CN101526400B - Hadamard transform interference spectroscopy imaging method and equipment - Google Patents
Hadamard transform interference spectroscopy imaging method and equipment Download PDFInfo
- Publication number
- CN101526400B CN101526400B CN2008102100691A CN200810210069A CN101526400B CN 101526400 B CN101526400 B CN 101526400B CN 2008102100691 A CN2008102100691 A CN 2008102100691A CN 200810210069 A CN200810210069 A CN 200810210069A CN 101526400 B CN101526400 B CN 101526400B
- Authority
- CN
- China
- Prior art keywords
- hadamard
- template
- detector
- templates
- interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 18
- 238000004611 spectroscopical analysis Methods 0.000 title description 3
- 230000003595 spectral effect Effects 0.000 claims abstract description 41
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 238000010008 shearing Methods 0.000 claims abstract description 15
- 238000012634 optical imaging Methods 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 claims description 8
- 239000004973 liquid crystal related substance Substances 0.000 claims description 3
- 230000010287 polarization Effects 0.000 claims description 3
- 235000012149 noodles Nutrition 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 11
- 238000000701 chemical imaging Methods 0.000 abstract description 9
- 238000001914 filtration Methods 0.000 abstract 1
- 230000009466 transformation Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种干涉光谱成像方法及设备,具体涉及一种阿达玛变换干涉光谱成像方法及按该方法设计的阿达玛变换干涉光谱成像仪。The invention relates to an interference spectrum imaging method and equipment, in particular to a Hadamard transform interference spectrum imaging method and a Hadamard transform interference spectrum imager designed according to the method.
背景技术Background technique
阿达玛变换(Hadamard Transform)光谱技术是近四十年来发展起来的一种类似于傅里叶变换(Fourier Transform)的新型光谱调制技术。阿达玛变换是基于平面波函数的一种变换,具有高能量输入、多通道成像以及高信噪比的优点【M.O.Harwit,N.J.A.Slone.Hadamard Transform Optics.Academic:New York,1980】,特别适用于微弱光谱信号检测,阿达玛变换光谱成像技术是国际上前沿研究课题之一。Hadamard Transform (Hadamard Transform) spectroscopy is a new spectral modulation technique similar to Fourier Transform (Fourier Transform) developed in the past forty years. The Hadamard transform is a transformation based on the plane wave function, which has the advantages of high energy input, multi-channel imaging and high signal-to-noise ratio [M.O.Harwit, N.J.A.Slone. Hadamard Transform Optics.Academic: New York, 1980], especially suitable for weak Spectral signal detection, Hadamard transform spectral imaging technology is one of the international frontier research topics.
目前所有的阿达玛变换光谱成像技术都是以阿达玛编码模板代替常规色散型(采用棱镜分光或光栅分光)光谱仪的入射狭缝或出射狭缝,或者同时代替二者,对各光谱成分进行四则运算解码获得被探测目标的两维空间信息和一维光谱信息。At present, all Hadamard transform spectral imaging techniques replace the incident slit or the exit slit of the conventional dispersion type (using prism spectroscopic or grating spectroscopic) spectrometer with the Hadamard code template, or replace both of them at the same time, and carry out four methods for each spectral component. Operational decoding obtains two-dimensional spatial information and one-dimensional spectral information of the detected target.
阿达玛变换光谱成像技术将阿达玛模板作为一个宽狭缝对待,视参与编码的各空间码元为一个整体,但由于阿达玛模板具有一定的尺寸,且码元越多尺寸越宽,会产生空间信息和光谱信息的错位与混叠;另外,由于阿达玛变换光谱成像仪采用的是色散分光方法,阿达玛模板的宽度还同时制约着光谱分辨率和空间分辨率,阿达玛模板越窄,光谱分辨率和空间分辨率越高,但阿达玛模板越窄进入到光谱仪中的光能量就越少,光能量越少实现高光谱分辨率和高空间分辨率就越困难。The Hadamard transform spectral imaging technology treats the Hadamard template as a wide slit, and regards the spatial symbols participating in the encoding as a whole. However, because the Hadamard template has a certain size, and the more symbols, the wider the size, there will be The dislocation and aliasing of spatial information and spectral information; in addition, because the Hadamard transform spectral imager adopts the dispersion method, the width of the Hadamard template also restricts the spectral resolution and spatial resolution. The narrower the Hadamard template, the The higher the spectral resolution and spatial resolution, but the narrower the Hadamard template is, the less light energy enters the spectrometer, and the less light energy is, the more difficult it is to achieve high spectral resolution and high spatial resolution.
为了克服上述不利因素,对于尺寸较大的阿达玛模板,通常采取在模板与分光装置之间放置柱面透镜组的做法,对模板与目标像进行压缩【Q.S.Hanley,P.J.Verveer,T.M.Jovin.Spectral imaging in a programmable array microscope by Hadamardtransform fluorescence spectroscopy.Appl.Spectrosc.,1999,53(1):1~10】,增加了仪器的复杂度。柱面透镜组的作用仅是将尺寸较宽的阿达玛模板压缩成尺寸较窄的阿达玛模板,由于色散型光谱仪的光谱分辨率和阿达玛模板的宽度是互相制约的,尺寸较窄的阿达玛模板有利于提高仪器的光谱分辨率,但被压缩后的阿达玛模板总有一定宽度,故阿达玛变换光谱成像技术中空间信息和光谱信息的错位与混叠问题始终无法避免,这种错位与混叠只能通过上述方法减轻但无法彻底消除。In order to overcome the above unfavorable factors, for larger Hadamard templates, it is usually adopted to place a cylindrical lens group between the template and the beam splitting device to compress the template and the target image [Q.S.Hanley, P.J.Verveer, T.M.Jovin.Spectral Imaging in a programmable array microscope by Hadamardtransform fluorescence spectroscopy. Appl. Spectrosc., 1999, 53(1): 1-10] increases the complexity of the instrument. The role of the cylindrical lens group is only to compress the wider Hadamard template into a narrower Hadamard template. Since the spectral resolution of the dispersive spectrometer and the width of the Hadamard template are mutually restricted, the narrower Hadamard template The Hadamard template is beneficial to improve the spectral resolution of the instrument, but the compressed Hadamard template always has a certain width, so the problem of dislocation and aliasing of spatial information and spectral information in Hadamard transform spectral imaging technology is always unavoidable. Aliasing and aliasing can only be mitigated by the above methods but cannot be completely eliminated.
发明内容Contents of the invention
本发明的目的在于提出一种阿达玛变换干涉光谱成像方法及设备,其解决了背景技术中空间分辨率和光谱分辨率同时受阿达玛模板尺寸限制,以及系统结构复杂的技术问题。The purpose of the present invention is to propose a Hadamard transform interference spectrum imaging method and equipment, which solves the technical problems in the background art that the spatial resolution and spectral resolution are limited by the size of the Hadamard template and the system structure is complex.
本发明的技术解决方案是:Technical solution of the present invention is:
一种阿达玛变换干涉光谱成像方法,其特殊之处在于,包括以下步骤:A Hadamard transform interference spectral imaging method, which is special in that it includes the following steps:
(1)前置光学成像系统1将目标成像于具有n个码元的阿达玛模板3表面上;(1) The pre-optical imaging system 1 images the target on the surface of the Hadamard template 3 with n code elements;
(2)紧贴着阿达玛模板3设置一光阑2限制参与阿达玛变换编码的视场范围和过滤杂散光;(2) A diaphragm 2 is set close to the Hadamard template 3 to limit the field of view participating in the Hadamard transform coding and to filter stray light;
(3)经阿达玛模板3编码后的目标像进入横向剪切干涉仪4,阿达玛模板3在垂直于光轴的方向上被横向剪切干涉仪4剪切成两个虚阿达玛模板,与阿达玛模板3平行并且宽度方向一致;(3) The target image encoded by the Hadamard template 3 enters the transverse shearing interferometer 4, and the Hadamard template 3 is cut into two virtual Hadamard templates by the transverse shearing interferometer 4 in a direction perpendicular to the optical axis, Parallel to Hadamard Template 3 and in the same width direction;
(4)两个虚阿达玛模板经傅氏镜5和柱面镜6,在探测器7上产生干涉,干涉条纹方向与剪切方向垂直,干涉光程差与剪切量和探测器的有效尺寸成正比,与傅氏镜5的焦距成反比,阿达玛模板3位于傅氏镜5的前焦面,探测器7位于傅氏镜5和柱面镜6的后焦面;(4) Two virtual Hadamard templates produce interference on the detector 7 through the Fourier mirror 5 and the cylindrical mirror 6, the direction of the interference fringes is perpendicular to the shearing direction, the interference optical path difference and the effective shear amount and the detector The size is directly proportional to the focal length of the Fourier mirror 5, and the Hadamard template 3 is located at the front focal plane of the Fourier mirror 5, and the detector 7 is located at the back focal plane of the Fourier mirror 5 and the cylindrical mirror 6;
(5)将探测器7输出的干涉图信号进行数字化后送入计算机处理系统8中;(5) digitize the interferogram signal output by the detector 7 and send it into the computer processing system 8;
(6)阿达玛模板3变换一次编码,探测器7采集一次干涉图信号,阿达玛模板3变换n次后,完成编码;(6) Hadamard template 3 transforms once encoding, detector 7 collects interferogram signal once, after Hadamard template 3 transforms n times, completes encoding;
(7)n次采集得到的干涉图信号分别进行傅里叶变换,得到n幅目标经阿达玛模板编码后的光谱图像,这些图像经快速阿达玛变换解码后最终得到目标的两维空间信息和一维光谱信息,完成成像。(7) Fourier transform is performed on the interferogram signals acquired by n times respectively to obtain spectral images of n targets coded by Hadamard templates, and these images are decoded by fast Hadamard transform to finally obtain the two-dimensional spatial information and One-dimensional spectral information to complete imaging.
一种实现阿达玛变换干涉光谱成像方法的设备,包括沿光路设置的阿达玛模板3,把目标成像于有n个码元的阿达玛模板3表面上的前置光学成像系统1,在阿达玛模板3垂直于光轴的方向上将其剪切成两个虚阿达玛模板的横向剪切干涉仪4,探测器7以及与探测器7连接的计算机系统8,其特殊之处在于:还包括紧贴于阿达玛模板3设置的光阑2;设置于横向剪切干涉仪4与探测器7之间的傅氏透镜5和柱面镜6,所述阿达玛模板3位于傅氏透镜5的前焦面,所述探测器7位于傅氏透镜5和柱面镜6的后焦面。A device for implementing the Hadamard transform interference spectrum imaging method, including Hadamard template 3 arranged along the optical path, and a pre-optical imaging system 1 for imaging the target on the surface of Hadamard template 3 with n code elements, in Hadamard The template 3 is cut into two transverse shearing interferometers 4 of virtual Hadamard templates in the direction perpendicular to the optical axis, the detector 7 and the computer system 8 connected with the detector 7 are special in that: it also includes Close to the aperture 2 that Hadamard template 3 is arranged; Fourier lens 5 and cylindrical lens 6 that are arranged between transverse shearing interferometer 4 and detector 7, and described Hadamard template 3 is positioned at Fourier lens 5 On the front focal plane, the detector 7 is located on the back focal plane of the Fourier lens 5 and the cylindrical mirror 6 .
上述阿达玛模板3的形式为移动式机械模板、液晶空间光调制器或数字微平面镜阵列。The Hadamard template 3 is in the form of a mobile mechanical template, a liquid crystal spatial light modulator or a digital microplane mirror array.
上述两个虚阿达玛模板与阿达玛模板3平行并且宽度方向一致。The above two virtual Hadamard templates are parallel to the Hadamard template 3 and have the same width direction.
上述横向剪切干涉仪为Sagnac干涉仪,Mach-Zehnder干涉仪或偏振双折射干涉仪。The above-mentioned transverse shear interferometer is a Sagnac interferometer, a Mach-Zehnder interferometer or a polarization birefringent interferometer.
上述探测器7为阿达玛变换干涉信号的接收器,包括线阵探测器和面阵探测器。The above-mentioned detector 7 is a receiver of the Hadamard transform interference signal, including a linear array detector and an area array detector.
本发明的关键之处在于用静态空间调制型干涉光谱仪取代传统阿达玛变换光谱成像仪中的色散型(采用棱镜分光或光栅分光)光谱仪。The key point of the invention is to replace the dispersion type (using prism or grating) spectrometer in the traditional Hadamard transform spectral imager with the static space modulation type interference spectrometer.
静态空间调制型干涉光谱仪在形式上与色散型光谱仪相似,色散型光谱仪是利用色散元件(光栅或棱镜等)将阿达玛模板处的复色光色散分成序列谱线,然后用探测器测量每一谱线元的强度,空间调制型干涉光谱仪则是利用横向剪切干涉仪同时获得阿达玛模板处复色光所有谱线元在不同光程差处的干涉强度,对干涉图进行傅里叶变换得到目标的光谱图。The static spatial modulation interferometric spectrometer is similar in form to the dispersive spectrometer. The dispersive spectrometer uses a dispersive element (grating or prism, etc.) to divide the polychromatic light dispersion at the Hadamard template into a sequence of spectral lines, and then uses a detector to measure each spectrum. The intensity of the line elements, the spatial modulation interferometric spectrometer uses the transverse shear interferometer to simultaneously obtain the interference intensity of all spectral line elements of the polychromatic light at the Hadamard template at different optical path differences, and performs Fourier transformation on the interferogram to obtain the target of the spectrogram.
两者的本质不同在于,色散型光谱仪中阿达玛模板的宽度同时制约着光谱分辨率和空间分辨率并且不可避免产生空间信息和光谱信息的错位与混叠,阿达玛模板越窄,光谱分辨率和空间分辨率越高,但阿达玛模板越窄进入到光谱仪中的光能量越少,光能量越少高光谱分辨率和高空间分辨率的实现就越困难,因此在色散型光谱仪中高能量通过率、高光谱分辨率和高空间分辨率之间的矛盾不可调和;而在静态空间调制型干涉光谱仪中干涉图的调制度不受阿达玛模板形状、大小等因素影响,这是静态空间调制型干涉光谱技术本身的一大优点,这意味着光谱分辨率不再受到阿达玛模板宽度的制约,阿达玛模板的宽度只与光谱仪的空间分辨率有关,而光谱分辨率则由探测器的像元数来决定,而且阿达玛模板中所有码元的光程差始终保持一致,不会产生错位与混叠。因此在保持较高光谱分辨率的条件下,阿达玛模板可以很宽或具有任意形状,从而可以增大视场角(增加阿达玛模板高度)、提高辐射能量(增大阿达玛模板面积),具有潜在的高通量优点,高能量通过率、高光谱分辨率和高空间分辨率容易同时实现。The essential difference between the two is that the width of the Hadamard template in a dispersive spectrometer restricts both the spectral resolution and the spatial resolution and inevitably produces the dislocation and aliasing of spatial information and spectral information. The narrower the Hadamard template, the spectral resolution And the higher the spatial resolution, but the narrower the Hadamard template is, the less light energy enters the spectrometer, and the less light energy is, the more difficult it is to achieve high spectral resolution and high spatial resolution. Therefore, in a dispersive spectrometer, high energy passes through The contradiction between high spectral resolution and high spatial resolution is irreconcilable; and in the static spatial modulation interferometric spectrometer, the modulation degree of the interferogram is not affected by factors such as the shape and size of the Hadamard template, which is a static spatial modulation type One of the great advantages of interference spectroscopy itself is that the spectral resolution is no longer restricted by the width of the Hadamard template. The width of the Hadamard template is only related to the spatial resolution of the spectrometer, while the spectral resolution is determined by the pixel of the detector. It is determined by the number, and the optical path difference of all symbols in the Hadamard template is always consistent, and no misalignment and aliasing will occur. Therefore, under the condition of maintaining a high spectral resolution, the Hadamard template can be very wide or have an arbitrary shape, thereby increasing the field of view (increasing the height of the Hadamard template), increasing the radiation energy (increasing the area of the Hadamard template), It has the advantage of potential high throughput, high energy pass rate, high spectral resolution and high spatial resolution can be easily realized simultaneously.
本发明彻底省却了传统阿达玛变换光谱成像技术中为了提高光谱分辨率额外增加的柱面透镜组件,因而结构简单、体积小、重量轻。The invention completely omits the additional cylindrical lens assembly for improving the spectral resolution in the traditional Hadamard transformation spectral imaging technology, so the structure is simple, the volume is small, and the weight is light.
总结起来本发明具有以下优点:In summary, the present invention has the following advantages:
1)阿达玛模板中所有码元的光程差始终保持一致,故对目标的空间相干性无要求,从根本上避免了空间信息和光谱信息的错位与混叠。1) The optical path difference of all symbols in the Hadamard template is always consistent, so there is no requirement for the spatial coherence of the target, and the dislocation and aliasing of spatial information and spectral information are fundamentally avoided.
2)干涉图的调制度不受阿达玛模板形状、大小等因素的影响,光谱分辨率与阿达玛模板的尺寸无关,高空间分辨率和高光谱分辨率成像容易实现。2) The modulation degree of the interferogram is not affected by factors such as the shape and size of the Hadamard template, and the spectral resolution has nothing to do with the size of the Hadamard template. High spatial resolution and high spectral resolution imaging are easy to achieve.
3)由于光谱分辨率与阿达玛模板的尺寸无关,因而允许比较大的视场角(增加HT模板高度)和任意形状、大小的阿达玛模板,使光通量大幅提高。3) Since the spectral resolution has nothing to do with the size of the Hadamard template, it allows a relatively large field of view (increasing the height of the HT template) and Hadamard templates of any shape and size, which greatly increases the luminous flux.
4)阿达玛模板宽度仅与一维空间分辨率有关,与光谱分辨率无关,因此降低了设计难度。4) The width of the Hadamard template is only related to the one-dimensional spatial resolution, and has nothing to do with the spectral resolution, thus reducing the design difficulty.
5)彻底省却了传统阿达玛变换光谱成像技术中的柱面透镜压缩环节,因而结构简单、体积小、重量轻。5) The cylindrical lens compression link in the traditional Hadamard transformation spectral imaging technology is completely omitted, so the structure is simple, the volume is small, and the weight is light.
附图说明Description of drawings
图1为本发明系统结构示意图。Fig. 1 is a schematic diagram of the system structure of the present invention.
附图标号说明:1—前置光学成像系统,2—光阑,3—阿达玛模板,4—横向剪切干涉仪,5—傅氏透镜,6—柱面镜,7—探测器,8—计算机处理系统。Explanation of reference numerals: 1—front optical imaging system, 2—aperture, 3—Hadamard template, 4—transverse shear interferometer, 5—Fourier lens, 6—cylindrical mirror, 7—detector, 8 - Computer processing system.
具体实施方式Detailed ways
参见图1,本发明的技术方法是:Referring to Fig. 1, technical method of the present invention is:
前置光学成像系统1将目标成像于具有n个码元的阿达玛模板表面上;The front optical imaging system 1 images the target on the surface of the Hadamard template with n code elements;
光阑2紧贴着阿达玛模板3放置,它的作用是限制参与阿达玛变换编码的视场范围和防治杂散光;The diaphragm 2 is placed close to the Hadamard template 3, and its function is to limit the field of view participating in the Hadamard transform coding and prevent stray light;
阿达玛模板3位于傅氏透镜5的前焦面处,经阿达玛模板3编码后的目标像进入横向剪切干涉仪4,阿达玛模板3在垂直于光轴的方向上被剪切成两个虚阿达玛模板,它们与原阿达玛模板3平行并且宽度方向一致;The Hadamard template 3 is located at the front focal plane of the Fourier lens 5, and the target image encoded by the Hadamard template 3 enters the transverse shearing interferometer 4, and the Hadamard template 3 is cut into two parts in the direction perpendicular to the optical axis. a virtual Hadamard template, which are parallel to the original Hadamard template 3 and have the same width direction;
两个虚阿达玛模板经傅氏镜5和柱面镜6,在位于它们后焦面的探测器7上产生干涉,干涉条纹方向与剪切方向垂直,干涉光程差与剪切量和探测器的有效尺寸成正比,与傅氏镜5的焦距成反比,光程差越大,光谱分辨率越高;The two virtual Hadamard templates pass through the Fourier mirror 5 and the cylindrical mirror 6, and produce interference on the detector 7 located at their back focal planes. proportional to the effective size of the filter, and inversely proportional to the focal length of the Fourier mirror 5, the greater the optical path difference, the higher the spectral resolution;
将探测器7输出的干涉图信号进行数字化后送入计算机处理系统8中;The interferogram signal output by the detector 7 is digitized and sent to the computer processing system 8;
阿达玛模板3变换一次编码,探测器7采集一次干涉图信号,阿达玛模板3变换n次后,完成编码;The Hadamard template 3 transforms the encoding once, the detector 7 collects the interferogram signal once, and after the Hadamard template 3 transforms n times, the encoding is completed;
n次采集得到的干涉图信号分别进行傅里叶变换,得到n幅目标经阿达玛模板编码后的光谱图像,这些图像经快速阿达玛变换解码后最终得到目标的两维空间信息和一维光谱信息。The interferogram signals acquired n times are respectively Fourier transformed to obtain spectral images of n targets encoded by Hadamard templates, and these images are decoded by fast Hadamard transform to finally obtain the two-dimensional spatial information and one-dimensional spectrum of the target information.
其中前置光学成像系统1可采用折射、折反射和反射等各种形式,将目标成像于阿达玛模板表面上是前置光学成像系统1的主要目的。The front optical imaging system 1 can adopt various forms such as refraction, catadioptric reflection and reflection, and the main purpose of the front optical imaging system 1 is to image the target on the surface of the Hadamard template.
其中阿达玛模板的作用是产生n(n=2m-1,m=2,3,…)次阿达玛编码阵列,从而对目标进行n次阿达玛变换编码,阿达玛模板可采用移动式机械模板、液晶空间光调制器和数字微平面镜阵列等形式。Among them, the function of the Hadamard template is to generate n (n=2 m -1, m=2, 3,...) times of Hadamard encoding arrays, thereby carrying out n times of Hadamard transformation coding on the target, and the Hadamard template can adopt mobile machinery templates, liquid crystal spatial light modulators, and digital micromirror arrays.
其中横向剪切干涉仪可采用Sagnac干涉仪、Mach-Zehnder干涉仪、偏振双折射干涉仪等。无论横向剪切干涉仪的具体结构如何,它的主要作用是将阿达玛模板垂直于光轴等光程的分开。Among them, the transverse shearing interferometer can use Sagnac interferometer, Mach-Zehnder interferometer, polarization birefringence interferometer and the like. Regardless of the specific structure of the transverse shearing interferometer, its main function is to separate the Hadamard templates by equal optical paths perpendicular to the optical axis.
其中探测器7是阿达玛变换干涉信号的接收器,采用线阵探测器可以获得目标的一维空间和一维光谱信息;采用面阵探测器可以获得目标的两维空间和一维光谱信息。The detector 7 is the receiver of the Hadamard transform interference signal, and the one-dimensional space and one-dimensional spectral information of the target can be obtained by using the linear array detector; the two-dimensional space and one-dimensional spectral information of the target can be obtained by using the area array detector.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102100691A CN101526400B (en) | 2008-03-06 | 2008-08-21 | Hadamard transform interference spectroscopy imaging method and equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810017619 | 2008-03-06 | ||
CN200810017619.8 | 2008-03-06 | ||
CN2008102100691A CN101526400B (en) | 2008-03-06 | 2008-08-21 | Hadamard transform interference spectroscopy imaging method and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101526400A CN101526400A (en) | 2009-09-09 |
CN101526400B true CN101526400B (en) | 2010-11-03 |
Family
ID=41055529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102100691A Expired - Fee Related CN101526400B (en) | 2008-03-06 | 2008-08-21 | Hadamard transform interference spectroscopy imaging method and equipment |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101526400B (en) |
WO (1) | WO2009109078A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063304B (en) * | 2012-12-21 | 2016-01-13 | 南京理工大学 | Image plane interference Hyper spectral Imaging device and method is sheared in dispersion |
CN103245416B (en) * | 2013-04-19 | 2014-12-24 | 中国科学院长春光学精密机械与物理研究所 | Hadamard-transform near-infrared spectrograph added with light harvesting structure |
CN103424190B (en) * | 2013-09-02 | 2015-09-30 | 南京理工大学 | Double wedge plate dispersion shear interference Hyper spectral Imaging device and method |
CN104165691B (en) * | 2014-06-13 | 2016-05-18 | 中国科学院光电研究院 | A kind of replaceable device with rotating adjusting coding templet |
CN104036463B (en) * | 2014-06-13 | 2017-02-01 | 中国科学院光电研究院 | Coding method of coded aperture spectral imager |
CN104165695A (en) * | 2014-07-30 | 2014-11-26 | 奉化市宇创产品设计有限公司 | Fourier transform imaging spectrometer based on index mirror polarization interference |
CN104236708B (en) * | 2014-09-29 | 2016-08-24 | 中国科学院光电研究院 | A kind of coding templet device |
WO2016071909A1 (en) * | 2014-11-06 | 2016-05-12 | Ramot At Tel-Aviv University Ltd. | Spectral imaging method and system |
CN107655570B (en) * | 2017-09-12 | 2020-01-10 | 安徽理工大学 | Synchronous mobile mechanical template type Hadamard spectrometer |
CN113767274A (en) * | 2019-08-23 | 2021-12-07 | 西门子股份公司 | Gas analyzer |
CN110632002B (en) * | 2019-09-30 | 2025-03-14 | 中国科学院西安光学精密机械研究所 | Aperture coded spectrum detection device based on compressed sensing |
CN111272279B (en) * | 2020-02-20 | 2021-06-22 | 中国科学院西安光学精密机械研究所 | Method for Adjusting Orthogonality between Spatial Direction and Spectral Direction of Interferometric Spectral Imager |
CN111624172A (en) * | 2020-07-01 | 2020-09-04 | 中国科学院上海技术物理研究所 | Thermal infrared video hyperspectral imaging system for gas detection |
CN114283180B (en) * | 2021-11-25 | 2025-03-21 | 中国空间技术研究院 | A method and device for correcting ghost images in Fourier transform spectrometer |
CN114659998A (en) * | 2022-02-23 | 2022-06-24 | 河海大学 | High-sensitivity low-cost spectral measurement device based on static coding |
CN114778540B (en) * | 2022-04-21 | 2024-12-17 | 西安航空学院 | Dispersion type multifunctional Hadamard transformation microscopic imaging spectrometer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1039453C (en) * | 1994-06-23 | 1998-08-05 | 武汉大学 | Multifunction Aadamard's transformation micrograph analytical instrument |
CN1148574C (en) * | 2001-03-08 | 2004-05-05 | 武汉大学 | High Resolution Hadamard Transform Microscopic Image Analyzer |
CN101241069A (en) * | 2008-03-11 | 2008-08-13 | 武汉大学 | Dispersive multi-functional Hadamard transform microscopic imaging spectrometer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5579105A (en) * | 1992-04-17 | 1996-11-26 | British Technology Group Ltd. | Spectrometers |
CN1256407A (en) * | 1999-12-28 | 2000-06-14 | 中国科学院西安光学精密机械研究所 | Interference imaging spectrum technology and device thereof |
JP4156977B2 (en) * | 2003-06-04 | 2008-09-24 | オリンパス株式会社 | Microspectroscope |
-
2008
- 2008-08-21 CN CN2008102100691A patent/CN101526400B/en not_active Expired - Fee Related
- 2008-12-30 WO PCT/CN2008/002126 patent/WO2009109078A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1039453C (en) * | 1994-06-23 | 1998-08-05 | 武汉大学 | Multifunction Aadamard's transformation micrograph analytical instrument |
CN1148574C (en) * | 2001-03-08 | 2004-05-05 | 武汉大学 | High Resolution Hadamard Transform Microscopic Image Analyzer |
CN101241069A (en) * | 2008-03-11 | 2008-08-13 | 武汉大学 | Dispersive multi-functional Hadamard transform microscopic imaging spectrometer |
Also Published As
Publication number | Publication date |
---|---|
WO2009109078A1 (en) | 2009-09-11 |
CN101526400A (en) | 2009-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101526400B (en) | Hadamard transform interference spectroscopy imaging method and equipment | |
CN101793559B (en) | A light and small interference imaging spectrum full polarization detection device | |
CN103453993B (en) | Active hyperspectral imaging system and method based on sparse aperture compression calculation correlation | |
US20100207012A1 (en) | Multi-stage waveform detector | |
CN107907483B (en) | A system and method for super-resolution spectral imaging based on scattering medium | |
CN103424190B (en) | Double wedge plate dispersion shear interference Hyper spectral Imaging device and method | |
CN104121990A (en) | Random grating based compressed sensing broadband hyperspectral imaging system | |
CN104359553B (en) | A kind of compact grating dispersion spectrum imager | |
CN111433590B (en) | Spectroscopic analysis device | |
CN103913229B (en) | Coding template multi-target active imaging spectrum system and method | |
CN103033265A (en) | Device and method of space heterodyning interference hyper spectrum imaging | |
CN105157836B (en) | Spectral imaging device and method for synchronously acquiring polarization states | |
EP3662239A1 (en) | Coded aperture spectral imaging device | |
CN105157835A (en) | Snapshot-type multispectral image multiple-splitting spectral imaging method and spectral imager | |
CN107014491B (en) | Spectral measurement system and method based on scattering principle | |
CN204831550U (en) | Spectral imaging device capable of synchronously acquiring polarization states | |
RU2601729C1 (en) | Method and device for optically transparent micro-objects spectral digital holographic images recording | |
CN103743484B (en) | A kind of spectrum coding imaging device | |
CN104748855A (en) | Dual-channel high-throughput interference imaging spectral device and method | |
CN104913848A (en) | All-Stokes parameter white light double-Sagnac polarization imaging interferometer | |
Kallepalli et al. | Compressed sensing in the far-field of the spatial light modulator in high noise conditions | |
Domingue et al. | General theoretical treatment of spectral modulation light-labeling spectroscopy | |
CN116972969A (en) | Spectrum detection method and device based on two-dimensional dispersion spectrum reconstruction | |
CN107748009A (en) | Inteference imaging spectral apparatus and its detection method based on rectangular raster dispersion shearing | |
Wang et al. | Dispersion control of broadband super-Rayleigh speckles for snapshot spectral ghost imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101103 Termination date: 20130821 |