[go: up one dir, main page]

CN101527174B - Schottky type nuclear battery and preparation method thereof - Google Patents

Schottky type nuclear battery and preparation method thereof Download PDF

Info

Publication number
CN101527174B
CN101527174B CN2009100304294A CN200910030429A CN101527174B CN 101527174 B CN101527174 B CN 101527174B CN 2009100304294 A CN2009100304294 A CN 2009100304294A CN 200910030429 A CN200910030429 A CN 200910030429A CN 101527174 B CN101527174 B CN 101527174B
Authority
CN
China
Prior art keywords
schottky
type
layer
nuclear battery
contact electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100304294A
Other languages
Chinese (zh)
Other versions
CN101527174A (en
Inventor
陆敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN2009100304294A priority Critical patent/CN101527174B/en
Publication of CN101527174A publication Critical patent/CN101527174A/en
Application granted granted Critical
Publication of CN101527174B publication Critical patent/CN101527174B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了肖特基型核电池及其制备方法,通过一次MOCVD外延和一次HVPE外延的复合外延技术生长获得衬底-n型GaN掺杂层-绝缘GaN掺杂层结构的肖特基型器件材料结构,再使用半导体微加工工艺溅射生成对应的接触电极,制备形成基本的电池器件,并将同位素耦合到肖特基接触电极上,封装制备完成核电池。由于核电池的寿命取决于同位素的半衰期,故而本发明可以灵活使用防护简单的同位素种类(纯β同位素),大大提高了核电池的能量转换效率和能量密度(能量容积),延长了核电池的使用寿命,同时也为核废料变废为宝、合理利用创造了有效途径。

Figure 200910030429

The invention discloses a Schottky type nuclear battery and a preparation method thereof. The Schottky type nuclear battery with a substrate-n-type GaN doped layer-insulating GaN doped layer structure is grown through the composite epitaxial technology of one MOCVD epitaxy and one HVPE epitaxy. The device material structure is then sputtered using a semiconductor micromachining process to generate the corresponding contact electrode to prepare the basic battery device. The isotope is coupled to the Schottky contact electrode, and the nuclear battery is packaged and prepared. Since the life of the nuclear battery depends on the half-life of the isotope, the present invention can flexibly use isotope types with simple protection (pure β isotopes), greatly improving the energy conversion efficiency and energy density (energy volume) of the nuclear battery, and extending the life of the nuclear battery. service life, and also creates an effective way for nuclear waste to be turned into treasure and rationally utilized.

Figure 200910030429

Description

肖特基型核电池及其制备方法Schottky nuclear battery and its preparation method

技术领域 technical field

本发明涉及一种半导体核电池器件,尤其涉及一次转换核电池中的辐射伏特效应核电池,属于能源应用领域。The invention relates to a semiconductor nuclear battery device, in particular to a radiation volt effect nuclear battery in a primary conversion nuclear battery, and belongs to the field of energy applications.

背景技术 Background technique

通常来说,电池包括化学电池和物理电池两大类。化学电池主要有干电池、蓄电池、燃料电池、微生物电池等,这些都是人类生活中见惯的常用电池类型,但此类电池的能量容积相对较小,无法满足长期供电的需求。物理电池主要包括太阳能电池和核电池两种,其中核电池也叫同位素电池或原子电池,是将原子核的放射能直接转换为电能的电池。按照能量源不同,核电池又可分为热源核电池和辐射能核电池。热源核电池利用的是同位素衰变热,如热电效应核电池;辐射能核电池是利用的同位素衰变时产生的射线能量,这一能量远远大于衰变热,如伏特效应核电池。按能量转换过程的次数可分为一次转换核电池(如热电效应和伏特效应核电池)与二次转换核电池(如辐射-光-伏特效应核电池),一般一次转换核电池的效率要高于二次转换核电池。本发明涉及的核电池属于一次转换核电池中的辐射能核电池,即辐射伏特效应核电池,其工作原理是:当衰变能量射线照到核电池上,因吸收辐射能量而产生辐射电离效应,在材料中产生很多电子空穴对,电子空穴对在核电池肖特基结的内建电场作用下分别向肖特基结和N型侧漂移,在肖特基结侧将收集到大量的空穴,而在N型侧将收集到大量的电子,将肖特基接触电极和N电极连接并加上负载,在回路中就会产生电流,肖特基接触电极相当于电池的正极,N电极相当于电池的负极。Generally speaking, batteries include chemical batteries and physical batteries. Chemical batteries mainly include dry batteries, storage batteries, fuel cells, microbial batteries, etc. These are commonly used battery types in human life, but the energy volume of such batteries is relatively small and cannot meet the needs of long-term power supply. Physical batteries mainly include solar cells and nuclear batteries. Nuclear batteries are also called isotope batteries or atomic batteries, which are batteries that directly convert the radioactive energy of atomic nuclei into electrical energy. According to different energy sources, nuclear batteries can be divided into heat source nuclear batteries and radiation energy nuclear batteries. Heat source nuclear batteries use isotope decay heat, such as thermoelectric effect nuclear batteries; radiant energy nuclear batteries use the ray energy generated when isotopes decay, this energy is far greater than decay heat, such as volt effect nuclear batteries. According to the number of energy conversion processes, it can be divided into primary conversion nuclear batteries (such as thermoelectric effect and volt effect nuclear batteries) and secondary conversion nuclear batteries (such as radiation-photovoltaic effect nuclear batteries). Generally, the efficiency of primary conversion nuclear batteries is higher. For secondary conversion of nuclear batteries. The nuclear battery involved in the present invention belongs to the radiation energy nuclear battery in the primary conversion nuclear battery, that is, the radiation volt effect nuclear battery. Many electron-hole pairs are generated in the material, and the electron-hole pairs drift to the Schottky junction and the N-type side respectively under the built-in electric field of the Schottky junction of the nuclear battery, and a large amount of holes will be collected on the Schottky junction side. On the N-type side, a large number of electrons will be collected. Connect the Schottky contact electrode to the N electrode and add a load, and a current will be generated in the circuit. The Schottky contact electrode is equivalent to the positive pole of the battery, and the N electrode Equivalent to the negative terminal of the battery.

核废料问题是当今国际上核能进一步发展的最大障碍之一,能够很好的利用这些特殊的垃圾,变废为宝,将是一件极有意义和价值的事情,将可以利用的核废料发电,从整体上看,将会产生巨大的经济效益和广泛的社会效益。The issue of nuclear waste is one of the biggest obstacles to the further development of nuclear energy in the world today. It will be a very meaningful and valuable thing to make good use of these special garbage and turn waste into treasure. It will be possible to use nuclear waste to generate electricity , on the whole, will produce huge economic benefits and extensive social benefits.

核电池具有体积小、重量轻、寿命长(由半衰期决定)、可靠性高、能量密度高等优点,因而在航空航天、深海、极地等需长期供电且无人值守的场合、心脏起搏器、微纳机电系统、手机、笔记本电脑等电子产品、甚至电动汽车等领域有着广泛应用前景。Nuclear batteries have the advantages of small size, light weight, long life (determined by half-life), high reliability, and high energy density. Micro-nano electromechanical systems, mobile phones, laptops and other electronic products, and even electric vehicles have broad application prospects.

发明内容 Contents of the invention

本发明的目的在于提供一种肖特基型核电池及其制备方法,将同位素与GaN肖特基结半导体器件通过简单而成熟的制备工艺集成,进而将同位素衰变能直接、高效地转换成电能,加以工业和生活利用。The purpose of the present invention is to provide a Schottky nuclear battery and its preparation method, which integrates isotopes and GaN Schottky junction semiconductor devices through a simple and mature preparation process, and then directly and efficiently converts isotope decay energy into electrical energy , to be used in industry and life.

本发明的技术解决方案是:Technical solution of the present invention is:

一种肖特基型核电池,其特征在于:包括Al2O3衬底、n型掺杂层、表面积小于n型掺杂层的绝缘层、肖特基接触电极、n型接触电极和同位素层;其中n型掺杂层是掺杂浓度在1×1018/cm3~1×1019/cm3之间的掺硅GaN层,且设在Al2O3衬底的抛光面;绝缘层设置在n型GaN掺杂层的表面上;肖特基接触电极和n型接触电极分别设置在GaN绝缘层和n型GaN掺杂层的表面上;纯β同位素层设置在肖特基接触电极上。A kind of Schottky type nuclear battery, it is characterized in that: comprise Al2O3 substrate, n-type doped layer, the insulating layer of surface area less than n-type doped layer, Schottky contact electrode, n-type contact electrode and isotope layer; wherein the n-type doped layer is a silicon-doped GaN layer with a doping concentration between 1×10 18 /cm 3 and 1×10 19 /cm 3 , and is provided on the polished surface of the Al 2 O 3 substrate; insulation The layer is arranged on the surface of the n-type GaN doped layer; the Schottky contact electrode and the n-type contact electrode are respectively arranged on the surface of the GaN insulating layer and the n-type GaN doped layer; the pure β isotope layer is arranged on the Schottky contact on the electrode.

进一步地,上述的肖特基型核电池,其中所述Al2O3衬底为β相蓝宝石,(001)晶相,厚度为200~600μm;所述n型GaN掺杂层的厚度为1~3μm,其中的Si掺杂是在MOCVD外延同时控制掺杂浓度在1×1018/cm3到1×1019/cm3之间通入SiH4来实现的;所述绝缘层的厚度为15~100μm;所述n型接触电极是通过沉积Ti/Al/Ti/Au得到的,其中Ti厚度20~80nm,Al厚度20~100nm,Ti厚度20~200nm,Au厚度100~300nm;所述肖特基接触电极是通过沉积Ni/Au得到的,其中Ni厚度为5~20nm;Au厚度为10~25nm。Further, the aforementioned Schottky-type nuclear battery, wherein the Al 2 O 3 substrate is β-phase sapphire, (001) crystal phase, with a thickness of 200-600 μm; the thickness of the n-type GaN doped layer is 1 ~3μm, where the Si doping is achieved by controlling the doping concentration between 1×10 18 /cm 3 and 1×10 19 /cm 3 and injecting SiH 4 during MOCVD epitaxy; the thickness of the insulating layer is 15-100 μm; the n-type contact electrode is obtained by depositing Ti/Al/Ti/Au, wherein the thickness of Ti is 20-80 nm, the thickness of Al is 20-100 nm, the thickness of Ti is 20-200 nm, and the thickness of Au is 100-300 nm; the The Schottky contact electrode is obtained by depositing Ni/Au, wherein the thickness of Ni is 5-20nm; the thickness of Au is 10-25nm.

更进一步地,上述的肖特基型核电池,其中所述同位素层的上下两面分别粘结一个GaN肖特基半导体器件。Furthermore, in the aforementioned Schottky-type nuclear battery, a GaN Schottky semiconductor device is respectively bonded to the upper and lower surfaces of the isotope layer.

更进一步地,上述的肖特基型核电池,其中在所述Al2O3衬底和n型GaN掺杂层之间还可进一步设有氮化镓缓冲层。Furthermore, in the Schottky-type nuclear battery mentioned above, a gallium nitride buffer layer may be further provided between the Al 2 O 3 substrate and the n-type GaN doped layer.

上述肖特基型核电池,按以下步骤进行制备:The above-mentioned Schottky type nuclear battery is prepared according to the following steps:

(1)在Al2O3衬底的抛光面上使用MOCVD外延方法生长n型掺杂层,并在MOCVD外延同时控制掺杂浓度在1×1018/cm3到1×1019/cm3之间通入SiH4(1) Use MOCVD epitaxy method to grow n-type doped layer on the polished surface of Al 2 O 3 substrate, and control the doping concentration between 1×10 18 /cm 3 and 1×10 19 /cm 3 during MOCVD epitaxy SiH 4 is introduced between them;

(2)使用HVPE外延方法在n型GaN掺杂层上生长GaN绝缘层;(2) using the HVPE epitaxy method to grow a GaN insulating layer on the n-type GaN doped layer;

(3)采用半导体加工,在n型掺杂层表面得到n型掺杂层台阶;(3) using semiconductor processing to obtain n-type doped layer steps on the surface of the n-type doped layer;

(4)在裸露的n型GaN台阶面上磁控溅射并沉积Ti/Al/Ti/Au合金,形成n型接触电极,并在GaN绝缘层表面也磁控溅射并沉积完整覆盖的Ni/Au合金,形成肖特基接触电极;(4) Magnetron sputtering and deposition of Ti/Al/Ti/Au alloy on the exposed n-type GaN step surface to form an n-type contact electrode, and magnetron sputtering and deposition of a complete coverage of Ni on the surface of the GaN insulating layer /Au alloy to form a Schottky contact electrode;

(5)将同位素层粘结在肖特基接触电极的表面;(5) bonding the isotope layer on the surface of the Schottky contact electrode;

(6)进行核电池封装。(6) Carry out nuclear battery packaging.

进一步地,步骤(1)中在所述Al2O3衬底的抛光面上先外延一厚度约为20nm的氮化镓缓冲层。Further, in step (1), a gallium nitride buffer layer with a thickness of about 20 nm is epitaxially deposited on the polished surface of the Al 2 O 3 substrate.

应用本发明的技术方案,大大提高了核电池的能量转换效率和能量密度(能量容积),延长了核电池的使用寿命,同时也为核废料变废为宝、合理利用创造了有效途径。The application of the technical scheme of the invention greatly improves the energy conversion efficiency and energy density (energy capacity) of the nuclear battery, prolongs the service life of the nuclear battery, and creates an effective way for nuclear waste to be turned into treasure and rationally utilized.

附图说明 Description of drawings

图1是本发明肖特基型核电池一实施例的轴剖面示意图;Fig. 1 is the axial sectional schematic diagram of an embodiment of Schottky type nuclear battery of the present invention;

图2是图1所示核电池实施例的俯视示意图;Fig. 2 is a schematic top view of the embodiment of the nuclear battery shown in Fig. 1;

图3是本发明肖特基型核电池另一实施例的轴剖面示意图。Fig. 3 is a schematic axial cross-sectional view of another embodiment of the Schottky nuclear battery of the present invention.

其中,各附图标记的含义为:Wherein, the meaning of each reference mark is:

1-Al2O3衬底、2-n型GaN掺杂层、3-绝缘层、4-肖特基接触电极、5-n型接触电极、6-同位素层、7-氮化镓缓冲层。1-Al 2 O 3 substrate, 2-n-type GaN doped layer, 3-insulating layer, 4-Schottky contact electrode, 5-n-type contact electrode, 6-isotope layer, 7-gallium nitride buffer layer .

具体实施方式 Detailed ways

以下结合实施例及其附图,对本发明进一步详细描述:Below in conjunction with embodiment and accompanying drawing thereof, the present invention is described in further detail:

实施例一:Embodiment one:

如图1所示的核电池一实施例结构轴剖面示意图,首先准备Al2O3圆片,其可从市场上购买获得单面抛光直径2英寸C面β-Al2O3衬底1,其厚度为300μm。As shown in Fig. 1, the structural axial cross-sectional schematic diagram of an embodiment of a nuclear battery, first prepare an Al 2 O 3 disc, which can be purchased from the market to obtain a single-sided polished C-plane β-Al 2 O 3 substrate 1 with a diameter of 2 inches, Its thickness is 300 μm.

然后进行肖特基晶圆生长工艺:使用MOCVD外延生长设备,先将Al2O3衬底1在1100℃下通入氨气氮化2分钟左右,然后降温到570℃通入三甲基镓和氨气外延20nm左右的氮化镓(GaN)缓冲层7,然后升温至1150℃在控制硅掺杂浓度在1×1018/cm3的稳定情况下通入三甲基镓、氨气和硅烷外延2μm左右的n-GaN掺杂层2,之后降至室温,取出样品;将样品放入HVPE系统,升温至1070通入氯化氢、氨气和金属镓外延20μm的GaN绝缘层3,之后再降至室温,取出样品。Then perform the Schottky wafer growth process: use MOCVD epitaxial growth equipment, first pass the Al 2 O 3 substrate 1 at 1100°C for about 2 minutes for ammonia nitriding, and then lower the temperature to 570°C and pass through trimethylgallium epitaxial gallium nitride (GaN) buffer layer 7 of about 20nm with ammonia gas, and then heated up to 1150°C to pass trimethylgallium , ammonia gas and Silane epitaxy of n-GaN doped layer 2 of about 2 μm, and then cool down to room temperature, take out the sample; put the sample into the HVPE system, raise the temperature to 1070 and pass in hydrogen chloride, ammonia gas and metal gallium to epitaxy 20 μm of GaN insulating layer 3, and then Cool down to room temperature and remove the sample.

接着,使用紫外光刻机光刻和ICP刻蚀技术,在n型GaN掺杂层2的表面得到n型台阶;在上述n型台阶上使用磁控溅射技术沉积Ti(20nm)/Al(20nm)/Ti(20nm)/Au(300nm)(即Ti沉积20nm,Al沉积20nm,Ti沉积20nm,Au沉积300nm)制备完成n型接触电极5;在上述GaN绝缘层3的表面的上使用磁控溅射技术沉积Ni(5nm)/Au(10nm)制备完成肖特基接触电极4;将片状镍-63同位素层6粘结在肖特基接触电极4上;封装制成GaN肖特基型核电池。Next, use ultraviolet lithography machine photolithography and ICP etching technology, obtain n-type steps on the surface of n-type GaN doped layer 2; Use magnetron sputtering technology to deposit Ti (20nm)/Al ( 20nm)/Ti(20nm)/Au(300nm) (i.e. Ti deposition 20nm, Al deposition 20nm, Ti deposition 20nm, Au deposition 300nm) n-type contact electrode 5 is prepared; Schottky contact electrode 4 is prepared by depositing Ni(5nm)/Au(10nm) by controlled sputtering technology; the flake nickel-63 isotope layer 6 is bonded on Schottky contact electrode 4; GaN Schottky is made by packaging nuclear battery.

实施例二:Embodiment two:

首先准备Al2O3圆片,其可从市场上购买获得单面抛光直径2英寸C面β-Al2O3衬底1,其厚度为400μm。First prepare an Al 2 O 3 wafer, which can be purchased from the market to obtain a single-sided polished 2-inch C-plane β-Al 2 O 3 substrate 1 with a thickness of 400 μm.

然后进行肖特基晶圆生长工艺:使用MOCVD外延生长设备,先升温至1150℃在控制硅掺杂浓度在1×1019/cm3的稳定情况下通入三甲基镓、氨气和硅烷外延2μm左右的n-GaN掺杂层2,之后降至室温,取出样品;将样品放入HVPE系统,升温至1070℃通入氯化氢、氨气和金属镓外延20μm的GaN绝缘层3,之后再降至室温,取出样品。Then carry out the Schottky wafer growth process: use MOCVD epitaxial growth equipment, first raise the temperature to 1150°C, and pass trimethylgallium, ammonia and silane under the stable condition of controlling the silicon doping concentration at 1×10 19 /cm 3 Epitaxial n-GaN doped layer 2 of about 2 μm, then lowered to room temperature, and took out the sample; put the sample into the HVPE system, heat up to 1070°C and pass in hydrogen chloride, ammonia gas and metal gallium to epitaxially 20 μm GaN insulating layer 3, and then Cool down to room temperature and remove the sample.

接着,使用紫外光刻机光刻和ICP刻蚀技术,在n型GaN掺杂层2的表面得到n型台阶;在上述n型台阶上使用磁控溅射技术沉积Ti(20nm)/Al(20nm)/Ti(20nm)/Au(300nm)(即Ti沉积20nm,Al沉积20nm,Ti沉积20nm,Au沉积300nm)制备完成n型接触电极5;在上述GaN绝缘层3的表面的上使用磁控溅射技术沉积Ni(6nm)/Au(12nm)制备完成肖特基接触电极4,由此完成GaN肖特基半导体器件的制备。Next, use ultraviolet lithography machine photolithography and ICP etching technology, obtain n-type steps on the surface of n-type GaN doped layer 2; Use magnetron sputtering technology to deposit Ti (20nm)/Al ( 20nm)/Ti(20nm)/Au(300nm) (i.e. Ti deposition 20nm, Al deposition 20nm, Ti deposition 20nm, Au deposition 300nm) n-type contact electrode 5 is prepared; Ni(6nm)/Au(12nm) was deposited by controlled sputtering technology to prepare the Schottky contact electrode 4, thereby completing the preparation of the GaN Schottky semiconductor device.

最后在片状钷-147同位素层7的上下两面分别粘结一个由先前步骤制备而成的GaN肖特基半导体器件(同位素层6分别与每个GaN肖特基半导体器件的肖特基接触电极粘结,如图3所示),封装制成GaN肖特基核电池。如此将能提高能量转换效率两倍。Finally, a GaN Schottky semiconductor device prepared by the previous steps is respectively bonded on the upper and lower sides of the flaky promethium-147 isotope layer 7 (the isotope layer 6 is connected to the Schottky contact electrode of each GaN Schottky semiconductor device respectively. Bonding, as shown in Figure 3), the package is made of GaN Schottky nuclear battery. This will double the energy conversion efficiency.

实施例三:Embodiment three:

制备方法与上述两实施例相同,电池结构既可以选用实施例一的单一结构,也可选用实施例二的复合结构,本实施例的区别特点在于该同位素层6还可使用核废料锶-90,同样可以实现制备高效的辐射伏特效应核电池。The preparation method is the same as that of the above two examples. The battery structure can be either the single structure of Example 1 or the composite structure of Example 2. The difference of this example is that the isotope layer 6 can also use nuclear waste strontium-90 , can also realize the preparation of high-efficiency radiovoltaic effect nuclear battery.

需要注意的是:包括上述三个实施例在内的所有实施方式中,肖特基接触电极的厚度不能超过40nm(对于实施例二所描述的情况取其一侧计算),否则将影响核电池的转换效率。并且,可以将不同的核电池按照一定的方式集成起来,从而获得更高电压或电流的核电池,以满足不同情形的需要。It should be noted that in all implementations including the above three examples, the thickness of the Schottky contact electrode cannot exceed 40nm (calculated on one side for the situation described in Example 2), otherwise it will affect the nuclear battery. conversion efficiency. Moreover, different nuclear batteries can be integrated in a certain way to obtain higher voltage or current nuclear batteries to meet the needs of different situations.

从拓展应用上来看,在2英寸GaN肖特基晶圆上使用光刻技术将微能源版图(每个核电池为直径200μm的圆面,如图2所示)传递到晶圆上,采用CMP减薄抛光Al2O3至100μm,采用激光划片机切割成边长为220×220μm的方格,然后用裂片机将上述方格裂开成分列的单个微能源核电池器件,可以与效应的MEMS键合或集成在一起,给MEMS提供能源。From the point of view of expanding applications, photolithography technology is used to transfer the micro-energy layout (each nuclear cell is a circular surface with a diameter of 200 μm, as shown in Figure 2) to the wafer on a 2-inch GaN Schottky wafer, and CMP is used to Thinning and polishing Al 2 O 3 to 100 μm, using a laser scribing machine to cut into squares with a side length of 220×220 μm, and then using a splitter to split the above squares into individual micro-energy nuclear battery devices, which can be compared with the effect The MEMS are bonded or integrated together to provide energy to the MEMS.

由于上述技术方案运用,本发明与现有技术相比具有下列优点:Due to the use of the above-mentioned technical solutions, the present invention has the following advantages compared with the prior art:

1.现有技术中,投入应用的核电池主要是热电效应核电池,使用在航天器上。热电效率核电池若想获得较高的效率,必须要有一定的功率,因此不适合低功率和微系统供电场所。而MEMS和NEMS的快速发展,对微能源的需求也将快速增长,这也正是本发明的一个重要应用领域。因为本发明的核电池,可制备成体积小、结构简单、单个电池功率可以做到1μW-5W之间。另外热电效应核电池中使用的同位素是Pu-238和Po-210,具有很强的毒性,使用很不安全;而本发明设计的核电池可以使用氚、Ni、Pm等无毒的同位素,可以安全使用;再者热电效应核电池的理论转换效率要远远低于本发明的辐射伏特效应核电池。1. In the prior art, the nuclear batteries put into use are mainly thermoelectric effect nuclear batteries, which are used on spacecraft. Thermoelectric efficiency If nuclear batteries want to obtain higher efficiency, they must have a certain power, so they are not suitable for low-power and micro-system power supply places. With the rapid development of MEMS and NEMS, the demand for micro-energy will also increase rapidly, which is also an important application field of the present invention. Because the nuclear battery of the present invention can be manufactured with a small volume and a simple structure, the power of a single battery can be between 1 μW and 5W. In addition, the isotopes used in the thermoelectric effect nuclear battery are Pu-238 and Po-210, which are highly toxic and unsafe to use; and the nuclear battery designed in the present invention can use nontoxic isotopes such as tritium, Ni, Pm, etc. Safe use; moreover, the theoretical conversion efficiency of the thermoelectric effect nuclear battery is far lower than that of the radiovoltaic effect nuclear battery of the present invention.

2.由于本发明所述GaN肖特基核电池使用的是最成熟的第三代半导体材料GaN,它比现有技术(Si核电池)中的Si材料具有更宽的带宽,更好的抗辐射和耐温性能。因此本发明的GaN肖特基核电池效率要远远高于Si核电池(Si最高转换效率为15%,而GaN肖特基最高转换效率可高达30%)。2. Because what the GaN Schottky nuclear battery of the present invention uses is the most mature third-generation semiconductor material GaN, it has wider bandwidth than the Si material in the prior art (Si nuclear battery), and better resistance Radiation and temperature resistance properties. Therefore, the efficiency of the GaN Schottky nuclear battery of the present invention is much higher than that of the Si nuclear battery (the maximum conversion efficiency of Si is 15%, while the maximum conversion efficiency of GaN Schottky can be as high as 30%).

综上,本发明肖特基型核电池及其制备方法提供了一种切实可行的技术方案。大大提高了核电池的能量转换效率和能量密度(能量容积),延长了核电池的使用寿命,同时也为核废料变废为宝、合理利用创造了有效途径。以上仅是本发明的若干具体应用范例,对本发明的保护范围不构成任何限制。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。To sum up, the Schottky nuclear battery and the preparation method thereof of the present invention provide a feasible technical solution. The energy conversion efficiency and energy density (energy capacity) of the nuclear battery are greatly improved, the service life of the nuclear battery is prolonged, and an effective way is created for turning nuclear waste into treasure and rationally utilizing it. The above are only some specific application examples of the present invention, and do not constitute any limitation to the protection scope of the present invention. All technical solutions formed by equivalent transformation or equivalent replacement fall within the protection scope of the present invention.

Claims (8)

1.肖特基型核电池,其特征在于:电池底部Al2O3衬底表面设有n型掺杂层,n型掺杂层表面设有表面积小于n型掺杂层的本征GaN绝缘层,肖特基接触电极和n型接触电极分别设置在对应的绝缘层和n型掺杂层表面上,并在肖特基接触电极表面设有相同表面积的纯β同位素层,其中n型掺杂层是掺杂有硅且掺杂浓度介于1×1018/cm3~1×1019/cm3的GaN层,所述绝缘层的厚度为15~100μm。1. Schottky-type nuclear battery, characterized in that: the surface of the Al2O3 substrate at the bottom of the battery is provided with an n-type doped layer, and the surface of the n-type doped layer is provided with an intrinsic GaN insulating layer whose surface area is smaller than that of the n-type doped layer layer, the Schottky contact electrode and the n-type contact electrode are respectively arranged on the surface of the corresponding insulating layer and the n-type doped layer, and a pure β isotope layer with the same surface area is provided on the surface of the Schottky contact electrode, wherein the n-type doped The impurity layer is a GaN layer doped with silicon with a doping concentration ranging from 1×10 18 /cm 3 to 1×10 19 /cm 3 , and the thickness of the insulating layer is 15˜100 μm. 2.根据权利要求1所述的肖特基型核电池,其特征在于:所述纯β同位素层为镍-63、钷-147或锶-90。2. The Schottky-type nuclear battery according to claim 1, characterized in that: the pure β isotope layer is nickel-63, promethium-147 or strontium-90. 3.根据权利要求1所述的肖特基型核电池,其特征在于:所述Al2O3衬底与n型掺杂层之间设有氮化镓缓冲层。3. The Schottky-type nuclear battery according to claim 1, characterized in that: a GaN buffer layer is provided between the Al 2 O 3 substrate and the n-type doped layer. 4.根据权利要求3所述的肖特基型核电池,其特征在于:所述n型掺杂层的厚度为1~3μm。4. The Schottky-type nuclear battery according to claim 3, wherein the n-type doped layer has a thickness of 1-3 μm. 5.根据权利要求1所述的肖特基型核电池,其特征在于:所述肖特基接触电极的厚度为15~30nm。5. The Schottky-type nuclear battery according to claim 1, characterized in that: the thickness of the Schottky contact electrode is 15-30 nm. 6.根据权利要求1所述的肖特基型核电池,其特征在于:所述同位素层与肖特基接触电极的表面积一致,其取值介于0.01-1800mm26 . The Schottky-type nuclear battery according to claim 1 , characterized in that: the surface area of the isotope layer is consistent with the surface area of the Schottky contact electrode, and its value is between 0.01-1800mm 2 . 7.一种制备权利要求1所述的肖特基型核电池的方法,其特征在于:包括步骤:7. A method for preparing the Schottky nuclear battery as claimed in claim 1, characterized in that: comprising the steps of: (1)在Al2O3衬底的抛光面上使用MOCVD外延方法生长n型掺杂层,并在MOCVD外延同时控制掺杂浓度在1×1018/cm3到1×1019/cm3之间通入SiH4(1) Use MOCVD epitaxy method to grow n-type doped layer on the polished surface of Al 2 O 3 substrate, and control the doping concentration between 1×10 18 /cm 3 and 1×10 19 /cm 3 during MOCVD epitaxy SiH 4 is introduced between them; (2)使用HVPE外延方法在n型GaN掺杂层上生长厚度为15~100μm的GaN绝缘层;(2) Using the HVPE epitaxy method to grow a GaN insulating layer with a thickness of 15-100 μm on the n-type GaN doped layer; (3)采用半导体加工,在n型掺杂层表面得到n型掺杂层台阶;(3) using semiconductor processing to obtain n-type doped layer steps on the surface of the n-type doped layer; (4)在裸露的n型GaN台阶面上磁控溅射并沉积Ti/Al/Ti/Au合金,形成n型接触电极,并在GaN绝缘层表面也磁控溅射并沉积完整覆盖的Ni/Au合金,形成肖特基接触电极;(4) Magnetron sputtering and deposition of Ti/Al/Ti/Au alloy on the exposed n-type GaN step surface to form an n-type contact electrode, and magnetron sputtering and deposition of a complete coverage of Ni on the surface of the GaN insulating layer /Au alloy to form a Schottky contact electrode; (5)将同位素层粘结在肖特基接触电极的表面;(5) bonding the isotope layer on the surface of the Schottky contact electrode; (6)进行核电池封装。(6) Carry out nuclear battery packaging. 8.根据权利要求7所述的一种制备肖特基型核电池的方法,其特征在于:步骤(1)中在所述Al2O3衬底的抛光面上先外延一氮化镓缓冲层。8. A kind of method for preparing Schottky type nuclear battery according to claim 7, is characterized in that: in step (1) on the polished surface of described Al 2 O 3 substrate earlier epitaxial gallium nitride buffer layer.
CN2009100304294A 2009-04-10 2009-04-10 Schottky type nuclear battery and preparation method thereof Expired - Fee Related CN101527174B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100304294A CN101527174B (en) 2009-04-10 2009-04-10 Schottky type nuclear battery and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100304294A CN101527174B (en) 2009-04-10 2009-04-10 Schottky type nuclear battery and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101527174A CN101527174A (en) 2009-09-09
CN101527174B true CN101527174B (en) 2012-01-25

Family

ID=41094999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100304294A Expired - Fee Related CN101527174B (en) 2009-04-10 2009-04-10 Schottky type nuclear battery and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101527174B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923906B (en) * 2010-07-06 2013-06-12 西安电子科技大学 Silicon carbide-based grid-shaped Schottky contact type nuclear battery
CN103035310B (en) * 2012-12-27 2015-12-09 长安大学 Silit lateral direction schottky junction type minisize nuclear battery and manufacture method thereof
CN111659416A (en) * 2020-05-21 2020-09-15 中国原子能科学研究院 Platinum-based catalyst containing strontium or strontium compound
CN114203329A (en) * 2021-12-13 2022-03-18 中国核动力研究设计院 GaN-based Schottky diode, beta core battery and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859484A (en) * 1995-11-30 1999-01-12 Ontario Hydro Radioisotope-powered semiconductor battery
US6479919B1 (en) * 2001-04-09 2002-11-12 Terrence L. Aselage Beta cell device using icosahedral boride compounds
CN1675775A (en) * 2002-06-17 2005-09-28 日本电气株式会社 Semiconductor device having Schottky junction electrode
CN101320601A (en) * 2008-06-18 2008-12-10 西北工业大学 Silicon carbide Schottky junction cell and manufacturing method thereof
CN101325093A (en) * 2008-07-23 2008-12-17 西安电子科技大学 micronuclear battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859484A (en) * 1995-11-30 1999-01-12 Ontario Hydro Radioisotope-powered semiconductor battery
US6479919B1 (en) * 2001-04-09 2002-11-12 Terrence L. Aselage Beta cell device using icosahedral boride compounds
CN1675775A (en) * 2002-06-17 2005-09-28 日本电气株式会社 Semiconductor device having Schottky junction electrode
CN101320601A (en) * 2008-06-18 2008-12-10 西北工业大学 Silicon carbide Schottky junction cell and manufacturing method thereof
CN101325093A (en) * 2008-07-23 2008-12-17 西安电子科技大学 micronuclear battery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王俊等.GaN基肖特基结构紫外探测器.《半导体学报》.2004,第25卷(第6期),711-714. *
郝少昌.核电池材料及核电池的应用.《原子核物理评论》.2006,第23卷(第3期),354-358. *
陆敏等.多缓冲层对MOCVD生长的GaN性能的影响.《半导体学报》.2004,第25卷(第5期),526-529. *

Also Published As

Publication number Publication date
CN101527174A (en) 2009-09-09

Similar Documents

Publication Publication Date Title
CN101527175B (en) PIN type nuclear battery and preparation method thereof
Sun et al. Nanostructured silicon used for flexible and mobile electricity generation
Cho et al. Sn‐catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass
CN101325093A (en) micronuclear battery
CN101527176B (en) A kind of PN type nuclear battery and its preparation method
CN101599309A (en) SiC Schottky junction alpha radioisotope battery and its manufacturing method
Shigekawa et al. Surface-activated-bonding-based InGaP-on-Si double-junction cells
Makita et al. Mechanical stacked GaAs//CuIn1− yGaySe2 three‐junction solar cells with 30% efficiency via an improved bonding interface and area current‐matching technique
CN101527174B (en) Schottky type nuclear battery and preparation method thereof
CN111446019B (en) Three-dimensional nanostructured tritium battery
Takahashi et al. Investigation of p-type emitter layer materials for heterojunction barium disilicide thin film solar cells
CN103563091B (en) Tandem solar cells with improved tunnel junctions
CN101630537A (en) Schottky concretionary battery with protection ring structure and manufacture method thereof
CN102496639B (en) Plasmon enhancement type solar cell with intermediate bands and photoelectric conversion film material of solar cell
US20110308607A1 (en) Group iii-v solar cell and method of manufacturing the same
CN102569364B (en) High-mobility substrate structure and preparation method thereof
CN101702413B (en) Manufacturing method of gallium arsenide/gallium antimonide solar battery
CN104681651A (en) Silicon-based multi-junction solar cell
Van Deelen et al. On the development of high-efficiency thin-film GaAs and GaInP2 cells
Kanematsu et al. Photovoltaic properties of axial-junction silicon nanowire solar cells with integrated arrays
CN102024879B (en) Method for reducing dark current of gallium arsenide isotope battery
CN102306511A (en) Composite isotopic battery with high output energy and preparation method thereof
Gerardi et al. Innovative PV Technologies for reducing electricity costs
CN104051052A (en) Trench isolation type alpha irradiation battery with PIN type GaN extension layer and manufacturing method
CN104681653A (en) Multi-junction laminar thin film solar cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SUZHOU INSTITUTE OF NANO-TECH AND NANO-BIONICS(SIN

Free format text: FORMER OWNER: SUZHOU NANO TECHNIQUE + NANO BIONIC RESEARCH INST.

Effective date: 20100907

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 215125 NO.398, RUOSHUI ROAD, GAOJIAO DISTRICT, DUSHUHU, INDUSTRIAL PARK, SUZHOU CITY, JIANGSU PROVINCE TO: 215123 NO.398, RUOSHUI ROAD, INDUSTRIAL PARK, SUZHOU CITY, JIANGSU PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20100907

Address after: 215123 Suzhou Industrial Park, Jiangsu, if waterway No. 398

Applicant after: Suzhou Institute of Nano-Tech and Bionics (SINANO), Chinese Academy of Sciences

Address before: 215125 Jiangsu city of Suzhou province Dushu Lake Industrial Park No. 398 waterway if higher education

Applicant before: Suzhou Nano Technique & Nano Bionic Research Inst.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120125

Termination date: 20150410

EXPY Termination of patent right or utility model