CN101521459B - Resonant Switched Capacitor DC Voltage Converter - Google Patents
Resonant Switched Capacitor DC Voltage Converter Download PDFInfo
- Publication number
- CN101521459B CN101521459B CN2008100823592A CN200810082359A CN101521459B CN 101521459 B CN101521459 B CN 101521459B CN 2008100823592 A CN2008100823592 A CN 2008100823592A CN 200810082359 A CN200810082359 A CN 200810082359A CN 101521459 B CN101521459 B CN 101521459B
- Authority
- CN
- China
- Prior art keywords
- switch
- voltage
- node
- diode
- voltage node
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 71
- 230000000295 complement effect Effects 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 10
- 230000005669 field effect Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 238000007599 discharging Methods 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及谐振开关电容直流电压变换器。 The invention relates to a resonant switched capacitor DC voltage converter. the
背景技术Background technique
在直流电源变换领域,采用一种结合开关和电容的变换电路来变换不同电压。此类变换器将电容用于储存电能,称之为开关电容变换器(SwitchedCapacity Converter,SCC)。由于此类变换器没有电感或变压器,其体积小于其他类型的变换器且易于在集成电路上制成。但是,在为开关电容充电放电时通常会出现高尖峰电流。因此,此类变换器通常用于低压环境。美国专利公开号US20040141345A1提供了一种称为谐振开关电容变换器(SwitchedCapacitor Resonant Converter,SCRC)的新的开关电容电路,其可工作在高开关频率以及高电压环境下。 In the field of DC power conversion, a conversion circuit combining switches and capacitors is used to convert different voltages. This type of converter uses capacitors to store electrical energy and is called a switched capacitor converter (SwitchedCapacity Converter, SCC). Since this type of converter has no inductor or transformer, it is smaller than other types of converters and can be easily fabricated on an integrated circuit. However, high peak currents typically occur when charging and discharging switched capacitors. Therefore, such converters are usually used in low voltage environments. US Patent Publication No. US20040141345A1 provides a new switched capacitor circuit called a resonant switched capacitor converter (Switched Capacitor Resonant Converter, SCRC), which can work in a high switching frequency and high voltage environment. the
SCRC是基于去除包括谐振变换器的主磁能存储设备而设计的。SCRC工作在零电流开关环境,如开关损耗极低且没有EMI(ElectromagneticInterference,电磁干扰)问题。而且,其效率也相当高,有可能高于90%。其结构简单,在电路中只了加入一个与开关电容一起谐振的小电感,因此磁性部件的成本较低。 SCRCs are designed based on the removal of the main magnetic energy storage device including the resonant converter. SCRC works in a zero-current switching environment, such as extremely low switching loss and no EMI (Electromagnetic Interference, electromagnetic interference) problems. Also, its efficiency is quite high, possibly higher than 90%. Its structure is simple, and only a small inductance resonant with the switching capacitor is added in the circuit, so the cost of the magnetic components is low. the
虽然SCRC具有诸多优点,但简单门驱动电路不可应用于该变换器,需要隔离变压器和/或半桥门驱动,因此提高了SCRC的复杂性。而且,门驱动变压器中的寄生电感限制了驱动速度,导致在高频应用中产生更多开关损耗。半桥门驱动具有高频操作的局限性而且变换器成本提高。 While SCRC has many advantages, simple gate drive circuits cannot be applied to this converter, requiring isolation transformers and/or half-bridge gate drives, thus increasing the complexity of the SCRC. Also, the parasitic inductance in the gate drive transformer limits the drive speed, resulting in more switching losses in high frequency applications. Half-bridge gate drives have limitations for high-frequency operation and increased converter cost. the
发明内容Contents of the invention
本发明目的在于提供一种谐振开关电容直流电压变换器,该直流变换器将采用简单门驱动电路,降低了SCRC的复杂性,同时通过降低寄生电感提高了驱动速度,降低了高频应用中的开关损耗,而且避免了高频操作的局限性,降低了变换器的成本。 The purpose of the present invention is to provide a resonant switched capacitor DC voltage converter. The DC converter will use a simple gate drive circuit, which reduces the complexity of the SCRC. At the same time, the driving speed is improved by reducing the parasitic inductance, and the high frequency application is reduced. switching loss, and avoid the limitations of high-frequency operation, reducing the cost of the converter. the
为了达到上述发明目的,本发明为一种谐振开关电容直流电压变换器,包括第一电压节点,第二电压节点,第一开关,第二开关,第一二极管,第二二极管,控制电路,其中,第一电压节点和负线之间具有第一电压,该第二电压节点和负线之间具有第二电压,控制电路为该第一开关和第二开关提供开关门信号,该谐振开关电容直流电压变换器进一步包括中心抽头电感和谐振电容,其中,中心抽头电感连接在所述第一开关和第二开关之间,谐振电容连接在所述第一二极管和第二二极管的共同节点和该中心抽头电感的中心节点之间;该第一开关和该第二开关为绝缘栅双极型晶体管或一对互补金属氧化物半导体场效应管开关;其中该第一开关和该第二开关为一对互补金属氧化物半导体场效应管开关时,该第一开关是P沟道金属氧化物半导体场效应管,该第二开关是N沟道金属氧化物半导体场效应管;且开关、电压节点、二极管、负线之间的连接关系为以下三种之一:第一种:所述第一开关和第二开关串联在第一电压节点和负线之间,该第一二极管和该第二二极管串联在该第一电压节点和该第二电压节点之间;第二种:所述第一开关和第二开关串联在该第一电压节点和该第二电压节点之间,该第一二极管和该第二二极管串联在该第二电压节点和该负线之间;第三种:所述第一开关和第二开关串联在该第一电压节点和该负线之间,该第一二极管和该第二二极管串联在该第二电压节点和该负线之间。 In order to achieve the purpose of the above invention, the present invention is a resonant switched capacitor DC voltage converter, comprising a first voltage node, a second voltage node, a first switch, a second switch, a first diode, a second diode, A control circuit, wherein a first voltage is provided between the first voltage node and the negative line, a second voltage is provided between the second voltage node and the negative line, and the control circuit provides switch gate signals for the first switch and the second switch, The resonant switched capacitor DC voltage converter further includes a center tap inductor and a resonance capacitor, wherein the center tap inductor is connected between the first switch and the second switch, and the resonance capacitor is connected between the first diode and the second switch. Between the common node of the diode and the central node of the center tap inductor; the first switch and the second switch are insulated gate bipolar transistors or a pair of complementary metal oxide semiconductor field effect transistor switches; wherein the first When the switch and the second switch are a pair of complementary metal oxide semiconductor field effect transistor switches, the first switch is a P channel metal oxide semiconductor field effect transistor, and the second switch is an N channel metal oxide semiconductor field effect transistor. and the connection relationship between the switch, the voltage node, the diode, and the negative line is one of the following three types: the first type: the first switch and the second switch are connected in series between the first voltage node and the negative line, the The first diode and the second diode are connected in series between the first voltage node and the second voltage node; the second type: the first switch and the second switch are connected in series between the first voltage node and the second voltage node Between the second voltage node, the first diode and the second diode are connected in series between the second voltage node and the negative line; the third type: the first switch and the second switch are connected in series Between the first voltage node and the negative line, the first diode and the second diode are connected in series between the second voltage node and the negative line. the
如本发明优选具体实施例所述的直流电压变换器,其中,所述控制电路为自启动门驱动控制电路。 According to the DC voltage converter described in the preferred embodiment of the present invention, the control circuit is a self-starting gate drive control circuit. the
如本发明优选具体实施例所述的直流电压变换器,其中,当所述连接关系为第二种时,所述控制电路利用所述第一节点和第二节点之间的电压作为自启动提供给门驱动的电源 According to the DC voltage converter described in the preferred specific embodiment of the present invention, when the connection relationship is the second type, the control circuit uses the voltage between the first node and the second node as a self-starting supply Power supply for gate drive
如本发明优选具体实施例所述的谐振开关电容直流电压变换器,其中,当所述连接关系为第三种时,所述控制电路利用所述第一电压节点和所述负线之间的电压作为自启动提供给门驱动的电源。 According to the resonant switched capacitor DC voltage converter described in the preferred embodiment of the present invention, when the connection relationship is the third type, the control circuit utilizes the connection between the first voltage node and the negative line The voltage is provided as the power supply for the gate driver for self-starting. the
本发明有点在于应用简单门驱动,降低了SCRC的复杂性,同时通过降低寄生电感提高了驱动速度,降低了高频应用中的开关损耗,而且避免了高频操作的局限性,降低了变换器的成本。 The advantage of the present invention lies in the application of simple gate drive, which reduces the complexity of SCRC, improves the driving speed by reducing parasitic inductance, reduces the switching loss in high-frequency applications, and avoids the limitations of high-frequency operation, reducing the converter the cost of. the
附图说明Description of drawings
以下参照附图详述本发明的优点和特征,其中 Advantage and feature of the present invention are described in detail below with reference to accompanying drawing, wherein
图1为根据本发明具体实施例的升压型谐振开关电容直流电压变换器的电路图; Fig. 1 is the circuit diagram of step-up type resonant switched capacitor DC voltage converter according to a specific embodiment of the present invention;
图2和图3为图1所示电路的工作原理示意图; Fig. 2 and Fig. 3 are schematic diagrams of the working principle of the circuit shown in Fig. 1;
图4为图1所示电路的门极和电流波形图; Fig. 4 is the gate pole and current waveform diagram of the circuit shown in Fig. 1;
图5为图1所示电路的门极源极电压和电容电流波形图; Fig. 5 is a gate-source voltage and a capacitor current waveform diagram of the circuit shown in Fig. 1;
图6为图1所示电路的漏极门极电压和电容电流波形图; Fig. 6 is the drain gate voltage of the circuit shown in Fig. 1 and the capacitive current waveform diagram;
图7为根据本发明具体实施例的降压型谐振开关电容直流电压变换器的电路图;以及 7 is a circuit diagram of a step-down resonant switched capacitor DC voltage converter according to a specific embodiment of the present invention; and
图8为根据本发明具体实施例的逆变型谐振开关电容直流电压变换器的电路图。 FIG. 8 is a circuit diagram of an inverter resonant switched capacitor DC voltage converter according to a specific embodiment of the present invention. the
具体实施方式Detailed ways
图1所示为升压型谐振开关电容直流电压变换器13的电路图。直流电压变换器13包括一对互补金属氧化物半导体场效应管(MOSFET)开关4、5。开关4是P沟道金属氧化物半导体场效应管,而开关5是N沟道金属氧化物半导体场效应管。在其他实施例中,亦可采用绝缘栅双极型晶体管(IGBTs)及其它适用的半导体开关。每个开关都配有反向并联二极管作为MOSFET封装的一部分。第一和第二二极管6、7串联在第一和第二电压节点1、2之间。 FIG. 1 is a circuit diagram of a step-up resonant switched capacitor
直流电压变换器13在第一电压节点1和地或负线3之间具有第一电压V1,在第二电压节点和地或负线3之间具有第二电压电压V2。地或负线3位于任一电压低于节点1、2的电势。两个滤波电容8、11分别与第一和第二电压端V1、V2并联。 The
中心抽头电感10连接在第一和第二MOSFET4、5之间。谐振电容9连接在二极管6、7的共同节点和电感10的中心节点15之间。在变换器中,电容9提供主要储能器件。电感10可采用由聚合物粘合磁芯所制成的电感或空心电感与电容9产生谐振。 A center tapped
自驱门驱动控制电路12为MOSFET4、5提供开关门信号。门驱动控制 电路12在门极和源极之间提供高电压来开启N沟道MOSFET5并关断P沟道MOSFET4。门驱动控制电路12提供零伏特或最好负电压来开启P沟道MOSFET4并关断N沟道MOSFET5。优选的,输入电压V1应小于或等于MOSFET4、5的门极和源极之间的最高电压。门驱门驱动电路12可为集成电路或具有高速晶振电路来提供必要的门极驱动信号。 The self-driving gate driving
直流电压变换器13为升压型电压变换器。电压V1为输入端而V2为输出端。在理想情况下,电压V2等于电压V1的两倍。 The
直流电压变换器13通过电容9充电放电工作。电容9作用为与电感10谐振的电容从而为MOSFET获取零电流开关环境。当MOSFET4开启,二极管7正向偏置并开启,电流通过包括MOSFET4、电感10的上部电感,开关电容以及二极管7的串联电路。最初,电感中的电流总为零;因此开启状态下串联电路的电流为零。由于串联的电容9以及电感10的上部电感,在串联电路中的电流为以 The
为周期的正弦曲线,其中L是电感10的电感值,C是电容9的电容值。假设首先通过正电流,在第一半周期的末端,二极管7反向偏置从而抵消负半周期的电流。零电流环境产生且MOSFET4关断。第二MOSFET5开启且二极管6正向偏置。最初电流为零且谐振电流的负半周期流过。在负半周期的末端,二极管6反向偏置,产生零电流环境。通过长于LC谐振电流半个周期的MOSFET开关时间,达到产生零电流开关的效果。 is a periodic sine curve, where L is the inductance value of the
因为开关电容9通过谐振正弦电流充电放电,所以电路不存在电流尖峰问题。 Because the switched
图2和图3显示一个升压开关周期的两个阶段,粗体表示电流通路。图4显示门极和电流波形。 Figures 2 and 3 show the two phases of a boost switching cycle, with the current paths indicated in bold. Figure 4 shows the gate and current waveforms. the
参照图1和图4,本发明的升压型开关电容变换器包括一对互补P沟道/N沟道MOSFET4、5。自驱门驱动控制电路12为MOSFET4、5提供开关门信号。门驱动控制电路12在门极和源极之间提供高电压来开启N沟道MOSFET5并关断P沟道MOSFET4。门驱动12提供门极和漏极电压来开启P沟道MOSFET4并关断N沟道MOSFET5。当自驱控制电路12为两个互补开关提供高于3的信号时,半桥臂的N沟道开关开启,同时利用中心抽头电感的下 部电感与开关电感产生谐振。或者,当自驱控制电路为两个互补开关提供低于地3的信号时,上部P沟道开关的漏极和门极之间的电压处于高位,因此半桥臂的上部MOSFET4开启,采用中心抽头电感的上部电感与开关电感谐振。 1 and 4, the boost switched capacitor converter of the present invention includes a pair of complementary P-channel/N-
参照图2和图4,在时间t0处,MOSFET5开启而MOSFET4关断。二极管6正向偏置。滤波电容11对连接在第二电压节点2的负载放电。MOSFET5和二极管6与电容9以及电感10的下部电感串联。与电感10的下部电感谐振的开关电容产生的正弦电流经过串联电路。在第一谐振周期的末端,串联电流(电容9电流)为零且二极管6反向偏置抵消负半周期中的电流。电容被充电达到直流电压V1。 Referring to FIGS. 2 and 4 , at time t 0 , MOSFET5 is turned on and MOSFET4 is turned off.
参照图3和图4,在时间t1处,二极管6反向偏置而且电流为零。MOSFET4开启而MOSFET5关断。二极管7正向偏置。输入电压V1和开关电容9串联,理想状况下,电压V2为电压V1的两倍,谐振电流的负半周期产生。滤波电容11再次充电。在负半周期的末端,二极管7反向偏置而电流停止。在时间t2处,MOSFET5再次开启而MOSFET4关断。 Referring to Figures 3 and 4 , at time t1,
图5和图6显示谐振开关电容直流变换器的波形,在升压模式下,该变换器配有上述参数和器件值。输入电压V1测量值为12V,输出电压V2测量值为24V。电源(17.1W)最大效率为92.53%。额定电源(50W)效率为86.38%。图5和图6图形的水平分辨率为每单位1微秒。在开关频率为200kHz的情况下,每个MOSFET的开关时间为2.5微秒。电容9和电感10的谐振时间为4微秒。因此,半谐振周期为4微秒。 Figures 5 and 6 show the waveforms of a resonant switched capacitor DC converter in boost mode with the above parameters and component values. The measured value of the input voltage V1 is 12V, and the measured value of the output voltage V2 is 24V. The power supply (17.1W) has a maximum efficiency of 92.53%. The efficiency of the rated power supply (50W) is 86.38%. The horizontal resolution of the graphs in Figures 5 and 6 is 1 microsecond per unit. At a switching frequency of 200kHz, the switching time of each MOSFET is 2.5 microseconds. The resonance time of
可见,本发明提供了具有升压功能的谐振开关电容直流变换器。除了需要中心抽头电感来与开关电容谐振,本发明的直流电路还包括一对互补P沟道/N沟道MOSFET,因此两个互补开关共享同一自驱控制电路,从而降低门驱动成本。无时滞控制的驱动信号可直接用于互补开关,而且半桥臂的电流直通短路可由中心抽头电感限制。 It can be seen that the present invention provides a resonant switched capacitor DC converter with a boost function. In addition to the need for a center-tapped inductor to resonate with the switched capacitor, the DC circuit of the present invention also includes a pair of complementary P-channel/N-channel MOSFETs, so the two complementary switches share the same self-driving control circuit, thereby reducing gate drive costs. The drive signal with dead-time control can be directly applied to the complementary switches, and the current shoot-through of the half-bridge arm can be limited by the center-tapped inductance. the
图7为本发明的第二具体实施例。降压型开关电容准谐振变换器20在第一电压节点1和地或负线3之间具有第一电压端V1,以及在第二节点2和地或负线3之间具有第二电压端V2。地或负线3位于低于电压节点1和2的任何电势。两个滤波电容8、11分别与第一和第二电压端V1、V2并联。变换 器20包括一对互补金属氧化物半导体场效应管(MOSFET)开关4、5。开关4为P沟道MOSFET,开关5为N沟道MOSFET。开关4和开关5串联在第一节点V1和第二节点V2之间,二极管6和二极管7串联在第二节点V2和负线3之间,构成降压型谐振开关电容直流电压变换器。 Fig. 7 is a second specific embodiment of the present invention. The step-down switched
中心抽头电感10连接在第一和第二MOSFET4、5之间。谐振电容9连接在电感10的中心节点15和二极管6、7的共同节点14之间。电容9在该变换器中提供主要的储能器件。电感10可采用由聚合物粘合磁芯所制成的电感或空心电感与电容9产生谐振。 A center tapped
自驱门驱动控制电路12利用节点1和节点2之间的电压作为自启动提供给门驱动的电源。自驱门驱动控制电路12为MOSFET4、5提供开关门信号。直流电压变换器20为降压型直流电压变换器。电压V1为输入端,V2在负载端。理想情况下,电压V2等于电压V1的一半。直流电压变换器通过将电容9充放电来工作。电容9作用为与电感10谐振的电容从而为MOSFET获取零电流开关环境。 The self-driving gate
图8为本发明的第三具体实施例。逆变型开关电容准谐振变换器30在第一电压节点1和地或负线3之间具有第一电压端V1,以及在第二节点2和地或负线3之间具有第二电压端V2。地或负线3可为低于电压节点1和2的任何电位。两个滤波电容8、11分别与第一和第二电压端V1、V2并联。变换器30包括一对互补金属氧化物半导体场效应管(MOSFET)开关4、5。开关4为P沟道MOSFET,开关5为N沟道MOSFET。开关4和开关5串联在第一节点1和负线3之间,二极管6和二极管7串联在第二节点V2和负线3之间,构成逆变型谐振开关电容直流电压变换器。 Fig. 8 is a third specific embodiment of the present invention. The inverter type switched
中心抽头电感10连接在第一和第二MOSFET4、5之间。谐振电容9连接在电感10的中心节点15和二极管6、7的共同节点14之间。电容9在该变换器中提供主要的储能器件。电感10可采用由聚合物粘合磁芯所制成的电感或空心电感与电容9产生谐振。 A center tapped
自驱门驱动控制电路12利用节点1和节点3之间的电压作为自启动提供给门驱动的电源。自驱门驱动控制电路12为MOSFET4、5提供开关门信号。直流变换器30为逆变电压变换器。电压V1为输入端,V2在负载端。理想情况下,电压V2等于电压V1的负值。变换器通过将电容9充放电来工作。电 容9作用为与电感10谐振的电容从而为MOSFET获取零电流开关环境。 The self-driving gate
以上,是为了本领域技术人员理解本发明,而对本发明所进行的详细描述,但可以想到,在不脱离本发明的权利要求所涵盖的范围内还可以做出其它的变化和修改,这些变化和修改均在本发明的保护范围内。 The above is a detailed description of the present invention for those skilled in the art to understand the present invention, but it is conceivable that other changes and modifications can be made without departing from the scope covered by the claims of the present invention. These changes All modifications and modifications are within the protection scope of the present invention. the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100823592A CN101521459B (en) | 2008-02-29 | 2008-02-29 | Resonant Switched Capacitor DC Voltage Converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100823592A CN101521459B (en) | 2008-02-29 | 2008-02-29 | Resonant Switched Capacitor DC Voltage Converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101521459A CN101521459A (en) | 2009-09-02 |
CN101521459B true CN101521459B (en) | 2011-09-28 |
Family
ID=41081872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100823592A Active CN101521459B (en) | 2008-02-29 | 2008-02-29 | Resonant Switched Capacitor DC Voltage Converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101521459B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI579570B (en) * | 2016-10-27 | 2017-04-21 | Sea Sonic Electronics Co Ltd | Step - down power conversion circuit |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US8618692B2 (en) | 2007-12-04 | 2013-12-31 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US8319471B2 (en) | 2006-12-06 | 2012-11-27 | Solaredge, Ltd. | Battery power delivery module |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8816535B2 (en) | 2007-10-10 | 2014-08-26 | Solaredge Technologies, Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US8013472B2 (en) | 2006-12-06 | 2011-09-06 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
US8473250B2 (en) | 2006-12-06 | 2013-06-25 | Solaredge, Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US12316274B2 (en) | 2006-12-06 | 2025-05-27 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US8319483B2 (en) | 2007-08-06 | 2012-11-27 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
CN101933209B (en) | 2007-12-05 | 2015-10-21 | 太阳能安吉有限公司 | Release mechanism in distributed electrical power apparatus, to wake up and method for closing |
US8049523B2 (en) | 2007-12-05 | 2011-11-01 | Solaredge Technologies Ltd. | Current sensing on a MOSFET |
US8289742B2 (en) | 2007-12-05 | 2012-10-16 | Solaredge Ltd. | Parallel connected inverters |
EP4145691A1 (en) | 2008-03-24 | 2023-03-08 | Solaredge Technologies Ltd. | Switch mode converter including auxiliary commutation circuit for achieving zero current switching |
EP2294669B8 (en) | 2008-05-05 | 2016-12-07 | Solaredge Technologies Ltd. | Direct current power combiner |
GB2485527B (en) | 2010-11-09 | 2012-12-19 | Solaredge Technologies Ltd | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
GB2486408A (en) | 2010-12-09 | 2012-06-20 | Solaredge Technologies Ltd | Disconnection of a string carrying direct current |
GB2483317B (en) | 2011-01-12 | 2012-08-22 | Solaredge Technologies Ltd | Serially connected inverters |
US8570005B2 (en) | 2011-09-12 | 2013-10-29 | Solaredge Technologies Ltd. | Direct current link circuit |
GB2498365A (en) | 2012-01-11 | 2013-07-17 | Solaredge Technologies Ltd | Photovoltaic module |
GB2498790A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Maximising power in a photovoltaic distributed power system |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
GB2498791A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
GB2499991A (en) | 2012-03-05 | 2013-09-11 | Solaredge Technologies Ltd | DC link circuit for photovoltaic array |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
EP4318001A3 (en) | 2013-03-15 | 2024-05-01 | Solaredge Technologies Ltd. | Bypass mechanism |
CN117130027A (en) | 2016-03-03 | 2023-11-28 | 太阳能安吉科技有限公司 | Method for mapping a power generation facility |
US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
CN109617407B (en) * | 2018-12-19 | 2020-02-07 | 北京理工大学 | Boost type series-parallel full-resonance switch capacitor converter |
CN110474548A (en) * | 2019-07-12 | 2019-11-19 | 厦门大学 | A kind of inversion convertor circuit and its control method based on high-frequency impulse |
CN110365220B (en) * | 2019-08-21 | 2020-08-14 | 曹亮平 | TLC resonant circuit and power converter applied by same |
CN111769737A (en) * | 2020-05-22 | 2020-10-13 | 湖南大学 | Bipolar output switching power supply |
WO2022236825A1 (en) * | 2021-05-14 | 2022-11-17 | 华为数字能源技术有限公司 | Dc/dc converter |
CN114123767B (en) * | 2021-11-22 | 2023-11-03 | 西安芯派电子科技有限公司 | Boost-buck switch capacitor circuit unit for realizing multiple voltage conversion |
-
2008
- 2008-02-29 CN CN2008100823592A patent/CN101521459B/en active Active
Non-Patent Citations (4)
Title |
---|
JP特开2006-262619A 2006.09.28 |
JP特开平8-317636A 1996.11.29 |
涂文娟,丘东元,张波.DC/DC谐振开关电容变换器潜电路发生的一般规律分析.《电工技术学报》.2007,第22卷(第12期),98-104. * |
黎剑源,丘东元,张波.n阶谐振开关电容变换器潜电路图论分析法.《中国电机工程学报》.2008,第28卷(第3期),53-59. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI579570B (en) * | 2016-10-27 | 2017-04-21 | Sea Sonic Electronics Co Ltd | Step - down power conversion circuit |
Also Published As
Publication number | Publication date |
---|---|
CN101521459A (en) | 2009-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101521459B (en) | Resonant Switched Capacitor DC Voltage Converter | |
KR100852550B1 (en) | A method and circuit for self-driven synchronous rectification | |
JP4426115B2 (en) | General self-drive synchronous rectification scheme for synchronous rectifier with floating gate | |
US6853569B2 (en) | DC to DC converter | |
US6483724B1 (en) | DC/DC ZVS full bridge converter power supply method and apparatus | |
CN102790534B (en) | Resonant converter | |
EP2566027A1 (en) | Bidirectional dc/dc converter | |
JP2013520148A (en) | DC-DC converter circuit for high input-to-output voltage conversion | |
CN104617752A (en) | Driving method of gallium nitride transistor, driving circuit thereof, and fly-back converter using the circuit | |
KR20080074875A (en) | Circuit device and method for galvanic isolation control of semiconductor switch | |
CN101170295A (en) | A magnetic levitation reaction flywheel motor control system | |
JPWO2015079762A1 (en) | Rectifier | |
CN104868746A (en) | Electromagnetic transmitter | |
CN101102086B (en) | switch drive circuit | |
US11973440B2 (en) | Isolated DC/DC converter with secondary-side full bridge diode rectifier and asymmetrical auxiliary capacitor | |
KR20060059996A (en) | Control circuit and resonant driver circuit operation method | |
CN1224160C (en) | Tree-level switching transformer | |
JPH06101930B2 (en) | Switching power supply | |
JP5892172B2 (en) | Inverter device | |
CN108667304B (en) | Synchronous rectification flyback DC-DC power supply conversion device and control method | |
JP2022553339A (en) | Inverter circuit and method, e.g. for use in power factor correction | |
JP5791834B1 (en) | Resonance type high frequency power supply device and switching circuit for resonance type high frequency power supply device | |
US20080278971A1 (en) | Forward-forward converter | |
JP4811720B2 (en) | Electronic transformer | |
Leedham et al. | Design of a high speed power MOSFET driver and its use in a half-bridge converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |