[go: up one dir, main page]

CN101509007B - Synthesis of LfcinB15-Mag12 encoding gene and expression method in colon bacillus - Google Patents

Synthesis of LfcinB15-Mag12 encoding gene and expression method in colon bacillus Download PDF

Info

Publication number
CN101509007B
CN101509007B CN200810209661XA CN200810209661A CN101509007B CN 101509007 B CN101509007 B CN 101509007B CN 200810209661X A CN200810209661X A CN 200810209661XA CN 200810209661 A CN200810209661 A CN 200810209661A CN 101509007 B CN101509007 B CN 101509007B
Authority
CN
China
Prior art keywords
mag12
lfcinb15
pet
lfcin
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200810209661XA
Other languages
Chinese (zh)
Other versions
CN101509007A (en
Inventor
单安山
高鹏
毕重朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Agricultural University
Original Assignee
Northeast Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Agricultural University filed Critical Northeast Agricultural University
Priority to CN200810209661XA priority Critical patent/CN101509007B/en
Publication of CN101509007A publication Critical patent/CN101509007A/en
Application granted granted Critical
Publication of CN101509007B publication Critical patent/CN101509007B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供了一种LfcinB15-Mag12编码基因的合成及在大肠杆菌中表达的方法,根据E.coli密码子偏爱性设计编码Lfcin B1-15个氨基酸的活性基因片段和Magainin(1-12)的活性基因片段,利用表达载体pET-32a构建重组表达载体pET-32a-Lfcin B15-Mag12,在pET-32a的多克隆位点前存在编码6个组氨酸标签的密码子,同时加入终止密码子TAG、TAA。本发明利用基因工程方法在大肠杆菌中成功表达了LfcinB15-Mag12,为基因工程方法规模化生产杂合肽及其它贵重肽类奠定了理论与实践基础,对建立肽类基因工程菌和抗菌肽研究的共性技术具有重要意义。

Figure 200810209661

The invention provides a method for synthesizing and expressing the LfcinB15-Mag12 coding gene in Escherichia coli, and designing the active gene fragment encoding Lfcin B1-15 amino acids and Magainin (1-12) according to the codon preference of E.coli Active gene fragment, use the expression vector pET-32a to construct the recombinant expression vector pET-32a-Lfcin B15-Mag12, there are codons encoding 6 histidine tags before the multiple cloning site of pET-32a, and a stop codon is added at the same time TAG, TAA. The present invention successfully expresses LfcinB15-Mag12 in Escherichia coli using genetic engineering methods, laying a theoretical and practical foundation for the large-scale production of hybrid peptides and other valuable peptides by genetic engineering methods, and is useful for the establishment of peptide genetic engineering bacteria and antibacterial peptide research The common technology is of great significance.

Figure 200810209661

Description

LfcinB15-Mag12编码基因的合成及在大肠杆菌中表达的方法 Synthesis of LfcinB15-Mag12 coding gene and method for its expression in Escherichia coli

(一)技术领域(1) Technical field

本发明属于农业畜牧兽医应用领域,具体涉及一种LfcinB15-Mag12编码基因技术。 The invention belongs to the application field of agriculture, animal husbandry and veterinary medicine, and specifically relates to an LfcinB15-Mag12 coding gene technology. the

(二)背景技术(2) Background technology

抗生素的发展已有50多年的历史。由于它能防止畜禽的疾病发生,提高动物生产能力,提高养殖业效益,所以一直是添加剂预混料的重要组成部分。但是,抗生素添加剂的长期使用,能使许多病原菌产生耐药性,同时在畜产品中产生严重的药物残留,从而对畜禽疾病的进一步防治和人类的健康都产生了不利影响。因此,抗生素添加剂的使用在世界各国越来越被严格限制,从2006年1月1日起,欧盟就全面禁止在饲料中添加以保健促生长为目的的抗生素类饲料添加剂。为了寻找抗生素的替代品,生产出既能有效防止畜禽疾病的发生,促进动物生长,又毒副作用小,无残留,无耐药性的绿色饲料添加剂,国内外许多畜牧兽医工作者进行了大量的研究,取得了一定进展。他们研究的抗生素替代品主要有:酶制剂、酸化剂、益生菌、益生素、植物提取物、中草药、糖萜素等。但是这些抗生素替代品都存在生产成本过高,效果不明显,提取及生产的技术不成熟等缺点。 The development of antibiotics has a history of more than 50 years. Because it can prevent the occurrence of livestock and poultry diseases, improve animal production capacity, and improve the efficiency of breeding industry, it has always been an important part of the additive premix. However, the long-term use of antibiotic additives can cause many pathogenic bacteria to develop drug resistance, and at the same time, serious drug residues will be produced in animal products, which will have adverse effects on the further prevention and treatment of livestock and poultry diseases and human health. Therefore, the use of antibiotic additives is increasingly strictly restricted in countries all over the world. Since January 1, 2006, the European Union has completely banned the addition of antibiotic feed additives for the purpose of health care and growth promotion in feed. In order to find alternatives to antibiotics and produce green feed additives that can effectively prevent the occurrence of livestock and poultry diseases, promote animal growth, and have little toxic and side effects, no residue, and no drug resistance, many animal husbandry and veterinary workers at home and abroad have conducted a large number of research has made some progress. The antibiotic substitutes they studied mainly include: enzyme preparations, acidifiers, probiotics, probiotics, plant extracts, Chinese herbal medicines, saccharoterpenoids, etc. However, these antibiotic substitutes all have shortcomings such as high production costs, ineffective effects, and immature extraction and production techniques. the

抗菌肽为动物体内抵御外界微生物侵害、清除体内突变细胞的一类小分子多肽,具有广谱抗菌、无毒性、无耐药性、无残留与污染等优点,而且其热稳定性好,添加剂量小,适合在饲料生产过程中使用,具有与抗生素相同的性能而又完全符合畜产品安全生产的需要,极具有作为新一代饲料添加剂的潜质。近年来对抗菌肽的研究与开发成为研究热点。人们一方面在继续寻找新的阳离子抗菌肽,另一方面对已知的天然抗菌肽进行改造以求获得高效安全的抗菌药物。但是天然抗菌肽种类来源有限,提取困难,且多存在活性不理想或溶血毒性的缺陷,因此,以自然存在的抗菌肽为模板,设计合成衍生物,对研究抗菌肽作用机理、合成活性更强、毒性更低、更稳定、更广谱的抗菌肽具有重要意义,通过基因工程技术构建生物反应器获得抗菌肽的方法显示了广阔前景和巨大潜力。 Antimicrobial peptides are a class of small molecule polypeptides that resist external microbial invasion and eliminate mutant cells in animals. They have the advantages of broad-spectrum antibacterial, non-toxic, non-drug resistance, no residue and pollution, etc., and they have good thermal stability. It is small, suitable for use in the feed production process, has the same performance as antibiotics and fully meets the needs of safe production of livestock products, and has great potential as a new generation of feed additives. In recent years, the research and development of antimicrobial peptides has become a research hotspot. On the one hand, people continue to search for new cationic antimicrobial peptides, and on the other hand, they modify known natural antimicrobial peptides in order to obtain efficient and safe antibacterial drugs. However, the sources of natural antimicrobial peptides are limited, the extraction is difficult, and most of them have the defects of unsatisfactory activity or hemolytic toxicity. Therefore, using naturally occurring antimicrobial peptides as templates to design synthetic derivatives is more important for the study of antimicrobial peptide mechanism of action and synthetic activity. Antimicrobial peptides with lower toxicity, more stability and broader spectrum are of great significance, and the method of obtaining antimicrobial peptides by constructing bioreactors through genetic engineering technology shows broad prospects and great potential. the

(三)发明内容(3) Contents of the invention

本发明的目的在于提供一种根据大肠杆菌密码子偏爱性设计的杂合肽LfcinB15-Mag12的编码基因,并将编码基因正反链分四条多核苷酸链合成,利用基因工程方法在大肠杆菌中成功表达了LfcinB15-Mag12。 The object of the present invention is to provide a coding gene for the hybrid peptide LfcinB15-Mag12 designed according to the codon preference of Escherichia coli, and divide the forward and reverse strands of the coding gene into four polynucleotide chains to synthesize them, and use genetic engineering methods to generate them in Escherichia coli LfcinB15-Mag12 was successfully expressed. the

本发明的目的是这样实现的:根据E.coli密码子偏爱性设计编码Lfcin B 1-15个氨基酸的活性基因片段和Magainin(1-12)的活性基因片段,利用表达载体pET-32a构建重组表达载体pET-32a-Lfcin B15-Mag12,在pET-32a的多克隆位点前存在编码6个组氨酸标签的密码子, 在pET-32a-Lfcin B15-Mag12中,将编码Lfcin B15-Mag12 27个氨基酸的基因片段克隆在编码组氨酸标签的密码子后、限制性内切酶Sal I、Nco I识别位点密码子之间,同时加入终止密码子TAG、TAA, The object of the present invention is achieved like this: according to E.coli codon bias, design the active gene fragment of encoding Lfcin B 1-15 amino acids and the active gene fragment of Magainin (1-12), utilize expression vector pET-32a to construct recombination In the expression vector pET-32a-Lfcin B15-Mag12, there are codons encoding 6 histidine tags before the multiple cloning site of pET-32a. In pET-32a-Lfcin B15-Mag12, Lfcin B15-Mag12 will be encoded The 27-amino acid gene fragment was cloned after the codon encoding the histidine tag, between the codons of the restriction endonuclease Sal I and Nco I recognition sites, and the stop codons TAG and TAA were added at the same time.

分四段合成序列如下: The four-segment synthetic sequence is as follows:

片段1:5’-CATGGCTTTCAAATGCCGCCGTTGGCAGTGGCGTTGGAAAAAACTGGGTGCGGGTATCG-3’ Fragment 1: 5'-CATGGCTTTCAAATGCCGCCGTTGGCAGTGGCGTTGGAAAAAACTGGGTGCGGGTATCG-3'

片段2:5’-GTAAATTCCTGCACTCTGCTAAAAAATTCTAGTAAG-3’ Fragment 2: 5'-GTAAATTCCTGCACTCTGCTAAAAAATTC TAGTAA G-3'

片段3:5’-TCGACTTACTAGAATTTTTTAGCAGAGTGCAGGAATTTACCGATACCC GCACCCAGTTT-3’ Fragment 3: 5'- TCGACTTACTAGAATTTTTTAGCAGAGGTGCAGGAATTTACCGATACCCGCACCCAGTTT -3'

片段4:5’-TTTCCAACGCCACTGCCAACGGCGGCATTTGAAAGC-3’ Fragment 4: 5'-TTTCCAACGCCACTGCCAACGGCGGCATTTGAAAGC-3'

下划线部分是加入的终止密码子TAG、TAA,斜体部分是限制内切酶Sal I、Nco I识别序列,其余部分是牛乳铁蛋白-马盖宁杂合肽基因。 The underlined part is the added stop codon TAG, TAA, the italic part is the recognition sequence of the restriction endonuclease Sal I, Nco I, and the rest is the bovine lactoferrin-Magainin hybrid peptide gene. the

本发明还有这样一些技术特征:为便于直接克隆入经双酶切处理的pET-32a中,直接将酶切位点的粘末端设计入Lfcin B15-Mag12基因中,即在Lfcin B15-Mag12基因的上游及下游分别加入限制性内切酶Sal I、Nco I识别位点经酶切后的片段。 The present invention also has some technical features: in order to facilitate direct cloning into the pET-32a treated with double enzyme digestion, the sticky end of the restriction site is directly designed into the Lfcin B15-Mag12 gene, that is, in the Lfcin B15-Mag12 gene The upstream and downstream of the restriction endonucleases Sal I and Nco I recognition sites were added to the fragments digested. the

本发明的技术特点有: The technical characteristics of the present invention have:

1.根据大肠杆菌密码子偏爱性,设计了杂合肽LfcinB15-Mag12的编码基因,将编码基因正反链分四条多核苷酸链合成,退火连接后,成功获得了杂合肽LfcinB15-Mag12的编码基因。 1. According to the codon preference of Escherichia coli, the coding gene of the hybrid peptide LfcinB15-Mag12 was designed, and the positive and negative strands of the coding gene were synthesized into four polynucleotide chains. After annealing, the hybrid peptide LfcinB15-Mag12 was successfully obtained. coding genes. the

2.在合成的LfcinB15-Mag12编码基因片段两端直接引入粘性末端,连接入表达载体pET-32a,构建表达载体pET-32a-LfcinB15-Mag12,测序表明与设计完全一致。 2. Directly introduce cohesive ends at both ends of the synthesized LfcinB15-Mag12 coding gene fragment, connect it into the expression vector pET-32a, and construct the expression vector pET-32a-LfcinB15-Mag12, which is completely consistent with the design by sequencing. the

3.将表达载体pET-32a-LfcinB15-Mag12转化表达宿主E.coli DH5α,0.1mmol/L IPTG、30℃诱导3h,产生了与预期分子量为23.9kD的特异诱导表达条带,经蛋白质印迹分析,分子量为24kDa的诱导条带为TRX融合蛋白,证明融合蛋白Trx-S-His-LfcinB15-Mag12成功获得表达。 3. The expression vector pET-32a-LfcinB15-Mag12 was transformed into the expression host E.coli DH5α, induced with 0.1mmol/L IPTG at 30°C for 3h, and a specific induced expression band with the expected molecular weight of 23.9kD was produced, which was analyzed by Western blot , the induced band with a molecular weight of 24kDa is a TRX fusion protein, which proves that the fusion protein Trx-S-His-LfcinB15-Mag12 is successfully expressed. the

4.对最佳诱导条件进行优化,在确定的最佳诱导条件下,即当菌体密度达到OD600=0.6时开始诱导,0.3mmol/L IPTG、30℃诱导4h,融合蛋白的表达量占菌体蛋白总量的22%。 4. Optimize the optimal induction conditions. Under the determined optimal induction conditions, that is, when the cell density reaches OD600 = 0.6, induction begins, 0.3mmol/L IPTG, 30°C induction for 4h, the expression of fusion protein accounted for 22% of total body protein. the

5.经NTA-亲和层析柱纯化回收融合蛋白Trx-S-His-LfcinB15-Mag12,纯度较高,达到95%以上,但产量较低,平均每升诱导细菌培养物仅获得19mg融合蛋白。 5. Purify and recover the fusion protein Trx-S-His-LfcinB15-Mag12 through NTA-affinity chromatography column, the purity is higher, reaching more than 95%, but the yield is low, and on average, only 19mg fusion protein is obtained per liter of induced bacterial culture . the

6.按照酶:蛋白质量比为1:100的比例利用肠激酶裂解融合蛋白Trx-S-His-LfcinB15-Mag12,23℃6h即可实现完全裂解,经截留分子量为5kDa的超滤管超滤 后得到较纯的杂合肽LfcinB15-Mag12,平均每升诱导细菌培养物获得LfcinB15-Mag12200μg。 6. Use enterokinase to cleavage the fusion protein Trx-S-His-LfcinB15-Mag12 according to the ratio of enzyme: protein ratio of 1:100, complete cleavage can be achieved at 23°C for 6 hours, and ultrafiltration through an ultrafiltration tube with a molecular weight cut-off of 5kDa Afterwards, a relatively pure hybrid peptide LfcinB15-Mag12 was obtained, and an average of 200 μg of LfcinB15-Mag12 was obtained per liter of induced bacterial culture. the

7.利用薄层平皿琼脂糖纸片扩散法检测重组杂合肽LfcinB15-Mag12的抑菌活性,对金黄色葡萄球菌ATCC25923具有明显的抑制作用,表明本实验获得了具有生物学活性的重组LfcinB15-Mag12,利用基因工程方法首次成功实现了抗菌肽LfcinB15-Mag12的异源表达。 7. The antibacterial activity of the recombinant hybrid peptide LfcinB15-Mag12 was detected by the thin-layer plate agarose disc diffusion method, and it had obvious inhibitory effect on Staphylococcus aureus ATCC25923, indicating that this experiment obtained recombinant LfcinB15-Mag12 with biological activity , the heterologous expression of the antibacterial peptide LfcinB15-Mag12 was successfully realized for the first time by using genetic engineering methods. the

本发明根据大肠杆菌密码子偏爱性,设计了杂合肽LfcinB15-Mag12的编码基因,将编码基因正反链分四条多核苷酸链合成,退火连接后,成功获得了杂合肽LfcinB15-Mag12的编码基因。本研究利用基因工程方法在大肠杆菌中成功表达了LfcinB15-Mag12,为基因工程方法规模化生产杂合肽及其它贵重肽类奠定了理论与实践基础,对建立肽类基因工程菌和抗菌肽研究的共性技术具有重要意义。 According to the codon preference of Escherichia coli, the present invention designs the coding gene of the hybrid peptide LfcinB15-Mag12, divides the positive and negative strands of the coding gene into four polynucleotide chains and synthesizes them. coding genes. In this study, LfcinB15-Mag12 was successfully expressed in Escherichia coli using genetic engineering methods, which laid a theoretical and practical foundation for the large-scale production of hybrid peptides and other valuable peptides by genetic engineering methods. The common technology is of great significance. the

(四)附图说明(4) Description of drawings

图1为本发明抑菌图; Fig. 1 is the antibacterial figure of the present invention;

图2为本发明的工艺流程图; Fig. 2 is a process flow diagram of the present invention;

图3为纯化的合成LfcinB15-Mag12编码基因示意图,其中1为DNA分子量标准,2为纯化的用于构建pET-32a-Lfcin B15-Mag12的Lfcin B15-Mag12基因; Fig. 3 is the schematic diagram of the synthetic LfcinB15-Mag12 coding gene of purification, and wherein 1 is DNA molecular weight standard, and 2 is the Lfcin B15-Mag12 gene that is used for constructing pET-32a-Lfcin B15-Mag12 of purification;

图4为PCR方法筛选阳性重组质粒pET-32a与pET-32a-Lfcin B15-Mag12示意图,1为DNA分子量标准,2为pET-32a空白对照为模板的PCR扩增产物,3为以含有pET-32a-LfcinB15-Mag12菌落为模板的PCR扩增产物; Fig. 4 is the schematic diagram of positive recombinant plasmid pET-32a and pET-32a-Lfcin B15-Mag12 screened by PCR method, 1 is the DNA molecular weight standard, 2 is the PCR amplification product of pET-32a blank control as template, and 3 is the PCR amplification product containing pET- 32a-LfcinB15-Mag12 colony is the PCR amplification product of the template;

图5为pET-32a、pET-32a-Lfcin B15-Mag12转化子表达产物SDS-PAGE分析示意图,1为蛋白质分子量标准,2为pET-32a转化子表达产物,3为未诱导的pET-32a-Lfcin B15-Mag12转化子诱导表达产物,4为pET-32a-Lfcin B15-Mag12转化子诱导表达产物。 Figure 5 is a schematic diagram of SDS-PAGE analysis of the expression products of pET-32a and pET-32a-Lfcin B15-Mag12 transformants, 1 is the protein molecular weight standard, 2 is the expression products of pET-32a transformants, and 3 is the uninduced pET-32a- The Lfcin B15-Mag12 transformant induces the expression product, and 4 is the pET-32a-Lfcin B15-Mag12 transformant induces the expression product. the

(五)具体实施方式(5) Specific implementation methods

下面结合附图和具体实施例对本发明作进一步的说明: Below in conjunction with accompanying drawing and specific embodiment the present invention will be further described:

结合图2,本实施例采取的技术路线为: In conjunction with Fig. 2, the technical route taken in this embodiment is:

1.在合成的LfcinB15-Mag12编码基因片段两端直接引入粘性末端,连接入表达载体pET-32a,构建表达载体pET-32a-LfcinB15-Mag12; 1. Directly introduce cohesive ends at both ends of the synthetic LfcinB15-Mag12 coding gene fragment, connect it into the expression vector pET-32a, and construct the expression vector pET-32a-LfcinB15-Mag12;

2.将表达载体pET-32a-LfcinB15-Mag12转化表达宿主E.coli BL21(DE3),0.1mmol/LIPTG、30℃诱导3h,产生与预期分子量为23.9kD的特异诱导表达条带; 2. Transform the expression vector pET-32a-LfcinB15-Mag12 into the expression host E.coli BL21(DE3), induce it with 0.1mmol/LIPTG at 30°C for 3h, and produce a specifically induced expression band with the expected molecular weight of 23.9kD;

3.对最佳诱导条件进行优化,在确定的最佳诱导条件下,既当菌体密度达到OD600=0.6时开始诱导,0.3mmol/L IPTG、30℃诱导4h,融合蛋白的表达量占菌体蛋白总量的22%; 3. Optimize the optimal induction conditions. Under the determined optimal induction conditions, the induction starts when the cell density reaches OD600=0.6, 0.3mmol/L IPTG, 30°C induction for 4h, the expression of the fusion protein accounted for 22% of total body protein;

4.经NTA-亲和层析柱纯化回收融合蛋白Trx-S-His-LfcinB15-Mag12,纯度达到95%以上,平均每升诱导细菌培养物仅获得19mg融合蛋白; 4. The fusion protein Trx-S-His-LfcinB15-Mag12 was purified and recovered by NTA-affinity chromatography column, with a purity of more than 95%, and an average of only 19 mg of fusion protein was obtained per liter of induced bacterial culture;

5. 按照酶:蛋白质量比为1∶100的比例利用肠激酶裂解融合蛋白Trx-S-His-LfcinB15-Mag12,23℃6h即可实现完全裂解,经截留分子量为5kDa的超滤管超滤后得到较纯的杂合肽LfcinB15-Mag12,平均每升诱导细菌培养物获得LfcinB15-Mag12200μg; 5. Cleavage the fusion protein Trx-S-His-LfcinB15-Mag12 with enterokinase according to the ratio of enzyme: protein mass ratio of 1:100, complete cleavage can be achieved at 23°C for 6 hours, and ultrafiltration through ultrafiltration tube with a molecular weight cut-off of 5kDa Obtain relatively pure hybrid peptide LfcinB15-Mag12 afterwards, obtain LfcinB15-Mag12200 μ g per liter of induced bacterial culture on average;

6.利用薄层平皿琼脂糖纸片扩散法检测重组杂合肽LfcinB15-Mag12的抑菌活性。 6. The antibacterial activity of the recombinant hybrid peptide LfcinB15-Mag12 was detected by thin-layer plate agarose disk diffusion method. the

本实施例的具体实现过程: The specific implementation process of this embodiment:

1、LfcinB15-Mag12基因编码的合成 1. Synthesis of LfcinB15-Mag12 gene code

根据E.coli密码子偏爱性(如表1所示,Grojean等,1982;Hale等,1998)设计编码LfcinB 1-15个氨基酸的活性基因片段和Magainin(1-12)的活性基因片段,为表达重组LfcinB15-Mag12,利用表达载体pET-32a构建重组表达载体pET-32a-Lfcin B15-Mag12,在pET-32a的多克隆位点前存在编码6个组氨酸标签的密码子,因此在pET-32a-Lfcin B15-Mag12中,将编码Lfcin B15-Mag12 27个氨基酸的基因片段克隆在编码组氨酸标签的密码子后、限制性内切酶SalI、Nco I识别位点密码子之间。同时加入终止密码子TAG、TAA。 According to E.coli codon bias (as shown in Table 1, Grojean et al., 1982; Hale et al., 1998) design the active gene fragment encoding LfcinB 1-15 amino acids and the active gene fragment of Magainin (1-12), as To express recombinant LfcinB15-Mag12, use the expression vector pET-32a to construct the recombinant expression vector pET-32a-Lfcin B15-Mag12, and there are codons encoding 6 histidine tags before the multiple cloning site of pET-32a, so in pET In -32a-Lfcin B15-Mag12, the gene fragment encoding Lfcin B15-Mag12 27 amino acids was cloned after the codon encoding the histidine tag and between the codons of the restriction endonuclease SalI and NcoI recognition sites. At the same time, stop codons TAG and TAA were added. the

为便于直接克隆入经双酶切处理的pET-32a中,直接将酶切位点的粘末端设计入LfcinB15-Mag12基因中,即在Lfcin B15-Mag12基因的上游及下游分别加入限制性内切酶Sal I、Nco I识别位点经酶切后的片段。 In order to facilitate direct cloning into pET-32a treated with double digestion, the sticky end of the restriction site was directly designed into the LfcinB15-Mag12 gene, that is, restriction endonucleases were added to the upstream and downstream of the Lfcin B15-Mag12 gene Fragments of enzymes Sal I and Nco I recognition sites after digestion. the

分四段合成序列如下: The four-segment synthetic sequence is as follows:

片段1:5’-CATGGCTTTCAAATGCCGCCGTTGGCAGTGGCGTTGGAAAAAACTGGGTGCGGGTATCG-3’ Fragment 1: 5'-CATGGCTTTCAAATGCCGCCGTTGGCAGTGGCGTTGGAAAAAACTGGGTGCGGGTATCG-3'

片段2:5’-GTAAATTCCTGCACTCTGCTAAAAAATTCTAGTAAG-3’ Fragment 2: 5'-GTAAATTCCTGCACTCTGCTAAAAAATTC TAGTAA G-3'

片段3:5’-TCGACTTACTAGAATTTTTTAGCAGAGTGCAGGAATTTACCGATACCC GCACCCAGTTT-3’ Fragment 3: 5'- TCGACTTACTAGAATTTTTTAGCAGAGGTGCAGGAATTTACCGATACCCGCACCCAGTTT -3'

片段4:5’-TTTCCAACGCCACTGCCAACGGCGGCATTTGAAAGC-3’ Fragment 4: 5'-TTTCCAACGCCACTGCCAACGGCGGCATTTGAAAGC-3'

下划线部分是加入的终止密码子TAG、TAA,斜体部分是限制内切酶SalI、Nco I识别序列,其余部分是牛乳铁蛋白-马盖宁杂合肽基因。 The underlined part is the added stop codon TAG, TAA, the italic part is the restriction endonuclease SalI, NcoI recognition sequence, and the rest is the bovine lactoferrin-Magainin hybrid peptide gene. the

表1密码子在E.coli的使用频率 Table 1 The frequency of codon usage in E.coli

Figure DEST_PATH_G200810209661X01D00021
Figure DEST_PATH_G200810209661X01D00021

续表1 Continued Table 1

  密码子 a   使用频率 usage frequency   密码子 a   使用频率 usage frequency   密码子 a   使用频率 usage frequency   ArgArg   AGCAGC   0.000.00   TyrTyr   TATTAT   0.180.18   ProPro   CCGCCG   0.870.87   ArgArg   AGAAGA   0.000.00   TyrTyr   TACTAC   0.820.82   ProPro   CCACCA   0.130.13   SerSer   AGTAGT   0.000.00   LeuLeu   TTGTTG   0.000.00   ProPro   CCTCCT   0.000.00   SerSer   AGCAGC   0.170.17   LeuLeu   TTATTA   0.000.00   ProPro   CCCCCC   0.000.00   LysLys   AAGAAG   0.180.18   PhePhe   TTTTTT   0.170.17   LysLys   AAAAAA   0.820.82   PhePhe   TTCTTC   0.830.83

1.1、多核苷酸片段2和4的5’端磷酸化 1.1. Phosphorylation of the 5' end of polynucleotide fragments 2 and 4

化学合成的多核苷酸片段,其5’端为-OH形式,要进行磷酸化处理后才能进行连接反应,T4多核苷酸激酶在ATP存在的条件下,能够将ATP的γ-磷酸基团转移到核苷酸片段的5’端,替换-OH。 Chemically synthesized polynucleotide fragments, whose 5' end is in the form of -OH, need to be phosphorylated before the ligation reaction can be performed. In the presence of ATP, T4 polynucleotide kinase can transfer the γ-phosphate group of ATP To the 5' end of the nucleotide fragment, replace -OH. the

反应体系: reaction system:

基因片段2或4                10μL Gene Fragment 2 or 4 10μL

10×T4多核苷酸激酶buffer    5μL 10×T4 polynucleotide kinase buffer 5μL

ATP                         10μL ATP 10μL

T4多核苷酸激酶              2μL(20单位) T4 polynucleotide kinase 2 μL (20 units)

水                          23μL Water 23μL

总体积                      50μL Total volume 50μL

水浴37℃1h,65℃20min灭活T4多核苷酸激酶活性。 Inactivate T4 polynucleotide kinase activity in a water bath at 37°C for 1 hour and at 65°C for 20 minutes. the

1.2、多核苷酸片段退火与连接 1.2. Annealing and ligation of polynucleotide fragments

反应体系 reaction system

基因片段2磷酸化反应体系溶液    10μL Gene fragment 2 phosphorylation reaction system solution 10 μL

基因片段4磷酸化反应体系溶液    10μL Gene fragment 4 phosphorylation reaction system solution 10 μL

基因片段1                      5μL Gene Fragment 1 5 μL

基因片段3                      5μL Gene Fragment 3 5 μL

3mol/L NaCl溶液                4μL 3mol/L NaCl solution 4μL

水                             6μL Water 6μL

总体积        40μL Total volume 40μL

上述反应体系95℃变性5min,自然降至40℃,维持2h,加入10×连接酶缓冲液5μL,T4DNA连接酶0.2μL(2单位),H2O补足50μL,16℃连接过夜 The above reaction system was denatured at 95°C for 5 minutes, then naturally lowered to 40°C, maintained for 2 hours, added 5 μL of 10× ligase buffer, 0.2 μL (2 units) of T4 DNA ligase, supplemented with 50 μL of H 2 O, and ligated overnight at 16°C

1.3、Lfcin B15-Mag12编码基因的回收 1.3. Recovery of the gene encoding Lfcin B15-Mag12

1)将多核苷酸片段退火与连接的产物进行2.5%凝胶电泳,利用Qiagen凝胶回收试剂盒回收,按照试剂盒操作手册进行; 1) Perform 2.5% gel electrophoresis on the annealed and ligated polynucleotide fragments, recover using the Qiagen gel recovery kit, and perform according to the kit operation manual;

2)紫外灯下切下含有目的DNA片段的凝胶块,使它尽可能的小,放入预先称重的1.5mL离心管中; 2) Cut off the gel piece containing the target DNA fragment under the ultraviolet light, make it as small as possible, and put it into a pre-weighed 1.5mL centrifuge tube;

3)再次称量装有凝胶块的离心管,计算凝胶块的质量,按每100mg凝胶块加入600μL的比例加入溶胶液,50℃水浴10min,使琼脂糖胶块完全溶解,每2min混匀一次; 3) Weigh the centrifuge tube containing the gel block again, calculate the mass of the gel block, add the sol solution at a ratio of 600 μL per 100 mg of the gel block, and bathe in water at 50°C for 10 min to completely dissolve the agarose gel block, every 2 min Mix once;

4)按每100mg凝胶块加入100μL的比例加入异丙醇,混匀; 4) Add isopropanol at a ratio of 100 μL per 100 mg of gel block, and mix well;

5)将凝胶液移入吸附柱,离心1min,倒掉收集管中的液体,再将吸附柱放入同一个收集管中; 5) Transfer the gel solution into the adsorption column, centrifuge for 1 min, pour off the liquid in the collection tube, and then put the adsorption column into the same collection tube;

6)在吸附柱中加入750μL洗涤液,静置2min,离心1min,倒掉收集管中的液体,将吸附柱放入同一个收集管中; 6) Add 750 μL of washing solution to the adsorption column, let it stand for 2 minutes, centrifuge for 1 minute, pour off the liquid in the collection tube, and put the adsorption column into the same collection tube;

7)离心1min,尽量除去洗涤液; 7) centrifuge for 1min, and remove the washing solution as much as possible;

8)将吸附柱放入一干净的1.5mL离心管中,在吸附膜中央加入30-50μL洗脱液,静置1min后,离心1min,将1.5mL离心管(含有DNA)储存于-20℃备用。 8) Put the adsorption column into a clean 1.5mL centrifuge tube, add 30-50μL eluent to the center of the adsorption membrane, let it stand for 1min, centrifuge for 1min, and store the 1.5mL centrifuge tube (containing DNA) at -20°C spare. the

2、重组载体的构建 2. Construction of recombinant vector

2.1、质粒pET-32a的酶切处理 2.1. Enzyme digestion treatment of plasmid pET-32a

Sal I、和Nco I酶切质粒pET-32a反应体系: Sal I, and Nco I digestion plasmid pET-32a reaction system:

质粒pET-32a        2μg Plasmid pET-32a 2μg

10×Sal Ibuffer    5μL 10×Sal Ibuffer 5μL

Nco I              1μL(20单位) Nco I 1μL (20 units)

Sal I              1μL(20单位) Sal I 1μL (20 units)

水                 37μL Water 37μL

总体积             50μL Total volume 50μL

37℃水浴3h,65℃20min灭活酶活性。 37°C water bath for 3h, 65°C for 20min to inactivate the enzyme activity. the

2.2、线性质粒pET-32a的纯化回收 2.2. Purification and recovery of linearized plasmid pET-32a

将质粒pET-32a的酶切处理反应体系进行0.8%凝胶电泳,按照2.2.1.4方法纯化回收线性质粒pET-32a,-20℃保存备用。 The enzyme digestion treatment reaction system of plasmid pET-32a was subjected to 0.8% gel electrophoresis, purified and recovered linear plasmid pET-32a according to the method in 2.2.1.4, and stored at -20°C for future use. the

2.3、感受态E.coli的制备 2.3. Preparation of Competent E.coli

1)取冰冻保存宿主菌,用接种环接种至斜面,复活培养2代,然后挑取单个菌落,转到含有50mL的LB培养基的250mL的三角瓶中,于37℃震荡培养过夜。 1) Take the frozen-preserved host bacteria, inoculate the slant with an inoculation loop, revive and culture for 2 generations, then pick a single colony, transfer it to a 250mL Erlenmeyer flask containing 50mL of LB medium, and culture it overnight at 37°C with shaking. the

2)取500μL菌液转接入新鲜的50mL LB培养基中,待菌体密度生长至OD600=0.4时,将菌液转移至一个无菌、一次性使用的、用冰预冷的50mL聚丙烯管中,在冰上放置10分钟。 2) Take 500 μL of bacterial liquid and transfer it into fresh 50 mL LB medium. When the bacterial cell density grows to OD600=0.4, transfer the bacterial liquid to a sterile, single-use, 50 mL polypropylene pre-cooled with ice. Tubes were placed on ice for 10 min. the

3)4℃以4100转/min离心10min,回收细胞。 3) Centrifuge at 4100 rpm for 10 min at 4°C to recover the cells. the

4)倒出培养液,将管倒置1min,以使最后的痕量培养液流尽。 4) Pour out the culture solution and invert the tube for 1 min to make the last trace of the culture solution flow out. the

5)每50mL初始培养液用30mL预冷的0.1mol/L MgCl2-CaCl2溶液(80mmol/L MgCl2,20mmol/L CaCl2)重悬每份细胞沉淀。 5) Resuspend each cell pellet with 30 mL of pre-cooled 0.1 mol/L MgCl 2 -CaCl 2 solution (80 mmol/L MgCl 2 , 20 mmol/L CaCl 2 ) for every 50 mL of initial culture medium.

6)4℃4100转/min离心10min,回收细胞。 6) Centrifuge at 4100 rpm for 10 min at 4°C to recover the cells. the

7)倒出培养液,将管倒置1min以使最后的痕量培养液流尽。 7) Pour out the culture solution and invert the tube for 1 min to drain the last trace of the culture solution. the

8)每50mL初始培养物用2mL冰预冷的0.1mol/L CaCl2重悬,备用。 8) Resuspend each 50 mL of initial culture with 2 mL of ice-cold 0.1 mol/L CaCl 2 and set aside.

2.4、Lfcin B15-Mag12编码基因与质粒pET-32a连接及转化 2.4. Ligation and transformation of Lfcin B15-Mag12 coding gene and plasmid pET-32a

LfcinB编码基因与质粒pET-32a的连接体系 Ligation system between gene encoding LfcinB and plasmid pET-32a

10×连接酶buffer    1μl 10×ligase buffer 1μl

                    基因片段1μl(10ng)                                                                         

质粒pET-32a         2μl(100ng) Plasmid pET-32a 2μl (100ng)

T4DNA连接酶         0.1μL T4DNA ligase 0.1μL

H2O                 5.9μL H 2 O 5.9 μL

总体积             10μL Total volume 10μL

16℃连接过夜,转化E.coli BL21(DE3)。 Ligate overnight at 16°C and transform E.coli BL21(DE3). the

1)用预冷的无菌吸头从每份用CaCl2溶液制备的感受态细胞悬液中吸取200μL转移到无菌离心管中,每管加入DNA(用量不超过10μl的体积,其中的DNA小于50ng),轻轻旋转以混匀内容物,在冰上放置30min; 1) Use a pre-cooled sterile tip to draw 200 μL from each portion of competent cell suspension prepared with CaCl 2 solution and transfer it to a sterile centrifuge tube, and add DNA to each tube (the amount used shall not exceed 10 μl, and the DNA in it shall be less than 50ng), swirl gently to mix the contents, and place on ice for 30min;

2)将管放入预加温至42℃的循环水浴中,恰恰放置90s,不要摇动管; 2) Put the tube into a circulating water bath preheated to 42°C, and leave it for exactly 90 seconds without shaking the tube;

3)快速将管转移到冰浴中,使细胞冷却2min; 3) Quickly transfer the tube to an ice bath to cool the cells for 2 minutes;

4)每管加800μl SOC培养基,用水浴将培养基加温至37℃,然后将管转移到摇床上,37℃温浴45min,使细菌复苏并表达质粒编码的抗生素标记基因; 4) Add 800 μl of SOC medium to each tube, warm the medium to 37°C with a water bath, then transfer the tube to a shaker, and incubate at 37°C for 45 minutes to recover the bacteria and express the antibiotic marker gene encoded by the plasmid;

5)将适当体积(每90mm平板达200μl)以转化的感受态细胞转移至含20mmol/L MgSO4和100μg/mL氨卞青霉素的LB琼脂培养基上; 5) An appropriate volume (up to 200 μl per 90 mm plate) is transferred to the LB agar medium containing 20 mmol/L MgSO and 100 μg/mL ampicillin with transformed competent cells;

6)将平板置于室温至液体被吸收,倒置平板,于37℃培养12-16h。 6) Place the plate at room temperature until the liquid is absorbed, invert the plate, and incubate at 37°C for 12-16 hours. the

2.5、PCR方法筛选阳性克隆 2.5. PCR method to screen positive clones

所用引物: Primers used:

Primer 1:5′-GGG CTG GCA AGC CAC GTT TGG TG-3′, Primer 1: 5′-GGG CTG GCA AGC CAC GTT TGG TG-3′,

Primer 2:5′-CCG GGA GCT GCA TGT GTC AGA GG-3′, Primer 2: 5′-CCG GGA GCT GCA TGT GTC AGA GG-3′,

反应体系: reaction system:

10×buffer(Mg2+)   2μL 10×buffer(Mg 2+ ) 2μL

Primer1            0.4μL Primer1 0.4μL

Primer2            0.4μL Primer2 0.4μL

dNTP(2.5mmol/L)    0.4μL dNTP(2.5mmol/L) 0.4μL

Taq DNA polymerase 0.4μL Taq DNA polymerase 0.4μL

H2O                16.4μL H 2 O 16.4 μL

总体积             20μL Total volume 20μL

无菌牙签调挑取阳性菌落,在上述反应体系溶液中轻微转动数次,同时以不加入菌落、含有pGEX-4T-2的菌落为模板分别作为阴性、阳性对照,进行PCR扩增, Pick up positive colonies with a sterile toothpick, turn them slightly in the above reaction system solution for several times, and use the colonies without adding colonies and containing pGEX-4T-2 as templates respectively as negative and positive controls for PCR amplification.

反应条件:94℃        预变性5min Reaction conditions: 94°C pre-denaturation for 5 minutes

Figure DEST_PATH_G200810209661X01D00061
Figure DEST_PATH_G200810209661X01D00061

72℃    延伸    1min 72℃ Extend 1min

72℃    延伸    5min 72℃ Extend 5min

4℃             5min 4°C 5min

PCR扩增产物用2.5%琼脂糖凝胶电泳检测,阳性克隆进一步测序验证。 PCR amplification products were detected by 2.5% agarose gel electrophoresis, and positive clones were further sequenced for verification. the

2.6、SDS碱裂解法小量提取质粒 2.6. Small amount of plasmid extraction by SDS alkaline lysis method

原理:碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。在pH高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋DNA结构解开而变性。质粒DNA的大部分氢键也断裂,但超螺旋共价闭和环状的两条互补链又不完全分离,当以pH4.8的NaAc高盐缓冲液去调节其pH至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物一起沉淀下来而被除去。 Principle: Alkaline denaturation extraction of plasmid DNA is based on the difference between denaturation and renaturation of chromosomal DNA and plasmid DNA to achieve the purpose of separation. Under alkaline conditions with a pH as high as 12.6, the hydrogen bonds of chromosomal DNA are broken, and the double-helix DNA structure is untied and denatured. Most of the hydrogen bonds of the plasmid DNA are also broken, but the supercoiled covalently closed and circular two complementary strands are not completely separated. When the pH is adjusted to neutral with NaAc high-salt buffer of pH 4.8, the The plasmid DNA restores its original configuration and is stored in the solution, while the chromosomal DNA cannot be refolded and forms a tangled network structure. Through centrifugation, the chromosomal DNA, unstable macromolecular RNA, and protein-SDS complexes are precipitated together. down and removed. the

试验步骤: experiment procedure:

1)挑取含有目的阳性克隆的单菌落,接种到2mL含有100μg/mL Amp的LB培养液中, 于37℃震荡培养过夜; 1) Pick a single colony containing the positive clone of interest, inoculate it into 2 mL of LB culture medium containing 100 μg/mL Amp, and incubate overnight at 37°C with shaking;

2)取1mL培养物于1.5mL离心管中,用微量离心机于4℃最大转速离心30s,将剩余的培养物贮存于4℃,离心后尽可能吸干培养液; 2) Take 1mL of the culture in a 1.5mL centrifuge tube, centrifuge at the maximum speed of 4°C for 30s with a microcentrifuge, store the rest of the culture at 4°C, and blot the culture medium as dry as possible after centrifugation;

3)将细菌沉淀重悬于100μL冰预冷的碱裂解液I中,剧烈震荡; 3) Resuspend the bacterial pellet in 100 μL of ice-cold alkaline lysate I and shake vigorously;

4)加200μL新配置的碱裂解液II,于每管细菌悬液中,盖紧管口,快速颠倒离心管5次,以混合内容物,切勿震荡,将离心管放置于冰上; 4) Add 200 μL of newly prepared alkaline lysate II to each tube of bacterial suspension, cap the tube tightly, quickly invert the centrifuge tube 5 times to mix the contents, do not shake, and place the centrifuge tube on ice;

5)4℃离心5min,取上清; 5) Centrifuge at 4°C for 5 minutes, and take the supernatant;

6)用2倍体积的无水乙醇于室温沉淀核酸,震荡混合,于室温放置2min; 6) Use 2 times the volume of absolute ethanol to precipitate nucleic acid at room temperature, shake and mix, and place at room temperature for 2 minutes;

7)4℃离心5min,收集沉淀的核酸; 7) Centrifuge at 4°C for 5 minutes to collect the precipitated nucleic acid;

8)小心吸出上清液,将离心管倒置于纸巾上,以使所有液体的液体流出排干,用一次性吸头除去管壁上的液滴; 8) Carefully suck out the supernatant, put the centrifuge tube upside down on a paper towel, so that all the liquid can flow out and drain, and use a disposable tip to remove the liquid droplets on the tube wall;

9)加1mL 70%乙醇于沉淀中并将盖紧的试管颠倒数次,4℃离心2min,回收DNA,回收沉淀; 9) Add 1mL of 70% ethanol to the precipitate and invert the tightly capped test tube several times, centrifuge at 4°C for 2min, recover DNA and recover the precipitate;

10)除去管壁上的酒精液滴,将开口的试管放置于室温使酒精挥发,直至试管内无可见的液体存在; 10) Remove the alcohol droplets on the tube wall, place the open test tube at room temperature to evaporate the alcohol until there is no visible liquid in the test tube;

11)用50μL含有去DNA酶的RNA酶A(胰RNA酶)(20μg/mL)的TE重新溶解核酸,温和震荡几秒钟,贮存于-20℃。 11) Redissolve the nucleic acid with 50 μL of TE containing DNase-removing RNase A (trypsinase) (20 μg/mL), shake gently for a few seconds, and store at -20°C. the

3、融合蛋白的表达及诱导条件的优化 3. Expression of fusion protein and optimization of induction conditions

3.1、融合蛋白的IPTG诱导表达 3.1. IPTG-induced expression of fusion protein

1)重组质粒按照2.4方法转化E.coli BL21(DE3); 1) Transform the recombinant plasmid into E.coli BL21(DE3) according to the method in 2.4;

2)将转化菌落接种于5mL含100μg/mL氨苄青霉素的LB培养基中,并在LB/氨苄青霉素斜面上画线,同时接种含母本pET-32a载体的转化菌作对照。将斜面培养基于37℃下培养12小时后于4℃保存,液体培养物则于37℃摇床中震荡培养过夜; 2) Inoculate the transformed colony in 5 mL of LB medium containing 100 μg/mL ampicillin, draw a line on the LB/ampicillin slant, and inoculate transformed bacteria containing the parental pET-32a vector as a control. The slant culture was cultured at 37°C for 12 hours and then stored at 4°C, and the liquid culture was cultured overnight in a shaker at 37°C;

3)吸取500μL菌液转接入50mL含100μg/mL氨苄青霉素的LB培养基中,37℃摇床培养至OD600=0.6左右,加入100mmol/L IPTG至终浓度0.1mmol/L,30℃诱导3小时; 3) Transfer 500 μL of the bacterial solution into 50 mL of LB medium containing 100 μg/mL ampicillin, culture on a shaker at 37°C until OD600=0.6, add 100mmol/L IPTG to a final concentration of 0.1mmol/L, and induce at 30°C for 3 Hour;

4)取1mL菌液,12000转/min高速离心15s,弃上清; 4) Take 1mL of bacterial liquid, centrifuge at 12000 rpm for 15s at high speed, and discard the supernatant;

5)加入100μL冰预冷的PBS,吹打均匀,吸取5μL于另一只离心管中,待SDS-PAGE分析。 5) Add 100 μL of ice-cold PBS, pipette evenly, pipette 5 μL into another centrifuge tube, and wait for SDS-PAGE analysis. the

3.2、SDS-PAGE分析 3.2. SDS-PAGE analysis

原理:生物大分子尤其是蛋白质具有不同的电荷和分子量。在经过阴离子去污剂SDS处理后,蛋白质分子上的电荷被中和,在聚丙烯酰胺凝胶电泳时,不同的蛋白质按照其分子量 大小进行分布,电泳迁移率仅取决于蛋白质的分子量。聚丙烯酰胺凝胶电泳由丙烯酰胺单体和甲叉双丙烯酰胺,在催化剂的作用下,形成三维网状结构。凝胶电泳不仅具有分子筛作用,还有浓缩效应。由于不连续pH梯度作用,样品被压缩成一条狭窄区带,从而提高了分离效果。采用考马斯亮蓝快速染色,可及时观察电泳分离效果。 Principle: Biomacromolecules, especially proteins, have different charges and molecular weights. After being treated with the anionic detergent SDS, the charges on the protein molecules are neutralized. During polyacrylamide gel electrophoresis, different proteins are distributed according to their molecular weight, and the electrophoretic mobility depends only on the molecular weight of the protein. Polyacrylamide gel electrophoresis consists of acrylamide monomer and methylene bisacrylamide, under the action of a catalyst, to form a three-dimensional network structure. Gel electrophoresis not only has a molecular sieve effect, but also a concentration effect. Due to the discontinuous pH gradient, the sample is compressed into a narrow zone, which improves the separation effect. Rapid staining with Coomassie Brilliant Blue allows timely observation of the electrophoretic separation effect. the

实验步骤: Experimental steps:

1)将玻璃板洗涤干净,固定于电泳槽上; 1) Wash the glass plate and fix it on the electrophoresis tank;

2)按表2的配方配制15%分离胶,将分离胶注入玻璃夹层中,上部用少量水封面,保持胶面平整,待分离胶聚合后,配制浓缩胶; 2) Prepare 15% separating gel according to the formula in Table 2, inject the separating gel into the glass interlayer, cover the upper part with a small amount of water, keep the surface of the gel flat, and prepare the concentrated gel after the separating gel is polymerized;

表2不同浓度分离胶配方 Table 2 Different concentrations of separation gel formulations

Figure DEST_PATH_G200810209661X01D00081
Figure DEST_PATH_G200810209661X01D00081

3)按表3配制5%浓缩胶,倒去分离胶表面的少量水分,然后灌入胶,插入点样梳; 3) Prepare 5% concentrated gel according to Table 3, pour off a small amount of water on the surface of the separating gel, then pour into the gel, and insert the spotting comb;

表35%浓缩胶配方 Table 35% Stacking Gel Formula

Figure 000011
Figure 000011

4)样品处理:将待分析鉴定的蛋白质样品,加入等体积的2×SDS-PAGE样品处理液,100℃水浴3-5min,冰浴冷却; 4) Sample treatment: Add an equal volume of 2×SDS-PAGE sample treatment solution to the protein sample to be analyzed and identify, put it in a water bath at 100°C for 3-5 minutes, and cool it in an ice bath;

5)加样:将电泳槽加入电泳缓冲液,小心拔去点样梳,然后用注射器吹打加样孔。将样品高速离心后,用微量加样器分别吸取分析样品,根据蛋白浓度和加样孔体积决定加样量; 5) Adding samples: add the electrophoresis buffer to the electrophoresis tank, carefully pull out the spotting comb, and blow the sample hole with a syringe. After the sample is centrifuged at high speed, use a micro-sampler to draw and analyze the samples respectively, and determine the sample volume according to the protein concentration and the volume of the sample hole;

6)起始用低电压40V恒压电泳,待溴酚蓝指示剂在浓缩胶部分浓缩成一条线后,120V电泳,待溴酚蓝指示剂到达底部边缘时停止电泳; 6) Initially use low voltage 40V constant voltage electrophoresis, after the bromophenol blue indicator is concentrated into a line in the stacking gel, perform 120V electrophoresis, and stop electrophoresis when the bromophenol blue indicator reaches the bottom edge;

7)染色:轻轻撬开两层玻璃,取出凝胶,切角做标记,置于考马斯亮蓝R-250染色液中,染色过夜; 7) Staining: Gently pry open the two layers of glass, take out the gel, cut the corners to mark, place in Coomassie Brilliant Blue R-250 staining solution, and stain overnight;

8)脱色液脱色至背景干净,条带清晰。 8) Decolorize the decolorization solution until the background is clean and the bands are clear. the

3.3、诱导条件的优化 3.3. Optimization of induction conditions

3.3.1、诱导剂IPTG最佳浓度的确定 3.3.1. Determination of the optimal concentration of inducer IPTG

将转化菌落接种于5mL含100μg/mL氨苄青霉素的LB培养基中,37℃摇床中震荡培养过夜,向7支装有50mL含100μg/mL氨苄青霉素的LB培养基的250mL三角瓶中各加入500μL菌液,37℃摇床培养至OD600=0.6左右,向不同三角瓶中加入100mmol/L IPTG至终浓度分别为0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.8、1.0mmol/L,30℃诱导3小时;取样5μL,SDS-PAGE分析。 Inoculate the transformed colonies in 5 mL of LB medium containing 100 μg/mL ampicillin, culture overnight in a shaker at 37°C, and add 500 μL of bacterial solution was cultured on a shaker at 37°C until OD 600 =0.6, and 100 mmol/L IPTG was added to different Erlenmeyer flasks to final concentrations of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0 mmol/L, respectively. L, induced at 30°C for 3 hours; 5 μL was sampled for SDS-PAGE analysis.

3.3.2、最佳诱导时间的确定 3.3.2. Determination of the best induction time

将转化菌落接种于5mL含100μg/mL氨苄青霉素的LB培养基中,37℃摇床中震荡培养过夜,向5支装有50mL含100μg/mL氨苄青霉素的LB培养基的250mL三角瓶中各加入500μL菌液,待菌体浓度分别生长至OD600=0.6,加入100mmol/L IPTG至终浓度0.3mmol/L,30℃分别诱导0.5、1、3、5、7h,取样5μL,SDS-PAGE分析。 Inoculate the transformed colonies in 5 mL of LB medium containing 100 μg/mL ampicillin, culture overnight in a shaker at 37°C, and add 500 μL of bacterial solution, after the bacterial concentration was grown to OD600 = 0.6, 100 mmol/L IPTG was added to a final concentration of 0.3 mmol/L, induced at 30°C for 0.5, 1, 3, 5, and 7 hours, and 5 μL was sampled for SDS-PAGE analysis. the

3.4、蛋白质印迹分析 3.4. Western blot analysis

原理:经过SDS-PAGE分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体反应,经过底物显色或放射自显影以检查电泳分离的特异性目的基因表达的蛋白成分。本试验采用的His抗体直接偶连了辣根过氧化物酶,经过一步抗原抗体反应就直接可以利用3,3′-二氨基苯胺进行显色反应。 Principle: The protein samples separated by SDS-PAGE are transferred to a solid phase support (such as nitrocellulose membrane). The solid phase support adsorbs proteins in the form of non-covalent bonds, and can maintain the type of polypeptide separated by electrophoresis and its biological activity. constant. Use the protein or polypeptide on the solid phase carrier as the antigen, react with the corresponding antibody, and then react with the enzyme or isotope-labeled secondary antibody, and then check the specific target gene separated by electrophoresis through substrate color development or autoradiography Expressed protein components. The His antibody used in this test is directly coupled with horseradish peroxidase, and after a one-step antigen-antibody reaction, 3,3'-diaminoaniline can be directly used for color reaction. the

3.4.1、蛋白质的电转移 3.4.1 Electrotransfer of proteins

1)将诱导表达蛋白样品进行SDS-PAGE电泳; 1) SDS-PAGE electrophoresis is performed on the induced expression protein sample;

2)打开转移盒并放置在浅盘中,用转移缓冲液将海绵垫完全浸透后,将其放置在转移盒壁上,海绵上再放一张3MM Whatman滤纸,放置凝胶,用一试管或玻璃棒在凝胶表面缓慢移动,以排去凝胶和滤纸间的气泡; 2) Open the transfer box and place it in a shallow dish. After fully soaking the sponge pad with transfer buffer, place it on the wall of the transfer box. Put a piece of 3MM Whatman filter paper on the sponge, place the gel, and use a test tube or The glass rod moves slowly on the surface of the gel to remove the air bubbles between the gel and the filter paper;

3)准备转移膜,按凝胶大小但各边都比凝胶大约1mm剪PVDF膜,成45度慢慢将膜放入蒸馏水中,水会渗进膜中并湿润整个表面,然后在转移缓冲液中平衡15min; 3) Prepare the transfer membrane, cut the PVDF membrane according to the size of the gel but each side is about 1mm larger than the gel, slowly put the membrane into distilled water at 45 degrees, the water will penetrate into the membrane and wet the entire surface, and then transfer the buffer Equilibrate in the liquid for 15 minutes;

4)用转移缓冲液冲洗凝胶表面,直接将已湿润的膜放在凝胶顶部,排去气泡; 4) Rinse the surface of the gel with transfer buffer, and place the wetted membrane directly on top of the gel to remove air bubbles;

5)湿润另一张3MM Whatman滤纸,并置于膜的阳极面,排去所有气泡,在滤纸的顶部放另一块已用转移缓冲液细润的海绵; 5) Wet another piece of 3MM Whatman filter paper and place it on the anode side of the membrane to remove all air bubbles, and place another piece of sponge that has been finely moistened with transfer buffer on top of the filter paper;

6)组装好转移盒,纤维素膜侧靠正极,胶侧靠负极,加缓冲液,连接电源,横压100V 转移1h; 6) Assemble the transfer box, put the cellulose membrane side against the positive electrode, and the glue side against the negative electrode, add buffer, connect the power supply, and transfer for 1 hour at a horizontal pressure of 100V;

3.4.2、表达蛋白质的免疫印迹检测-Western blot检测 3.4.2. Western blot detection of expressed protein-Western blot detection

1)将PVDF膜放入一平皿中加入封闭液(其量以浸过膜即可),用4%脱脂乳封闭液进行封闭,37℃2h,弃反应液; 1) Put the PVDF membrane into a plate and add the blocking solution (the amount is enough to soak the membrane), seal with 4% skim milk blocking solution, 37°C for 2 hours, discard the reaction solution;

2)TBST洗涤膜两次; 2) Wash the membrane twice with TBST;

3)TBST 1∶5000稀释抗体,将膜放入一塑料袋中,按每平方厘米加入0.1mL抗体稀释液,封闭1h; 3) Dilute the antibody with TBST 1:5000, put the membrane into a plastic bag, add 0.1mL antibody diluent per square centimeter, and block for 1h;

4)TBST洗膜2次,每次5min; 4) Wash the membrane twice with TBST, 5 minutes each time;

5)TBS洗膜2次,每次5min; 5) Wash the membrane twice with TBS, 5 minutes each time;

6)将膜放入发色底物显迹液,条带在10-30min内出现,蒸馏水洗膜,终止反应,凉干。 6) Put the membrane into the chromogenic substrate developing solution, the bands appear within 10-30min, wash the membrane with distilled water, terminate the reaction, and dry in air. the

4、融合蛋白的纯化 4. Purification of fusion protein

4.1、E.coli的裂解 4.1. Cracking of E.coli

1)将含有阳性重组子pET-32a-Lfcin B15-Ma12的E.coli BL21(DE3),分别接种于含100μg/mL Amp的LB液体培养基中,37℃摇床培养过夜; 1) Inoculate E.coli BL21(DE3) containing the positive recombinant pET-32a-Lfcin B15-Ma12 in LB liquid medium containing 100 μg/mL Amp, and culture overnight at 37°C on a shaker;

2)分别取上述过夜培养物0.5mL接种于新鲜的LB(含100μg/mLAmp)液体培养基中; 2) Inoculate 0.5 mL of the above overnight culture into fresh LB (containing 100 μg/mL Amp) liquid medium;

3)37℃振荡培养3h左右至OD600=0.6,加100mmol/L IPTG至终浓度为0.3mmol/L,30℃继续培养3h; 3) Shake culture at 37°C for about 3 hours until OD600=0.6, add 100mmol/L IPTG to a final concentration of 0.3mmol/L, and continue to culture at 30°C for 3h;

4)加入1/20细胞生长体积的GuNTA-0Buffer(20mM Tris-HCl pH7.9,0.5M NaCl,10%Glycerol,6M Guanidium HCl)和PMSF。PMSF用无水乙醇配制成200mM储存液,-20度或4度保存;PMSF使用的工作浓度位1mM;注意:PMSF见水分解,需要在使用前加入。 4) Add GuNTA-0Buffer (20mM Tris-HCl pH7.9, 0.5M NaCl, 10% Glycerol, 6M Guanidium HCl) and PMSF at 1/20 of the cell growth volume. PMSF is made into a 200mM stock solution with absolute ethanol and stored at -20°C or 4°C; the working concentration of PMSF is 1mM; Note: PMSF sees water decomposition and needs to be added before use. the

5)将细胞悬浮起来,冰上超声破碎细胞,降低粘稠度。 5) Suspend the cells and ultrasonically break the cells on ice to reduce the viscosity. the

6)室温放置30分钟,间或混匀或用磁力搅拌。 6) Leave it at room temperature for 30 minutes, mix it occasionally or stir it with a magnetic force. the

7)15000转/分(20,000xg以上),4度离心15分钟以上。取上清,置于冰上备用或-20度保存。 7) Centrifuge at 15000 rpm (above 20,000xg) at 4 degrees for more than 15 minutes. Take the supernatant and store it on ice or store at -20°C. the

4.2、融合蛋白的亲和层析纯化及洗脱 4.2. Purification and elution of fusion protein by affinity chromatography

1)亲和层析纯化融合蛋白 1) Purification of fusion protein by affinity chromatography

(1)将NTA树脂装入合适的层析柱(QIAgene),层析用10倍NTA体积的GuNTA-0Buffer洗。 (1) The NTA resin was loaded into a suitable chromatography column (QIAgene), and the chromatography was washed with GuNTA-0Buffer 10 times the volume of NTA. the

(2)将样品加到NTA层析柱中,流速控制在15mL/小时左右,收集穿透部分,用于SDS/PAGE分析蛋白质的结合情况。 (2) Add the sample to the NTA chromatography column, the flow rate is controlled at about 15mL/hour, and the breakthrough fraction is collected for SDS/PAGE analysis of protein binding. the

(3)层析用5倍NTA体积的GuNTA-0Buffer洗,流速控制在30mL/小时左右。 (3) The chromatography was washed with GuNTA-0 Buffer 5 times the volume of NTA, and the flow rate was controlled at about 30 mL/hour. the

(4)分别用5倍NTA体积GuNTA-20,GuNTA-40,GuNTA-60,GuNTA-100,GuNTA-500洗脱,流速控制在15mL/小时左右,收集洗脱液,每管收集一个NTA体积。 (4) Elute with 5 times the NTA volume of GuNTA-20, GuNTA-40, GuNTA-60, GuNTA-100, GuNTA-500 respectively, and control the flow rate at about 15mL/hour, collect the eluate, and collect one NTA volume in each tube . the

(5)15%浓度的聚丙烯酰胺凝胶进行SDS-PAGE检测。 (5) 15% polyacrylamide gel for SDS-PAGE detection. the

2)NTA树脂的再生 2) Regeneration of NTA resin

NTA树脂在使用若干次数(3-5次)后,结合效率有所下降,可以用以下方法再生,提高树脂的使用寿命和蛋白质的结合效率。NTA树脂再生前需要从层析柱下端流干所有溶液,估计出NTA的树脂体积,按下列次序将再生试剂加到层析柱里,在等上一再生溶液流干后,再加下一再生溶解。需要自行准备25%,50%,75%,100%(v/v)乙醇和去离子水。 After the NTA resin has been used for several times (3-5 times), the binding efficiency has decreased, and the following method can be used to regenerate the resin to improve the service life of the resin and the binding efficiency of the protein. Before the regeneration of the NTA resin, it is necessary to drain all the solution from the lower end of the chromatography column. Estimate the volume of the NTA resin, and add the regeneration reagent to the chromatography column in the following order. After the previous regeneration solution is drained, add the next regeneration. dissolve. You need to prepare 25%, 50%, 75%, 100% (v/v) ethanol and deionized water by yourself. the

NTA再生步骤: NTA regeneration steps:

(1)从层析柱下端流干所有溶液,用2倍NTA树脂体积的Stripping Solution I洗。 (1) Drain all the solution from the lower end of the chromatography column and wash with Stripping Solution I 2 times the volume of NTA resin. the

(2)用2倍体积的去离子水洗。 (2) Wash with 2 times the volume of deionized water. the

(3)用3倍体积的Stripping Solution II洗。 (3) Wash with 3 times the volume of Stripping Solution II. the

(4)用1倍体积的25%乙醇洗。 (4) Wash with 1 volume of 25% ethanol. the

(5)用1倍体积的50%乙醇洗。 (5) Wash with 1 volume of 50% ethanol. the

(6)用1倍体积的75%乙醇洗。 (6) Wash with 1 volume of 75% ethanol. the

(7)用5倍体积的100%乙醇洗。 (7) Wash with 5 times the volume of 100% ethanol. the

(8)用1倍体积的75%乙醇洗。 (8) Wash with 1 volume of 75% ethanol. the

(9)用1倍体积的50%乙醇洗。 (9) Wash with 1 volume of 50% ethanol. the

(10)用1倍体积的25%乙醇洗。 (10) Wash with 1 volume of 25% ethanol. the

(11)用1倍体积的去离子水洗。 (11) Wash with 1 volume of deionized water. the

(12)用5倍体积的Stripping Solution III洗。 (12) Wash with 5 times the volume of Stripping Solution III. the

(13)用3倍体积的去离子水洗。 (13) Wash with 3 times the volume of deionized water. the

(14)如果立即使用,用5倍体积的Ni Charging Solution洗,再用10倍体积的平衡溶液(NTA-0Buffer或GuNTA-0Buffer)洗。 (14) If used immediately, wash with 5 times the volume of Ni Charging Solution, and then wash with 10 times the volume of the equilibrium solution (NTA-0Buffer or GuNTA-0Buffer). the

(15)如果想长期储存,加入1倍体积的20%乙醇,4度保存,使用前需要执行步骤14。 (15) If you want to store for a long time, add 1 volume of 20% ethanol, store at 4 degrees, and perform step 14 before use. the

3)透析膜的处理 3) Treatment of dialysis membrane

(1)戴手套把透析膜剪成适当长度,蒸馏水中浸泡15min; (1) Cut the dialysis membrane to an appropriate length wearing gloves and soak in distilled water for 15 minutes;

(2)浸入10mmol/L碳酸氢钠溶液中,加熱至80℃,一边搅拌至少30min; (2) Immerse in 10mmol/L sodium bicarbonate solution, heat to 80°C, and stir for at least 30min;

(3)换到10mmol/L Na2·EDTA中浸泡30min,以新鲜的EDTA同样方法处理三次; (3) Change to 10mmol/L Na2 EDTA and soak for 30min, and treat it three times with fresh EDTA in the same way;

(4)再用80℃洗蒸馏水30min,然后换到20%酒精中,4℃保存备用。 (4) Wash with distilled water at 80°C for 30 minutes, then change to 20% ethanol, and store at 4°C for later use. the

4.3、洗脱蛋白的透析与浓缩 4.3. Dialysis and concentration of eluted protein

(1)将透析袋用蒸馏水冲洗干净,透析袋夹将一端夹紧,装入5mL洗脱的蛋白样品,排尽空气,透析袋夹夹紧另一端; (1) Rinse the dialysis bag with distilled water, clamp one end of the dialysis bag clamp, fill in 5mL of the eluted protein sample, exhaust the air, and clamp the other end of the dialysis bag clamp;

(2)放入500mL蒸馏水中,磁力搅拌器搅拌4℃透析1h; (2) Put it into 500mL distilled water, stir with a magnetic stirrer and dialyze at 4°C for 1h;

(3)洗脱的His-Lfcin B15-Mag12放入500mL PBS中,磁力搅拌器搅拌4℃透析4h; (3) Put the eluted His-Lfcin B15-Mag12 into 500mL PBS, stir with a magnetic stirrer and dialyze at 4°C for 4h;

(4)更换新鲜的缓冲液,继续透析4h; (4) Replace with fresh buffer solution and continue dialysis for 4h;

(5)将透析袋放入小烧杯中,包埋于Sephadex G-200中,4℃浓缩至适当体积; (5) Put the dialysis bag into a small beaker, embed it in Sephadex G-200, and concentrate it to an appropriate volume at 4°C;

(6)取样5μL进行SDS-PAGE,分析测定蛋白纯度与亲和层析效果。 (6) Sampling 5 μL for SDS-PAGE, analysis and determination of protein purity and affinity chromatography. the

4.3.1、Bradford法测定蛋白浓度 4.3.1. Determination of protein concentration by Bradford method

原理:考马斯亮蓝G-250是一种蛋白质染料,在酸性条件下呈棕红色,当它所含的疏水性基团与蛋白质通过疏水作用结合后,变为蓝色,该蓝色与蛋白质浓度呈正比。蛋白质与考马斯亮蓝G-250结合后,光吸收峰由465nm转移到595nm。该法测定蛋白质浓度不但灵敏度高,而且测定的浓度范围也较广,实用方便。本法可测定蛋白质范围是10μg/mL-1.0mg/mL。 Principle: Coomassie Brilliant Blue G-250 is a protein dye, which is brown-red under acidic conditions. When the hydrophobic group it contains is combined with the protein through hydrophobic interaction, it turns blue. The blue color is related to the protein concentration. Proportional. After the protein is combined with Coomassie Brilliant Blue G-250, the light absorption peak shifts from 465nm to 595nm. The method for determining protein concentration not only has high sensitivity, but also has a wide concentration range, which is practical and convenient. The range of protein that can be determined by this method is 10μg/mL-1.0mg/mL. the

(1)标准曲线的制作: (1) Preparation of standard curve:

①取4μL BSA蛋白标准品加PBS稀释至100μL,使其终浓度为200μg/mL; ①Take 4 μL of BSA protein standard and dilute to 100 μL with PBS to make the final concentration 200 μg/mL;

②取该稀释后的标准品按1、2、4、6、8、10、15μL分别加到96孔酶标板样品孔中,加PBS补足到20μL,每孔蛋白含量分别为0、0.2、0.4、0.8、1.2、1.6、2.0、3.0μg, ② Add 1, 2, 4, 6, 8, 10, and 15 μL of the diluted standard to the sample wells of the 96-well ELISA plate, add PBS to make up to 20 μL, and the protein content in each well is 0, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, 3.0μg,

③各孔加入200μL Bradford试剂,浑匀,室温放置5min, ③ Add 200 μL Bradford reagent to each well, mix well, and place at room temperature for 5 minutes.

④用预热的酶标仪测定A595的吸光值,绘制标准曲线。 ④ Measure the absorbance of A595 with a preheated microplate reader, and draw a standard curve. the

(2)洗脱蛋白浓度的测定: (2) Determination of eluted protein concentration:

①在配置用于制作标准曲线样品的同时,取适当体积的洗脱蛋白His-Lfcin B15-Mag1296孔酶标板样品孔中,加PBS加PBS补足到20μL, ① While configuring the sample for making the standard curve, take an appropriate volume of the eluted protein His-Lfcin B15-Mag1296-well microplate sample well, add PBS plus PBS to make up to 20 μL,

②各孔加入200μL Bradford试剂,浑匀,室温放置5min, ②Add 200 μL Bradford reagent to each well, mix well, and place at room temperature for 5 minutes.

③用预热的酶标仪测定A595的吸光值,根据标准曲线,计算样品中的蛋白浓度。 ③Use a preheated microplate reader to measure the absorbance of A595, and calculate the protein concentration in the sample according to the standard curve. the

5、融合蛋白的裂解与Lfcin B15-Mag12的纯化 5. Cleavage of fusion protein and purification of Lfcin B15-Mag12

5.1、肠激酶裂解融合蛋白Trx-S-His-Lfcin B15-Mag12 5.1. Enterokinase cleaves the fusion protein Trx-S-His-Lfcin B15-Mag12

100μL 1mg/mL融合蛋白Lfcin B15-Mag12中加入1.5μg Enterokinase,加入10×缓冲液10μL,23℃温浴反应,在6h取样5μL,与5μL 2×Tricine-SDS样品缓冲液混匀,-20℃冷冻,待尿素-Tricine-SDS-PAGE分析。 Add 1.5 μg Enterokinase to 100 μL of 1 mg/mL fusion protein Lfcin B15-Mag12, add 10 μL of 10× buffer solution, incubate at 23°C for reaction, take 5 μL of sample at 6 hours, mix with 5 μL 2×Tricine-SDS sample buffer, freeze at -20°C , to be analyzed by urea-Tricine-SDS-PAGE. the

5.2、超滤法纯化Lfcin B15-Mag12 5.2 Purification of Lfcin B15-Mag12 by ultrafiltration

1)利用Enterokinase按照使用说明裂解融合蛋白Trx-S-His-Lfcin B15-Mag12,22℃温浴6h; 1) Use Enterokinase to cleave the fusion protein Trx-S-His-Lfcin B15-Mag12 according to the instructions, and incubate at 22°C for 6 hours;

2)将上述反应液装入截留分子量为5kDa的超滤管中,12000转/min 4℃离心30min; 2) Put the above reaction solution into an ultrafiltration tube with a molecular weight cut-off of 5kDa, and centrifuge at 12000 rpm at 4°C for 30min;

3)取样按照4.3.1测定蛋白浓度; 3) Take samples to determine the protein concentration according to 4.3.1;

4)收集滤过液,-20℃保存备用。 4) Collect the filtrate and store it at -20°C for future use. the

5.3、尿素-Tricine-SDS-PAGE分析 5.3. Urea-Tricine-SDS-PAGE analysis

表4尿素-Tricine-SDS-PAGE凝胶配方 Table 4 Urea-Tricine-SDS-PAGE gel formula

  分离胶Separating gel   间隔胶Spacer glue   浓缩胶stacking gel   49.5%(C=6%)凝胶贮液(mL)49.5% (C=6%) gel stock solution (mL)   3.33.3   --   --   49.5%(C=3%)凝胶贮液(mL)49.5% (C=3%) gel stock solution (mL)   --   0.600.60   0.450.45   凝胶缓冲液(pH8.5)(mL)Gel buffer (pH8.5) (mL)   3.33.3   1.01.0   1.41.4   尿素(g)Urea (g)   3.63.6   --   --   H2OH 2 O   1.01.0   1.401.40   1.91.9   10%APS(μL)10% APS (μL)   4545   2020   37.537.5   TEMED(μL)TEMED (μL)   4.54.5   2020   3.753.75

1)按表4配方配置凝胶,配置方法与步骤同3.2; 1) Configure the gel according to the formula in Table 4, the configuration method and steps are the same as 3.2;

2)在样品中加入等体积的2×Trincine样品缓冲液,沸水煮5min,冷却后高速离心,参照3.2进行电泳; 2) Add an equal volume of 2×Trincine sample buffer solution to the sample, cook in boiling water for 5 minutes, centrifuge at high speed after cooling, and perform electrophoresis according to 3.2;

3)考马斯亮蓝R-250染色,42℃1h,脱色液脱色至背景清晰(Schagger and von Jagow,1987;Strom等,1992,1993) 3) Coomassie Brilliant Blue R-250 staining, 42°C for 1h, destaining solution until the background is clear (Schagger and von Jagow, 1987; Strom et al., 1992, 1993)

6、LfcinB15-Mag12的活性鉴定 6. Activity identification of LfcinB15-Mag12

1)将斜面保存的金黄色葡萄球菌S.aureas ATCC25923接种于5mL LB培养基中,37℃摇床培养过夜; 1) Inoculate the Staphylococcus aureus S.aureas ATCC25923 preserved on the slant into 5mL LB medium, and cultivate overnight on a shaker at 37°C;

2)取培养物0.5mL转接入新鲜的50mL LB中,37℃继续培养2.5h至对数生长中期; 2) Transfer 0.5 mL of the culture into fresh 50 mL LB, and continue culturing at 37°C for 2.5 h to the mid-logarithmic growth phase;

3)取5mL菌液,4℃4100转/min离心10min收集菌体; 3) Take 5mL of bacterial liquid, centrifuge at 4100 rpm for 10min at 4°C to collect the bacterial cells;

4)PBS重悬菌体,4℃4100转/min离心10min收集菌体; 4) Resuspend the bacteria in PBS, centrifuge at 4100 rpm for 10 minutes at 4°C to collect the bacteria;

5)加入PBS重悬菌体,调整OD620至0.2左右,此时细菌浓度约为5×107CFU/mL; 5) Add PBS to resuspend the bacteria, adjust the OD620 to about 0.2, and the bacterial concentration is about 5×107 CFU/mL;

6)事先准备好灭菌的42℃的低熔点琼脂糖LB培养基,向10mL该培养基中加入取上述菌液50μL(含2.5×106CFU,,立即轻轻混匀,到入90mm×15mm平板中,此时平板厚度约为1mm; 6) Prepare sterilized 42°C low-melting point agarose LB medium in advance, add 50 μL of the above bacterial solution (containing 2.5×106 CFU) to 10 mL of the medium, mix gently immediately, and place on a 90 mm×15 mm plate At this time, the thickness of the plate is about 1mm;

7)待培养基凝固后,用直径为3mm的无菌滤纸片2片浸润Lfcin B15-Mag12溶液贴于平板上,1片浸润PBS作为对照; 7) After the culture medium is solidified, use 2 pieces of sterile filter paper with a diameter of 3 mm to infiltrate the Lfcin B15-Mag12 solution and paste it on the plate, and 1 piece to infiltrate with PBS as a control;

8)将平板正面向上37℃培养1h后,倒置继续培养18h,观察抑菌效果。 8) After incubating the plate with its face up at 37°C for 1 hour, it was inverted and continued to incubate for 18 hours to observe the antibacterial effect. the

7、多核苷酸的磷酸化、退火、连接及编码基因的纯化 7. Phosphorylation, annealing, ligation of polynucleotides and purification of coding genes

采用固相合成法合成的多核苷酸其3′端为羟基形式,在退火与连接前,先经T4多核苷酸激酶作用使其磷酸化,退火后片段1与2、片段3与4间的缺口经T4DNA连接酶连接,形成完整的编码Lfcin B15-Mag12的基因片段,为95bp,经2.5%凝胶电泳、纯化试剂盒回收后,分别得到纯化的基因片段(如图3中2所示)。 The polynucleotide synthesized by solid-phase synthesis method has a hydroxyl form at its 3′ end, which is phosphorylated by T4 polynucleotide kinase before annealing and ligation. The gap was ligated by T4DNA ligase to form a complete gene fragment encoding Lfcin B15-Mag12, which was 95bp. After being recovered by 2.5% gel electrophoresis and a purification kit, purified gene fragments were obtained respectively (as shown in 2 in Figure 3) . the

8、PCR筛选重组表达载体 8. PCR screening of recombinant expression vectors

pET-32a的5′与3′通用测序引物分别与pET-32a的57U20、327L20的碱基互补,以该对测序引物筛选重组质粒,2.5%凝胶电泳后,如图4所示,阳性对照,即以含有质粒pET-32a的菌落为模板的PCR产物为270bp的DNA条带,而阳性重组质粒pET-32a-Lfcin B15-Mag12扩增产物分别为370bp左右的DNA条带,说明在重组质粒中已连接入目的片段。 The 5' and 3' universal sequencing primers of pET-32a are complementary to the bases of 57U20 and 327L20 of pET-32a respectively, and the recombinant plasmids are screened with this pair of sequencing primers. After 2.5% gel electrophoresis, as shown in Figure 4, the positive control , that is, the PCR product using the colony containing plasmid pET-32a as a template is a 270bp DNA band, while the amplified products of the positive recombinant plasmid pET-32a-Lfcin B15-Mag12 are respectively about 370bp DNA bands, indicating that in the recombinant plasmid The target segment has been connected in . the

9、融合蛋白的表达及诱导条件的优化 9. Expression of fusion protein and optimization of induction conditions

9.1、pET-32a-Lfcin B15-Mag12初步诱导表达SDS-PAGE分析 9.1. SDS-PAGE analysis of primary induced expression of pET-32a-Lfcin B15-Mag12

用SDS-PAGE鉴定,结果pET-32a-Lfcin B15-Mag12转化子分别产生一条大约24kDa特异的蛋白带,与预期蛋白(20.4+3.57KD)大小一致,诱导3h的阴性性对照的非重组pET-32a转化子产生20.4KD条带,而未经IPTG诱导的质粒菌的培养物样品无特异诱导条带出现(图5所示)。 It was identified by SDS-PAGE. As a result, pET-32a-Lfcin B15-Mag12 transformants produced a specific protein band of about 24kDa, which was consistent with the size of the expected protein (20.4+3.57KD). The negative control non-recombinant pET- The 32a transformant produced a 20.4KD band, while the culture sample of the plasmid bacteria that had not been induced by IPTG had no specific induction band (shown in Figure 5). the

10、结论 10. Conclusion

1.本发明根据大肠杆菌密码子偏爱性,采用人工合成的方法,首次设计、合成了抗菌肽LfcinB15-mag12的编码基因 1. According to the codon preference of Escherichia coli, the present invention designed and synthesized the coding gene of antimicrobial peptide LfcinB15-mag12 for the first time by artificial synthesis method.

2.将合成LfcinB15-mag12的编码基因连接入表达载体pET-32a,构建表达载体pET-32a-LfcinB15-mag12,以E.coli BL(DE3)为表达宿主,经IPTG诱导,经蛋白质印迹分析表明,分子量为24kDa的诱导条带为TRX融合蛋白,证明融合蛋白Trx-S-His-LfcinB15-Mag12成功获得表达,在确定的最佳诱导条件下,融合蛋白的表达量占菌体蛋白总量的22%。 2. Ligate the coding gene of synthetic LfcinB15-mag12 into the expression vector pET-32a, construct the expression vector pET-32a-LfcinB15-mag12, use E.coli BL (DE3) as the expression host, induce it through IPTG, and show through Western blot analysis , the induction band with a molecular weight of 24kDa is a TRX fusion protein, which proves that the fusion protein Trx-S-His-LfcinB15-Mag12 is successfully expressed. twenty two%. the

3.经亲和层析柱纯化回收融合蛋白,纯度较高,达到95%以上,但产量较低,平均每升诱导细菌培养物仅获得19mg融合蛋白。 3. The fusion protein was purified and recovered by affinity chromatography, and the purity was higher, reaching more than 95%, but the yield was low. On average, only 19 mg of the fusion protein was obtained per liter of induced bacterial culture. the

4.融合蛋白Trx-S-His-LfcinB15-Mag12经Enterokinase作用后,得到具有抑菌活性的重组抗菌肽LfcinB15-Mag12,首次成功实现了杂合肽LfcinB15-Mag12的异源表达,平均每升诱导细菌培养物获得LfcinB15-Mag12200μg,为基因工程方法生产杂合肽LfcinB15-Mag12及其它贵重肽类奠定了理论与实践基础,对建立肽类基因工程菌和抗菌肽研究的共性技术具有重要意义。 4. After the fusion protein Trx-S-His-LfcinB15-Mag12 was treated with Enterokinase, the recombinant antibacterial peptide LfcinB15-Mag12 with antibacterial activity was obtained, and the heterologous expression of the hybrid peptide LfcinB15-Mag12 was successfully realized for the first time, and the average induction per liter Bacterial culture obtained 200 μg of LfcinB15-Mag12, which laid a theoretical and practical foundation for the production of hybrid peptide LfcinB15-Mag12 and other valuable peptides by genetic engineering methods, and is of great significance for the establishment of common technologies for peptide genetic engineering bacteria and antimicrobial peptide research. the

Claims (1)

1. the synthetic method of a LfcinB15-Mag12 encoding gene, it is characterized in that: according to E.coli codon-bias design coding 1-15 amino acid whose active gene fragment of Lfcin B and Magainin 1-12 amino acid whose active gene fragment, utilize expression vector pET-32a to make up recombinant expression vector pET-32a-Lfcin B15-Mag12, before the multiple clone site of pET-32a, there are 6 histidine-tagged codons of coding, in pET-32a-LfcinB15-Mag12, with 27 amino acid whose gene fragment clones of coding Lfcin B15-Mag12 behind the codon of encoding histidine label, restriction enzyme SalI, between the Nco I recognition site codon, add terminator codon TAG simultaneously, TAA
Divide four sections composition sequences as follows:
Fragment 1:
5’-CATGGCTTTCAAATGCCGCCGTTGGCAGTGGCGTTGGAAAAAACTGGGT
GCGGGTATCG-3’
Fragment 2:
5’-GTAAATTCCTGCACTCTGCTAAAAAATTCTAGTAAG-3’
Fragment 3:
5’-TCGACTTACTAGAATTTTTTAGCAGAGTGCAGGAATTTACCGATACCCGC
ACCCAGTTT-3’
Fragment 4:
5’-TTTCCAACGCCACTGCCAACGGCGGCATTTGAAAGC-3’。
CN200810209661XA 2008-12-10 2008-12-10 Synthesis of LfcinB15-Mag12 encoding gene and expression method in colon bacillus Expired - Fee Related CN101509007B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810209661XA CN101509007B (en) 2008-12-10 2008-12-10 Synthesis of LfcinB15-Mag12 encoding gene and expression method in colon bacillus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810209661XA CN101509007B (en) 2008-12-10 2008-12-10 Synthesis of LfcinB15-Mag12 encoding gene and expression method in colon bacillus

Publications (2)

Publication Number Publication Date
CN101509007A CN101509007A (en) 2009-08-19
CN101509007B true CN101509007B (en) 2011-04-13

Family

ID=41001539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810209661XA Expired - Fee Related CN101509007B (en) 2008-12-10 2008-12-10 Synthesis of LfcinB15-Mag12 encoding gene and expression method in colon bacillus

Country Status (1)

Country Link
CN (1) CN101509007B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505033A (en) * 2012-01-05 2012-06-20 上海海洋大学 Method for preparing lactoferricin and method for applying lactoferricin in bacterial inhibition of foods
CN104017086B (en) * 2014-06-24 2016-03-09 科美博瑞科技(北京)有限公司 A kind of fusion antibacterial peptide and preparation method thereof
CN104017087B (en) * 2014-06-24 2016-03-09 科美博瑞科技(北京)有限公司 One boar derived antimicrobial peptide and preparation method thereof
CN104017085A (en) * 2014-06-24 2014-09-03 任建廷 PAMP37-PR39 fused antibacterial peptide and preparation method thereof
CN106367429A (en) * 2016-08-30 2017-02-01 福建福鼎海鸥水产食品有限公司 Construction and secretory expression of tandem piscidin antimicrobial peptide PSP

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
冯兴军 等.抗菌肽Lactoferricin 生物学功能及其应用研究进展.《天然产物研究与开发》.2005,第17卷(第1期),120-123.
冯兴军等.抗菌肽Lactoferricin 生物学功能及其应用研究进展.《天然产物研究与开发》.2005,第17卷(第1期),120-123. *
栗学清.Magainin - Aurein 杂合肽基因的合成与克隆.《长治医学院学报》.2007,第21卷(第2期),
栗学清.Magainin-Aurein 杂合肽基因的合成与克隆.《长治医学院学报》.2007,第21卷(第2期), *
高鹏 等.LfcinB15_Mag12编码基因的合成及在大肠杆菌中的表达研究.《中国畜牧兽医学会动物营养学分会第十次学术研讨会论文集(杭州2008)》.中国农业科学技术出版社,2008,589.
高鹏等.LfcinB15_Mag12编码基因的合成及在大肠杆菌中的表达研究.《中国畜牧兽医学会动物营养学分会第十次学术研讨会论文集(杭州2008)》.中国农业科学技术出版社,2008,589. *

Also Published As

Publication number Publication date
CN101509007A (en) 2009-08-19

Similar Documents

Publication Publication Date Title
CN101509007B (en) Synthesis of LfcinB15-Mag12 encoding gene and expression method in colon bacillus
CN109280656A (en) Recombinate muscardine Proteinase K mutant PK-M1 and preparation method
CN108840951A (en) A kind of fusion protein and preparation method thereof being made of pig albumin, Porcine interferon-gamma and porcine interferon alpha
CN103467584B (en) The acquisition of a kind of prokaryotic gene engineering heterozygosis cationic antibacterial peptide CC and fermentation process thereof
CN107217046A (en) A kind of zearalenone toxin degradation enzyme ZENdease N1 and its encoding gene and application
CN105671061A (en) Heterologous expression method for plantaricin pln E and pln F
CN108840938A (en) A kind of fusion protein being made of pig albumin and Porcine interferon-gamma and preparation method thereof and a kind of Recombinant Swine long-acting interferon γ
CN101538578A (en) Recombinant bovine tuberculosis specific antigen protein with three fused genes and preparation method thereof
CN107446902A (en) A kind of zearalenone toxin degradation enzyme ZENdease N2 and its encoding gene and application
CN109207460A (en) Recombinate muscardine Proteinase K mutant PK-M2 and preparation method
CN108794638A (en) A kind of recombinant bovine long-acting interferon α and the fusion protein and preparation method thereof for preparing this long-acting interferon
CN102061303A (en) Fusion expression product of antimicrobial peptide genes of two marine animals and preparation method of fusion expression product
CN101705238B (en) Bacillus natto glutamic acid dehydrogenase coding genes, protein and bacterial strain
CN108379559A (en) Application of the grass carp interferon 1 in preparing antibacterials
CN109777808B (en) A polypeptide and its application in localized expression of foreign protein in nucleus and chloroplast
CN108794645A (en) A kind of fusion protein and preparation method thereof being made of bovine albumin, Bov IFN γ and Bov IFN α
CN101948865B (en) Dual-promoter inducible secretable shuttle plasmid and construction method thereof
CN111690043A (en) NTD polypeptide based on SARS-CoV-2 nucleoprotein, coding gene, recombinant vector, expression method and application
CN100339475C (en) Colibacillns strain for recombination producing lectin of snowdrop and method thereof
CN108840935A (en) A kind of fusion protein being made of sheep albumin and sheep interferon gamma and preparation method thereof and a kind of recombination sheep long-acting interferon γ
CN108840934A (en) A kind of recombination sheep long-acting interferon τ and the fusion protein for preparing this long-acting interferon and preparation method thereof
CN108822221A (en) A kind of fusion protein and preparation method thereof being made of Chicken Albumin, chicken interferon gamma and recombinant chIL-2
CN108359666A (en) A kind of nudC genes and its application in terms of preparing niacin
CN106755078B (en) A method for expressing protein or polypeptide and its special expression cassette
CN108864294A (en) A kind of fusion protein being made of bovine albumin and Bov IFN γ and preparation method thereof and a kind of recombinant bovine long-acting interferon γ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Dan Anshan

Inventor after: Gao Peng

Inventor after: Bi Zhongpeng

Inventor before: Dan Anshan

Inventor before: Gao Peng

Inventor before: Bi Zhongpeng

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110413

Termination date: 20111210