[go: up one dir, main page]

CN101501196A - Modified dicamba monooxygenase enzyme and methods of its use - Google Patents

Modified dicamba monooxygenase enzyme and methods of its use Download PDF

Info

Publication number
CN101501196A
CN101501196A CNA200780029077XA CN200780029077A CN101501196A CN 101501196 A CN101501196 A CN 101501196A CN A200780029077X A CNA200780029077X A CN A200780029077XA CN 200780029077 A CN200780029077 A CN 200780029077A CN 101501196 A CN101501196 A CN 101501196A
Authority
CN
China
Prior art keywords
plant
dicamba
dmoc
cell
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200780029077XA
Other languages
Chinese (zh)
Other versions
CN101501196B (en
Inventor
T·E·克勒门特
R·杜米特鲁
P·C·C·冯
S·弗拉辛斯基
D·P·维克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Technology LLC
University of Nebraska Lincoln
Original Assignee
Monsanto Technology LLC
University of Nebraska Lincoln
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/758,657 external-priority patent/US7884262B2/en
Application filed by Monsanto Technology LLC, University of Nebraska Lincoln filed Critical Monsanto Technology LLC
Publication of CN101501196A publication Critical patent/CN101501196A/en
Application granted granted Critical
Publication of CN101501196B publication Critical patent/CN101501196B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了麦草畏加单氧酶(DMO)的经修饰的变体。本发明涉及出乎意料的发现:表达该DMO的细胞显示出对除草剂麦草畏的高水平耐受性。提供了包含编码DMO的核酸的组合物和使用方法。The present invention provides modified variants of dicamba monooxygenase (DMO). The present invention relates to the unexpected discovery that cells expressing this DMO exhibit high levels of tolerance to the herbicide dicamba. Compositions and methods of use comprising nucleic acids encoding DMOs are provided.

Description

修饰的麦草畏单加氧酶及其使用方法 Modified dicamba monooxygenases and methods of use thereof

发明背景Background of the invention

本申请要求2006年6月6日提交的美国临时专利申请序列号60/811,152和2007年6月5日提交的美国专利申请序列号11/758,657的优先权,将它们的公开完整引入本文作为参考。This application claims priority to U.S. Provisional Patent Application Serial No. 60/811,152, filed June 6, 2006, and U.S. Patent Application Serial No. 11/758,657, filed June 5, 2007, the disclosures of which are incorporated herein by reference in their entirety .

1.发明领域 1. Field of invention

本发明一般涉及生物技术领域。更具体地,本发明涉及修饰的麦草畏单加氧酶,其能够在转基因生物中赋予对除草剂麦草畏的耐受性。The present invention generally relates to the field of biotechnology. More specifically, the present invention relates to modified dicamba monooxygenases capable of conferring tolerance to the herbicide dicamba in transgenic organisms.

2.相关领域描述 2. Description of related fields

由于通过使用植物遗传工程技术引入性状如昆虫抗性和除草剂耐受性,生产田间作物如玉米、大豆和棉花的方法在过去几十年中已经发生了显著改变。这些改变已经导致每公顷更大的生产力、降低的生产成本、生产方案中更大的灵活性和效率、杀虫剂使用减少,并且对于昆虫抗性棉花的情况,农民健康得到改善。从而转基因作物被大量采用并且现在生长于世界上的数百万英亩上。然而,为了使转基因作物在市场上有持续的竞争力,需要增加新价值的性状。The methods of producing field crops such as corn, soybean, and cotton have changed dramatically over the past few decades due to the introduction of traits such as insect resistance and herbicide tolerance through the use of plant genetic engineering techniques. These changes have resulted in greater productivity per hectare, reduced production costs, greater flexibility and efficiency in production schemes, reduced pesticide use and, in the case of insect resistant cotton, improved farmer health. Genetically modified crops have thus been widely adopted and are now grown on millions of acres around the world. However, for GM crops to remain competitive in the marketplace, traits that add new value are needed.

尽管提高农作物和园艺作物的数量和质量的新的性状已经出现并且将在以后的数年内继续增速出现,但是仍然需要改进食物、饲料和其他产品生产方法的性状。例如,尽管当前可以得到耐受除草剂草甘膦、溴苯腈、磺脲和其他除草剂处理的转基因植物,但是在所控制的杂草范围和通过开发额外的除草剂耐受性作物可以解决的处理选择中存在空白点。此外,耐受上述除草剂的杂草的出现(尽管通常是局部的和可变的)造成了对额外或备选的杂草控制措施的需要。Although new traits that improve the quantity and quality of agricultural and horticultural crops have emerged and will continue to emerge at an accelerated rate in the next few years, there is still a need for traits that improve methods of production of food, feed, and other products. For example, although genetically modified plants tolerant to the herbicides glyphosate, bromoxynil, sulfonylureas, and other herbicide treatments are currently available, the range of weeds controlled and through the development of additional herbicide-tolerant crops can be addressed. There are gaps in the processing options for . Furthermore, the emergence, although often localized and variable, of weeds tolerant to the above-mentioned herbicides creates the need for additional or alternative weed control measures.

尽管已经证明转基因除草剂耐受性在商业背景中是有价值的,但是因此需要耐受其他除草剂的植物以避免过度依赖于任何单一除草剂和增加管理难以控制的杂草种类的选项。尤其需要的是为得到环境友好的并且在控制杂草方面高度有效的除草剂而开发除草剂耐受性。麦草畏是有效且环境友好的除草剂的一个这样的例子,其已经被农民使用40多年。麦草畏尤其可用于控制玉米、高粱、小米、牧草、干草、牧场、甘蔗、芦笋、草皮和草籽作物中一年生和多年生阔叶杂草和几种窄叶杂草(Crop Protection Reference,1995)。不幸的是,麦草畏可以伤害许多商业作物和双子叶植物,如大豆、棉花、豌豆、马铃薯、向日葵和油菜,它们对于甚至低水平的该除草剂也特别敏感。尽管如此,麦草畏在控制杂草生长中给出有效并且从而是农业中的重要工具。Although transgenic herbicide tolerance has proven valuable in a commercial setting, plants tolerant to other herbicides are therefore needed to avoid over-reliance on any single herbicide and to increase options for managing difficult-to-control weed species. In particular, there is a need to develop herbicide tolerance for herbicides that are environmentally friendly and highly effective in controlling weeds. Dicamba is one such example of an effective and environmentally friendly herbicide that has been used by farmers for over 40 years. Dicamba is especially useful for controlling annual and perennial broadleaf weeds and several narrowleaf weeds in corn, sorghum, millet, pasture, hay, pasture, sugarcane, asparagus, turf, and grassseed crops (Crop Protection Reference, 1995). Unfortunately, dicamba can injure many commercial crops and dicots, such as soybean, cotton, pea, potato, sunflower and canola, which are particularly sensitive to even low levels of the herbicide. Nonetheless, dicamba appears to be effective in controlling weed growth and is thus an important tool in agriculture.

最近,从嗜麦芽假单胞菌(Pseudomonas maltophilia)分离了编码麦草畏单加氧酶(DMO)的基因,其赋予对麦草畏的耐受性(美国专利号7,022,896)。DMO参与将除草剂麦草畏(3,6-二氯-邻-茴香酸)转化为无毒的3,6-二氯水杨酸。该基因在美国专利号7,022,896中公开为在表达DMO基因的植物中提供对麦草畏的耐受性。然而,该基因的变体的开发将有很大益处。此类变体可能在特定环境条件下具有改变的效率。以这种方式,可以选择为特定环境优化的变体,在所述环境中,该变体将意在被使用并且可以显示出尤其有益的动力学特征。该变体尤其可以在不同的温度或pH条件下显示出最大效率,并且从而取决于细胞内条件和/或预期的作物生长条件被选择用于特定的作物物种。Recently, a gene encoding dicamba monooxygenase (DMO), which confers tolerance to dicamba, was isolated from Pseudomonas maltophilia (US Patent No. 7,022,896). DMO is involved in the conversion of the herbicide dicamba (3,6-dichloro-o-anisic acid) to the non-toxic 3,6-dichlorosalicylic acid. This gene is disclosed in US Patent No. 7,022,896 as conferring tolerance to dicamba in plants expressing the DMO gene. However, the development of variants of this gene would be of great benefit. Such variants may have altered efficiency under specific environmental conditions. In this way, a variant optimized for the specific circumstances in which it will be intended to be used and which may exhibit particularly beneficial kinetic characteristics can be selected. The variant may in particular show maximum efficiency under different temperature or pH conditions and thus be selected for a particular crop species depending on intracellular conditions and/or expected crop growth conditions.

发明概述Summary of the invention

一方面,本发明提供了分离的核酸序列,其选自:a)编码SEQ IDNO:1的多肽的核酸序列;b)包含SEQ ID NO:2的序列的核酸序列;和c)编码与SEQ ID NO:1的多肽有至少90%序列同一性的多肽的核酸序列,其中后一多肽具有麦草畏单加氧酶活性并且在对应于SEQ ID NO:1的氨基酸112的位置包含半胱氨酸。在其他实施方案中,提供了DNA载体,其包含可操作性连接于启动子的编码本文所述核酸的DMO。该启动子可以在植物细胞中是有功能的。在一些实施方案中,编码麦草畏单加氧酶的核酸序列可以可操作性连接于叶绿体转运肽。In one aspect, the invention provides an isolated nucleic acid sequence selected from the group consisting of: a) a nucleic acid sequence encoding a polypeptide of SEQ ID NO: 1; b) a nucleic acid sequence comprising a sequence of SEQ ID NO: 2; and c) encoding and SEQ ID NO: The polypeptide of NO: 1 has a nucleic acid sequence of a polypeptide having at least 90% sequence identity, wherein the latter polypeptide has dicamba monooxygenase activity and comprises a cysteine at a position corresponding to amino acid 112 of SEQ ID NO: 1 . In other embodiments, DNA vectors are provided comprising a DMO encoding a nucleic acid described herein operably linked to a promoter. The promoter may be functional in plant cells. In some embodiments, a nucleic acid sequence encoding a dicamba monooxygenase can be operably linked to a chloroplast transit peptide.

另一方面,本发明提供了与SEQ ID NO:1有至少90%同一性的多肽序列,其中该多肽具有麦草畏单加氧酶活性并且在对应于SEQ ID NO:1的氨基酸112的位置包含半胱氨酸。In another aspect, the present invention provides a polypeptide sequence at least 90% identical to SEQ ID NO: 1, wherein the polypeptide has dicamba monooxygenase activity and comprises at a position corresponding to amino acid 112 of SEQ ID NO: 1 cysteine.

在再一方面,本发明提供了用本文所述的编码麦草畏单加氧酶的核酸转化的宿主细胞或组织。在一些实施方案中,宿主细胞可以是植物细胞。在其他实施方案中,植物细胞可以被定义为双子叶植物细胞或单子叶植物细胞。在特定实施方案中,宿主细胞是大豆、棉花、玉米或油菜植物细胞。在进一步的实施方案中,提供了包含本文所述的转基因细胞的组织培养物。In yet another aspect, the invention provides a host cell or tissue transformed with a nucleic acid encoding a dicamba monooxygenase described herein. In some embodiments, the host cell can be a plant cell. In other embodiments, a plant cell may be defined as a dicot cell or a monocot cell. In specific embodiments, the host cell is a soybean, cotton, corn or canola plant cell. In further embodiments, tissue cultures comprising the transgenic cells described herein are provided.

在再一方面,本发明提供了用本文所述的编码麦草畏单加氧酶的核酸转化的转基因植物和其后代。在一些实施方案中,植物可以被定义为双子叶植物或单子叶植物。在特定实施方案中,植物是大豆、棉花、玉米或油菜植物。In yet another aspect, the present invention provides transgenic plants transformed with a nucleic acid encoding a dicamba monooxygenase described herein and progeny thereof. In some embodiments, a plant can be defined as a dicot or a monocot. In particular embodiments, the plant is a soybean, cotton, corn or canola plant.

在再一方面,本发明提供了产生麦草畏耐受性植物的方法,其包括向植物中导入本文提供的转化构建体。在该方法的一个实施方案中,导入转化构建体可以通过稳定转化一个或多个植物细胞并将所述一个或多个细胞再生为麦草畏耐受性植物来进行。在另一实施方案中,通过将亲本植物自交或与第二种植物杂交产生麦草畏耐受性植物,其中该亲本植物和/或第二种植物包含转化构建体并且麦草畏耐受性植物遗传了来自亲本植物和/或第二种植物的转化构建体。In yet another aspect, the present invention provides a method of producing a dicamba-tolerant plant comprising introducing into the plant a transformation construct provided herein. In one embodiment of this method, introducing the transformation construct may be performed by stably transforming one or more plant cells and regenerating said one or more cells into dicamba-tolerant plants. In another embodiment, a dicamba-tolerant plant is produced by selfing a parent plant or crossing it with a second plant, wherein the parent plant and/or the second plant comprise the transformation construct and the dicamba-tolerant plant The transformation construct is inherited from a parent plant and/or a second plant.

在再一方面,本发明提供了生产食物或饲料的方法,包括:a)得到如本文提供的本发明的植物或其部分;和b)从所述植物或其部分制备食物或饲料。在本发明的一个实施方案中,所述植物部分是种子。在某些其他实施方案中,所述食物或饲料是油、粗粉、蛋白质、谷粒、淀粉或蛋白质。在其他实施方案中,饲料包含草料或牧场植物,如干草。本发明还提供了生产纤维、药物、营养品(neutraceuticals)和工业化学品,包括生物燃料以及来自本文提供的植物的任何其他产品的方法。In a further aspect, the invention provides a method of producing food or feed comprising: a) obtaining a plant or part thereof of the invention as provided herein; and b) preparing food or feed from said plant or part thereof. In one embodiment of the invention said plant part is a seed. In certain other embodiments, the food or feed is oil, meal, protein, grain, starch or protein. In other embodiments, the feed comprises forage or pasture plants, such as hay. The invention also provides methods of producing fibers, pharmaceuticals, neutraceuticals, and industrial chemicals, including biofuels, and any other product from the plants provided herein.

在再一方面,本发明提供了在包含如本文提供的本发明的植物或其种子的作物生长环境中控制杂草生长的方法,包括对作物生长环境施用有效控制杂草生长的量的麦草畏除草剂。在本发明的一些实施方案中,可以将麦草畏除草剂施用于作物生长环境的顶部。在特定实施方案中,麦草畏除草剂的量不损害本发明的植物或其种子并且损害与缺少本发明提供的DMO编码核酸的植物有相同基因型的植物。In yet another aspect, the present invention provides a method of controlling weed growth in a crop growing environment comprising a plant of the invention as provided herein or seeds thereof, comprising applying dicamba to the crop growing environment in an amount effective to control weed growth herbicide. In some embodiments of the invention, the dicamba herbicide may be applied to the top of the crop growing environment. In particular embodiments, the amount of dicamba herbicide does not damage the plants of the invention or their seeds and damages plants of the same genotype as plants lacking the DMO-encoding nucleic acids provided by the invention.

在本发明的再一个实施方案中,提供了植物,其包含本发明提供的DMO编码核酸和至少一种其他转基因编码序列,包括例如,至少两种、三种、四种、五种或更多种此类编码序列。在具体实施方案中,所述植物包含赋予一种或多种额外的有益性状如除草剂或害虫/昆虫耐受性的转基因。例如,如下文中描述,除了麦草畏耐受性外,还可以提供对一种或多种除草剂的耐受性,以及其他有益性状。本发明因此特别提供了植物,其包含与额外的转基因性状以任何希望的组合“叠加”的本发明的编码DMO的核酸。In yet another embodiment of the present invention, plants are provided that comprise the DMO-encoding nucleic acid provided by the invention and at least one other transgenic coding sequence, including, for example, at least two, three, four, five or more Such coding sequences. In specific embodiments, the plant comprises a transgene that confers one or more additional beneficial traits such as herbicide or pest/insect tolerance. For example, as described below, tolerance to one or more herbicides may be provided in addition to dicamba tolerance, among other beneficial traits. The present invention thus provides in particular plants comprising a DMO-encoding nucleic acid according to the invention "stacked" in any desired combination with additional transgenic traits.

附图简述Brief description of the drawings

下面的附图形成了本说明书的部分并且被包括用以进一步说明本发明的某些方面。参考一个或多个这些附图以及本文给出的特定实施方案的详细描述,可以更好地理解本发明。The following drawings form part of this specification and are included to further illustrate certain aspects of the invention. The invention may be better understood by reference to one or more of these drawings together with the detailed description of specific embodiments presented herein.

图1.用于为了在高等植物中表达而遗传改造麦草畏单加氧酶基因(DMOc)的盒的略图,其中使用来自花生褪绿条死病病毒的FLt36启动子、烟草蚀纹病毒(TEV前导序列)翻译增强子序列,和来自豌豆Rubisco小亚基基因的终止子区。所制备的另一种遗传改造形式的DMOc基因含有来自豌豆Rubisco小亚基基因的转运肽编码区,其用于TEV翻译增强子区和DMOc的编码区之间DMO的叶绿体定位。Figure 1. Schematic diagram of the cassette used to genetically engineer the dicamba monooxygenase gene (DMOc) for expression in higher plants using the FLt36 promoter from peanut chlorotic stripe disease virus, tobacco etch virus (TEV leader sequence) translational enhancer sequence, and terminator region from the pea Rubisco small subunit gene. Another genetically engineered form of the DMOc gene was prepared containing the transit peptide coding region from the pea Rubisco small subunit gene for chloroplast localization of the DMO between the TEV translational enhancer region and the coding region of the DMOc.

图2.DNA,RNA和蛋白质印迹图,表明遗传改造的DMO基因在T1代转基因烟草植物中的存在和表达。泳道Q到V描绘了从多种T1代转基因烟草植物提取的DNA、mRNA和DMO种类。来自非转基因烟草植物的提取物在泳道WT中描绘,而泳道Ox显示了克隆的DMO基因构建体的限制酶消化产物(上图)和在大肠杆菌(E.coli)中过量产生的约37kDa DMO酶(下图)。通过向DMO抗血清中加入Rubisco抗体的检测,在蛋白质印迹中检测Rubisco的约55kDa的大亚基,Rubisco用作比较每个泳道中总的蛋白质负荷的内标。如通过一式两份凝胶的溴化乙锭染色判断的,在每个泳道加载了相等量的RNA。箭头指出DMODNA、mRNA或蛋白质带的位置。Figure 2. DNA, RNA and Western blots showing the presence and expression of the genetically engineered DMO gene in T1 transgenic tobacco plants. Lanes Q to V depict DNA, mRNA and DMO species extracted from various Ti generation transgenic tobacco plants. Extracts from non-transgenic tobacco plants are depicted in lane WT, while lane Ox shows restriction enzyme digestion products of the cloned DMO gene construct (upper panel) and the approximately 37 kDa DMO overproduced in Escherichia coli (E. coli) Enzymes (below). The approximately 55 kDa large subunit of Rubisco was detected in Western blots by detection with Rubisco antibody added to DMO antiserum, and Rubisco was used as an internal standard to compare the total protein load in each lane. Equal amounts of RNA were loaded in each lane as judged by ethidium bromide staining of duplicate gels. Arrows indicate the positions of DMODNA, mRNA or protein bands.

图3.用麦草畏以2.2kg/ha处理两种T1烟草植物的效果,其中的一种含有缺少叶绿体转运肽编码序列的遗传改造的DMOc基因(右),一种缺少DMOc基因(右数第二个)。右边视图上的转基因植物显示出很小(如果有)的来自麦草畏处理的损伤。左边的两株植物没有用麦草畏处理并且代表转基因植物(左边的)和含有DMOc基因的转基因植物(左数第二个)。Figure 3. Effect of dicamba treatment at 2.2 kg/ha on two T1 tobacco plants, one containing a genetically engineered DMOc gene lacking the chloroplast transit peptide coding sequence (right), one lacking the DMOc gene (right the second). The transgenic plants on the right panel show little, if any, damage from dicamba treatment. The two plants on the left were not treated with dicamba and represent transgenic plants (left) and transgenic plants containing the DMOc gene (second from left).

图4.DMOw引起的随着时间DCSA的形成。Figure 4. DMOw induced DCSA formation over time.

图5.确定DMOw的最适测定pH。Figure 5. Determination of optimal assay pH for DMOw.

图6.确定DMOw的最适测定温度。Figure 6. Determination of the optimum assay temperature for DMOw.

图7.确定DMOc的最适pH。Figure 7. Determination of the optimum pH of DMOc.

图8.确定DMOc的最适温度。Figure 8. Determination of the temperature optimum for DMOc.

图9.DMOc和DMOw的温度和pH最适条件概述。Figure 9. Overview of temperature and pH optima for DMOc and DMOw.

图10.DMOw的稳态动力学。Figure 10. Steady state kinetics of DMOw.

图11.DMOc的稳态动力学。Figure 11. Steady state kinetics of DMOc.

图12.在50mM TRIS pH7.5和100mM KPi pH 7.0中30℃下预温育DMOc 45分钟的效果。Figure 12. Effect of pre-incubation of DMOc for 45 min at 30°C in 50 mM TRIS pH 7.5 and 100 mM KPi pH 7.0.

图13.用静置一周并在4℃保存的酶在TRIS缓冲液(两个测定法在左边;分别为在保存前和保存后的测定法)和KPi缓冲液(两个测定法在右边;分别为在保存前和保存后的测定法)中的DMOc测定法。Figure 13. TRIS buffer (two assays on the left; assays before and after storage, respectively) and KPi buffer (two assays on the right; DMOc assays in pre- and post-storage assays, respectively).

图14.经遗传改造用于在烟草叶绿体中同源重组并表达的麦草畏加单氧酶构建体。Figure 14. Dicamba monooxygenase constructs genetically engineered for homologous recombination and expression in tobacco chloroplasts.

图15.用DMO基因转化的转基因烟草系的叶绿体基因组的同质体状态的阐明,所述DMO基因被设计用来在烟草叶绿体中同源重组并表达。左图显示了用于通过同源重组将DMO整合到叶绿体中的构建体(如图14中显示)。左边导向序列上方的条形指出了为了制备洋地黄毒苷标记的杂交探针而被扩增的DNA片段。右图显示了DNA印迹:泳道1含有大小标记。泳道2含有来自非转基因烟草植物的DNA。泳道3-11含有在壮观霉素存在下的第一轮选择和再生后不久(上图)和几轮选择和再生后得到叶绿体基因组的表观同质体时(下图)从转基因植物分离的DNA。从转基因和非转基因植物分离用于DNA印迹分析的DNA并进行用BamH I的限制酶消化,然后电泳分离并用与叶绿体基因组转化载体的“左导向序列”互补的经标记的DNA片段(即,洋地黄毒苷标记的杂交探针)探测经印迹的DNA。5.6kb DNA条带对应于含有DMO基因的叶绿体DNA片段并且3.3kb条带对应于缺少插入的DMO基因构建体的同源天然叶绿体条带。Figure 15. Elucidation of the homoplastid state of the chloroplast genomes of transgenic tobacco lines transformed with DMO genes designed for homologous recombination and expression in tobacco chloroplasts. The left panel shows the construct used to integrate DMO into the chloroplast by homologous recombination (as shown in Figure 14). The bar above the guide sequence on the left indicates the DNA fragment that was amplified to prepare the digoxigenin-labeled hybridization probe. Southern blots are shown on the right: lane 1 contains size markers. Lane 2 contains DNA from non-transgenic tobacco plants. Lanes 3-11 contain chloroplasts isolated from transgenic plants shortly after the first round of selection and regeneration in the presence of spectinomycin (upper panel) and when the apparent homoplast of the chloroplast genome was obtained after several rounds of selection and regeneration (lower panel). DNA. DNA for Southern blot analysis was isolated from transgenic and non-transgenic plants and subjected to restriction enzyme digestion with BamH I, followed by electrophoretic separation and use of a tagged DNA fragment complementary to the "left guide sequence" of the chloroplast genome transformation vector (i.e., foreign Dixigenin-labeled hybridization probe) to probe the blotted DNA. The 5.6 kb DNA band corresponds to the chloroplast DNA fragment containing the DMO gene and the 3.3 kb band corresponds to the homologous native chloroplast band lacking the inserted DMO gene construct.

图16.用28kg/ha水平的麦草畏处理的含有叶绿体编码的麦草畏单加氧酶基因的T1代同质体转基因烟草植物(植物1-2和植物3-4来自两株独立转化的R0植物)。Figure 16. T1 homoplasmic transgenic tobacco plants containing a chloroplast-encoded dicamba monooxygenase gene treated with dicamba at a level of 28 kg/ha (plants 1-2 and plants 3-4 from two independently transformed R 0 plants).

图17.在非转基因烟草植物和在叶绿体基因组中含有DMO基因的转基因烟草植物中的DMO表达和对麦草畏处理的敏感性和抗性。用DMO抗体探测的蛋白质印迹:泳道1含有纯化的DMO。泳道2是空白的并且泳道3含有来自非转基因烟草植物的蛋白质提取物。泳道4和8含有从“假阳性”烟草植物分离的蛋白质,所述烟草植物在用壮观霉素选择期间显示出抗生素抗性,但是缺少完整的DMO基因。泳道5-7含有转基因植物的提取物,所述转基因植物表达整合到叶绿体基因组中的DMO基因编码的DMO。S=对0.56kg/ha的麦草畏敏感的植物;R=抗5.6kg/ha的麦草畏的植物。如通过用抗Rubisco抗体检测的Rubisco大亚基蛋白质的量判断的,几乎等量的提取物被加载到泳道4-8中,而明显更多的来自非转基因植物的蛋白质被加载到泳道3中。箭头指出DMO蛋白质的位置。Figure 17. DMO expression and sensitivity and resistance to dicamba treatment in non-transgenic tobacco plants and transgenic tobacco plants containing the DMO gene in the chloroplast genome. Western blot probed with DMO antibody: Lane 1 contains purified DMO. Lane 2 is blank and lane 3 contains protein extracts from non-transgenic tobacco plants. Lanes 4 and 8 contain proteins isolated from "false positive" tobacco plants that displayed antibiotic resistance during selection with spectinomycin but lacked the intact DMO gene. Lanes 5-7 contain extracts from transgenic plants expressing DMO encoded by the DMO gene integrated into the chloroplast genome. S = plants sensitive to 0.56 kg/ha of dicamba; R = plants resistant to 5.6 kg/ha of dicamba. Almost equal amounts of extracts were loaded into lanes 4-8 as judged by the amount of Rubisco large subunit protein detected with anti-Rubisco antibody, whereas significantly more protein from non-transgenic plants was loaded into lane 3 . Arrows indicate the location of DMO proteins.

图18.野生型DMO多肽序列的部分与其他铁-硫加氧酶的保守区的比较,表明DMO是独特的,与已知的酶具有低同一性,但是W112(箭头)在其他铁-硫加氧酶中是保守的并且被两个保守结构域即Rieske和Non-Haem Fe(SEQ ID NOS:4-23)围绕。Figure 18. Comparison of parts of the wild-type DMO polypeptide sequence with conserved regions of other iron-sulfur oxygenases, showing that DMO is unique and has low identity to known enzymes, but W112 (arrow) in other iron-sulfur oxygenases It is conserved among enzymes and is surrounded by two conserved domains, Rieske and Non-Haem Fe (SEQ ID NOS: 4-23).

发明详述Detailed description of the invention

本发明提供了在本文中被称作DMOc的麦草畏单加氧酶(DMO)变体,其在对应于SEQ ID NO:1中所示的DMO的112位的位置包含半胱氨酸。已表明DMOc当在转基因植物中表达时产生对除草剂麦草畏的高水平耐受性。结果是令人惊奇的,因为所改变的氨基酸位置在其他铁-硫加氧酶中是高度保守的。在所分析的来自45个物种的78种铁-硫加氧酶序列中,具有至少15%同一性的所有52种加氧酶序列在对应于SEQID NO:1的氨基酸112的位置具有W,尽管最高的总同一性为仅仅38%。该位置也被两个保守的功能结构域围绕(图18)。从而所产生的高水平的除草剂耐受性DMOc是出乎意料的。The present invention provides a dicamba monooxygenase (DMO) variant, referred to herein as DMOc, comprising a cysteine at a position corresponding to position 112 of the DMO shown in SEQ ID NO: 1. DMOc has been shown to confer high levels of tolerance to the herbicide dicamba when expressed in transgenic plants. The results were surprising because the altered amino acid positions are highly conserved in other iron-sulfur oxygenases. Of the 78 iron-sulfur oxygenase sequences analyzed from 45 species, all 52 with at least 15% identity had a W at the position corresponding to amino acid 112 of SEQ ID NO: 1, although the highest The overall identity is only 38%. This position is also surrounded by two conserved functional domains (Figure 18). The resulting high level of herbicide tolerant DMOc was unexpected.

DMOc相对于未改变序列(DMOw;美国专利号7,022,896)的米-曼参数分析揭示所述酶在催化效率方面不同:DMOc比DMOw的效率高5倍并且DMOc似乎具有更高的更新次数和更严格的底物结合。此外,DMOc相对于天然酶在更低pH条件和更高温度下更好地发挥功能。这些结果表明基于期望的使用条件,如作物生长条件选择用于特定转基因植物的DMO变体的可能性。本发明的一方面因此涉及为至少一个作物物种鉴定候选作物生长环境,并基于例如DMOc和DMOw的动力学鉴定适于该环境的DMO酶。例如,本领域技术人员可以在具体实施方案中,选择DMOc编码序列,用于相对于其他植物物种或生长环境具有更低的植物内(inplanta)pH条件和/或在生长环境的情况下具有更高温度的植物中。通过掺入土壤(种植前掺入);喷雾土壤(出苗前);和喷雾在植物顶部(出苗后处理)来施用麦草畏,而对麦草畏的耐受性水平可以在植物生长期间不同的时间而不同。Mie-Mann parameter analysis of DMOc relative to the unchanged sequence (DMOw; U.S. Patent No. 7,022,896) revealed that the enzymes differ in catalytic efficiency: DMOc is 5-fold more efficient than DMOw and DMOc appears to have a higher number of renewals and is more stringent substrate binding. In addition, DMOc functions better at lower pH conditions and higher temperatures relative to native enzymes. These results indicate the possibility of selecting DMO variants for specific transgenic plants based on desired use conditions, such as crop growth conditions. One aspect of the invention thus relates to identifying a candidate crop growth environment for at least one crop species and identifying a DMO enzyme suitable for that environment based on the kinetics of eg DMOc and DMOw. For example, those skilled in the art can, in particular embodiments, select the DMOc coding sequence for having lower pH conditions in the plant (inplanta) relative to other plant species or growth environments and/or to have higher pH conditions under the conditions of the growth environment. in high temperature plants. Dicamba is applied by incorporating the soil (pre-plant incorporation); spraying the soil (pre-emergence); and spraying the tops of the plants (post-emergence treatment), while tolerance levels to dicamba can vary at different times during plant growth rather different.

如上面指出的,在表达DMOc的转基因植物中得到了对极高水平的除草剂麦草畏的耐受性。在例如通常对甚至极低水平麦草畏敏感的烟草中,产生了表达DMOc的转基因植物,其耐受5.6kg/ha或以上的麦草畏处理,例如,比为控制阔叶杂草通常推荐的田间施用率高10-20倍。当将DMOc基因插入到烟草植物的叶绿体基因组中时,得到对至少28kg/ha的麦草畏耐受性。也产生了带有细胞核编码的DMOc基因的转基因大豆、番茄和拟南芥(Arabidopsis thaliana)植物并且发现它们耐受高水平的麦草畏。例如,DMOc向大豆植物的核基因组中的插入产生了对2.8kg/ha处理的耐受性,从而允许使用麦草畏控制表达DMOc的植物田中的杂草。As noted above, tolerance to very high levels of the herbicide dicamba was obtained in transgenic plants expressing DMOc. In e.g. tobacco, which is usually sensitive to even very low levels of dicamba, transgenic plants expressing DMOc were generated which tolerated dicamba treatments of 5.6 kg/ha or more, e.g. The application rate is 10-20 times higher. When the DMOc gene is inserted into the chloroplast genome of tobacco plants, dicamba tolerance to at least 28 kg/ha is obtained. Transgenic soybean, tomato and Arabidopsis thaliana plants carrying the nuclear-encoded DMOc gene were also generated and found to be tolerant to high levels of dicamba. For example, insertion of DMOc into the nuclear genome of soybean plants confers tolerance to the 2.8 kg/ha treatment, allowing the use of dicamba to control weeds in fields of DMOc-expressing plants.

从而表明DMOc在赋予麦草畏耐受性中是有效的,不需额外的编码序列,如嗜麦芽假单胞菌DI-6菌株,铁氧还蛋白或还原酶。经修饰的DMO基因作为孟德尔基因在遗传上是稳定的并且没有明显丧失外显率或表达。尽管用叶绿体转运肽得到某种程度更强的表达,但是缺少转运肽编码序列的具有DMO转基因的转基因植物也显示出高水平的出苗后麦草畏耐受性。Thus it was shown that DMOc is effective in conferring tolerance to dicamba without the need for additional coding sequences such as Pseudomonas maltophilia strain DI-6, ferredoxin or reductase. The modified DMO gene is genetically stable as a Mendelian gene without significant loss of penetrance or expression. Transgenic plants with the DMO transgene lacking the transit peptide coding sequence also showed high levels of post-emergence dicamba tolerance, although somewhat stronger expression was obtained with the chloroplast transit peptide.

A.核酸和重组构建体A. Nucleic Acids and Recombinant Constructs

1.麦草畏单加氧酶(DMO)1. Dicamba monooxygenase (DMO)

在本发明的一个实施方案中,提供了DNA构建体,其包含编码麦草畏单加氧酶多肽的核酸,所述麦草畏单加氧酶多肽在对应于SEQ IDNO:1的112位的位置包含半胱氨酸。示例性DMO编码序列在本文中以SEQ ID NO:2提供。该序列除了包含SEQ ID NO:1的112位的半胱氨酸外,还包括相对于天然编码序列在ATG起始密码子后加入GCC密码子(丙氨酸)以加入Nco I限制酶位点和方便克隆。因此,SEQ ID NO:1中的多肽也包括起始密码子编码的Met后紧邻的额外的Ala残基。将转运肽序列用Bgl II和EcoR I从质粒切除,然后克隆到pBluescript II KS+载体的BamH I和EcoR I位点中。该构建体用作PCR反应中的模板,所述PCR反应使用在转运肽编码序列任一端加入Nco I限制性位点的引物。用Nco I消化PCR产物允许在经修饰的DMO基因的ATG起始密码子位点中插入转运肽编码序列。In one embodiment of the present invention, there is provided a DNA construct comprising a nucleic acid encoding a dicamba monooxygenase polypeptide comprising, at a position corresponding to position 112 of SEQ ID NO: 1 cysteine. An exemplary DMO coding sequence is provided herein as SEQ ID NO:2. In addition to the cysteine at position 112 of SEQ ID NO: 1, the sequence also includes the addition of a GCC codon (alanine) to the Nco I restriction enzyme site relative to the native coding sequence after the ATG start codon and easy cloning. Thus, the polypeptide in SEQ ID NO: 1 also includes an additional Ala residue immediately after Met encoded by the start codon. The transit peptide sequence was excised from the plasmid with Bgl II and EcoR I and cloned into the BamH I and EcoR I sites of the pBluescript II KS+ vector. This construct was used as a template in a PCR reaction using primers that added Nco I restriction sites at either end of the transit peptide coding sequence. Digestion of the PCR product with Nco I allowed insertion of a transit peptide coding sequence in the site of the ATG start codon of the modified DMO gene.

从而,在本发明的一个实施方案中,提供了编码SEQ ID NO:1的多肽的序列,包括但不限于SEQ ID NO:2。如本领域公知的,这些序列的同源序列和衍生物可以容易地制备和使用。例如,可以使用编码与SEQID NO:1的DMOc多肽有至少90%序列同一性,包括与此序列至少约92%、94%、95%、96%、97%、98%、99%或更高同一性的DMO多肽的核酸。也可以使用与SEQ ID NO:2提供的核酸有至少90%序列同一性,包括与此序列至少约92%、94%、95%、96%、97%、98%、99%或更高同一性并且编码在112位包含半胱氨酸的DMO的核酸。在一个实施方案中,使用GCG Wisconsin Package(Accelrys,San Diego,CA),MEGAlign(DNAStar,Inc.,1228S.Park St.,Madison,Wis.53715)的序列分析软件包用默认参数确定序列同一性。该软件通过分配相似性或同一性程度而匹配相似的序列。Thus, in one embodiment of the present invention, there is provided a sequence encoding a polypeptide of SEQ ID NO: 1, including but not limited to SEQ ID NO: 2. Homologous sequences and derivatives of these sequences can be readily prepared and used as known in the art. For example, a polypeptide encoding a DMOc having at least 90% sequence identity to SEQ ID NO: 1, including at least about 92%, 94%, 95%, 96%, 97%, 98%, 99% or more to this sequence, can be used Nucleic acids of identity to DMO polypeptides. Also useful are nucleic acids having at least 90% sequence identity to the nucleic acid provided by SEQ ID NO: 2, including at least about 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identity to this sequence. and encoding a DMO containing a cysteine at position 112. In one embodiment, sequence identity is determined using the sequence analysis software package of the GCG Wisconsin Package (Accelrys, San Diego, CA), MEGAlign (DNAStar, Inc., 1228 S. Park St., Madison, Wis. 53715) with default parameters . The software matches similar sequences by assigning degrees of similarity or identity.

根据本公开,可以通过本领域公知的技术得到表达DMO多肽的多核苷酸分子。从而可以制备能够降解麦草畏的本文提供的DMOs的变体并根据本文公开的方法测定活性。此类序列也可以例如从合适的生物(包括降解麦草畏的细菌)鉴定(美国专利号5,445,962;Krueger etal.,1989;Cork和Krueger,1991;Cork和Khalil,1995)。分离克隆的DMO序列的一种方法是通过例如与从来源生物构建的文库进行合适杂交,或者使用来自来源生物的mRNA和基于所公开的DMO设计的引物进行RT-PCR。本发明因此包括使用在严格条件下与本文所述的DMO编码序列杂交的核酸。本领域技术人员理解通过增加盐浓度和降低温度可以使得条件的严格性降低。从而,可以容易地操作杂交条件并且其将通常是取决于希望的结果的选择的方法。高严格条件的一个实例是5X SSC,50%甲酰胺和42℃。通过在此类条件下进行洗涤,如10分钟,在这些条件下不与特定靶序列杂交的那些序列将被除去。本发明的一个实施方案从而包括使用DMO编码核酸,所述核酸被定义为在5X SSC,50%甲酰胺和42℃下持续10分钟的洗涤条件下与SEQ ID NO:2的核酸杂交的核酸。According to the present disclosure, polynucleotide molecules expressing DMO polypeptides can be obtained by techniques well known in the art. Variants of the DMOs provided herein that are capable of degrading dicamba can thus be prepared and assayed for activity according to the methods disclosed herein. Such sequences can also be identified, for example, from suitable organisms, including dicamba-degrading bacteria (US Patent No. 5,445,962; Krueger et al., 1989; Cork and Krueger, 1991; Cork and Khalil, 1995). One method of isolating cloned DMO sequences is by, for example, suitable hybridization to a library constructed from the source organism, or RT-PCR using mRNA from the source organism and primers designed based on the disclosed DMO. The invention thus includes the use of nucleic acids that hybridize under stringent conditions to the DMO coding sequences described herein. Those skilled in the art understand that the stringency of the conditions can be made less stringent by increasing the salt concentration and lowering the temperature. Thus, hybridization conditions can be readily manipulated and will generally be the method of choice depending on the desired outcome. An example of highly stringent conditions is 5X SSC, 50% formamide and 42°C. By washing under such conditions, such as 10 minutes, those sequences which do not hybridize to the specific target sequence under these conditions will be removed. One embodiment of the invention thus includes the use of DMO to encode nucleic acids defined as nucleic acids that hybridize to the nucleic acid of SEQ ID NO: 2 under wash conditions of 5X SSC, 50% formamide, and 42° C. for 10 minutes.

根据本领域公知的技术,用本文描述的DMO多核苷酸序列也可以化学合成变体。例如,通过亚磷酰胺化学在自动化DNA合成仪中可以合成DNA序列。化学合成具有许多优点。具体地,化学合成是所希望的,因为宿主(DNA序列将在其中表达)优选的密码子可以用于优化表达。使用拟南芥密码子选择从而优化用于在双子叶植物中表达的此类序列的实例是SEQ ID NO:3中显示的DMO序列。经预测分别在2,3,112位具有Ala,Thr,Cys的多肽在SEQ ID NO:1中给出。由于在紧邻ATG起始密码子后加入丙氨酸密码子以简化载体构建(如下述),相对于野生型DMO在2位加入了Ala残基。Variants can also be chemically synthesized using the DMO polynucleotide sequences described herein according to techniques well known in the art. For example, DNA sequences can be synthesized by phosphoramidite chemistry in an automated DNA synthesizer. Chemical synthesis has many advantages. In particular, chemical synthesis is desirable because codons preferred by the host (in which the DNA sequence will be expressed) can be used to optimize expression. An example of such a sequence optimized for expression in dicots using Arabidopsis codon usage is the DMO sequence shown in SEQ ID NO:3. The polypeptides predicted to have Ala, Thr, Cys at positions 2, 3, and 112, respectively, are given in SEQ ID NO: 1. An Ala residue was added at position 2 relative to wild-type DMO due to the addition of an alanine codon immediately after the ATG start codon to simplify vector construction (as described below).

并不是需要所有密码子被改变以得到改进的表达,而是优选至少将在宿主中很少使用的密码子改变成宿主优选的密码子,例如,更经常用于宿主中并且通常比罕见的非优选的密码子更容易翻译的密码子。通过将大于约50%,最优选至少约80%的非优选的密码子改变成宿主优选的密码子,可以得到高水平表达。许多宿主细胞的密码子优先性是已知的(PCT WO 97/31115;PCT WO 97/11086;EP 646643;EP 553494;和美国专利号:5,689,052;5,567,862;5,567,600;5,552,299和5,017,692)。通过本领域已知的方法可以推导其他宿主细胞的密码子优先性。而且,使用化学合成,可以容易地改变DNA分子或其编码的蛋白质的序列以例如优化表达(例如,消除干扰转录或翻译的mRNA二级结构),在方便的位点加入独特的限制位点,以及去除蛋白酶切割位点。It is not necessary that all codons be changed to obtain improved expression, but preferably at least codons that are rarely used in the host are changed to codons that are preferred by the host, e.g., more frequently used in the host and often than rare non- Preferred codons are codons that are more easily translated. High level expression can be obtained by changing greater than about 50%, most preferably at least about 80%, of the non-preferred codons to host-preferred codons. The codon preferences of many host cells are known (PCT WO 97/31115; PCT WO 97/11086; EP 646643; EP 553494; and U.S. Patent Nos: 5,689,052; 5,567,862; 5,567,600; 5,552,299 and 5,017,692). Codon preferences for other host cells can be deduced by methods known in the art. Furthermore, using chemical synthesis, the sequence of a DNA molecule or the protein it encodes can be readily altered, e.g., to optimize expression (e.g., to eliminate mRNA secondary structures that interfere with transcription or translation), to add unique restriction sites at convenient locations, and removal of protease cleavage sites.

可以对蛋白质的多肽序列,如本文提供的DMO序列进行修饰和改变同时保留酶活性。下面是基于改变蛋白质的氨基酸以产生等同的或甚至改进的经修饰的多肽和对应的编码序列的讨论。在本发明的具体实施方案中,可以以这种方式改变DMO序列并用于本发明的方法中。通过改变DNA序列的密码子可以实现氨基酸改变。Modifications and changes can be made to the polypeptide sequence of a protein, such as the DMO sequence provided herein, while retaining enzymatic activity. The following is a discussion based on altering amino acids of proteins to produce equivalent or even improved modified polypeptides and corresponding coding sequences. In a particular embodiment of the invention, the DMO sequence can be altered in this way and used in the methods of the invention. Amino acid changes can be achieved by changing the codons in the DNA sequence.

已知例如,某些氨基酸可以替代蛋白质结构中的其他氨基酸而与结构,如底物分子上的结合位点的相互结合能力没有明显损失。因为是蛋白质的相互作用能力和性质限定了该蛋白质的生物功能活性,所以可以在蛋白质序列和当然,在作为基础的DNA编码序列中进行某些氨基酸序列替代,并且仍然得到具有相似性质的蛋白质。从而预期可以在本文所述的DMO多肽序列和对应的DNA编码序列中进行多种改变而它们的生物效用或活性没有明显损失。It is known, for example, that certain amino acids can substitute for other amino acids in protein structures without appreciable loss of ability to interact with structures, such as binding sites on substrate molecules. Since it is the interacting capabilities and properties of a protein that define the biological functional activity of that protein, certain amino acid sequence substitutions can be made in the protein sequence and, of course, in the underlying DNA coding sequence and still result in a protein with similar properties. It is thus contemplated that various changes may be made in the DMO polypeptide sequences and corresponding DNA coding sequences described herein without appreciable loss of their biological utility or activity.

在进行此类改变时,可以考虑氨基酸的亲水指数。亲水氨基酸指数在对蛋白质赋予相互作用生物功能中的重要性是本领域公知的(Kyte etal.,1982)。公认氨基酸的相对亲水特征对所得蛋白质的二级结构有贡献,所述二级结构又确定了该蛋白质与其他分子如酶、底物、受体、DNA、抗体、抗原等等的相互作用。每个氨基酸已经基于它们的疏水性和电荷特征被分配了疏水性指数(Kyte et al.,1982),这些为:异亮氨酸(+4.5);缬氨酸(+4.2);亮氨酸(+3.8);苯丙氨酸(+2.8);半胱氨酸/胱氨酸(+2.5);甲硫氨酸(+1.9);丙氨酸(+1.8);甘氨酸(-0.4);苏氨酸(-0.7);丝氨酸(-0.8);色氨酸(-0.9);酪氨酸(-1.3);脯氨酸(-1.6);组氨酸(-3.2);谷氨酸(-3.5);谷氨酰胺(-3.5);天冬氨酸(-3.5);天冬酰胺(-3.5);赖氨酸(-3.9);和精氨酸(-4.5)。In making such changes, the hydropathic index of amino acids can be considered. The importance of the hydropathic amino acid index in conferring interacting biological functions on proteins is well known in the art (Kyte et al., 1982). It is recognized that the relatively hydrophilic character of amino acids contributes to the resulting protein's secondary structure, which in turn determines the protein's interaction with other molecules such as enzymes, substrates, receptors, DNA, antibodies, antigens, and the like. Each amino acid has been assigned a hydrophobicity index based on their hydrophobicity and charge characteristics (Kyte et al., 1982), these are: Isoleucine (+4.5); Valine (+4.2); Leucine (+3.8); Phenylalanine (+2.8); Cysteine/Cystine (+2.5); Methionine (+1.9); Alanine (+1.8); Glycine (-0.4); Threonine (-0.7); Serine (-0.8); Tryptophan (-0.9); Tyrosine (-1.3); Proline (-1.6); Histidine (-3.2); -3.5); glutamine (-3.5); aspartic acid (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

本领域已知氨基酸可以被具有相似亲水指数或得分的其他氨基酸替代并且仍然得到具有相似的生物活性的蛋白质,即仍然得到生物学功能等同的蛋白质。在进行此类改变时,亲水指数在±2以内的氨基酸替代是优选的,在±1以内是尤其优选的,在±0.5是尤其更优选的。这里,考虑到天然和改变的氨基酸之间不同的亲水指数并且将不被本领域技术人员用于根据现有技术产生功能变体,所以在112位的色氨酸用半胱氨酸替代的DMO具有生物活性并且得到耐受高水平麦草畏的植物这一观察结果是令人惊奇的。It is known in the art that amino acids can be substituted by other amino acids with a similar hydropathic index or score and still result in a protein with similar biological activity, ie still result in a biologically functionally equivalent protein. When making such changes, amino acid substitutions with a hydropathic index within ±2 are preferred, within ±1 are especially preferred, and within ±0.5 are even more preferred. Here, tryptophan at position 112 was replaced with cysteine, taking into account the different hydropathic indices between natural and altered amino acids and would not be used by those skilled in the art to generate functional variants according to the prior art The observation that DMO is biologically active and results in plants tolerant to high levels of dicamba is surprising.

本领域也理解基于亲水性可以有效进行类似氨基酸的替代。美国专利4,554,101公开了蛋白质的最大的局部平均亲水性(如通过其相邻氨基酸的亲水性控制)与蛋白质的生物学性质相关。如美国专利4,554,101中详述,下面的亲水性值被分配给氨基酸残基:精氨酸(+3.0);赖氨酸(+3.0);天冬氨酸(+3.0±1);谷氨酸(+3.0±1);丝氨酸(+0.3);天冬酰胺(+0.2);谷氨酰胺(+0.2);甘氨酸(0);苏氨酸(-0.4);脯氨酸(-0.5±1);丙氨酸(-0.5);组氨酸(-0.5);半胱氨酸(-1.0);甲硫氨酸(-1.3);缬氨酸(-1.5);亮氨酸(-1.8);异亮氨酸(-1.8);酪氨酸(-2.3);苯丙氨酸(-2.5);色氨酸(-3.4)。可以理解氨基酸可以替代具有相似亲水性值的另一氨基酸并且仍然得到生物学等同的蛋白质。在此类改变中,亲水性值在±2以内的氨基酸替代是优选的,±1以内的氨基酸替代是尤其优选的,在±0.5以内的氨基酸替代是甚至更尤其优选的。考虑这些和多种前述特征的示例性替代是本领域技术人员公知的并且包括:精氨酸和赖氨酸;谷氨酸和天冬氨酸;丝氨酸和苏氨酸;谷氨酰胺和天冬酰胺;以及缬氨酸、亮氨酸和异亮氨酸。再次,考虑到改变的和天然氨基酸之间的非常不同的亲水性值并且该替代将不被本领域技术人员用于根据现有技术产生功能变体,DMOc的活性是令人惊奇的。It is also understood in the art that similar amino acid substitutions can be made efficiently based on hydrophilicity. US Patent 4,554,101 discloses that the maximum local average hydrophilicity of a protein (as controlled by the hydrophilicity of its neighboring amino acids) is related to the biological properties of the protein. As detailed in U.S. Patent 4,554,101, the following hydrophilicity values were assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartic acid (+3.0 ± 1); glutamine Acid (+3.0±1); Serine (+0.3); Asparagine (+0.2); Glutamine (+0.2); Glycine (0); Threonine (-0.4); Proline (-0.5± 1); Alanine (-0.5); Histidine (-0.5); Cysteine (-1.0); Methionine (-1.3); Valine (-1.5); Leucine (- 1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). It is understood that an amino acid can be substituted for another amino acid having a similar hydrophilicity value and still result in a biologically equivalent protein. In such alterations, amino acid substitutions with hydrophilicity values within ±2 are preferred, amino acid substitutions within ±1 are especially preferred, and amino acid substitutions within ±0.5 are even more especially preferred. Exemplary substitutions that take into account these and many of the foregoing features are well known to those skilled in the art and include: arginine and lysine; glutamic acid and aspartic acid; serine and threonine; glutamine and asparagine amides; and valine, leucine, and isoleucine. Again, the activity of DMOc is surprising considering the very different hydrophilicity values between the altered and natural amino acids and this substitution would not be used by those skilled in the art to generate functional variants according to the prior art.

根据本发明的DMO序列的修饰可以通过考虑该酶内的保守结构域而进行指导。例如,在下面阐明DMO酶含有功能结构域,如Rieske铁-硫簇和游离铁的结合位点(例如,见图18)。该信息与本领域关于蛋白质的功能结构域和修饰的知识相组合一般因此可用于产生经修饰的DMO酶同时在本发明范围内保留酶的活性(见例如,Mason和Cammack,1992;Jiang et al.,1996)。The modification of the DMO sequence according to the invention can be guided by taking into account conserved domains within the enzyme. For example, it is illustrated below that DMO enzymes contain functional domains such as Rieske iron-sulfur clusters and binding sites for free iron (eg, see Figure 18). This information, combined with knowledge in the art about functional domains and modifications of proteins, can thus generally be used to generate modified DMO enzymes while retaining enzymatic activity within the scope of the invention (see, e.g., Mason and Cammack, 1992; Jiang et al. ., 1996).

2.转化构建体2. Transformation Constructs

用于本发明的DMO编码多核苷酸将通常被导入细胞中作为构建体,其包含有效表达必须的表达控制元件。操作性连接表达控制元件与编码序列的方法是本领域公知的(Maniatis et al.,1982;Sambrook et al.,1989)。表达控制序列是以任何方式参考转录控制的DNA序列。合适的表达控制序列和使用它们的方法是本领域公知的。尤其可使用启动子,使用或不使用增强子,5’非翻译区,用于将蛋白质或RNA产物靶向植物细胞器,尤其叶绿体的转运肽或信号肽,和3’非翻译区,如聚腺苷酸化位点。本领域技术人员将知道多种增强子、启动子、内含子、转运肽、导向信号序列和5’和3’非翻译区(UTRs)可用于设计有效的植物表达载体,如美国专利申请公开2003/01403641中描述的那些。The DMO-encoding polynucleotides used in the present invention will generally be introduced into cells as constructs containing the expression control elements necessary for efficient expression. Methods for operably linking expression control elements to coding sequences are well known in the art (Maniatis et al., 1982; Sambrook et al., 1989). Expression control sequences are DNA sequences that refer in any way to the control of transcription. Suitable expression control sequences and methods of using them are well known in the art. In particular, promoters, with or without enhancers, 5' untranslated regions, transit peptides or signal peptides for targeting protein or RNA products to plant organelles, especially chloroplasts, and 3' untranslated regions, such as polyadenylation, can be used. acidification site. Those skilled in the art will know that a variety of enhancers, promoters, introns, transit peptides, targeting signal sequences and 5' and 3' untranslated regions (UTRs) can be used to design efficient plant expression vectors, as disclosed in the U.S. Patent Application Those described in 2003/01403641.

适于当前和其他用途的启动子是本领域公知的。描述此类启动子的实例包括美国专利6,437,217(玉米RS81启动子),美国专利5,641,876(稻肌动蛋白启动子),美国专利6,426,446(玉米RS324启动子),美国专利6,429,362(玉米PR-1启动子),美国专利6,232,526(玉米A3启动子),美国专利6,177,611(组成型玉米启动子),美国专利5,322,938,5,352,605,5,359,142和5,530,196(35S启动子),美国专利6,433,252(玉米L3油质蛋白启动子),美国专利6,429,357(稻肌动蛋白2启动子以及稻肌动蛋白2内含子),美国专利5,837,848(根特异性启动子),美国专利6,294,714(光诱导型启动子),美国专利6,140,078(盐诱导型启动子),美国专利6,252,138(病原体诱导型启动子),美国专利6,175,060(磷缺乏诱导型启动子),美国专利6,635,806(γ-coixin启动子),和美国专利申请序号09/757,089(玉米叶绿体醛缩酶启动子)。可以使用的额外启动子是胭脂碱合酶(NOS)启动子(Ebert et al.,1987),章鱼碱合酶(OCS)启动子(其在根癌农杆菌的肿瘤诱导质粒上携带),花椰菜花叶病毒启动子,如花椰菜花叶病毒(CaMV)19S启动子(Lawton et al.,1987),CaMV 35S启动子(Odell et al.,1985),玄参花叶病毒35S-启动子(Walker et al.,1987),蔗糖合酶启动子(Yang et al.,1990),R基因复合启动子(Chandler et al.,1989),和叶绿素a/b结合蛋白基因启动子等等。对于用于本发明尤其有益的可以是CaMV35S(美国专利号5,322,938;5,352,605;5,359,142;和5,530,196),FMV35S(美国专利6,051,753;5,378,619),PC1SV启动子(例如美国专利5,850,019,和SEQ ID NO:24),和AGRtu.nos(GenBank检索号V00087;Depicker et al,1982;Bevan et al.,1983)启动子。Promoters suitable for current and other uses are well known in the art. Examples describing such promoters include US Patent 6,437,217 (maize RS81 promoter), US Patent 5,641,876 (rice actin promoter), US Patent 6,426,446 (maize RS324 promoter), US Patent 6,429,362 (maize PR-1 ), U.S. Patent 6,232,526 (maize A3 promoter), U.S. Patent 6,177,611 (constitutive maize promoter), U.S. Patents 5,322,938, 5,352,605, 5,359,142 and 5,530,196 (35S promoter), U.S. Patent 6,433,252 (maize L3 oleosin promoter) , U.S. Patent 6,429,357 (Rice Actin 2 Promoter and Rice Actin 2 Intron), U.S. Patent 5,837,848 (Root-Specific Promoter), U.S. Patent 6,294,714 (Light-Inducible Promoter), U.S. Patent 6,140,078 (Salt inducible promoter), U.S. Patent 6,252,138 (pathogen-inducible promoter), U.S. Patent 6,175,060 (phosphorus deficiency-inducible promoter), U.S. Patent 6,635,806 (γ-coixin chloroplast aldolase promoter). Additional promoters that can be used are the nopaline synthase (NOS) promoter (Ebert et al., 1987), the octopine synthase (OCS) promoter (which is carried on the tumor-inducing plasmid of Agrobacterium tumefaciens), cauliflower Mosaic virus promoters, such as cauliflower mosaic virus (CaMV) 19S promoter (Lawton et al., 1987), CaMV 35S promoter (Odell et al., 1985), Scrophulariaceae mosaic virus 35S-promoter (Walker et al., 1987), sucrose synthase promoter (Yang et al., 1990), R gene composite promoter (Chandler et al., 1989), and chlorophyll a/b binding protein gene promoter and the like. Of particular interest for use in the present invention may be CaMV35S (U.S. Patent Nos. 5,322,938; 5,352,605; 5,359,142; and 5,530,196), FMV35S (U.S. Patent Nos. 6,051,753; 5,378,619), the PC1SV promoter (e.g. U.S. Patent No. 5,850,019, and SEQ ID NO: 24) , and AGRtu.nos (GenBank accession number V00087; Depicker et al, 1982; Bevan et al., 1983) promoter.

通过使用编码转运肽的序列表达异源基因也可以得到益处。转运肽通常指当连接到目的蛋白质时将该蛋白质导向特定组织、细胞、亚细胞位置或细胞器的肽分子。实例包括,但不限于,叶绿体转运肽、核导向信号,和液泡信号。叶绿体转运肽尤其可用于本发明中用于将DMO酶的表达导向于叶绿体。预期通过植物细胞中发现的内源还原酶和铁氧还蛋白降解麦草畏可以促进DMO功能。植物叶绿体尤其富含还原酶和铁氧还蛋白。因此,在用于产生转基因的麦草畏耐受性植物的优选实施方案中,可以使用编码肽的序列,其将降解麦草畏的加氧酶导向叶绿体中。备选地或额外地,也可以在细胞中表达异源还原酶和/或铁氧还蛋白。Advantages may also be gained by expressing heterologous genes using sequences encoding transit peptides. A transit peptide generally refers to a peptide molecule that, when attached to a protein of interest, directs that protein to a specific tissue, cell, subcellular location, or organelle. Examples include, but are not limited to, chloroplast transit peptides, nuclear targeting signals, and vacuolar signals. Chloroplast transit peptides are particularly useful in the present invention for directing the expression of the DMO enzyme to the chloroplast. Degradation of dicamba by endogenous reductases and ferredoxins found in plant cells is expected to promote DMO function. Plant chloroplasts are especially rich in reductases and ferredoxins. Thus, in a preferred embodiment for the production of transgenic dicamba-tolerant plants, sequences encoding peptides which direct dicamba-degrading oxygenases to chloroplasts may be used. Alternatively or additionally, a heterologous reductase and/or ferredoxin may also be expressed in the cell.

编码叶绿体导向序列的DNA可以优选被置于编码DMO的序列上游(5’),但是也可以被置于编码序列的下游(3’),或者编码序列的上游和下游。尤其可以将叶绿体转运肽(CTP)改造为与将被导向于植物叶绿体的蛋白质的N-末端融合。许多叶绿体定位的蛋白质从核基因表达为前体并且被CTP导向于叶绿体,CTP在输入步骤中被去除。叶绿体蛋白质的实例包括核酮糖-1,5,-二磷酸羧化酶的小亚基(RbcS2)、铁氧还蛋白、铁氧还蛋白氧化还原酶、捕获光的复合蛋白I和蛋白II,和硫氧还蛋白F。已经在体内和体外阐明通过使用与CTP的蛋白质融合体可以将非叶绿体蛋白导向于叶绿体并且CTP足够将蛋白质导向于叶绿体。例如,已经表明在转基因植物中,合适的叶绿体转运肽,如拟南芥(Arabidopsisthaliana)EPSPS CTP(Klee et al.,1987)和Petuniahybrida EPSPS CTP(della-Cioppa et al.,1986)的掺入将异源EPSPS蛋白质序列导向于叶绿体中。其他示例性叶绿体导向序列包括玉米cab-m7信号序列(Becker etal.,1992;PCT WO 97/41228)和豌豆谷胱甘肽还原酶信号序列(Creissen et al.,1991;PCT WO 97/41228)。在本发明中,AtRbcS4(CTP1;美国专利5,728,925),AtShkG(CTP2;Klee et al.,1987),AtShkGZm(CTP2synthetic;见WO04009761的SEQ ID NO;14),和PsRbcS(Coruzziet al.,1984)例如在DMO多肽的表达方面是尤其有益的。The DNA encoding the chloroplast targeting sequence can preferably be placed upstream (5') of the sequence encoding the DMO, but can also be placed downstream (3') of the coding sequence, or both upstream and downstream of the coding sequence. In particular, chloroplast transit peptides (CTPs) can be engineered to be fused to the N-terminus of proteins to be directed to the plant chloroplast. Many chloroplast-localized proteins are expressed from nuclear genes as precursors and directed to chloroplasts by CTPs, which are removed in the import step. Examples of chloroplast proteins include ribulose-1,5,-bisphosphate carboxylase small subunit (RbcS2), ferredoxin, ferredoxin oxidoreductase, light-harvesting complex protein I and protein II, and thioredoxin F. It has been demonstrated in vivo and in vitro that non-chloroplast proteins can be targeted to chloroplasts by using protein fusions to CTP and that CTP is sufficient to target proteins to chloroplasts. For example, it has been shown that in transgenic plants, incorporation of appropriate chloroplast transit peptides, such as the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987) and Petuniahybrida EPSPS CTP (della-Cioppa et al., 1986) will The heterologous EPSPS protein sequence is targeted to the chloroplast. Other exemplary chloroplast targeting sequences include the maize cab-m7 signal sequence (Becker et al., 1992; PCT WO 97/41228) and the pea glutathione reductase signal sequence (Creissen et al., 1991; PCT WO 97/41228) . In the present invention, AtRbcS4 (CTP1; U.S. Patent 5,728,925), AtShkG (CTP2; Klee et al., 1987), AtShkGZm (CTP2 synthetic; see SEQ ID NO of WO04009761; 14), and PsRbcS (Coruzzi et al., 1984) for example It is especially beneficial in the expression of DMO polypeptides.

作为翻译前导序列发挥功能的5’UTR是位于基因的启动子序列和编码序列之间的DNA遗传元件。翻译前导序列存在于翻译起始序列上游的完全加工的mRNA中。翻译前导序列可以影响一级转录物向mRNA的加工、mRNA稳定性或翻译效率。翻译前导序列的实例包括玉米和牵牛花热激蛋白前导序列(美国专利号5,362,865)、植物病毒包膜蛋白前导序列、植物rubisco前导序列,等等(Turner和Foster,1995)。在本发明中,尤其可发现益处的5’UTR是GmHsp(美国专利5,659,122),PhDnaK(美国专利5,362,865),AtAnt1,TEV(Carrington和Freed,1990),和AGRtunos(GenBank检索号V00087;Bevan etal.,1983)。The 5'UTR, which functions as a translation leader sequence, is a genetic element of DNA located between the promoter sequence and the coding sequence of a gene. The translation leader sequence is present in the fully processed mRNA upstream of the translation initiation sequence. The translation leader sequence can affect the processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences include maize and morning glory heat shock protein leaders (US Pat. No. 5,362,865), plant viral envelope protein leaders, plant rubisco leaders, and the like (Turner and Foster, 1995). In the present invention, 5'UTRs of particular interest are found to be GmHsp (US Patent 5,659,122), PhDnaK (US Patent 5,362,865), AtAnt1, TEV (Carrington and Freed, 1990), and AGRtunos (GenBank Accession No. V00087; Bevan et al. , 1983).

3’非翻译序列、3’转录终止区或聚腺苷酸化区指DNA分子,其连接到基因的编码区并位于基因的编码区下游并且包括提供聚腺苷酸化信号和能够影响转录、mRNA加工或基因表达的其他调节信号的多核苷酸。聚腺苷酸化信号在植物中发挥功能,引起在mRNA前体的3’末端加入聚腺苷酸核苷酸。聚腺苷酸化序列可来自天然基因、来自多种植物基因,或来自T-DNA基因。3’转录终止区的一个实例是胭脂碱合酶3’区(nos3’;Fraley et al.,1983)。已经描述了不同3’非翻译区的用途(Ingelbrecht et al.,1989)。来自豌豆(Pisum sativum)RbcS2基因(Ps.RbcS2-E9;Coruzzi et al.,1984)和AGRtu.nos(Rojiyaa et al.,1987,Genbank检索号E01312)的聚腺苷酸化分子对于本发明是尤其有益的。3' untranslated sequence, 3' transcription termination region, or polyadenylation region refers to a DNA molecule that is linked to and located downstream of the coding region of a gene and that includes polyadenylation signals that provide and are capable of affecting transcription, mRNA processing or other regulatory signals of gene expression. The polyadenylation signal functions in plants to cause the addition of poly(A) nucleotides at the 3' end of the pre-mRNA. The polyadenylation sequence can be from a native gene, from various plant genes, or from a T-DNA gene. An example of a 3' transcription termination region is the nopaline synthase 3' region (nos3'; Fraley et al., 1983). The use of different 3' untranslated regions has been described (Ingelbrecht et al., 1989). Polyadenylation molecules from the pea (Pisum sativum) RbcS2 gene (Ps.RbcS2-E9; Coruzzi et al., 1984) and AGRtu.nos (Rojiyaa et al., 1987, Genbank Accession No. E01312) are especially useful for the present invention. benefit.

编码DMO的多核苷酸分子表达单位可以连接到含有可筛选/可评分标记或赋予所希望性状的基因的遗传元件的表达单位中的第二种多核苷酸分子。用于筛选假定的转化细胞的常用基因包括β-葡糖醛酸糖苷酶(GUS)、β-半乳糖苷酶、萤光素酶和氯霉素乙酰转移酶(Jefferson,1987;Teeri et al.,1989;Koncz etal.,1987;De Block et al.,1984),绿色荧光蛋白(GFP)(Chalfie et al.,1994;Haseloff et al.,1995;和PCT申请WO97/41228)。A DMO-encoding polynucleotide molecule expression unit can be linked to a second polynucleotide molecule in the expression unit containing a screenable/scorable marker or genetic element of a gene conferring a desired trait. Commonly used genes for screening putatively transformed cells include β-glucuronidase (GUS), β-galactosidase, luciferase, and chloramphenicol acetyltransferase (Jefferson, 1987; Teeri et al. , 1989; Koncz et al., 1987; De Block et al., 1984), green fluorescent protein (GFP) (Chalfie et al., 1994; Haseloff et al., 1995; and PCT application WO97/41228).

第二种多核苷酸分子可以包括但不限于,作为选择标记的基因。第二种或另一种基因可以提供与植物形态、生理、生长和发育、产量、营养增强、疾病或害虫抗性或环境或化学耐受性相关的所希望的特征并且可以包括遗传元件,所述遗传元件包含除草剂抗性(美国专利6,803,501;6,448,476;6,248,876;6,225,114;6,107,549;5,866,775;5,804,425;5,633,435;5,463,175),增加的产量(美国专利RE38,446;6,716,474;6,663,906;6,476,295;6,441,277;6,423,828;6,399,330;6,372,211;6,235,971;6,222,098;5,716,837),昆虫控制(美国专利6,809,078;6,713,063;6,686,452;6,657,046;6,645,497;6,642,030;6,639,054;6,620,988;6,468,523;6,326,351;6,313,378;6,284,949;6,281,016;6,248,536;6,242,241;6,221,649;6,177,615;6,156,573;6,153,814;6,110,464;6,093,695;5,959,091;5,942,664;5,942,658,5,880,275;5,763,245;5,763,241),真菌疾病抗性(美国专利6,653,280;6,573,361;6,506,962;6,316,407;6,215,048;5,516,671;5,773,696;6,121,436;6,316,407;6,506,962),病毒抗性(美国专利6,617,496;6,608,241;6,015,940;6,013,864;5,850,023;5,304,730),线虫抗性(美国专利6,228,992),细菌疾病抗性(美国专利5,516,671),植物生长和发育(美国专利6,723,897;6,518,488),淀粉生产(美国专利6,538,181;6,538,179;6,538,178;5,750,876;6,476,295),改变的油生产(美国专利6,444,876;6,426,447;6,380,462),高油产量(美国专利6,495,739;5,608,149;6,483,008;6,476,295),修饰的脂肪酸含量(美国专利6,828,475;6,822,141;6,770,465;6,706,950;6,660,849;6,596,538;6,589,767;6,537,750;6,489,461;6,459,018),高蛋白质产量(美国专利6,380,466),果实成熟(美国专利5,512,466),增强的动物和人类营养(美国专利6,723,837;6,653,530;6,5412,59;5,985,605;6,171,640),生物聚合物(美国专利RE37,543;6,228,623;5,958,745和美国专利公开号US20030028917),环境胁迫抗性(美国专利6,072,103),药用肽和可分泌的肽(美国专利6,812,379;6,774,283;6,140,075;6,080,560),改进的加工性状(美国专利6,476,295),提高的可消化性(美国专利6,531,648),低棉子糖(美国专利6,166,292),工业酶生产(美国专利5,543,576),改进的风味(美国专利6,011,199),固氮作用(美国专利5,229,114),杂种制种(美国专利5,689,041),纤维生产(美国专利6,576,818;6,271,443;5,981,834;5,869,720)和生物燃料生产(美国专利5,998,700)。如本领域技术人员参考本公开可以理解,这些或其他遗传元件、方法和转基因的任一种可以用于本发明。The second polynucleotide molecule may include, but is not limited to, a gene as a selectable marker. The second or another gene may provide desirable characteristics associated with plant morphology, physiology, growth and development, yield, nutritional enhancement, disease or pest resistance, or environmental or chemical tolerance and may include genetic elements, so述遗传元件包含除草剂抗性(美国专利6,803,501;6,448,476;6,248,876;6,225,114;6,107,549;5,866,775;5,804,425;5,633,435;5,463,175),增加的产量(美国专利RE38,446;6,716,474;6,663,906;6,476,295;6,441,277;6,423,828; 6,399,330;6,372,211;6,235,971;6,222,098;5,716,837),昆虫控制(美国专利6,809,078;6,713,063;6,686,452;6,657,046;6,645,497;6,642,030;6,639,054;6,620,988;6,468,523;6,326,351;6,313,378;6,284,949;6,281,016;6,248,536;6,242,241;6,221,649;6,177,615; 6,156,573;6,153,814;6,110,464;6,093,695;5,959,091;5,942,664;5,942,658,5,880,275;5,763,245;5,763,241),真菌疾病抗性(美国专利6,653,280;6,573,361;6,506,962;6,316,407;6,215,048;5,516,671;5,773,696;6,121,436;6,316,407;6,506,962),病毒Resistance (US Patent 6,617,496; 6,608,241; 6,015,940; 6,013,864; 5,850,023; 5,304,730), nematode resistance (US Patent 6,228,992), bacterial disease resistance (US Patent 5,516,671), plant growth and development (US Patent 6,723,897; 6,518), production (US Patents 6,538,181; 6,538,179; 6,538,178; 5,750,876; 6,476,295), altered oil production (US Patents 6,444,876; 6,426,447; 6,380,462), high oil yield (US Patents 6,495,739; 5,608,149; 6,483,079 modified fatty acid content)国专利6,828,475;6,822,141;6,770,465;6,706,950;6,660,849;6,596,538;6,589,767;6,537,750;6,489,461;6,459,018),高蛋白质产量(美国专利6,380,466),果实成熟(美国专利5,512,466),增强的动物和人类营养(美国专利6,723,837 6,653,530; 6,5412,59; 5,985,605; 6,171,640), biopolymers (US Pat. RE37,543; 6,228,623; 5,958,745 and US Patent Publication No. US20030028917), environmental stress resistance (US Pat. Secreted peptides (US Patents 6,812,379; 6,774,283; 6,140,075; 6,080,560), improved processing traits (US Patent 6,476,295), increased digestibility (US Patent 6,531,648), low raffinose (US Patent 6,166,292), industrial enzyme production ( 5,543,576), improved flavor (US 6,011,199), nitrogen fixation (US 5,229,114), hybrid seed production (US 5,689,041), fiber production (US 6,576,818; 6,271,443; 5,981,834; 5,869,720) and biofuel production (US Patent 5,998,700). Any of these or other genetic elements, methods and transgenes may be used in the present invention, as will be understood by those of skill in the art with reference to this disclosure.

表达单位可以作为第一种质粒的右边界(RB)和左边界(LB)区之间的T-DNA与携带T-DNA转移和整合功能的第二种质粒一起在农杆菌(Agrobacterium)中提供。构建体也可以含有在细菌细胞中提供复制功能和抗生素选择的质粒主链DNA区段,如大肠杆菌复制起点,如ori322,宽宿主范围复制起点,如oriV或oriRi,和选择标记的编码区,如编码Tn7氨基糖苷腺苷酸转移酶(aadA)的Spec/Strp,其赋予对壮观霉素或链霉素的抗性,或者庆大霉素(Gm,Gent)选择标记基因。对于植物转化,宿主细菌菌株通常是根癌农杆菌ABI、C58或LBA4404。然而,植物转化领域技术人员已知的其他菌株可以在本发明中发挥功能。The expression unit can be provided in Agrobacterium as a T-DNA between the right border (RB) and left border (LB) regions of the first plasmid together with a second plasmid carrying the T-DNA transfer and integration functions . The construct may also contain a plasmid backbone DNA segment that provides replication function and antibiotic selection in bacterial cells, such as an E. coli origin of replication, such as ori322, a wide host range origin of replication, such as oriV or oriRi, and the coding region for a selectable marker, Such as Spec/Strp encoding Tn7 aminoglycosyladenylate transferase (aadA), which confers resistance to spectinomycin or streptomycin, or the gentamicin (Gm, Gent) selectable marker gene. For plant transformation, the host bacterial strain is usually Agrobacterium tumefaciens ABI, C58 or LBA4404. However, other strains known to those skilled in the art of plant transformation may function in the present invention.

3.转基因细胞的制备3. Preparation of Transgenic Cells

通过本领域公知的任一种将转基因导入细胞的技术可以实现转化植物细胞(见例如,Miki et al.,1993)。认为此类方法的实例包括几乎任何将DNA导入细胞的方法。已经描述的方法包括如美国专利号5,384,253中阐明的电穿孔;美国专利号5,015,580;5,550,318;5,538,880;6,160,208;6,399,861;和6,403,865中阐明的微粒轰击;如美国专利号5,635,055;5,824,877;5,591,616;5,981,840;和6,384,301中阐明的农杆菌介导的转化;和美国专利号5,508,184中阐明的原生质体转化。通过应用诸如这些技术,可以根据本发明稳定转化和选择几乎任何植物物种的细胞并将这些细胞发育成转基因植物。Transformation of plant cells can be accomplished by any of the techniques known in the art for introducing transgenes into cells (see, e.g., Miki et al., 1993). Examples of such methods are considered to include almost any method of introducing DNA into cells. Methods that have been described include electroporation as set forth in US Patent No. 5,384,253; US Patent Nos. 5,015,580; 5,550,318; 5,538,880; 6,160,208; Agrobacterium-mediated transformation as described in 6,384,301; and protoplast transformation as described in US Patent No. 5,508,184. By applying techniques such as these, cells of almost any plant species can be stably transformed and selected according to the present invention and these cells developed into transgenic plants.

将表达载体导入植物的最广泛利用的方法是基于农杆菌的天然转化系统(例如,Horsch et al.,1985)。根癌农杆菌和发根农杆菌(A.rhizogenes)是植物病原性土壤细菌,其遗传转化植物细胞。根癌农杆菌和发根农杆菌的Ti和Ri质粒分别携带负责植物的遗传转化的基因(例如,Kado,1991)。农杆菌载体系统和农杆菌介导的基因转移方法的描述由许多参考文献提供,包括Miki et al.,上文,Moloney et al.,1989,和美国专利号:4,940,838和5,464,763。与植物天然相互作用的其他细菌,如大豆根瘤菌属(Sinorhizobium)、根瘤菌属(Rhizobium)和中间根瘤菌属(Mesorhizobium)可以被修饰以介导基因转移到许多不同的植物中。通过获得卸甲(disarmed)的Ti质粒和合适的二元载体可以使得这些植物相关的共生细菌对于基因转移为感受态的(Brothers et al,2005)。The most widely utilized method for introducing expression vectors into plants is based on the natural transformation system of Agrobacterium (e.g., Horsch et al., 1985). A. tumefaciens and A. rhizogenes are phytopathogenic soil bacteria that genetically transform plant cells. The Ti and Ri plasmids of A. tumefaciens and A. rhizogenes, respectively, carry genes responsible for genetic transformation of plants (eg, Kado, 1991). Descriptions of Agrobacterium vector systems and Agrobacterium-mediated gene transfer methods are provided by numerous references, including Miki et al., supra, Moloney et al., 1989, and U.S. Patent Nos.: 4,940,838 and 5,464,763. Other bacteria that interact naturally with plants, such as Sinorhizobium, Rhizobium, and Mesorhizobium, can be modified to mediate gene transfer into many different plants. These plant-associated commensal bacteria can be rendered competent for gene transfer by obtaining disarmed Ti plasmids and appropriate binary vectors (Brothers et al, 2005).

B.组织培养和植物再生B. Tissue Culture and Plant Regeneration

通过首先在发芽培养基上并随后在生根培养基上培养外植体可以实现所转化的植物细胞再生为可育的植物。有时,可以在愈伤组织培养基上培养外植体然后转移到发芽培养基上。可以为每种植物系统实现并优化多种培养基和转移要求用于植物转化和转基因植物的回收。因此,此类培养基和培养条件可以被修饰或用营养等同的组分或用于选择和回收转基因事件的类似方法替代。Regeneration of transformed plant cells into fertile plants can be achieved by culturing the explants first on germination medium and subsequently on rooting medium. Sometimes, explants can be grown on callus medium and then transferred to germination medium. Various media and transfer requirements for plant transformation and recovery of transgenic plants can be realized and optimized for each plant system. Accordingly, such media and culture conditions may be modified or replaced with nutritionally equivalent components or similar methods for selection and recovery of transgenic events.

可以将营养培养基制备为液体,但是这可以通过向液体中加入能够提供固体支持的物质固化。琼脂最常用于该目的。Bactoagar、Hazelton琼脂、Gelrite和Gelgro是特定类型的固体支持体,其适于组织培养中植物细胞的生长。一些细胞类型将在液体悬浮液或固体培养基或在两种培养基上生长和分裂。The nutrient medium can be prepared as a liquid, but this can be solidified by adding to the liquid a substance capable of providing solid support. Agar is most commonly used for this purpose. Bactoagar, Hazelton agar, Gelrite and Gelgro are specific types of solid supports suitable for the growth of plant cells in tissue culture. Some cell types will grow and divide in liquid suspension or solid media, or both.

受体细胞靶包括,但不限于,分生组织细胞、愈伤组织、未成熟胚和配子细胞,如小孢子花粉、精细胞和卵细胞。可以用于再生可育的转基因植物的任何细胞可以用于一些实施方案中。例如,可以转化未成熟胚,接着选择和启动愈伤组织并随后再生可育的转基因植物。未成熟胚的直接转化避免了对长期开发受体细胞培养物的需要。分生细胞(即,能够持续细胞分裂并且特征为未分化的细胞学外观(通常存在于植物的生长点或组织,如根尖、茎尖、侧芽等处)的植物细胞)也可以用作受体植物细胞。因为它们未分化的生长和能够器官分化和全能性,所以可以从单个转化的分生细胞回收完整的转化植物。Recipient cell targets include, but are not limited to, meristematic cells, callus tissue, immature embryos, and gametic cells, such as microspore pollen, sperm cells, and egg cells. Any cell that can be used to regenerate fertile transgenic plants can be used in some embodiments. For example, immature embryos can be transformed, followed by selection and priming of calli and subsequent regeneration of fertile transgenic plants. Direct transformation of immature embryos avoids the need for long-term development of recipient cell cultures. Meristematic cells (i.e., plant cells capable of sustained cell division and characterized by an undifferentiated cytological appearance (commonly found in growing points or tissues of plants, such as root tips, shoot tips, lateral buds, etc.) can also be used as recipients. somatic plant cells. Because of their undifferentiated growth and capacity for organ differentiation and totipotency, whole transformed plants can be recovered from a single transformed meristematic cell.

体细胞是多种类型的。胚发生细胞是可以通过胚形成被诱导再生植物的体细胞的一个实例。非胚发生细胞是通常不以这种方式应答的那些细胞。Somatic cells are of many types. An embryogenic cell is an example of a somatic cell that can be induced to regenerate a plant through embryogenesis. Non-embryogenic cells are those cells that do not normally respond in this way.

可以使用在细胞群体内富集受体细胞的某些技术。例如,II型愈伤组织发育,接着人工选择和培养脆性的胚发生组织,通常导致富集用于例如微粒转化的受体细胞。Certain techniques for enriching recipient cells within a population of cells can be used. For example, Type II callus development, followed by artificial selection and culture of fragile embryogenic tissue, usually results in enrichment of recipient cells for, eg, microparticle transformation.

在一些实施方案中,在培养中生长后选择受体细胞。培养的细胞可以在固体支持物上或者以液体悬浮液的形式生长。在任一情况中,可以以培养基的形式为细胞提供营养,并控制环境条件。有许多类型的组织培养基,其包含氨基酸、盐、糖、生长调节剂和维生素。用于本发明实践中的大多数培养基将具有一些相似的组分,而根据公知的组织培养实践,培养基可以在组成和成分的比例方面不同。例如,多种细胞类型通常在一种以上的培养基中生长,但是将取决于生长培养基而显示出不同的生长速率和不同的形态。在一些培养基中,细胞存活但是不分裂。也经常基于所选的物种或细胞类型优化培养基组成。In some embodiments, recipient cells are selected after growth in culture. Cultured cells can be grown on solid supports or in liquid suspension. In either case, nutrients can be provided to the cells in the form of culture medium, and the environmental conditions controlled. There are many types of tissue culture media, which contain amino acids, salts, sugars, growth regulators and vitamins. Most media used in the practice of the present invention will have some similar components, while media may vary in composition and proportions of ingredients in accordance with known tissue culture practices. For example, multiple cell types are often grown in more than one medium, but will exhibit different growth rates and different morphologies depending on the growth medium. In some media, cells survive but do not divide. Media composition is also often optimized based on the species or cell type chosen.

以前已经描述了适于植物细胞培养的多种类型的培养基。这些培养基的实例包括但不限于,Chu et al.(1975)描述的N6培养基和MS培养基(Murashige & Skoog,1962)。在一些实施方案,优选使用具有某种程度上较低的氨/硝酸盐比例的培养基如N6,以将细胞保持在能够持续分裂的原胚状态从而促进受体细胞的产生。也可以使用Woody植物培养基(WPM)(Lloyd和McCown,1981)。Various types of media suitable for plant cell culture have been described previously. Examples of such media include, but are not limited to, N6 medium described by Chu et al. (1975) and MS medium (Murashige & Skoog, 1962). In some embodiments, it is preferred to use a medium with a somewhat lower ammonia/nitrate ratio, such as N6, to maintain the cells in a proembryonic state capable of continued division to facilitate production of recipient cells. Woody Plant Medium (WPM) can also be used (Lloyd and McCown, 1981).

保持细胞培养物的方法可以促进它们作为用于转化的受体细胞来源的应用。用于转移到新鲜培养基的细胞的手工选择、转移到新鲜培养基的频率、培养基的组成,和环境因子,包括但不限于,光质量和数量和温度都是保持用作受体细胞来源的愈伤组织和/或悬浮培养物中的因素。愈伤组织在不同的培养条件之间交替对于在培养中富集受体细胞是有益的。例如,可以将细胞在悬浮培养物中培养,但是以规则的时间间隔转移到固体培养基中。在固体培养基上生长一段时间后,可以手工选择细胞用于返回到液体培养基中。重复该转移到新鲜培养基的顺序可以用于富集受体细胞。将细胞培养基穿过1.9mm筛也可以用于保持愈伤组织或悬浮培养物的脆性并当使用此类细胞类型时富集可转化的细胞。Methods of maintaining cell cultures can facilitate their use as a source of recipient cells for transformation. Manual selection of cells for transfer to fresh medium, frequency of transfer to fresh medium, composition of the medium, and environmental factors including, but not limited to, light quality and quantity, and temperature are maintained for use as recipient cell sources factors in callus and/or suspension cultures. Alternating callus between different culture conditions is beneficial for enriching recipient cells in culture. For example, cells can be grown in suspension culture, but transferred to solid medium at regular intervals. After a period of growth on solid media, cells can be manually selected for return to liquid media. Repeating this sequence of transfers to fresh medium can be used to enrich recipient cells. Passing the cell culture medium through a 1.9 mm sieve can also be used to maintain the fragility of callus or suspension cultures and enrich for transformable cells when using such cell types.

C.转基因植物C. Transgenic plants

一旦已经选择了转基因细胞,可以使用本领域公知的技术将该细胞再生成可育的转基因植物。随后分析转化植物以确定在DNA构建体中存在或不存在特定目的核酸。分子分析可以包括但不限于,DNA印迹(Southern,1975)或PCR分析、免疫诊断方法。也可以使用田间评估。可以进行这些和其他公知的方法来证实所公开方法产生的转化植物的稳定性。这些方法是本领域技术人员公知的(Sambrook et al.,1989)。Once a transgenic cell has been selected, the cell can be regenerated into a fertile transgenic plant using techniques well known in the art. Transformed plants are then analyzed to determine the presence or absence of the particular nucleic acid of interest in the DNA construct. Molecular analysis may include, but is not limited to, Southern blot (Southern, 1975) or PCR analysis, immunodiagnostic methods. Field assessments can also be used. These and other well-known methods can be performed to demonstrate the stability of transformed plants produced by the disclosed methods. These methods are well known to those skilled in the art (Sambrook et al., 1989).

从而可以产生包含本文提供的DMO编码序列的转基因植物。具体地,经济上重要的植物,包括作物、树、和其他植物可以用本发明的DNA构建体转化使得它们是麦草畏耐受的或者具有增加的耐受性。当前认为耐受生长素样除草剂的植物从而可以被转化以增加它们对该除草剂的耐受性。可以用于本发明的植物的一些非限制性实例包括苜蓿、大麦、菜豆、甜菜、绿花椰菜、甘蓝、胡萝卜、芸苔、花椰菜、芹菜、大白菜、玉米、棉花、黄瓜、茄子、韭葱、莴苣、甜瓜、燕麦、洋葱、豌豆、胡椒、花生、马铃薯、西葫芦、萝卜、稻、甜玉米、高粱、大豆、菠菜、南瓜、糖甜菜、向日葵、蕃茄、西瓜和小麦。Transgenic plants comprising the DMO coding sequences provided herein can thus be produced. In particular, economically important plants, including crops, trees, and other plants can be transformed with the DNA constructs of the invention such that they are dicamba-tolerant or have increased tolerance. Plants currently thought to be tolerant to an auxin-like herbicide can thus be transformed to increase their tolerance to that herbicide. Some non-limiting examples of plants that may be used in the present invention include alfalfa, barley, bean, sugar beet, broccoli, cabbage, carrot, brassica, cauliflower, celery, Chinese cabbage, corn, cotton, cucumber, eggplant, leek, Lettuce, melon, oats, onions, peas, peppers, peanuts, potatoes, zucchini, radishes, rice, sweet corn, sorghum, soybeans, spinach, squash, sugar beets, sunflowers, tomatoes, watermelons, and wheat.

一旦已经制备了含有转基因的转基因植物,可以通过杂交将该转基因导入与第一种植物性相容的任何植物,而不需要直接转化第二种植物。因此,如本文所用,术语“后代”指根据本发明制备的亲本植物的任何世代的后代,其中后代包含根据本发明制备的所选的DNA构建体。“转基因植物”可以是任何世代的转基因植物。如本文公开的,与植物“杂交”以提供相对于起始植物品系具有一种或多种添加的转基因或等位基因的植物品系被定义为如下技术:其通过将起始品系与包含本发明的转基因或等位基因的供体植物品系杂交导致特定序列被导入植物品系中。为了实现该目的,可以例如进行下面的步骤:(a)种植第一种(起始品系)和第二种(包含所希望的转基因或等位基因的供体植物品系)亲本植物的种子;(b)将所述第二种和第二种亲本植物的种子生长为带有花的植物;(c)将来自第一种亲本植物的花与来自第二种亲本植物的花粉授粉;和(d)收获在带有被受精的花的第一种植物上产生的种子。Once a transgenic plant containing the transgene has been prepared, the transgene can be introduced by crossing into any plant that is vegetatively compatible with the first without directly transforming the second plant. Thus, as used herein, the term "progeny" refers to a descendant of any generation of a parent plant prepared according to the present invention, wherein the progeny comprise a selected DNA construct prepared according to the present invention. A "transgenic plant" can be a transgenic plant of any generation. As disclosed herein, "crossing" with a plant to provide a plant line with one or more added transgenes or alleles relative to the starting plant line is defined as the technique by combining the starting line with the Crossing of a transgenic or allelic donor plant line results in specific sequences being introduced into the plant line. To achieve this, the following steps can be carried out, for example: (a) planting the seeds of the first (starter line) and second (donor plant line comprising the desired transgene or allele) parent plants; ( b) growing the seeds of the second and second parent plants into flowering plants; (c) pollinating the flowers from the first parent plant with pollen from the second parent plant; and (d ) to harvest the seeds produced on the first plants with fertilized flowers.

本发明从而提供了包含本文提供的DMO编码核酸的转基因植物组织。该组织可以已经用DMO编码核酸直接转化或者遗传了来自祖细胞的核酸。本发明提供的组织特别包括但不限于,细胞、胚、未成熟胚、分生细胞、未成熟雄花穗、小孢子、花粉、叶、花药、根、根尖、花和种子。本发明从而提供了包含本文所述的核酸的任何此类组织,包括任何植物部分。种子尤其在以谷粒的形式用于商业或食品应用,以及用于种植而生长额外的作物中特别有益。The present invention thus provides transgenic plant tissues comprising the DMO-encoding nucleic acids provided herein. The tissue may have been directly transformed with a DMO-encoding nucleic acid or may have inherited nucleic acid from a progenitor cell. Tissues provided by the invention specifically include, but are not limited to, cells, embryos, immature embryos, meristematic cells, immature tassels, microspores, pollen, leaves, anthers, roots, root tips, flowers and seeds. The invention thus provides any such tissue, including any plant part, comprising a nucleic acid described herein. Seeds are especially beneficial in the form of grains for commercial or food applications, and for planting to grow additional crops.

实施例Example

包括下面的实施例用于阐明本发明的实施方案。本领域技术人员将理解下面实施例中公开的技术代表本发明人发现的在本发明的实践中良好地发挥作用的技术。然而,本领域技术人员根据本公开将理解可以在公开的特定实施方案中进行许多改变并且仍然得到相似或类似的结果而不背离本发明的概念、精神和范围。更具体地,将显而易见的是化学或生理学相对的某些物质可以代替本文所述的物质而实现相同或相似的结果。认为本领域技术人员显而易见的所有此类相似的替代方案和修饰在所附权利要求定义的本发明的精神、范围和概念之内。The following examples are included to illustrate embodiments of the invention. Those of skill in the art will appreciate that the techniques disclosed in the examples that follow represent techniques discovered by the inventors to function well in the practice of the invention. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain substances of chemical or physiological relative may be substituted for those described herein to achieve the same or similar results. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

实施例1Example 1

用于遗传改造的DMO基因的载体构建Vector Construction of DMO Gene for Genetic Modification

最初从DMOw模板通过PCR扩增产生DMOc变体编码序列。在该扩增中,从质粒pPLH1扩增DMOw的编码区,所述质粒含有DMOw基因作为嗜麦芽假单胞菌菌株DI-6,DNA的3.5kbp Xho I/Sst I片段。为了DNA扩增,使用5’引物和3’引物,5’引物在PCR产物的5’末端附近插入Nco I限制位点和ATG起始密码子后紧邻的丙氨酸的密码子,3’引物在PCR产物的3’末端产生Xba I限制位点(步骤细节在下文提供)。随后通过核酸测序鉴定112W向112C的改变。DMOc variant coding sequences were initially generated by PCR amplification from the DMOw template. In this amplification, the coding region of DMOw was amplified from plasmid pPLH1 containing the DMOw gene as a 3.5 kbp Xho I/Sst I fragment of DNA from Pseudomonas maltophilia strain DI-6. For DNA amplification, use the 5' primer and the 3' primer, the 5' primer inserts a Nco I restriction site near the 5' end of the PCR product and the codon for alanine immediately after the ATG start codon, the 3' primer An Xba I restriction site was created at the 3' end of the PCR product (details of the procedure are provided below). The 112W to 112C change was subsequently identified by nucleic acid sequencing.

为了产生植物转化载体,用分别加入编码区的5’和3’末端的NcoI和Xba I位点将DMOc基因插入到pRTL2载体(Carrington和Freed,1990)中,从而将编码区融合到载体的烟草蚀纹病毒(TEV前导序列)翻译增强子元件。使用特别设计的PCR引物导入5’Nco I位点并在ATG起始密码子后加入GCC密码子(丙氨酸)并在编码区的3’末端产生Xba I限制位点。为了允许将DMOc递送到叶绿体,将来自豌豆Rubisco亚基基因的叶绿体转运肽编码区(Coruzzi et al.,1983)置于DMOC编码区上游以允许导向于叶绿体。将Bgl II和EcoR I片段上携带的转运肽编码序列克隆到pBluescript II KS+载体的BamH I和EcoR I位点中。该构建体用作PCR反应中的模板,其在转运肽序列的3’末端和5’末端都插入Nco I位点。将扩增的产物克隆到pRLT2载体的Nco I位点中使得转运肽序列直接位于DMO基因编码区的上游并且与符合其读码框。用Xho I和Xba I从pRTL2载体切除由TEV前导序列、转运肽区和DMODNA编码序列组成的盒并将其克隆到pKLP36载体(U.S.5,850,019;图5)中,使用相同的限制酶位点用于连接该盒与PC1SV启动子和PsRbcS2-E9聚腺苷酸序列。新的载体被标记为pKLP36-TEV-TP-DMOc(也称作pKLP36-DMOc),并在2006年2月2日保藏在美国典型培养物保藏中心(ATCC),10801 University Boulevard,Manassas,Va.20110-2209USA,并分配ATCC保藏号PTA-7357。To generate the plant transformation vector, the DMOc gene was inserted into the pRTL2 vector (Carrington and Freed, 1990) with NcoI and XbaI sites added to the 5' and 3' ends of the coding region, respectively, thereby fusing the coding region to the tobacco Etch virus (TEV leader) translational enhancer element. Specially designed PCR primers were used to introduce a 5' Nco I site and add a GCC codon (alanine) after the ATG start codon and create an Xba I restriction site at the 3' end of the coding region. To allow delivery of DMOc to chloroplasts, the chloroplast transit peptide coding region from the pea Rubisco subunit gene (Coruzzi et al., 1983) was placed upstream of the DMOC coding region to allow targeting to the chloroplast. The transit peptide coding sequences carried on the Bgl II and EcoR I fragments were cloned into the BamH I and EcoR I sites of the pBluescript II KS+ vector. This construct was used as a template in a PCR reaction where an Nco I site was inserted at both the 3' end and the 5' end of the transit peptide sequence. The amplified product was cloned into the Nco I site of the pRLT2 vector such that the transit peptide sequence was located directly upstream of the coding region of the DMO gene and in frame with it. The cassette consisting of the TEV leader sequence, transit peptide region, and DMODNA coding sequence was excised from the pRTL2 vector with Xho I and Xba I and cloned into the pKLP36 vector (U.S. 5,850,019; Figure 5), using the same restriction enzyme sites used for This cassette was linked to the PC1SV promoter and the PsRbcS2-E9 polyA sequence. The new vector was labeled pKLP36-TEV-TP-DMOc (also referred to as pKLP36-DMOc) and was deposited with the American Type Culture Collection (ATCC) on February 2, 2006, 10801 University Boulevard, Manassas, Va. 20110-2209 USA, and assigned ATCC deposit number PTA-7357.

pKLP36-DMOc载体用于转化烟草、拟南芥和番茄植物。对于大豆转化,将DMOc盒从pKLP36-TEV-TP-DMOc切出作为EcoR I/Acc I区段并克隆到EcoR I/Acc I消化的pPZP101(Hajdukiewicz et al.,1994)中用于得到右和左边界。然后用ScaI切割该载体(pPZP101+DMOc盒)并将DMOc盒克隆到二元载体pPTN200(见下文)——pPZP201的衍生物(Hajdukiewicz et al.,1994)中,其含有侧翼为左和右T-DNA边界的bar盒并允许在除草剂Basta的存在下选择再生转化体。将新的两个T-DNA二元载体称作pPTN348并且用于大豆转化。通过首先将来自pGPTV-bar(Becker et al.,1992)的nos启动子-bar元件作为PstI/BamHI区段克隆到pPZP201(见Hajdukiewicz et al.,1994)中制备pPTN200载体,并将所得质粒命名为pPTN193。将来自pE7113-GUS(见Mitsuhara et al.,1996)的nos终止子克隆到pPTN193中处于nos启动子-bar元件的下游以得到bar盒。The pKLP36-DMOc vector was used to transform tobacco, Arabidopsis and tomato plants. For soybean transformation, the DMOc cassette was excised from pKLP36-TEV-TP-DMOc as the EcoR I/Acc I segment and cloned into EcoR I/Acc I digested pPZP101 (Hajdukiewicz et al., 1994) for obtaining right and left border. This vector (pPZP101+DMOc cassette) was then cut with ScaI and the DMOc cassette cloned into the binary vector pPTN200 (see below), a derivative of pPZP201 (Hajdukiewicz et al., 1994), which contains flanking left and right T - DNA borders the bar cassette and allows selection of regenerated transformants in the presence of the herbicide Basta. The new two T-DNA binary vectors were called pPTN348 and used for soybean transformation. The pPTN200 vector was prepared by first cloning the nos promoter-bar element from pGPTV-bar (Becker et al., 1992) as a PstI/BamHI segment into pPZP201 (see Hajdukiewicz et al., 1994), and the resulting plasmid was named is pPTN193. The nos terminator from pE7113-GUS (see Mitsuhara et al., 1996) was cloned into pPTN193 downstream of the nos promoter-bar element to obtain the bar cassette.

从Fermentas或Invitrogen得到限制酶和其他酶。从Roche得到DIG-11-dUTP(碱标记的),CSPD(随时可用的),DIG III分子量标记,抗洋地黄毒苷-AP(Fab片段)和封闭试剂。从Ambion得到预杂交溶液ULTRAhyb。从Roche得到DIG-RNA分子量标准I。从AmershamBiosciences得到抗兔IgG、过氧化物酶-连接的抗体(驴)和Hybond ECL(硝酸纤维素)膜。用标准技术(Ausubel et al.,1995)进行DNA、RNA、蛋白质印迹、重组DNA技术和其他分子生物学方法。Restriction and other enzymes were obtained from Fermentas or Invitrogen. DIG-11-dUTP (base-labeled), CSPD (ready to use), DIG III molecular weight marker, anti-digoxigenin-AP (Fab fragment) and blocking reagent were obtained from Roche. The prehybridization solution ULTRAhyb was obtained from Ambion. DIG-RNA molecular weight marker I was obtained from Roche. Anti-rabbit IgG, peroxidase-linked antibody (donkey) and Hybond ECL (nitrocellulose) membranes were obtained from Amersham Biosciences. DNA, RNA, Western blotting, recombinant DNA techniques, and other molecular biology methods were performed using standard techniques (Ausubel et al., 1995).

实施例2Example 2

转基因植物的产生和分析Generation and analysis of transgenic plants

烟草、番茄、大豆和拟南芥用于转基因表达遗传改造的DMOc基因和证实在表达该基因的植物中的麦草畏耐受性。将二元载体pKLP36中的DMOc编码序列通过三亲交配(Ditta 1980)导入含有卸甲Ti质粒pMP90(Koncz和Schell,1986)的土壤农杆菌菌株C58C1中。用Horsch etal.(Horsch 1985)描述的叶盘方案将所得的转接合子用于烟草(cv Xanthi)和番茄(cv Rutgers)转化。通过花浸入技术(Clough和Bent,1998)转化拟南芥。通过子叶节农杆菌介导的转化系统(Zhang et al.,1999)进行大豆品种Thorne和NE-3001的转化。Tobacco, tomato, soybean and Arabidopsis were used to transgenicly express the genetically engineered DMOc gene and to demonstrate dicamba tolerance in plants expressing the gene. The DMOc coding sequence in the binary vector pKLP36 was introduced by triparental mating (Ditta 1980) into Agrobacterium strain C58C1 containing the disarmed Ti plasmid pMP90 (Koncz and Schell, 1986). The resulting transconjugates were used for tobacco (cv Xanthi) and tomato (cv Rutgers) transformation using the leaf disk protocol described by Horsch et al. (Horsch 1985). Arabidopsis were transformed by the floral dip technique (Clough and Bent, 1998). Transformation of soybean cultivars Thorne and NE-3001 was performed by the Agrobacterium cotyledonium-mediated transformation system (Zhang et al., 1999).

DMOc基因向烟草植物基因组的农杆菌介导的基因转移产生了几种独立来源的T1代植物。用DNA、RNA和蛋白质印迹分析测试植物的DMOc基因的存在和表达。图2说明尽管该分析中的所有转基因植物(泳道1-6)在限制酶消化后都含有与克隆的DMO基因(泳道8)相同的DNA片段,但是mRNA转录物和DMO蛋白质水平在转化体之间显著不同。例如,提取物在泳道5中描述的植物显示出相对高水平的DMOmRNA但是极低水平的酶。相反,在泳道3中显示的提取物中几乎相同水平的DMO mRNA与DMO的高表达水平偶联。然而,表明通过该方法可以始终得到具有强表达的事件。Agrobacterium-mediated gene transfer of the DMOc gene to the tobacco plant genome produced T1 plants of several independent origins. Plants were tested for the presence and expression of the DMOc gene by DNA, RNA and Western blot analysis. Figure 2 illustrates that although all transgenic plants in this analysis (lanes 1-6) contained the same DNA fragment as the cloned DMO gene (lane 8) after restriction enzyme digestion, mRNA transcript and DMO protein levels varied between transformants Significantly different. For example, plants whose extracts are depicted in lane 5 showed relatively high levels of DMO mRNA but very low levels of the enzyme. In contrast, almost the same level of DMO mRNA in the extract shown in lane 3 was coupled with the high expression level of DMO. However, it was shown that events with strong expression could always be obtained by this method.

使用压缩空气、马达驱动的具有扁平扇形8002E喷嘴的轨道喷雾器用溶剂和商品级麦草畏(Clarity;BASF)喷雾温室中的植物,该喷雾器以1.87mph喷雾。添加剂包括:1.25%v/v的28%硝酸脲铵和1.0%v/v的非离子表面活性剂。以182L/ha(40加仑每英亩)应用含有不同浓度麦草畏的溶液。用Clarity除草剂以2.8kg/ha(2.51b/ac)喷雾大豆田间植株。Plants in the greenhouse were sprayed with solvent and commercial grade dicamba (Clarity; BASF) using a compressed air, motor driven orbital sprayer with a flat fan 8002E nozzle at 1.87 mph. Additives included: 1.25% v/v 28% ammonium urea nitrate and 1.0% v/v nonionic surfactant. Solutions containing dicamba at various concentrations were applied at 182 L/ha (40 gallons per acre). Soybean field plants were sprayed with Clarity herbicide at 2.8 kg/ha (2.5 lb/ac).

烟草植物,像大多数双子叶植物一样,对麦草畏处理相当敏感。这通过比较未处理的和用增量麦草畏处理的非转基因烟草植物阐明。以0.017kg/ha的水平喷雾麦草畏后容易检测到除草剂损害症状。在农业施用中杂草控制的通常使用的水平:0.28kg/ha和0.56kg/ha下症状相当严重。Tobacco plants, like most dicots, are quite sensitive to dicamba treatment. This is illustrated by comparing untreated and non-transgenic tobacco plants treated with incremental dicamba. Symptoms of herbicide damage were easily detected after spraying dicamba at a level of 0.017 kg/ha. Symptoms are quite severe at levels commonly used for weed control in agricultural applications: 0.28 kg/ha and 0.56 kg/ha.

用5.6kg/ha(比正常的施用率高10到20倍)在出苗后处理含有DMOc的转基因烟草植物引起了很少的症状(如果存在),而非转基因植物遭受严重损害。通过用含有表面活性剂的溶剂溶液(用作麦草畏应用的载体)喷雾植物可以复制转基因植物的下方叶子的伤害。用麦草畏处理转基因植物后产生的叶子没有显示出可见的损害迹象。携带遗传改造的DMOc基因的转基因番茄植物同样当用高水平麦草畏喷雾时也没有显示出损害,在该具体情况中,首先用0.56kg/ha,随后用5.6kg/ha处理。表达DMOc基因的拟南芥也展示出对麦草畏处理的强烈耐受性。在该研究中,使用的麦草畏浓度提供了1.12kg/ha的剂量。出乎意料的发现是观察到用缺少转运肽编码区的DMOc基因转化的烟草植物也耐受平均浓度的麦草畏的出苗后处理,所述耐受性仅仅稍稍低于带有具有转运肽编码区的DMOc基因的植物的耐受性。在该研究中,比较了用2.2kg/ha麦草畏对两株T1烟草植物的处理,一株携带缺少叶绿体转运肽的DMOc,另一株由于遗传分离完全缺少DMOc基因。后一植物对麦草畏处理引起的伤害完全敏感并且死于该处理(图3)。携带缺少转运肽的DMOc基因的转基因植物完全耐受2.2.kg/ha麦草畏的处理。转基因烟草植物中DMOc基因遗传的遗传学研究也表明该性状在多数植物中以正常孟德尔方式遗传并且关于除草剂耐受性保持最初的表达水平。Post-emergence treatment of transgenic tobacco plants containing DMOc with 5.6 kg/ha (10 to 20 times higher than normal application rates) caused few, if any, symptoms, while non-transgenic plants suffered severe damage. Injury to the lower leaves of transgenic plants can be replicated by spraying the plants with a surfactant-containing solvent solution (used as a vehicle for dicamba application). The leaves produced by the transgenic plants treated with dicamba showed no visible signs of damage. Transgenic tomato plants carrying the genetically engineered DMOc gene also showed no damage when sprayed with high levels of dicamba, in this particular case first 0.56 kg/ha followed by 5.6 kg/ha. Arabidopsis expressing the DMOc gene also displayed strong tolerance to dicamba treatment. In this study the concentration of dicamba used provided a dose of 1.12 kg/ha. An unexpected finding was the observation that tobacco plants transformed with the DMOc gene lacking the transit peptide coding region also tolerated post-emergence treatments at average concentrations of dicamba that were only slightly less tolerant than those with the transit peptide coding region. Plant tolerance of the DMOc gene. In this study, two T1 tobacco plants were compared treated with 2.2 kg/ha of dicamba, one carrying DMOc lacking the chloroplast transit peptide and the other completely lacking the DMOc gene due to genetic segregation. The latter plants were completely susceptible to the injury caused by the dicamba treatment and died of the treatment (Figure 3). Transgenic plants carrying the DMOc gene lacking the transit peptide were completely tolerant to the 2.2. kg/ha treatment of dicamba. Genetic studies of DMOc gene inheritance in transgenic tobacco plants also showed that this trait is inherited in a normal Mendelian manner in most plants and maintains the original expression level with respect to herbicide tolerance.

在大豆中,产生了超过50个R0转基因大豆事件并收集T1、T2和T3代种子。因为使用了根癌农杆菌二元载体系统,所以回收了带有标记基因的和无标记的含有DMOc基因的转基因植物。在任一情况中,多数转基因大豆品系在温室条件下显示出对2.8kg/ha和5.6kg/ha麦草畏处理的强烈耐受性和在两年的田间试验中显示出对2.8kg/ha(最高测试水平)麦草畏的强烈耐受性。这些结果提示与高效控制宽范围的阔叶杂草相关的携带DMOc基因的转基因大豆和其他作物的宽的安全界限。In soybean, more than 50 R 0 transgenic soybean events were generated and T 1 , T 2 and T 3 generation seeds were collected. Since the Agrobacterium tumefaciens binary vector system was used, transgenic plants containing the DMOc gene with and without the marker gene were recovered. In either case, the majority of transgenic soybean lines showed strong tolerance to 2.8 kg/ha and 5.6 kg/ha dicamba treatments under greenhouse conditions and to 2.8 kg/ha (max. Test level) Strong tolerance of dicamba. These results suggest a broad safety margin for transgenic soybeans and other crops carrying the DMOc gene associated with highly effective control of a broad range of broadleaf weeds.

在带有DMO基因的转基因大豆植物中高水平麦草畏耐受性表明能够在大豆田中施用麦草畏来强烈抑制与阔叶杂草的竞争而无作物损害。此外,使用转基因的除草剂耐受作物,麦草畏耐受性作物可以是当前的杂草控制选择的重要补充。即,它们在控制现有的除草剂耐受性杂草和抑制额外除草剂耐受性杂草的出现中是有价值的财产,所述额外除草剂耐受性杂草可以最终威胁当前的除草剂和除草剂耐受性作物的长期使用和价值。The high level of dicamba tolerance in transgenic soybean plants bearing the DMO gene demonstrates that dicamba can be applied in soybean fields to strongly inhibit competition with broadleaf weeds without crop damage. In addition, dicamba-tolerant crops could be an important addition to current weed control options using genetically modified herbicide-tolerant crops. That is, they are valuable assets in controlling existing herbicide-tolerant weeds and inhibiting the emergence of additional herbicide-tolerant weeds that could ultimately threaten current weed control long-term use and value of herbicide- and herbicide-tolerant crops.

实施例3Example 3

DMOw和DMOc的过表达、纯化和酶促性质的比较Comparison of overexpression, purification and enzymatic properties of DMOw and DMOc

A.克隆和过表达A. Cloning and overexpression

将野生型(DMOw)和变体(DMOc)DMO编码序列从质粒pMON95900DMO(DMOw)和pMON58499DMO(DMOc)克隆到载体pET28b(Novagen,.San Diego,CA)中并转化到大肠杆菌BL21细胞(Novagen,San Diego,CA)中。细胞在1升LB培养液中37℃下生长到600nm的吸光度为0.4到0.6。通过加入50μM Fe(NH4)SO4,100μM Na2S,和1mM异丙基-β-硫代吡喃半乳糖苷(IPTG)并将细胞转换到15℃而诱导蛋白质表达。15℃ 48-72小时后,以10000xg离心20分钟收获细胞。将细胞在-20℃下保存备用。The wild-type (DMOw) and variant (DMOc) DMO coding sequences were cloned from the plasmids pMON95900DMO (DMOw) and pMON58499DMO (DMOc) into the vector pET28b (Novagen,. San Diego, CA) and transformed into Escherichia coli BL21 cells (Novagen, San Diego, CA). Cells were grown in 1 liter of LB medium at 37°C to an absorbance at 600 nm of 0.4 to 0.6. Protein expression was induced by adding 50 μM Fe(NH 4 )SO 4 , 100 μM Na 2 S, and 1 mM isopropyl-β-thiogalactopyranoside (IPTG) and switching cells to 15°C. After 48-72 hours at 15°C, cells were harvested by centrifugation at 10,000 xg for 20 minutes. Cells were stored at -20°C for later use.

DMOw和DMOc在大肠杆菌中的蛋白质表达产量是不同的。尽管DMOw产量为每升LB培养基约100到150mg纯蛋白质,但是DMOc的产量为低10倍,或每升约10到15mg纯蛋白质。这是预料之外的,因为大肠杆菌对于半胱氨酸没有稀有密码子并且色氨酸仅有一个密码子,但是在两种情况中表明不管产量如何,在大肠杆菌中能够异源产生蛋白质。包含体中蛋白质的量在两种情况下是低的,提示蛋白质主要保留在可溶级分中。The protein expression yields of DMOw and DMOc in E. coli are different. While DMOw yields about 100 to 150 mg of pure protein per liter of LB medium, DMOc yields are 10-fold lower, or about 10 to 15 mg of pure protein per liter. This was unexpected since E. coli has no rare codons for cysteine and only one codon for tryptophan, but in both cases demonstrates that proteins can be produced heterologously in E. coli regardless of yield. The amount of protein in inclusion bodies was low in both cases, suggesting that the protein was mainly retained in the soluble fraction.

见来自嗜麦芽假单胞菌(Pseudomonas maltophilia)菌株DI-6的His标记的重组DMOw蛋白和大肠杆菌菌株BL21中表达的His标记的重组DMOc通过Ni-NTA柱层析纯化至均一。将细胞悬浮在裂解缓冲液(100mM NaPi pH 8.0,300mM NaCl,和10mM咪唑)中并通过超声处理破坏。以55000xg离心细胞裂解物1小时。将上清液装入Ni-NTA柱,用洗涤缓冲液(100mM NaPi pH 8.0,300mM NaCl,和20mM咪唑)洗涤柱子以除去非特异附着到树脂的蛋白质。用洗脱缓冲液(100mM NaPipH8.0,300mM NaCl,和250mM咪唑)洗脱His标记的蛋白质。对于DMOw纯化,逐步梯度足够得到95%纯的酶,而对于DMOc需要20到250mM浓度咪唑的线性梯度来实现相同水平的纯度。从柱子洗脱的酶为约95%纯度,如在SDS-聚丙烯酰胺凝胶电泳上大小分级分离后对酶的蛋白质印迹所估计的。迁移到约40kDa(37.3kDa DMO酶加上3kDAHis标记)的单个主要条带表明已经过量产生了正确的蛋白质。See His-tagged recombinant DMOw protein from Pseudomonas maltophilia strain DI-6 and His-tagged recombinant DMOc expressed in E. coli strain BL21 were purified to homogeneity by Ni-NTA column chromatography. Cells were suspended in lysis buffer (100 mM NaPi pH 8.0, 300 mM NaCl, and 10 mM imidazole) and disrupted by sonication. Cell lysates were centrifuged at 55000 xg for 1 hour. The supernatant was loaded onto a Ni-NTA column, and the column was washed with wash buffer (100 mM NaPi pH 8.0, 300 mM NaCl, and 20 mM imidazole) to remove proteins non-specifically attached to the resin. His-tagged proteins were eluted with elution buffer (100 mM NaPipH8.0, 300 mM NaCl, and 250 mM imidazole). For DMOw purification, a step gradient was sufficient to obtain 95% pure enzyme, while for DMOc a linear gradient of imidazole concentrations from 20 to 250 mM was required to achieve the same level of purity. The enzyme eluted from the column was approximately 95% pure as estimated from Western blot of the enzyme after size fractionation on SDS-polyacrylamide gel electrophoresis. A single major band migrating to ~40kDa (37.3kDa DMOase plus 3kDAHis tag) indicates that the correct protein has been overproduced.

B.DMOc和DMOw的测定法和稳态动力学B. Assays and Steady State Kinetics of DMOc and DMOw

通过Bradford测定法用兔IgG作为标准测定蛋白质浓度。通过SDS-PAGE分离蛋白质并用考马斯蓝染色。通过形成DCSA测量DMO活性,用Discovery C18柱(Supelco,Sigma-Aldrich,St.Louis,MO)通过HPLC(Waters Corporation,Milford,MA)分离DCSA。DCSA的保留时间为8分钟,麦草畏的保留时间为9.5分钟。对于动力学研究,在HPLC柱上从反应混合物分离后,检测到DCSA并通过在420nm(激发波长310nm)下的荧光发射定量。DCSA的设定浓度(12和24μM)用作定量标准。Protein concentration was determined by Bradford assay using rabbit IgG as standard. Proteins were separated by SDS-PAGE and stained with Coomassie blue. DMO activity was measured by the formation of DCSA, which was separated by HPLC (Waters Corporation, Milford, MA) with a Discovery C18 column (Supelco, Sigma-Aldrich, St. Louis, MO). The retention time of DCSA was 8 minutes and that of dicamba was 9.5 minutes. For kinetic studies, DCSA was detected and quantified by fluorescence emission at 420 nm (excitation wavelength 310 nm) after separation from the reaction mixture on an HPLC column. Set concentrations of DCSA (12 and 24 μM) were used as quantification standards.

使用麦草畏的储存液(100、200、400、800、1000、2000、5000和10000μM),0.1M KPi pH 7.2,0.1M FeSO4,0.1M NADH,和1M MgCl2。测定法在30℃进行20分钟并通过加入40μl H2SO4淬灭反应。为了测量活性,DMO与来自嗜麦芽假单胞菌菌株DI-6的过量的纯化的铁氧还蛋白和还原酶偶联。Stock solutions of dicamba (100, 200, 400, 800, 1000, 2000, 5000, and 10000 [mu]M), 0.1M KPi pH 7.2, 0.1M FeSO4 , 0.1M NADH, and 1M MgCl2 were used. The assay was performed at 30 °C for 20 min and the reaction was quenched by adding 40 μl H2SO4 . To measure activity, DMO was coupled to excess purified ferredoxin and reductase from Pseudomonas maltophilia strain DI-6.

因为DMO活性的测定法是不连续的测定法,所以重要的是建立为得到有意义的动力学参数该测定法必须运行的时间。从而,该测定法必须在初始条件下运行,因为产生的DCSA的量对于正运行的测定法的时间是线性的(图4)。结果提示该测定法可以运行20到30分钟并且仍然保持线性。图5显示了在0.1M Kpi缓冲液存在下进行的测定法的最适pH为7.2并且发现最适温度为约37℃(图6)。Because the assay of DMO activity is a discontinuous assay, it is important to establish the time that the assay must be run to obtain meaningful kinetic parameters. Thus, the assay had to be run under initial conditions since the amount of DCSA produced was linear with time for the assay being run (Figure 4). The results suggest that the assay can be run for 20 to 30 minutes and still be linear. Figure 5 shows that the assay performed in the presence of 0.1M Kpi buffer had an optimum pH of 7.2 and a temperature optimum was found to be about 37°C (Figure 6).

C.动力学数据分析C. Kinetic Data Analysis

通过将数据代入非线性稳态方程(方程1)确定米-曼参数(方程1)。用Sigma plot 8.0(Jandel Scientific)分析数据。The Mie-Man parameters (Equation 1) were determined by substituting the data into the nonlinear steady-state equation (Equation 1). Data were analyzed with Sigma plot 8.0 (Jandel Scientific).

Vo=Vmax*[S]/(Km+[S])  方程1V o =Vmax*[S]/(Km+[S]) Equation 1

也测定的DMOw和DMOc的最适pH和温度。对于两种形式的酶,最适pH在30℃测定20分钟,并最适温度测定也在pH7.2下测量了20分钟。结果在图7-9中概述并且在下文讨论。The optimum pH and temperature of DMOw and DMOc were also determined. For both forms of the enzyme, the pH optimum was determined at 30°C for 20 minutes, and the temperature optimum was also measured at pH 7.2 for 20 minutes. The results are summarized in Figures 7-9 and discussed below.

结果表明DMOw和DMOc的动力学性质不同。例如,为DMOw和DMOc计算的米-曼参数为:对于DMOw,Km=49±7μM和Vmax=633±24纳摩尔/分钟/mg,对于DMOc,Km=20.5±5μM和Vmax=676±37纳摩尔/分钟/mg。这些结果在图10和11中显示并且在下面的表1中概述。此外,为DMOw和DMOc进行的两个额外的分析产生了相似的结果(表2和3)。The results indicated that the kinetic properties of DMOw and DMOc were different. For example, the Mie-Mann parameters calculated for DMOw and DMOc are: Km = 49 ± 7 μM and Vmax = 633 ± 24 nmol/min/mg for DMOw and Km = 20.5 ± 5 μM and Vmax = 676 ± 37 nm for DMOc mol/min/mg. These results are shown in Figures 10 and 11 and summarized in Table 1 below. Furthermore, two additional analyzes performed for DMOw and DMOc yielded similar results (Tables 2 and 3).

可以看到,在催化效率方面,DMOw和DMOc酶具有不同的性质:通过该分析,DMOc是比DMOw好五倍的酶。DMOc的pH谱与DMOw的不同。首先,DMOc与DMOw相比似乎对使用的缓冲系统(TRIS vs.KPi)敏感(图9、12和13)。其次,与TRIS相比(此时DMOc的活性随着pH单位的升高而降低),当在KPi缓冲液中测定时,DMOc在宽范围的pH内显示出稳定的活性。在KPi或TRIS缓冲液中温育的DMOc的温度谱是相似的。It can be seen that DMOw and DMOc enzymes have different properties in terms of catalytic efficiency: DMOc is a five-fold better enzyme than DMOw by this analysis. The pH profile of DMOc is different from that of DMOw. First, DMOc appears to be sensitive to the buffer system used (TRIS vs. KPi) compared to DMOw (Figures 9, 12 and 13). Second, DMOc showed stable activity over a wide range of pH when assayed in KPi buffer compared to TRIS (where DMOc activity decreased with increasing pH units). The temperature profiles of DMOc incubated in KPi or TRIS buffer were similar.

观察这两种形式的酶之间的温度谱,DMOw在37℃功能更佳,而DMOc在一定程度较低的温度下功能更佳(图9)。图9表明DMOc的较低最适温度,其可以用于生长期早期的转基因植物中。Looking at the temperature profile between the two forms of the enzyme, DMOw functions better at 37°C, while DMOc functions better at somewhat lower temperatures (Figure 9). Figure 9 shows a lower temperature optimum for DMOc, which can be used in transgenic plants early in the growth phase.

表1.DMOw和DMOc的稳态动力学参数Table 1. Steady-state kinetic parameters of DMOw and DMOc

  Km(M) Vmax(U/mg) kcat(s-1) Kcat/Km(M-1s-1) DMOw 49±7×10-6 633±24×10-3 36.63 7.47×105 DMOc 20±5×10-6 676±37×10-3 70.41 35.21×105 enzyme Km(M) Vmax(U/mg) kcat(s -1 ) Kcat/Km(M -1 s -1 ) wxya 49±7×10 -6 633±24×10 -3 36.63 7.47×10 5 DMOc 20±5×10 -6 676±37×10 -3 70.41 35.21×10 5

表2.DMOw的米-曼参数概述Table 2. Overview of Mie-Mann parameters for DMOw

  研究号 Rsqr Vmax(纳摩尔/分钟/mg) Km(μM) 1. 0.983 633±24 49±7 2. 0.988 583±18 46±5 3. 0.987 590±19 46±5.5 Research number Rsqr Vmax (nanomol/min/mg) Km (μM) 1. 0.983 633±24 49±7 2. 0.988 583±18 46±5 3. 0.987 590±19 46±5.5

表3.DMOc的米-曼参数概述Table 3. Overview of Mie-Mann parameters for DMOc

  研究号 Rsqr Vmax(纳摩尔/分钟/mg) Km(μM) 1. 0.933 713±43 21±6 2. 0.948 676±37 20±5 Research number Rsqr Vmax (nanomol/min/mg) Km (μM) 1. 0.933 713±43 21±6 2. 0.948 676±37 20±5

实施例4Example 4

DMO的保守区域的生物信息学分析Bioinformatic analysis of conserved regions of DMO

进行生物信息学分析以比较DMO和其他铁-硫加氧酶的多肽序列并鉴定保守区。最初,基于1e-08的e值截断值和序列比对上70%的DMO序列覆盖度,选择78条序列用于分析。这78条序列的进一步分析揭示存在已经在其他研究中鉴定的两个结构域,包括Rieske和非-haem Fe结构域(Herman et al.,2005)。在这78条序列中,68条含有两个结构域,而10个仅仅有一个结构域。具有这两个结构域的68种分子被用于进一步的基序分析。Bioinformatic analysis was performed to compare the polypeptide sequences of DMO and other iron-sulfur oxygenases and to identify conserved regions. Initially, 78 sequences were selected for analysis based on an e-value cutoff of 1e-08 and a DMO sequence coverage of 70% on the sequence alignment. Further analysis of these 78 sequences revealed the presence of two domains that had been identified in other studies, including the Rieske and non-haem Fc domains (Herman et al., 2005). Of these 78 sequences, 68 contained two domains, while 10 had only one domain. 68 molecules with these two domains were used for further motif analysis.

具有两个结构域的这68种分子在不同同一性水平中的比对揭示了新的WXWX基序。尽管一些序列不含有该基序,但是系统进化分析法表明没有该基序的分子落入系统树中的某些进化枝,其与具有该基序的分子不属于相同的组。没有该基序的那些序列因此从最初的数据集除去,留下被重新比对的52种剩余序列用于进一步分析。Alignment of these 68 molecules with two domains at different levels of identity revealed a novel WXWX motif. Although some sequences do not contain the motif, phylogenetic analysis shows that molecules without the motif fall into certain clades in the tree that do not belong to the same group as molecules with the motif. Those sequences without this motif were therefore removed from the original data set, leaving 52 remaining sequences that were re-aligned for further analysis.

重新比对的52条序列表明在含有下面形式的两个W残基周围的保守性:WX1WX2G(W是Trp,G是Gly残基,X1是非极性残基,X2是任何氨基酸)。该情况中的第二个W对应于SEQ ID NO:1的112位。最近已经报导了WX1WX2G基序的WXG,并且具有WXG基序的蛋白质与细胞分泌系统相关(Desvaux et al.,2005)。The 52 re-aligned sequences showed conservation around two W residues of the form: WX 1 WX 2 G (W is Trp, G is a Gly residue, X 1 is a nonpolar residue, X 2 is any amino acid). The second W in this case corresponds to position 112 of SEQ ID NO:1. WXG of the WX 1 WX 2 G motif has recently been reported, and proteins with the WXG motif are associated with the cellular secretion system (Desvaux et al., 2005).

色氨酸(W)和半胱氨酸(C)是具有显著不同大小的残基。W是大残基,而C是相对小的残基。因为W和C都是极性氨基酸,它们共有一些共同的特征,如质子供给。由于W残基由TGG编码并且Cys由TGC和TGT编码,所以在第三个密码中的某些转换(G->C或G->T)可以产生从W到C或从C到W的错义突变。此类转换已经在自然中鉴定并且生物功能和活性被那些突变改变(见例如,遗传性乳腺癌和卵巢癌中的BRCAl基因(Xiaoman和Jinghe,1999);凝血因子XII缺陷(Wada et al.,2003),和I型高脂蛋白血症中的脂蛋白脂酶突变(Hoffmann et al.,2000))。Tryptophan (W) and cysteine (C) are residues of significantly different sizes. W is a large residue and C is a relatively small residue. Because both W and C are polar amino acids, they share some common features such as proton donating. Since the W residue is encoded by TGG and Cys by TGC and TGT, certain transitions (G->C or G->T) in the third codon can generate errors from W to C or from C to W Sense mutation. Such switches have been identified in nature and biological function and activity are altered by those mutations (see, e.g., the BRCA1 gene in hereditary breast and ovarian cancers (Xiaoman and Jinghe, 1999); coagulation factor XII deficiency (Wada et al., 2003), and lipoprotein lipase mutations in type I hyperlipoproteinemia (Hoffmann et al., 2000)).

因此,前面的结果表明尽管DMO是独特的并且与已知的酶具有低同一性,但是W112在其他相关的铁-硫加氧酶中是保守的。此外,112位被两个保守的功能结构域围绕(图18)。此外,W向C转换通常影响生物活性。如下发现是尤其令人惊奇的:DMOc产生了比野生型DMOw酶具有更优的动力学参数的功能性酶并且当在转基因植物中表达时提供了对麦草畏的高水平耐受性。Thus, the previous results indicate that although DMO is unique and has low identity to known enzymes, W112 is conserved among other related iron-sulfur oxygenases. In addition, position 112 is surrounded by two conserved functional domains (Figure 18). Furthermore, W to C conversion often affects biological activity. It was especially surprising to find that DMOc produces a functional enzyme with superior kinetic parameters than the wild-type DMOw enzyme and when expressed in transgenic plants provides high levels of tolerance to dicamba.

实施例5Example 5

叶绿体编码的DMO产生了高水平麦草畏耐受性Chloroplast-encoded DMOs confer high levels of dicamba tolerance

为了确定DMO是否可以仅在叶绿体内发挥功能和研究限制通过花粉漂浮“基因扩散”的可能性,基于pFMDV1载体(例如,Svab et al.,1990)产生了构建体以允许DMOc基因通过同源重组整合到烟草的叶绿体基因组中并使用抗生素抗性选择分离转化体(图14)。在该构建体中,DMOc基因编码区由含有完整psbA5’UTR序列的psbA叶绿体基因启动子驱动。抗生素抗性转基因植物的初步DNA印迹分析(图15A)表明在叶绿体基因组中存在DMOc转基因(5.6kb条带)和被DMOc基因的同源整合替代的天然基因区(3.3kb条带)(即,叶绿体对于天然基因和DMOc转基因是异质的)。在含有抗生素的培养基上反复再生和选择转基因植物导致明显同质的叶绿体,其带有DMOc基因片段但是没有被替代的天然基因区(图15B)。To determine whether DMO can function only within chloroplasts and to investigate the possibility of limiting "gene dispersal" through pollen floating, constructs were generated based on the pFMDV1 vector (e.g., Svab et al., 1990) to allow the DMOc gene to pass through homologous recombination Integrated into the chloroplast genome of tobacco and used antibiotic resistance selection to isolate transformants (Figure 14). In this construct, the DMOc gene coding region is driven by the psbA chloroplast gene promoter containing the complete psbA 5'UTR sequence. Preliminary Southern blot analysis of antibiotic-resistant transgenic plants (Figure 15A) indicated the presence of the DMOc transgene (5.6 kb band) and the native gene region (3.3 kb band) replaced by homologous integration of the DMOc gene in the chloroplast genome (i.e., Chloroplasts are heterogeneous for native genes and DMOc transgenes). Repeated regeneration and selection of transgenic plants on antibiotic-containing media resulted in apparently homogeneous chloroplasts bearing the DMOc gene segment but without the replaced native gene region (Fig. 15B).

对来自两个独立来源的叶绿体转化体的T1、T2和T3代后代测试用不同剂量麦草畏处理的耐受性。所有都显示出高水平耐受性。实际上,当用28kg/ha(25lb/ac)比率的麦草畏喷雾时,叶绿体基因组转化体没有显示出明显损伤(不同于对下方叶子的“仅溶剂损害”)(图16)并且当用112和224kg/ha的极高麦草畏施用处理植物时,仅仅观察到暂时损害。在这些极高水平下,最初的损害主要由用于递送麦草畏的溶剂中表面活性剂和其他组分引起;从受损的顶点生长的组织显示出接近正常的表型到正常的表型,在最初的生长迟缓后没有显示出生长速率下降并且保持产生通常数目和质量的种子的能力。Progeny of T1 , T2 and T3 generations of chloroplast transformants from two independent sources were tested for tolerance to treatment with different doses of dicamba. All showed high levels of tolerance. Indeed, when sprayed with dicamba at a rate of 28 kg/ha (25 lb/ac), chloroplast genome transformants showed no apparent damage (as opposed to "solvent only damage" to lower leaves) (Figure 16) and when sprayed with 112 and 224 kg/ha of extremely high dicamba applications treated plants, only temporary damage was observed. At these extremely high levels, the initial damage is mainly caused by surfactants and other components in the solvents used to deliver dicamba; tissue growing from the damaged apex shows a near-normal to normal phenotype, After the initial growth retardation showed no decrease in growth rate and maintained the ability to produce the usual number and quality of seeds.

结果与如下可能性一致:烟草叶绿体中还原的铁氧还蛋白可能是将麦草畏氧化成DCSA所需的DMO电子供体。作为该可能性的直接测试,在从嗜麦芽假单胞菌DI-6菌株纯化或从大肠杆菌过量产生并纯化的DMO的存在和不存在下,检查了纯化的菠菜铁氧还蛋白支持麦草畏向DCSA转化的能力(表4)。结果表明来自菠菜或梭菌属的被还原的铁氧还蛋白完全能够在体外为DMO供给电子,如通过麦草畏降解或DCSA出现所测量。The results are consistent with the possibility that reduced ferredoxin in tobacco chloroplasts may be the DMO electron donor required for the oxidation of dicamba to DCSA. As a direct test of this possibility, the support of dicamba by purified spinach ferredoxin was examined in the presence and absence of DMO purified from Pseudomonas maltophilia DI-6 strain or overproduced and purified from E. coli. Ability to convert to DCSA (Table 4). The results indicate that reduced ferredoxin from spinach or Clostridium is fully capable of donating electrons to DMO in vitro, as measured by dicamba degradation or DCSA appearance.

表4A-B.纯化的麦草畏单加氧酶可以利用还原的叶绿体铁氧还蛋白或还原的梭菌铁氧还蛋白作为电子来源催化麦草畏体外转化为3,6-二氯水杨酸。Table 4A-B. Purified dicamba monooxygenases can catalyze the in vitro conversion of dicamba to 3,6-dichlorosalicylic acid using reduced chloroplast ferredoxin or reduced Clostridium ferredoxin as an electron source.

表4A-麦草畏的降解Table 4A - Degradation of Dicamba

  反应类型 麦草畏的降解(%) (Ferr+Red)DI-6+NADH 0 (Oxy+Ferr+Red)DI-6+NADH 86 (Oxy)DI-6+(Ferr)菠菜+(Ferr:Oxidored)菠菜+NADPH 83 (Oxy)DI-6+(Ferr:Oxidored)菠菜+NADPH ND (Oxy)DI-6+(Ferr)梭菌+(Ferr:Oxidored)菠菜+No NADPH ND (Oxy)DI-6+(Ferr)梭菌+(Ferr:Oxidored)菠菜+NADPH 82 (Ferr)梭菌+(Ferr:Oxidored)菠菜+NADPH ND response type Degradation of dicamba (%) (Ferr+Red) DI-6 +NADH 0 (Oxy+Ferr+Red) DI-6 +NADH 86 (Oxy) DI-6 + (Ferr) spinach + (Ferr:Oxidored) spinach + NADPH 83 (Oxy) DI-6 + (Ferr:Oxidored) spinach + NADPH ND (Oxy) DI-6 + (Ferr) Clostridium + (Ferr:Oxidored) Spinach + No NADPH ND (Oxy) DI-6 + (Ferr) Clostridium + (Ferr:Oxidored) Spinach + NADPH 82 (Ferr) Clostridium + (Ferr:Oxidored) Spinach + NADPH ND

表4B-DCSA的形成Table 4B - Formation of DCSA

  反应类型 DCSA的形成(%) (Ferr+Red)DI-6+NADH ND (Oxy+Ferr+Red)DI-6+NADH 100 (Oxy)DI-6+(Ferr)菠菜+(Ferr:Oxidored)菠菜+NADPH 95 (Oxy)DI-6+(Ferr:Oxidored)菠菜+NADPH 2.5 (Oxy)DI-6+(Ferr)菠菜+(Ferr:Oxidored)菠菜+No NADPH 1.2 (Oxy)DI-6+(Ferr)梭菌+(Ferr:Oxidored)菠菜+NADPH 90 (Ferr)梭菌+(Ferr:Oxidored)菠菜+NADPH 1.5 response type Formation of DCSA (%) (Ferr+Red) DI-6 +NADH ND (Oxy+Ferr+Red) DI-6 +NADH 100 (Oxy) DI-6 + (Ferr) spinach + (Ferr:Oxidored) spinach + NADPH 95 (Oxy) DI-6 + (Ferr:Oxidored) spinach + NADPH 2.5 (Oxy) DI-6 +(Ferr) Spinach +(Ferr:Oxidored) Spinach +No NADPH 1.2 (Oxy) DI-6 + (Ferr) Clostridium + (Ferr:Oxidored) Spinach + NADPH 90 (Ferr) Clostridium + (Ferr:Oxidored) Spinach + NADPH 1.5

ND,未确定ND, not determined

尽管图2中的结果表明所产生的DMO水平是可变的并且有时候DMOc水平与麦草畏耐受性水平不密切相关,但是结果表明能够一致地得到对麦草畏的高水平耐受性。显示了在转化体中从核定位的DMOc基因和从叶绿体定位的DMOc基因产生DMOc。在核转化体中,相对于总蛋白质构成额外高水平的总DMOc,并且叶绿体转化体中DMOc的量不是显著不同并且有时低于核转化体。叶组织样品的无细胞提取物中相对酶活性的估计表明在叶绿体中产生的较高百分比的DMOc比细胞质中合成的DMOc更有活性并且认为被转移到叶绿体中。Although the results in Figure 2 indicate that DMO levels produced are variable and that sometimes DMOc levels do not correlate strongly with dicamba tolerance levels, the results indicate that high levels of tolerance to dicamba can be consistently obtained. Production of DMOc from the nuclear-localized DMOc gene and from the chloroplast-localized DMOc gene in transformants is shown. In nuclear transformants, an additional high level of total DMOc was constituted relative to total protein, and the amount of DMOc in chloroplast transformants was not significantly different and sometimes lower than in nuclear transformants. Estimation of relative enzyme activities in cell-free extracts of leaf tissue samples indicated that a higher percentage of DMOc produced in chloroplasts was more active than DMOc synthesized in the cytoplasm and thought to be translocated into chloroplasts.

在分析的所有植物中,不用铁氧还蛋白或还原酶基因共转化,实现了麦草畏耐受性。结果表明所述植物含有一种或多种分子,所述分子可以将所需的电子转移到DMO以允许麦草畏向3,6-二氯水杨酸(DCSA)的转化。使用转运肽序列,DMO向叶绿体的最初导向的目标是潜在利用叶绿体中可充分利用的被还原的铁氧还蛋白。在这方面,重要的是注意到用缺少叶绿体肽编码序列的DMOc基因构建体转化烟草植物出乎意料地得到耐受麦草畏的出苗后处理的植物。然而,来自用少数T1代植物的有限试验的结果表明用这些转基因植物得到的耐受性水平平均稍微低于用产生含有转运肽的DMOc的烟草植物得到的耐受性水平。这些观察结果引起了关于转基因植物中可以为DMO生产性供应电子的分子的有趣问题。从整合到叶绿体基因组的DMOc基因内在地产生DMO的同质叶绿体显示对极高水平麦草畏的抗性这一事实(图16)和纯化的DMO可以在体外与还原的菠菜叶绿体铁氧还蛋白发挥功能这一事实(表4)都提示叶绿体铁氧还蛋白可以与DMO生产性相互作用以允许电子转移。然而,从缺少叶绿体转运肽编码序列的核基因产生的DMO的电子来源仍然是未知的。假定铁氧还蛋白不位于植物叶绿体外,必须认为一种未知的细胞质蛋白可能为DMO提供稳定的电子供应的可能性。备选地,DMO自身可能含有可提供的叶绿体转运肽,其允许足够的DMO进入叶绿体中以在麦草畏处理后提供保护防止麦草畏进入细胞中。Dicamba tolerance was achieved without co-transformation with the ferredoxin or reductase genes in all plants analyzed. The results indicated that the plants contained one or more molecules that could transfer the required electrons to DMO to allow the conversion of dicamba to 3,6-dichlorosalicylic acid (DCSA). Using the transit peptide sequence, the initial targeting of DMO to the chloroplast targets the potential utilization of reduced ferredoxin that is fully available in the chloroplast. In this regard, it is important to note that transformation of tobacco plants with the DMOc gene construct lacking the chloroplast peptide coding sequence unexpectedly resulted in plants tolerant to the post-emergence treatment of dicamba. However, results from limited trials with a small number of T1 generation plants indicated that the level of tolerance obtained with these transgenic plants was on average slightly lower than that obtained with tobacco plants producing DMOc containing the transit peptide. These observations raise interesting questions about molecules in transgenic plants that could productively supply electrons to DMO. The fact that homogeneous chloroplasts producing DMO endogenously from the DMOc gene integrated into the chloroplast genome showed resistance to extremely high levels of dicamba (Fig. Both the fact of function (Table 4) suggest that chloroplast ferredoxin can productively interact with DMO to allow electron transfer. However, the electron source of DMO produced from nuclear genes lacking the chloroplast transit peptide coding sequence remains unknown. Given that ferredoxin is not located outside the chloroplast of plants, the possibility must be considered that an unknown cytoplasmic protein might provide DMO with a stable electron supply. Alternatively, the DMO itself may contain available chloroplast transit peptides that allow sufficient DMO to enter the chloroplast to provide protection against dicamba entry into the cell following dicamba treatment.

* * * * * ** * * * * *

本文公开和要求保护的所有组合物和/或方法可以根据本公开不用过度实验进行和实施。尽管已经按照优选实施方案描述了本发明的组合物和方法,但是本领域技术人员显而易见的是改变的方案可应用于所述组合物和/或方法和本文公开的方法的步骤或步骤的顺序中而不背离本发明的概念、精神和范围。更特别地,将显而易见的是化学和生理学相关的某些物质可以代替本文描述的物质而将实现相同或相似的结果。认为本领域技术人员显而易见的所有此类相似的替代和修饰都在所附权利要求限定的本发明的精神、范围和概念之内。All of the compositions and/or methods disclosed and claimed herein can be made and practiced in light of the present disclosure without undue experimentation. Although the compositions and methods of the present invention have been described in terms of preferred embodiments, it will be apparent to those skilled in the art that variations may be applied to the compositions and/or methods and steps or sequence of steps of the methods disclosed herein without departing from the concept, spirit and scope of the present invention. More particularly, it will be apparent that certain substances of chemical and physiological relevance may be substituted for those described herein and the same or similar results will be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

参考文献references

将下面列出的参考文献引入本文作为参考,直至它们补充、解释、提供背景或教导本文使用的方法、技术和/或组合物的程度。The references listed below are incorporated herein by reference to the extent that they supplement, explain, provide a background, or teach the methods, techniques and/or compositions used herein.

美国专利4,554,101;美国专利4,940,838;美国专利5,015,580;美国专利5,017,692美国专利5,229,114;美国专利5,304,730;美国专利5,322,938;美国专利5,352,605;美国专利5,359,142;美国专利5,362,865;美国专利5,378,619;美国专利5,384,253;美国专利5,445,962;美国专利5,463,175;美国专利5,464,763;美国专利5,508,184;美国专利5,512,466;美国专利5,516,671;美国专利5,530,196;美国专利5,538,880;美国专利5,543,576;美国专利5,550,318;美国专利5,552,299;美国专利5,567,600;美国专利5,567,862;美国专利5,591,616;美国专利5,633,435;美国专利5,635,055;美国专利5,641,876;美国专利5,659,122;美国专利5,689,041;美国专利5,689,052;美国专利5,716,837;美国专利5,728,925;美国专利5,750,876;美国专利5,763,241;美国专利5,763,245;美国专利5,773,696;美国专利5,804,425;美国专利5,824,877;美国专利5,837,848;美国专利5,850,019;美国专利5,850,023;美国专利5,866,775;美国专利5,869,720;美国专利5,880,275;美国专利5,942,658;美国专利5,942,664;美国专利5,958,745;美国专利5,959,091;美国专利5,981,834;美国专利5,981,840;美国专利5,985,605;美国专利5,998,700;美国专利6,011,199;美国专利6,013,864;美国专利6,015,940;美国专利6,023,013;美国专利6,051,753;美国专利6,063,597;美国专利6,063,756;美国专利6,072,103;美国专利6,080,560;美国专利6,093,695;美国专利6,107,549;美国专利6,110,464;美国专利6,121,436;美国专利6,140,075;美国专利6,140,078;美国专利6,153,814;美国专利6,156,573;美国专利6,160,208;美国专利6,166,292;美国专利6,171,640;美国专利6,175,060;美国专利6,177,611;美国专利6,177,615;美国专利6,215,048;美国专利6,221,649;美国专利6,222,098;美国专利6,225,114;美国专利6,228,623;美国专利6,228,992;美国专利6,232,526;美国专利6,235,971;美国专利6,242,241;美国专利6,248,536;美国专利6,248,876;美国专利6,252,138;美国专利6,271,443;美国专利6,281,016;美国专利6,284,949;美国专利6,294,714;美国专利6,313,378;美国专利6,316,407;美国专利6,326,351;美国专利6,372,211;美国专利6,380,462;美国专利6,380,466;美国专利6,384,301;美国专利6,399,330;美国专利6,399,861;美国专利6,403,865;美国专利6,423,828;美国专利6,426,446;美国专利6,426,447;美国专利6,429,357;美国专利6,429,362;美国专利6,433,252;美国专利6,437,217;美国专利6,441,277;美国专利6,444,876;美国专利6,448,476;美国专利6,459,018;美国专利6,468,523;美国专利6,476,295;美国专利6,483,008;美国专利6,489,461;美国专利6,495,739;美国专利6,501,009;美国专利6,506,962;美国专利6,518,488;美国专利6,521,442;美国专利6,531,648;美国专利6,537,750;美国专利6,537,756;美国专利6,538,109;美国专利6,538,178;美国专利6,538,179;美国专利6,538,181;美国专利6,541,259;美国专利6,555,655;美国专利6,573,361;美国专利6,576,818;美国专利6,589,767;美国专利6,593,293;美国专利6,596,538;美国专利6,608,241;美国专利6,617,496;美国专利6,620,988;美国专利6,635,806;美国专利6,639,054;美国专利6,642,030;美国专利6,645,497;美国专利6,653,280;美国专利6,653,530;美国专利6,657,046;美国专利6,660,849;美国专利6,663,906;美国专利6,686,452;美国专利6,706,950;美国专利6,713,063;美国专利6,716,474;美国专利6,723,837;美国专利6,723,897;美国专利6,770,465;美国专利6,774,283;美国专利6,803,501;美国专利6,809,078;美国专利6,812,379;美国专利6,822,141;美国专利6,828,475;美国专利号7,022,896;美国专利公开2003/0028917;美国专利公开2003/0135879;美国专利公开2003/01403641;美国专利序号09/757,089;美国专利再版37,543;美国专利再版38,446美国专利4,554,101;美国专利4,940,838;美国专利5,015,580;美国专利5,017,692美国专利5,229,114;美国专利5,304,730;美国专利5,322,938;美国专利5,352,605;美国专利5,359,142;美国专利5,362,865;美国专利5,378,619;美国专利5,384,253;美国专利5,445,962 ; US Patent 5,463,175; US Patent 5,464,763; US Patent 5,508,184; US Patent 5,512,466;专利5,591,616;美国专利5,633,435;美国专利5,635,055;美国专利5,641,876;美国专利5,659,122;美国专利5,689,041;美国专利5,689,052;美国专利5,716,837;美国专利5,728,925;美国专利5,750,876;美国专利5,763,241;美国专利5,763,245;美国专利5,773,696 ; US Patent 5,804,425; US Patent 5,824,877; US Patent 5,837,848; US Patent 5,850,019;专利5,981,834;美国专利5,981,840;美国专利5,985,605;美国专利5,998,700;美国专利6,011,199;美国专利6,013,864;美国专利6,015,940;美国专利6,023,013;美国专利6,051,753;美国专利6,063,597;美国专利6,063,756;美国专利6,072,103;美国专利6,080,560 ; US Patent 6,093,695; US Patent 6,107,549; US Patent 6,110,464; US Patent 6,121,436; 60,208;美国专利6,166,292;美国专利6,171,640;美国专利6,175,060;美国专利6,177,611;美国专利6,177,615;美国专利6,215,048;美国专利6,221,649;美国专利6,222,098;美国专利6,225,114;美国专利6,228,623;美国专利6,228,992;美国专利6,232,526; US Patent 6,235,971; US Patent 6,242,241; US Patent 6,248,536; US Patent 6,248,876; US Patent 6,252,138; US Patent 6,271,443; US Patent 6,281,016; 6,372,211;美国专利6,380,462;美国专利6,380,466;美国专利6,384,301;美国专利6,399,330;美国专利6,399,861;美国专利6,403,865;美国专利6,423,828;美国专利6,426,446;美国专利6,426,447;美国专利6,429,357;美国专利6,429,362;美国专利6,433,252; US Patent 6,437,217; US Patent 6,441,277; US Patent 6,444,876; US Patent 6,448,476; US Patent 6,459,018; US Patent 6,468,523; US Patent 6,476,295; US Patent 6,483,008; 6,518,488;美国专利6,521,442;美国专利6,531,648;美国专利6,537,750;美国专利6,537,756;美国专利6,538,109;美国专利6,538,178;美国专利6,538,179;美国专利6,538,181;美国专利6,541,259;美国专利6,555,655;美国专利6,573,361;美国专利6,576,818; US Patent 6,589,767; US Patent 6,593,293; US Patent 6,596,538; US Patent 6,608,241; US Patent 6,617,496; US Patent 6,620,988; US Patent 6,635,806; US Patent 6,639,054; ; US Patent 6,645,497; US Patent 6,653,280; US Patent 6,653,530; US Patent 6,657,046; U.S. Patent 6,770,465; U.S. Patent 6,774,283; U.S. Patent 6,803,501; U.S. Patent 6,809,078; U.S. Patent 6,812,379; /01403641; US Patent Serial No. 09/757,089; US Patent Reissue 37,543; US Patent Reissue 38,446

Ausubel et al.,In:Current Protocols in Molecular Biology,John,Wiley & Sons,Inc,New York,1995.Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, New York, 1995.

Becker et al.Plant Mol.Biol.20:1195-1197,1992Becker et al. Plant Mol. Biol. 20:1195-1197, 1992

Becker et al.,Plant Mol.Biol.,20:49,1992.Becker et al., Plant Mol. Biol., 20:49, 1992.

Bevan et al.,NAR,11:369,1983.Bevan et al., NAR, 11:369, 1983.

Brothers et al,Nature,433:630,2005.Brothers et al, Nature, 433:630, 2005.

Carrington and Freed,J.of Virology 64:1590-1597,1990Carrington and Freed, J. of Virology 64:1590-1597, 1990

Carrington and Freed,J.Virology,64:1590,1990.Carrington and Freed, J. Virology, 64:1590, 1990.

Chalfie et al.,Science,263:802,1994.Chalfie et al., Science, 263:802, 1994.

Chandler et al.,Plant Cell,1:1175-1183,1989.Chandler et al., Plant Cell, 1:1175-1183, 1989.

Chang et al.,J.Biol.Chem.,31;278(44):42821-42828,2003.Chang et al., J. Biol. Chem., 31; 278(44): 42821-42828, 2003.

Chu et al.,Scientia Sinica,18:659,1975.Chu et al., Scientia Sinica, 18:659, 1975.

Clough and Bent,Plant J.,16:735,1998.Clough and Bent, Plant J., 16:735, 1998.

Cork and Khalil,Adv.APPl.Microbiol.,40:289,1995.Cork and Khalil, Adv. APPl. Microbiol., 40:289, 1995.

Cork and Krueger,Adv.Appl.Microbiol.,38:1,1991.Cork and Krueger, Adv. Appl. Microbiol., 38:1, 1991.

Coruzzi et al.,EMBO J.,3:1671,1984.Coruzzi et al., EMBO J., 3:1671, 1984.

Coruzzi et al.,J.Biol.Chem.258:1399-1402,1983Coruzzi et al., J. Biol. Chem. 258:1399-1402, 1983

Creissen et al.,Plant J.,2:129,1991.Creissen et al., Plant J., 2:129, 1991.

Crop Protection Reference,Chemical & Pharmaceutical Press,Inc.,NY,11th Ed.,1803-1821,1995Crop Protection Reference, Chemical & Pharmaceutical Press, Inc., NY, 11th Ed., 1803-1821, 1995

De Block et al.,EMBO J.,3:1681,1984.De Block et al., EMBO J., 3:1681, 1984.

della-Cioppa et al.,Proc.Natl.Acad.Sci.USA,83:6873-6877,1986.della-Cioppa et al., Proc. Natl. Acad. Sci. USA, 83:6873-6877, 1986.

Depicker et al,J.Mol.Appl.Genet.,1:561,1982.Depicker et al, J. Mol. Appl. Genet., 1:561, 1982.

Desvaux et al.,Biochimica et Biophysica Acta,1745:223 253,2005.Desvaux et al., Biochimica et Biophysica Acta, 1745: 223 253, 2005.

Ditta et al.,Proc.Natl.Acad.Sci.USA,77(12):7347-7351,1980.Ditta et al., Proc. Natl. Acad. Sci. USA, 77(12): 7347-7351, 1980.

Ebert et al.,Proc.Natl.Acad.Sci.USA,84:5745-5749,1987.Ebert et al., Proc. Natl. Acad. Sci. USA, 84:5745-5749, 1987.

欧洲申请553494European application 553494

欧洲申请646643European application 646643

Fraley et al.,Proc.Natl.Acad.Sci.USA,80:4803,1983.Fraley et al., Proc. Natl. Acad. Sci. USA, 80:4803, 1983.

Hajdukiewicz et al.,Plant Mol.Biol.25:989-994,1994Hajdukiewicz et al., Plant Mol. Biol. 25:989-994, 1994

Haseloff et al.,TIG,11:328-329,1995.Haseloff et al., TIG, 11:328-329, 1995.

Herman et al.,J.Biol.Chem.,280:24759-24767,2005.Herman et al., J. Biol. Chem., 280: 24759-24767, 2005.

Hoffmann et al.J.Clin.Endocrinol.Metab.,85(12):4795-498,2000.Hoffmann et al. J. Clin. Endocrinol. Metab., 85(12): 4795-498, 2000.

Horsch et al.,Science,227:1229,1985.Horsch et al., Science, 227:1229, 1985.

Ingelbrecht et al.,Plant Cell,1:671,1989.Ingelbrecht et al., Plant Cell, 1:671, 1989.

Jefferson,Plant Mol.Biol.Rep.,5:387,1987.Jefferson, Plant Mol. Biol. Rep., 5:387, 1987.

Jiang et al.,J.Bacteriol.178:3133-3139,1996.Jiang et al., J. Bacteriol. 178:3133-3139, 1996.

Kado,Crit.Rev.Plant.Sci.,10:1,1991.Kado, Crit. Rev. Plant. Sci., 10:1, 1991.

Klee et al.,Mol.Gen.Genet.,210:437-442,1987.Klee et al., Mol. Gen. Genet., 210:437-442, 1987.

Koncz and Schell,Mol.Gen.Genet.,204:383396,1986.Koncz and Schell, Mol. Gen. Genet., 204:383396, 1986.

Koncz et al.,Proc.Natl.Acad.Sci.,USA,84:131,1987.Koncz et al., Proc. Natl. Acad. Sci., USA, 84:131, 1987.

Krueger et al.,J.Agric.Food Chem.,37:534,1989.Krueger et al., J. Agric. Food Chem., 37:534, 1989.

Kyte and Doolittle,J.Mol.Biol.,157(1):105-132,1982.Kyte and Doolittle, J. Mol. Biol., 157(1): 105-132, 1982.

Lawton et al.,Plant Mo l.Biol.,9:315-324,1987.Lawton et al., Plant Mol. Biol., 9:315-324, 1987.

Lloyd and McCown,Proc.Int.Plant Prop.Soc.,30:421,1981.Lloyd and McCown, Proc. Int. Plant Prop. Soc., 30:421, 1981.

Maniatis,et al.,Molecular Cloning,A Laboratory Manual,Cold SpringHarbor Press,Cold Spring Harbor,N.Y.,1982.Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1982.

Mason,JR,and Cammack,R.,Annu.Rev.Microbiol.46:277-305,1992.Mason, JR, and Cammack, R., Annu. Rev. Microbiol. 46:277-305, 1992.

Miki et al.,In:Methods in Plant Molecular Biology andBiotechnology,Glick and Thompson(Eds.),CRC Press,67 88,1993.Miki et al., In: Methods in Plant Molecular Biology and Biotechnology, Glick and Thompson (Eds.), CRC Press, 67 88, 1993.

Mitsuhara et al.,Plant Cell Physiol.37:49-59,1996Mitsuhara et al., Plant Cell Physiol. 37: 49-59, 1996

Moloney et al.,Plant Cell Reports,8:238,1989.Moloney et al., Plant Cell Reports, 8:238, 1989.

Murashige and Skoog,Physio l.Plant,15:473-497,1962.Murashige and Skoog, Physio l. Plant, 15: 473-497, 1962.

Odell et al.,Nature,313:810-812,1985.Odell et al., Nature, 313:810-812, 1985.

PCT申请WO 04009761PCT application WO 04009761

PCT申请WO 95/24492PCT Application WO 95/24492

PCT申请WO 97/11086PCT Application WO 97/11086

PCT申请WO 97/31115PCT Application WO 97/31115

PCT申请WO 97/41228PCT Application WO 97/41228

Rojiyaa et al.,(JP 1987201527-A),1987.Rojiyaa et al., (JP 1987201527-A), 1987.

Sambrook et al.,In:Molecular cloning::a laboratory manual,2ndEd.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1989.Sambrook et al., In: Molecular cloning:: a laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

Southern,Mol.Biol.,98:503,1975.Southern, Mol. Biol., 98:503, 1975.

Svab et al.,Plant Mol.Biol.,14:197,1990.Svab et al., Plant Mol. Biol., 14:197, 1990.

Svab et al.,Proc.Natl.Acad.Sci.USA,87(21):8526-8530,1990.Svab et al., Proc. Natl. Acad. Sci. USA, 87(21): 8526-8530, 1990.

Teeri et al.,EMBO J.,8:343,1989.Teeri et al., EMBO J., 8:343, 1989.

Turner and Foster,Molec.Biotechn.,3:225,1995.Turner and Foster, Molec. Biotechn., 3: 225, 1995.

Wada et al.,Thromb.Haemost.,90(1):59-63,2003.Wada et al., Thromb. Haemost., 90(1):59-63, 2003.

Walker et al.,Proc.Natl.Acad.Sci.USA,84:6624-6628,1987.Walker et al., Proc. Natl. Acad. Sci. USA, 84:6624-6628, 1987.

Xiaoman and Jinghe,Chin.Med.Sci.J.,14(4):195-199,1999.Xiaoman and Jinghe, Chin. Med. Sci. J., 14(4): 195-199, 1999.

Yang et al.,Proc.Natl.Acad.Sci.USA,87:4144-4148,1990.Yang et al., Proc. Natl. Acad. Sci. USA, 87: 4144-4148, 1990.

Zhang et al,Plant Cell,Tissue and Organ Culture,56:3746,1999.Zhang et al, Plant Cell, Tissue and Organ Culture, 56:3746, 1999.

序列表sequence listing

<110>CLEMENTE.THOMAS E.<110>CLEMENTE. THOMAS E.

     DUMITRU,RAZVANDUMITRU, RAZVAN

     FENG,PAUL C.C.  FENG, PAUL C.C.

     FLASINSKI,STAN FLASINSKI, STAN

     WEEKS,DONALD P.WEEKS, DONALD P.

<120>修饰的麦草畏单加氧酶及其使用方法<120> Modified dicamba monooxygenase and method of use thereof

<130>MONS:093WO<130> MONS: 093WO

<140>未知<140> unknown

<141>2007-06-06<141>2007-06-06

<150>11/758,657<150>11/758,657

<151>2007-06-05<151>2007-06-05

<150>60/811,152<150>60/811,152

<151>2006-06-06<151>2006-06-06

<160>24<160>24

<170>PatentIn Ver.2.1<170>PatentIn Ver.2.1

<210>1<210>1

<211>340<211>340

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>1<400>1

Figure A200780029077D00381
Figure A200780029077D00381

<210>2<210>2

<211>1023<211>1023

<212>DNA<212>DNA

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成引物<223> Manual Sequence Description: Synthetic Primers

<400>2<400>2

Figure A200780029077D00382
Figure A200780029077D00382

Figure A200780029077D00391
Figure A200780029077D00391

<210>3<210>3

<211>1023<211>1023

<212>DNA<212>DNA

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成引物<223> Manual Sequence Description: Synthetic Primers

<400>3<400>3

Figure A200780029077D00392
Figure A200780029077D00392

<210>4<210>4

<211>120<211>120

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>4<400>4

Figure A200780029077D00393
Figure A200780029077D00393

Figure A200780029077D00401
Figure A200780029077D00401

<210>5<210>5

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>5<400>5

<210>6<210>6

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>6<400>6

Figure A200780029077D00403
Figure A200780029077D00403

Figure A200780029077D00411
Figure A200780029077D00411

<210>7<210>7

<211>59<211>59

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>7<400>7

Figure A200780029077D00412
Figure A200780029077D00412

<210>8<210>8

<211>57<211>57

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>8<400>8

Figure A200780029077D00413
Figure A200780029077D00413

<210>9<210>9

<211>57<211>57

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>9<400>9

<210>10<210>10

<211>57<211>57

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>10<400>10

Figure A200780029077D00422
Figure A200780029077D00422

<210>11<210>11

<211>57<211>57

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>11<400>11

Figure A200780029077D00423
Figure A200780029077D00423

<210>12<210>12

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>12<400>12

Figure A200780029077D00431
Figure A200780029077D00431

<210>13<210>13

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>13<400>13

Figure A200780029077D00432
Figure A200780029077D00432

<210>14<210>14

<211>60<211>60

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>14<400>14

Figure A200780029077D00433
Figure A200780029077D00433

Figure A200780029077D00441
Figure A200780029077D00441

<210>15<210>15

<211>57<211>57

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>15<400>15

Figure A200780029077D00442
Figure A200780029077D00442

<210>16<210>16

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>16<400>16

Figure A200780029077D00443
Figure A200780029077D00443

<210>17<210>17

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>17<400>17

Figure A200780029077D00451
Figure A200780029077D00451

<210>18<210>18

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>18<400>18

Figure A200780029077D00452
Figure A200780029077D00452

<210>19<210>19

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>19<400>19

Figure A200780029077D00453
Figure A200780029077D00453

<210>20<210>20

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>20<400>20

Figure A200780029077D00461
Figure A200780029077D00461

<210>21<210>21

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>21<400>21

Figure A200780029077D00462
Figure A200780029077D00462

<210>22<210>22

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>22<400>22

Figure A200780029077D00463
Figure A200780029077D00463

Figure A200780029077D00471
Figure A200780029077D00471

<210>23<210>23

<211>58<211>58

<212>PRT<212>PRT

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成肽<223> Description of Artificial Sequences: Synthetic Peptides

<400>23<400>23

Figure A200780029077D00472
Figure A200780029077D00472

<210>24<210>24

<211>433<211>433

<212>DNA<212>DNA

<213>人工序列<213> Artificial sequence

<220><220>

<223>人工序列说明:合成引物<223> Manual Sequence Description: Synthetic Primers

<400>24<400>24

Claims (24)

1.分离的核酸分子,其选自:1. An isolated nucleic acid molecule selected from the group consisting of: a)编码SEQ ID NO:1的多肽的核酸分子;A) a nucleic acid molecule encoding a polypeptide of SEQ ID NO: 1; b)包含SEQ ID NO:2的序列的核酸分子;和B) a nucleic acid molecule comprising the sequence of SEQ ID NO: 2; and c)核酸分子,其编码与SEQ ID NO:1的多肽有至少90%序列同一性的多肽,其中后一多肽具有麦草畏单加氧酶活性并且在对应于SEQ IDNO:1的氨基酸112的位置上包含半胱氨酸。c) a nucleic acid molecule encoding a polypeptide having at least 90% sequence identity to the polypeptide of SEQ ID NO: 1, wherein the latter polypeptide has dicamba monooxygenase activity and at amino acid 112 corresponding to SEQ ID NO: 1 Cysteine is included in the position. 2.权利要求1的分离的核酸分子,其中该核酸分子编码质粒pKLP36-TEV-TP-DMOc(ATCC保藏号PTA-7357)编码的麦草畏单加氧酶。2. The isolated nucleic acid molecule of claim 1, wherein the nucleic acid molecule encodes dicamba monooxygenase encoded by plasmid pKLP36-TEV-TP-DMOc (ATCC Accession No. PTA-7357). 3.DNA构建体,其包含可操作性连接于启动子的权利要求1的核酸分子。3. A DNA construct comprising the nucleic acid molecule of claim 1 operably linked to a promoter. 4.权利要求3的构建体,其中该启动子在植物细胞中是有功能的。4. The construct of claim 3, wherein the promoter is functional in plant cells. 5.权利要求3的构建体,其中所述分离的核酸分子可操作性连接于叶绿体转运肽。5. The construct of claim 3, wherein said isolated nucleic acid molecule is operably linked to a chloroplast transit peptide. 6.多肽序列,其包含与SEQ ID NO:1有至少90%同一性的氨基酸序列,其中该多肽具有麦草畏单加氧酶活性并且在对应于SEQ ID NO:1的氨基酸112的位置上包含半胱氨酸。6. A polypeptide sequence comprising an amino acid sequence at least 90% identical to SEQ ID NO: 1, wherein the polypeptide has dicamba monooxygenase activity and comprises at a position corresponding to amino acid 112 of SEQ ID NO: 1 cysteine. 7.用权利要求1的核酸分子转化的植物细胞。7. A plant cell transformed with the nucleic acid molecule of claim 1. 8.权利要求7的细胞,其中所述植物细胞是双子叶植物细胞。8. The cell of claim 7, wherein said plant cell is a dicot plant cell. 9.权利要求7的细胞,其中所述植物细胞是单子叶植物细胞。9. The cell of claim 7, wherein said plant cell is a monocotyledonous plant cell. 10.权利要求7的细胞,其中所述双子叶植物细胞是大豆、棉花、玉米或油菜籽植物细胞。10. The cell of claim 7, wherein said dicot plant cell is a soybean, cotton, corn or rapeseed plant cell. 11.包含权利要求7的细胞的植物组织培养物。11. A plant tissue culture comprising the cells of claim 7. 12.用权利要求1的核酸分子转化的转基因植物。12. A transgenic plant transformed with the nucleic acid molecule of claim 1. 13.权利要求12的转基因植物,其中所述植物是双子叶植物。13. The transgenic plant of claim 12, wherein said plant is a dicot. 14.权利要求12的转基因植物,其中所述植物是单子叶植物。14. The transgenic plant of claim 12, wherein said plant is a monocot. 15.权利要求12的转基因植物,其中所述植物是大豆、棉花、玉米或油菜籽植物。15. The transgenic plant of claim 12, wherein said plant is a soybean, cotton, corn or rapeseed plant. 16.产生麦草畏耐受性植物的方法,其包括向植物中导入权利要求3的构建体。16. A method of producing a dicamba-tolerant plant comprising introducing the construct of claim 3 into a plant. 17.权利要求16的方法,其包括通过稳定转化起始植物细胞并将所述细胞再生成为麦草畏耐受性植物而向所述植物中导入权利要求3的构建体。17. The method of claim 16, comprising introducing the construct of claim 3 into a plant by stably transforming a starting plant cell and regenerating said cell into a dicamba-tolerant plant. 18.权利要求16的方法,其中通过将亲本植物自交或与第二种植物杂交而产生麦草畏耐受性植物,其中所述亲本植物和/或第二种植物包含转化构建体并且所述麦草畏耐受性植物遗传了来自所述亲本植物和/或第二种植物的转化构建体。18. The method of claim 16, wherein a dicamba-tolerant plant is produced by selfing a parent plant or crossing a second plant, wherein the parent plant and/or the second plant comprise a transformation construct and the A dicamba-tolerant plant inherits the transformation construct from said parent plant and/or a second plant. 19.在包含权利要求12的植物或其种子的作物生长环境中控制杂草生长的方法,其包括对所述作物生长环境施用有效控制杂草生长的量的麦草畏除草剂。19. A method of controlling the growth of weeds in a crop growing environment comprising the plant of claim 12 or its seeds, comprising applying to said crop growing environment an amount of dicamba herbicide effective to control weed growth. 20.权利要求19的方法,其中在所述作物生长环境的顶部施用麦草畏除草剂。20. The method of claim 19, wherein the dicamba herbicide is applied on top of said crop growing environment. 21.权利要求19的方法,其中所述麦草畏除草剂的量不损害权利要求12的所述植物或其种子并且损害与权利要求12的植物具有相同基因型但是缺少权利要求1的核酸的植物。21. The method of claim 19, wherein the amount of the dicamba herbicide does not damage the plant of claim 12 or its seeds and damages a plant having the same genotype as the plant of claim 12 but lacking the nucleic acid of claim 1 . 22.生产食物、饲料或工业产品的方法,其包括:22. A method of producing food, feed or industrial product comprising: a)获得权利要求12的植物或其部分;和a) obtaining the plant or part thereof of claim 12; and b)从所述植物或其部分制备食物、饲料或工业产品。b) preparing food, feed or industrial products from said plants or parts thereof. 23.权利要求22的方法,其中所述食物或饲料是油、粗粉、谷粒、淀粉、面粉或蛋白质。23. The method of claim 22, wherein the food or feed is oil, meal, grain, starch, flour or protein. 24.权利要求22的方法,其中所述工业产品是生物燃料、纤维、工业化学品、药物或营养品。24. The method of claim 22, wherein said industrial product is a biofuel, fiber, industrial chemical, pharmaceutical or nutritional product.
CN200780029077.XA 2006-06-06 2007-06-06 Modified dicamba monooxygenase enzyme and methods of use thereof Active CN101501196B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US81115206P 2006-06-06 2006-06-06
US60/811,152 2006-06-06
US11/758,657 US7884262B2 (en) 2006-06-06 2007-06-05 Modified DMO enzyme and methods of its use
US11/758,657 2007-06-05
PCT/US2007/070514 WO2007146706A2 (en) 2006-06-06 2007-06-06 Modified dicamba monooxygenase enzyme and methods of its use

Publications (2)

Publication Number Publication Date
CN101501196A true CN101501196A (en) 2009-08-05
CN101501196B CN101501196B (en) 2013-01-02

Family

ID=39722426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780029077.XA Active CN101501196B (en) 2006-06-06 2007-06-06 Modified dicamba monooxygenase enzyme and methods of use thereof

Country Status (5)

Country Link
CN (1) CN101501196B (en)
AR (5) AR061247A1 (en)
ES (1) ES2359749T3 (en)
HN (1) HN2008001793A (en)
UA (1) UA94613C2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242133A (en) * 2010-05-14 2011-11-16 昆山科腾生物科技有限公司 Dicamba tolerance type monooxygenase gene and application thereof
CN102596984A (en) * 2009-09-17 2012-07-18 孟山都技术公司 Soybean transgenic event MON 87708 and methods of use thereof
CN105008541A (en) * 2012-12-21 2015-10-28 先锋国际良种公司 Compositions and methods for auxin-analog conjugation
WO2017215329A1 (en) * 2016-06-18 2017-12-21 北京大北农生物技术有限公司 Resistant protein for use in herbicide, encoding gene and application thereof
CN111139238A (en) * 2019-10-14 2020-05-12 中国农业科学院生物技术研究所 Degradation gene dicX3 of herbicide dicamba and its application
EP3867386A4 (en) * 2018-10-16 2022-07-13 Monsanto Technology LLC Brassica event mon94100 and methods of use thereof
US12252696B2 (en) 2011-03-30 2025-03-18 Monsanto Technology Llc Cotton transgenic event MON 88701 and methods of use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105724B2 (en) * 1997-04-04 2006-09-12 Board Of Regents Of University Of Nebraska Methods and materials for making and using transgenic dicamba-degrading organisms
US7022896B1 (en) * 1997-04-04 2006-04-04 Board Of Regents Of University Of Nebraska Methods and materials for making and using transgenic dicamba-degrading organisms

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596984A (en) * 2009-09-17 2012-07-18 孟山都技术公司 Soybean transgenic event MON 87708 and methods of use thereof
US9447428B2 (en) 2009-09-17 2016-09-20 Monsanto Technology Llc Soybean transgenic event MON 87708 and methods of use thereof
USRE46292E1 (en) 2009-09-17 2017-01-31 Monsanto Technology Llc Soybean transgenic event MON 87708 and methods of use thereof
CN107779520A (en) * 2009-09-17 2018-03-09 孟山都技术公司 Soybean transgenic event MON 87708 and its application method
US12305182B2 (en) 2009-09-17 2025-05-20 Monsanto Technology Llc Soybean transgenic event MON 87708 and methods of use thereof
US11130961B2 (en) 2009-09-17 2021-09-28 Monsanto Technology Llc Soybean transgenic event MON 87708 and methods of use thereof
CN102242133A (en) * 2010-05-14 2011-11-16 昆山科腾生物科技有限公司 Dicamba tolerance type monooxygenase gene and application thereof
CN102242133B (en) * 2010-05-14 2013-08-07 昆山科腾生物科技有限公司 Dicamba tolerance type monooxygenase gene and application thereof
US12252696B2 (en) 2011-03-30 2025-03-18 Monsanto Technology Llc Cotton transgenic event MON 88701 and methods of use thereof
CN105008541A (en) * 2012-12-21 2015-10-28 先锋国际良种公司 Compositions and methods for auxin-analog conjugation
WO2017215329A1 (en) * 2016-06-18 2017-12-21 北京大北农生物技术有限公司 Resistant protein for use in herbicide, encoding gene and application thereof
US11365425B2 (en) 2016-06-18 2022-06-21 Beijing Dabeinong Biotechnology Co., Ltd. Resistant protein for use in herbicide, encoding gene and application thereof
EP3867386A4 (en) * 2018-10-16 2022-07-13 Monsanto Technology LLC Brassica event mon94100 and methods of use thereof
CN115667516A (en) * 2018-10-16 2023-01-31 孟山都技术公司 Brassica event MON94100 and methods of use thereof
US11976290B2 (en) 2018-10-16 2024-05-07 Monsanto Technology Llc Brassica event MON94100 and methods of use thereof
CN111139238B (en) * 2019-10-14 2021-08-03 中国农业科学院生物技术研究所 Degradation gene dicX3 of herbicide dicamba and its application
CN111139238A (en) * 2019-10-14 2020-05-12 中国农业科学院生物技术研究所 Degradation gene dicX3 of herbicide dicamba and its application

Also Published As

Publication number Publication date
AR087719A2 (en) 2014-04-09
AR061247A1 (en) 2008-08-13
HN2008001793A (en) 2011-07-12
AR096405A2 (en) 2015-12-30
UA94613C2 (en) 2011-05-25
CN101501196B (en) 2013-01-02
ES2359749T3 (en) 2011-05-26
AR096407A2 (en) 2015-12-30
AR096406A2 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
CA2653987C (en) Modified dmo enzyme and methods of its use
AU2014203480B2 (en) Chloroplast transit peptides for efficient targeting of dmo and uses thereof
CN110577933A (en) Glyphosate Resistant Plants and Related Methods
CN101501196A (en) Modified dicamba monooxygenase enzyme and methods of its use
AU2015203032B2 (en) Chloroplast transit peptides for efficient targeting of dmo and uses thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant