用按上述方法求解出的马达本体温度Θ来计算前部轴承部发热量QF。In the present embodiment, the heat generation amount Q F of the front bearing portion is calculated using the motor body temperature Θ obtained by the above-mentioned method according to the following equation (5).
QF=K4(Θ—ΘS) …(5)Q F =K 4 (Θ—Θ S ) …(5)
K4是系数,ΘS是伺服马达侧的丝杠轴端部(在图3的例子中是端部81a)的温度。 K4 is a coefficient, and ΘS is the temperature of the end portion of the screw shaft on the servo motor side (the
(温度分布的计算)(calculation of temperature distribution)
在按上述方法求解出了各热源部的发热量后,CPU51根据发热量来计算温度分布。温度分布通过在{θ}t=0、d{θ}/dtt=0的初始条件下求解下面的非稳态热传导方程式进行求解。After calculating the calorific value of each heat source portion as described above, the
[C]d{θ}/dt+[H]{θ}+{Q}=0 …(6)[C]d{θ}/dt+[H]{θ}+{Q}=0 …(6)
[C]是热容量矩阵,[H]是热传导矩阵,{θ}是温度分布,{Q}是发热量,t是时间。[C] is the heat capacity matrix, [H] is the heat conduction matrix, {θ} is the temperature distribution, {Q} is the calorific value, and t is the time.
具体而言,如下地计算加工中心M驱动后(t=0)时间经过时刻t1、t2、……(分钟)时的温度分布。Specifically, the temperature distribution at times t1, t2, ... (minutes) after the machining center M is driven (t=0) is calculated as follows.
在像图5那样分割了螺母部移动区间时,可像图9那样表示各部分的温度、输入各区间的发热量。使用图9,式(6)可用下式表示。When the movement section of the nut portion is divided as shown in FIG. 5 , the temperature of each section and the calorific value of each section can be input as shown in FIG. 9 . Using FIG. 9, equation (6) can be represented by the following equation.
时刻t=0时的丝杠轴各部分的温度分布{θ}和马达本体温度Θ是已知的。因此,本实施例利用式(5)求解前部轴承部发热量QF。利用式(1),螺母部移动区间的各区间的分配发热量QN1~QNn和后部轴承部发热量QB也成为已知。将求解出的值代入式(7)的右边。如图10所示,本实施例可求解丝杠轴各部分的温度的上升速度(d{θ}t=0/dt)、即斜率。根据下式,本实施例根据求解出的斜率来求解t=t1时各部分的温度{θ}。The temperature distribution {θ} of each part of the screw shaft and the temperature Θ of the motor body at time t=0 are known. Therefore, in this embodiment, equation (5) is used to obtain the heat generation Q F of the front bearing portion. The distributed heat generation values Q N1 to Q Nn and the heat generation value Q B of the rear bearing portion in each of the nut portion movement intervals are also known from Equation (1). Substitute the obtained value into the right side of formula (7). As shown in FIG. 10 , in this embodiment, the rate of temperature rise (d{θ} t=0 /dt), that is, the slope, of each part of the screw shaft can be obtained. According to the following formula, this embodiment calculates the temperature {θ} of each part at t=t1 according to the calculated slope.
{θ}t=t1={θ}t=0+(d{θ}t=0/dt)×t1{θ} t = t1 = {θ} t = 0 + (d{θ} t = 0 /dt) × t1
本实施例利用{θ}t=t1的丝杠轴端部温度ΘS以及根据式(3)、(4)求解出的马达本体温度Θ,根据式(5)来求解t=t1时的QF。将求解出的值代入式(7),求解d{θ}t=t1/dt。其结果是,t=t2时各部分的温度可用下式进行求解。In this embodiment, the temperature Θ S at the end of the screw shaft at {θ} t=t1 and the temperature Θ of the motor body obtained according to equations (3) and (4) are used to solve Q at t=t1 according to equation (5). F. Substitute the calculated value into formula (7), and solve d{θ} t=t1 /dt. As a result, the temperature of each part at t=t2 can be obtained by the following equation.
{θ}t=t2={θ}t=t1+(d{θ}t=t1/dt)×(t2—t1){θ} t=t2 ={θ} t=t1 +(d{θ} t=t1 /dt)×(t2—t1)
t=t3、……时的温度可按同样的方法进行求解。The temperature at t=t3, ... can be solved in the same way.
(热位移量的计算)(calculation of thermal displacement)
在求解出了丝杠轴的温度分布后,本实施例根据该温度分布来计算热位移量。热位移量可用下式进行求解。After solving the temperature distribution of the screw shaft, this embodiment calculates the thermal displacement according to the temperature distribution. The thermal displacement can be solved by the following formula.
ΔL=∫L 0β×θ(L)dL …(8)ΔL= ∫L 0 β×θ(L)dL …(8)
ΔL是热位移量,β是丝杠轴材料的线膨胀系数。ΔL is the thermal displacement, and β is the linear expansion coefficient of the screw shaft material.
下面参照图11所示的流程图,对加工中心M的数值控制的具体步骤进行说明。CPU51利用参数等设定数据,来设定利用有限元方法进行运算时所需的矩阵。如图5所示,CPU51将丝杠轴的螺母部移动区间分割成有限个区间。通过分割区间,CPU51形成热分布模型的区域(S1)。Next, specific steps of the numerical control of the machining center M will be described with reference to the flow chart shown in FIG. 11 . The
接着,CPU51针对在步骤S1的工序中设定的热分布模型的各区间设定初始温度{θ}t=0。初始温度{θ}t=0针对每个区间单独进行设定。但在可将加工中心M的温度视为与外部气体温度θair一致时,针对所有区间,初始温度{θ}t=0均设定成外部气体温度θair。相反,在因加工中心M的驱动等而使各区间之间产生了温差时,CPU51针对各区间分别设定初始温度。CPU51将设定好的初始温度{θ}t=0和基准位置存储在RAM53内(S2)。Next, the
CPU51每经过50ms对螺母部8a的当前位置进入哪个区间进行求解,并针对每个区间,根据送进速度的数据和式(1)来求解螺母部8a移动产生的发热量的总量(S3)。在经过了一定时间(6400ms)后,CPU51根据将每个区间的发热量加在一起得到的总发热量QTTL和螺母部移动区间的发热量的比率ηN,来计算螺母部移动区间发热量QN。CPU51根据总发热量QTTL和每个区间的平均发热量,来计算螺母部在每个区间内的存在概率。CPU51将螺母部移动区间发热量QN与存在概率的乘积值作为螺母移动产生的发热量,分配给在步骤S1中分割好的各区间(S4)。The
CPU51使用流经伺服马达的电流和马达旋转速度,根据式(2)来求解饱和温度。CPU51根据上述饱和温度以及式(3)和式(4),来求解伺服马达本体的温度上升(S5)。CPU51根据式(5),利用伺服马达本体的温度上升和丝杠轴端部温度,来计算朝与伺服马达相邻的区间传递的输入热量、即前部轴承部发热量(S6)。The
CPU51使用在步骤S4和S6中求解出的每个区间的发热量和非稳态方程式(6),来求解各区间的温度分布(S7)。CPU51使用式(8),利用在步骤S7中求解出的温度分布来计算各区间的热位移量(S8)。CPU51对相对于在步骤S2中储存的基准位置的热位移量、即在加工控制中使用的修正量进行计算(S9)。在修正模式开启时,CPU51将与在步骤S9中求解出的修正量相当的送进量信号朝轴控制部61a发送(S10)。CPU51一旦结束到步骤S10为止的处理,便返回步骤S3,定期地(每经过6400ms)继续运算。The
执行步骤S3的CPU51相当于第一发热量运算部。执行步骤S5的CPU51相当于温度检测部。执行步骤S6的CPU51相当于第二发热量运算部。执行步骤S7的CPU51相当于温度分布运算部。执行步骤S8的CPU51相当于热位移量运算部。执行步骤S9的CPU51相当于修正量运算部。The
实施例2Example 2
下面对其它实施例进行说明。与上述实施例1不同的部分在于:不是利用电流和旋转速度来求解伺服马达的温度上升,而是使用安装在伺服马达上的温度传感器和测定室温的室温传感器来求解伺服马达的温度上升。Other embodiments will be described below. The difference from Example 1 above is that the temperature rise of the servo motor is calculated using a temperature sensor attached to the servo motor and a room temperature sensor for measuring room temperature instead of using the current and rotation speed.
将由另行设置在X轴马达71上的温度传感器(未图示)检测到的伺服马达本体的温度ΘMO、以及由设置在加工中心M上的检测外部气体温度的室温传感器(未图示)检测到的Θatm朝CPU51发送。CPU51使用下式来求解伺服马达本体的温度上升Θ。The temperature Θ MO of the servo motor body detected by a temperature sensor (not shown) separately provided on the
Θ=ΘMO—ΘatmΘ=Θ MO —Θatm
前部轴承部发热量QF是因伺服马达温度上升所产生的输入热量而形成的。因此,CPU51使用下式,根据伺服马达本体的温度上升Θ来求解前部轴承部发热量QF。The heat generated by the front bearing part Q F is generated by the input heat generated by the temperature rise of the servo motor. Therefore, the
QF=K5(Θ—ΘS)Q F =K 5 (Θ—Θ S )
K5是系数,ΘS是从时刻t=0起丝杠轴端部的温度上升。通过使用上述运算,用热位移修正算法进行求解的朝丝杠轴端部传递的输入热量的检测精度变好。因此,在实施例2中,可进一步提高热位移修正的精度。上述温度传感器和上述室温传感器相当于温度检测部。 K5 is a coefficient, and ΘS is the temperature rise at the end of the screw shaft from time t=0. By using the calculation described above, the detection accuracy of the input heat transferred to the end of the screw shaft obtained by the thermal displacement correction algorithm becomes better. Therefore, in
下面,对局部变更了上述实施例的变形例进行说明。在上述实施例1中,说明了使用式(3)和(4)来求解伺服马达本体的温度上升Θ的例子。伺服马达本体的温度上升Θ也可根据离散化的一阶延时系统,使用下式进行求解。Next, a modified example in which the above-described embodiment is partially modified will be described. In the above-mentioned first embodiment, an example was described in which the temperature rise Θ of the servo motor main body was obtained using equations (3) and (4). The temperature rise Θ of the servo motor body can also be solved using the following equation from a discretized first-order delay system.
LTn=K6·ω+K7·i2 …(9)L Tn =K 6 ·ω+K 7 ·i 2 ...(9)
Θn=(1—K8)Θn-1+LTn Θ n =(1—K 8 )Θ n-1 +L Tn
K6、K7、K8是伺服马达固有的常数。K 6 , K 7 , and K 8 are constants inherent to the servo motor.
在仅用旋转速度来求解伺服马达的温度上升时,式(2)成为如下所示。When the temperature rise of the servo motor is solved using only the rotational speed, Equation (2) becomes as follows.
L1a=K9·ωL 1a =K 9 ·ω
或者,在仅用驱动电流值来求解伺服马达的温度上升时,式(2)成为如下所示。Alternatively, when the temperature rise of the servo motor is calculated using only the drive current value, the expression (2) becomes as follows.
L1a=K10·i2 L 1a =K 10 ·i 2
K9和K10是伺服马达固有的常数。 K9 and K10 are constants inherent to the servo motor.
另外,在根据离散化的一阶延时系统,仅用旋转速度来求解伺服马达本体的温度上升时,式(9)成为如下所示。In addition, when the temperature rise of the servo motor body is solved using only the rotational speed based on the discretized first-order delay system, equation (9) becomes as follows.
LTn=K11·ωL Tn = K 11 ·ω
或者,在仅用驱动电流值进行求解时,式(9)成为如下所示。Alternatively, when it is solved using only the drive current value, Equation (9) becomes as follows.
LTn=K12·i2 L Tn =K 12 ·i 2
K11和K12是伺服马达固有的常数。 K11 and K12 are constants inherent to the servo motor.
Claims (4)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008063649 | 2008-03-13 | ||
JP2008063649A JP2009214283A (en) | 2008-03-13 | 2008-03-13 | Thermal displacement correction method of machine tool, thermal displacement correction device and program for thermal displacement correction of the same |
JP2008-063649 | 2008-03-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101530974A true CN101530974A (en) | 2009-09-16 |
CN101530974B CN101530974B (en) | 2011-05-11 |
Family
ID=40984226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101289319A Active CN101530974B (en) | 2008-03-13 | 2009-03-10 | Thermal displacement correcting method of a machine tool and a thermal displacement correcting device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2009214283A (en) |
KR (1) | KR101074206B1 (en) |
CN (1) | CN101530974B (en) |
DE (1) | DE102009013043B4 (en) |
TW (1) | TW200940243A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101844318A (en) * | 2010-05-24 | 2010-09-29 | 四川长征机床集团有限公司 | Compensation method and device for heat distortion of machine tool position ring |
CN102528558A (en) * | 2010-11-11 | 2012-07-04 | 发那科株式会社 | Thermal displacement compensation method and thermal displacement compensation device for machine tool |
CN102794672A (en) * | 2011-05-27 | 2012-11-28 | 财团法人精密机械研究发展中心 | Feed shaft thermal alteration measurement method for comprehensive processing machine |
CN103358180A (en) * | 2013-07-11 | 2013-10-23 | 浙江大学 | Method of quickly identifying thermal state characteristics of machine tool main shaft |
CN105458830A (en) * | 2014-09-30 | 2016-04-06 | 发那科株式会社 | Control system of machine tool |
CN105867301A (en) * | 2016-04-18 | 2016-08-17 | 安徽省捷甬达智能机器有限公司 | Numerical control machine tool temperature compensating method based on error adaptation |
CN105867302A (en) * | 2016-04-18 | 2016-08-17 | 安徽省捷甬达智能机器有限公司 | Numerically-controlled machine tool temperature compensation system |
CN105892401A (en) * | 2016-04-18 | 2016-08-24 | 安徽省捷甬达智能机器有限公司 | Machine tool motion compensation method based on temperature differences |
CN106873525A (en) * | 2017-03-10 | 2017-06-20 | 华中科技大学 | A kind of spindle assemblies thermal deformation Forecasting Methodology based on Digit Control Machine Tool real time data |
CN108287525A (en) * | 2017-01-10 | 2018-07-17 | 发那科株式会社 | The machine learning device and thermal displacement correction device of lathe |
CN108803485A (en) * | 2018-07-05 | 2018-11-13 | 大连理工大学 | Numerically-controlled machine tool external type heat error compensating method based on i5 iport agreements |
CN112415950A (en) * | 2019-08-23 | 2021-02-26 | 发那科株式会社 | Machine learning device, control system, and machine learning method |
CN112912803A (en) * | 2018-10-31 | 2021-06-04 | 三菱电机株式会社 | Numerical control device, learning device, and learning method |
CN112996630A (en) * | 2018-10-31 | 2021-06-18 | Dmg森精机株式会社 | Thermal displacement correction method for machine tool |
CN113741343A (en) * | 2021-11-08 | 2021-12-03 | 东莞市宝科精密机械有限公司 | Machine tool double-shaft synchronous control method and system and machine tool |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5387838B2 (en) * | 2009-08-28 | 2014-01-15 | ブラザー工業株式会社 | Thermal displacement compensation method and thermal displacement compensation device for numerically controlled machine tool |
JP5397096B2 (en) * | 2009-08-28 | 2014-01-22 | ブラザー工業株式会社 | Thermal displacement compensation method and thermal displacement compensation device for numerically controlled machine tool |
TW201121704A (en) * | 2009-12-29 | 2011-07-01 | Prec Machinery Res Dev Ct | Sectionized positioning correction device for thermal expansion of feed shaft. |
TWI398586B (en) * | 2010-06-30 | 2013-06-11 | Hiwin Tech Corp | Thermal deformation adjustment screw for a ball screw |
TWI406735B (en) * | 2010-08-24 | 2013-09-01 | Nat Univ Chung Cheng | An thermal error compensation system for a ball-screw feed drive system |
EP2711126B1 (en) * | 2011-05-17 | 2018-01-17 | JTEKT Corporation | Thermal displacement correction device and thermal displacement correction method |
CN103945981B (en) * | 2011-11-16 | 2016-02-24 | 村田机械株式会社 | Lathe |
KR101867447B1 (en) | 2011-11-16 | 2018-06-15 | (주)아모레퍼시픽 | Perfume composition for expressing oriental herbal fragrance |
JP5877856B2 (en) * | 2014-03-03 | 2016-03-08 | ファナック株式会社 | Numerical control device with heat dissipation characteristic estimation unit |
JP6432424B2 (en) * | 2015-03-31 | 2018-12-05 | ブラザー工業株式会社 | Machine tool and calculation method |
CN104792533B (en) * | 2015-04-29 | 2017-05-17 | 武汉理工大学 | Integrated testbed for numerical control machine spindle thermal error causes and test method |
CN105798695B (en) * | 2016-04-18 | 2018-03-13 | 安徽省捷甬达智能机器有限公司 | A kind of lathe temperature rise compensation method |
JP6813521B2 (en) * | 2018-02-08 | 2021-01-13 | ファナック株式会社 | Temperature measuring device |
JP6802208B2 (en) * | 2018-03-23 | 2020-12-16 | ファナック株式会社 | Thermal displacement correction system and calculator |
JP7238839B2 (en) * | 2020-03-30 | 2023-03-14 | ブラザー工業株式会社 | Correction coefficient derivation method and machine tool |
CN111376064A (en) * | 2020-04-10 | 2020-07-07 | 滕州市海滕机床有限公司 | Mirror image thermal balance guide rail-containing spindle box structure |
KR20230119360A (en) | 2022-02-07 | 2023-08-16 | 주식회사 디엔솔루션즈 | Thermal displacement compensation device of machine tool and method thereof |
JP2024078231A (en) * | 2022-11-29 | 2024-06-10 | ブラザー工業株式会社 | Numerical control device and judgment method |
CN116403633A (en) * | 2023-03-07 | 2023-07-07 | 湘潭大学 | Two-rotation-degree-of-freedom synchronous control precise turntable device and error compensation method |
CN119147255B (en) * | 2024-11-15 | 2025-01-24 | 四川航天烽火伺服控制技术有限公司 | Planetary roller screw rod matched grinding online evaluation method and device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63256336A (en) | 1987-04-13 | 1988-10-24 | Yoshiaki Kakino | Method for correcting thermal displacement of ball screw in nc machine |
US5089364A (en) | 1990-10-26 | 1992-02-18 | Xerox Corporation | Electrophotographic imaging members containing a polyurethane adhesive layer |
JPH0815702B2 (en) | 1991-01-17 | 1996-02-21 | 日立精機株式会社 | Method for correcting thermal displacement of ball screw in NC machine tool |
JP3407972B2 (en) * | 1994-04-27 | 2003-05-19 | ファナック株式会社 | Thermal displacement compensation method for machine tools |
JP4358786B2 (en) * | 2005-05-31 | 2009-11-04 | オークマ株式会社 | Ball screw thermal displacement correction method |
-
2008
- 2008-03-13 JP JP2008063649A patent/JP2009214283A/en active Pending
-
2009
- 2009-03-10 CN CN2009101289319A patent/CN101530974B/en active Active
- 2009-03-12 KR KR1020090020972A patent/KR101074206B1/en active Active
- 2009-03-12 TW TW098108049A patent/TW200940243A/en unknown
- 2009-03-13 DE DE102009013043.8A patent/DE102009013043B4/en active Active
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101844318A (en) * | 2010-05-24 | 2010-09-29 | 四川长征机床集团有限公司 | Compensation method and device for heat distortion of machine tool position ring |
CN102528558A (en) * | 2010-11-11 | 2012-07-04 | 发那科株式会社 | Thermal displacement compensation method and thermal displacement compensation device for machine tool |
CN102794672A (en) * | 2011-05-27 | 2012-11-28 | 财团法人精密机械研究发展中心 | Feed shaft thermal alteration measurement method for comprehensive processing machine |
CN103358180A (en) * | 2013-07-11 | 2013-10-23 | 浙江大学 | Method of quickly identifying thermal state characteristics of machine tool main shaft |
CN103358180B (en) * | 2013-07-11 | 2015-06-03 | 浙江大学 | Method of quickly identifying thermal state characteristics of machine tool main shaft |
CN105458830A (en) * | 2014-09-30 | 2016-04-06 | 发那科株式会社 | Control system of machine tool |
US10001212B2 (en) | 2014-09-30 | 2018-06-19 | Fanuc Corporation | Control system of machine tool |
CN105867302B (en) * | 2016-04-18 | 2018-05-15 | 安徽省捷甬达智能机器有限公司 | A kind of numerical control machine temperature compensation system |
CN105892401A (en) * | 2016-04-18 | 2016-08-24 | 安徽省捷甬达智能机器有限公司 | Machine tool motion compensation method based on temperature differences |
CN105867302A (en) * | 2016-04-18 | 2016-08-17 | 安徽省捷甬达智能机器有限公司 | Numerically-controlled machine tool temperature compensation system |
CN105867301A (en) * | 2016-04-18 | 2016-08-17 | 安徽省捷甬达智能机器有限公司 | Numerical control machine tool temperature compensating method based on error adaptation |
CN108287525B (en) * | 2017-01-10 | 2020-06-16 | 发那科株式会社 | Machine learning device and thermal displacement correction device for machine tool |
CN108287525A (en) * | 2017-01-10 | 2018-07-17 | 发那科株式会社 | The machine learning device and thermal displacement correction device of lathe |
CN106873525B (en) * | 2017-03-10 | 2019-05-07 | 华中科技大学 | A method for predicting thermal deformation of spindle components based on real-time data of CNC machine tools |
CN106873525A (en) * | 2017-03-10 | 2017-06-20 | 华中科技大学 | A kind of spindle assemblies thermal deformation Forecasting Methodology based on Digit Control Machine Tool real time data |
CN108803485A (en) * | 2018-07-05 | 2018-11-13 | 大连理工大学 | Numerically-controlled machine tool external type heat error compensating method based on i5 iport agreements |
CN108803485B (en) * | 2018-07-05 | 2020-08-14 | 大连理工大学 | I5iport protocol-based external thermal error compensation method for numerical control machine tool |
CN112912803A (en) * | 2018-10-31 | 2021-06-04 | 三菱电机株式会社 | Numerical control device, learning device, and learning method |
CN112996630A (en) * | 2018-10-31 | 2021-06-18 | Dmg森精机株式会社 | Thermal displacement correction method for machine tool |
CN112415950A (en) * | 2019-08-23 | 2021-02-26 | 发那科株式会社 | Machine learning device, control system, and machine learning method |
CN113741343A (en) * | 2021-11-08 | 2021-12-03 | 东莞市宝科精密机械有限公司 | Machine tool double-shaft synchronous control method and system and machine tool |
CN113741343B (en) * | 2021-11-08 | 2022-02-08 | 东莞市宝科精密机械有限公司 | Machine tool double-shaft synchronous control method and system and machine tool |
Also Published As
Publication number | Publication date |
---|---|
DE102009013043A1 (en) | 2009-09-24 |
JP2009214283A (en) | 2009-09-24 |
TW200940243A (en) | 2009-10-01 |
DE102009013043B4 (en) | 2025-04-10 |
KR101074206B1 (en) | 2011-10-14 |
KR20090098709A (en) | 2009-09-17 |
CN101530974B (en) | 2011-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101530974B (en) | Thermal displacement correcting method of a machine tool and a thermal displacement correcting device | |
US8240060B2 (en) | Methods and apparatus for compensating temperature-dependent changes of positions on machine tools | |
JP5224177B2 (en) | Thermal displacement correction method and thermal displacement correction apparatus for machine tool | |
WO2011024833A1 (en) | Method for heat displacement correction in machine tool and heat displacement correction device | |
JP5206555B2 (en) | Numerically controlled machine tool and thermal displacement correction method thereof | |
WO2011024840A1 (en) | Method for thermal displacement correction in machine tool, and thermal displacement correction device | |
CN104076740B (en) | Numerical-control device | |
JP2006281420A (en) | NC machine tool thermal displacement compensation method | |
CN102481675B (en) | Thermal displacement correction method and thermal displacement correction device of machine tool | |
JP2010082724A (en) | Thermal displacement correction device and thermal displacement correction method for machine tool | |
JP5748488B2 (en) | Spindle device | |
JP5786436B2 (en) | Numerical control apparatus and processing method | |
JP6500602B2 (en) | Machine tool, calculation method and computer program | |
KR102109982B1 (en) | Feed drive system thermal deformation correction device of machine tool and method thereof | |
JP2021160004A (en) | Derivation method of correction coefficient and machine tool | |
JP6582522B2 (en) | Machine tool, calculation method and computer program | |
JP5169946B2 (en) | Numerically controlled machine tool and thermal displacement correction method thereof | |
CN106002429B (en) | Machine tool and calculation method | |
JP2023110398A (en) | Processing device and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |