CN101498037B - 一种利用植物生物质还原制备单晶银纳米线的方法 - Google Patents
一种利用植物生物质还原制备单晶银纳米线的方法 Download PDFInfo
- Publication number
- CN101498037B CN101498037B CN200910110902XA CN200910110902A CN101498037B CN 101498037 B CN101498037 B CN 101498037B CN 200910110902X A CN200910110902X A CN 200910110902XA CN 200910110902 A CN200910110902 A CN 200910110902A CN 101498037 B CN101498037 B CN 101498037B
- Authority
- CN
- China
- Prior art keywords
- plant biomass
- sausage
- distilled water
- nano line
- silver nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000002028 Biomass Substances 0.000 title claims abstract description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims description 44
- 239000013078 crystal Substances 0.000 title abstract description 6
- 239000002042 Silver nanowire Substances 0.000 title 1
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 239000012153 distilled water Substances 0.000 claims abstract description 16
- 229910001961 silver nitrate Inorganic materials 0.000 claims abstract description 12
- 230000003534 oscillatory effect Effects 0.000 claims abstract description 10
- 239000000706 filtrate Substances 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 8
- 239000000047 product Substances 0.000 claims abstract description 4
- 235000013580 sausages Nutrition 0.000 claims description 15
- 229910052709 silver Inorganic materials 0.000 claims description 12
- 239000004332 silver Substances 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 7
- 238000009835 boiling Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 4
- 241000196324 Embryophyta Species 0.000 abstract 5
- 241000209094 Oryza Species 0.000 abstract 3
- 235000007164 Oryza sativa Nutrition 0.000 abstract 3
- 235000012149 noodles Nutrition 0.000 abstract 3
- 235000009566 rice Nutrition 0.000 abstract 3
- 238000002360 preparation method Methods 0.000 description 24
- 239000000243 solution Substances 0.000 description 20
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000012467 final product Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 238000005303 weighing Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000004098 selected area electron diffraction Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002127 nanobelt Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- -1 nanometer rod Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- TZMFJUDUGYTVRY-UHFFFAOYSA-N pentane-2,3-dione Chemical compound CCC(=O)C(C)=O TZMFJUDUGYTVRY-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
一种利用植物生物质还原制备单晶银纳米线的方法,涉及一种一维纳米材料的制备方法。提供一种工艺既简便快捷,又经济环保、反应条件温和的利用植物生物质还原制备单晶银纳米线的方法。将0.5~4.0g植物叶干粉加入50mL蒸馏水煮沸,冷却至室温后过滤,滤液用蒸馏水定容至50mL,得浓度为10~80g/L的植物叶提取液;将植物叶提取液与摩尔浓度为0.5~8mmol/L的硝酸银溶液混合,置于水浴摇床中振荡反应,得产物单晶银纳米线。
Description
技术领域
本发明涉及一种一维纳米材料的制备方法,尤其是一种利用植物生物质还原制备单晶银纳米线的方法。
背景技术
一维纳米材料,如纳米线、纳米带、纳米纤维、纳米棒、纳米管等,由于其具有独特的光学、电学、磁学、催化等物理化学性质,因此在光导纤维、表面增强荧光光谱、表面增强拉曼光谱(SERS)、超大规模集成电路(ULSC)、化学/生物传感器、纳米探针、纳米复合材料等方面具有广阔的应用前景。随着光电元器件的集成化和微型化,具有优异导电和导热性能的金属纳米线越来越受到人们的关注和重视,在众多金属中,银的导电性能最好,银纳米线也因此成为开发的热点。目前制备银纳米线的方法较多,主要有模板制备法、溶液反应法等。但是,以上方法在不同程度上存在着易污染环境、还原温度高、成本高、制备过程复杂的缺点。例如,专利ZL02159098.2(溶液反应法)在制备银纳米线的过程中使用了钛酸丁酯、乙酰丙酮、DMF等化学试剂,不仅大大的增加了生产成本,而且会对环境造成一定的污染;专利ZL200510060864.3(溶液反应法)、CN1709791A(溶液反应法)、CN101220506A(溶液反应法)制备银纳米线的温度范围分别是140~200℃、100~150℃、100~200℃,存在着制备温度较高、能耗大的缺点;专利ZL02151277.9(模板制备法)则存在着制备工艺路线复杂的缺点。Yugang Sun等人则通过引入Pt纳米颗粒作为晶种,以聚乙烯基吡咯烷酮(PVP)为保护剂,利用乙烯乙二醇还原硝酸银制备出高质量、高产率银纳米线[Nano Lett.,2002,2,165.]。这是目前制备银纳米线较为简便的方法,但该方法具有如下缺点:(1)该过程使用了易污染环境的化学试剂PVP和乙烯乙二醇;(2)还原温度相对较高(160℃);(3)以价格昂贵的Pt纳米颗粒作为晶种,制备成本较高;(4)所得的银纳米线并非单晶。
发明内容
本发明的目的在于提供一种工艺既简便快捷,又经济环保、反应条件温和的利用植物生物质还原制备单晶银纳米线的方法。
本发明包括以下步骤:
1)将0.5~4.0g植物叶干粉加入50mL蒸馏水煮沸,冷却至室温后过滤,滤液用蒸馏水定容至50mL,得浓度为10~80g/L的植物叶提取液;
2)将步骤1)所得的植物叶提取液与摩尔浓度为0.5~8mmol/L的硝酸银溶液混合,置于水浴摇床中振荡反应,得产物单晶银纳米线。
所述植物叶最好为腊肠叶等;煮沸后最好保持1~10min再冷却至室温。
按体积比,植物叶提取液∶硝酸银溶液最好为1∶1,所述水浴最好为20~40℃的恒温水浴,摇床中振荡反应的时间最好为12~72h。
所得产物单晶银纳米线的长度一般为0.2~60μm,平均直径一般为20~100nm。
本发明的工艺简单,除硝酸银以外无需添加其它化学试剂,反应条件温和,制备方法既简便快捷又经济环保。制备的银纳米线在水溶液中分散性良好、稳定性高,在导电导热、抗菌等纳米复合材料的制备、纳米器件组装、化学/生物传感器、纳米探针、表面增强荧光光谱、表面增强拉曼光谱等光学、电学和材料学领域中具有广泛的应用价值。
附图说明
图1为实施例1制备的银纳米线的透射电镜(TEM)图。在图1中,标尺为0.5μm。
图2为实施例1制备的银纳米线的选区电子衍射(SAED)图。
图3为实施例2制备的银纳米线的TEM图。
图4为实施例3制备的银纳米线的TEM图。
图5为实施例4制备的银纳米线的TEM图。在图5中,标尺为1μm。
图6为实施例5制备的银纳米线的TEM图。在图6中,标尺为500nm。
具体实施方式
下面通过实施例对本发明作进一步说明。
实施例1
准确称取2.0g研磨好的腊肠叶干粉,加50mL蒸馏水煮沸后保持5min,待煮液冷却至室温后过滤,滤液用蒸馏水定容至50mL,得浓度为40g/L的腊肠叶提取液;取25mL该提取液与25mL、摩尔浓度为2mmol/L的硝酸银溶液混合,置于恒温水浴摇床(30℃、150rpm)中振荡反应24h,即可得长度0.5~15μm,平均直径52.7nm的银纳米线。图1给出本实施例制备的银纳米线的TEM图片,从图1中可以看出有银纳米线的生成。图2给出本实施例制备的银纳米线的SAED图片,从图2中可以看出衍射花样是规则排列的斑点,从而证明所得的银纳米线为单晶。
实施例2
准确称取2.0g研磨好的腊肠叶干粉,加50mL蒸馏水煮沸后保持5min,待煮液冷却至室温后过滤,滤液用蒸馏水定容至50mL,得浓度为40g/L的腊肠叶提取液;取50mL该提取液与50mL、摩尔浓度为2mmol/L的硝酸银溶液混合,置于恒温水浴摇床(30℃、150rpm)中振荡反应48h,即可得长度0.5~30μm,平均直径85.4nm的银纳米线。图3为本实施例制备的银纳米线的TEM图片,从图3中可以看出许多银纳米线的生成。
实施例3
准确称取2.0g研磨好的腊肠叶干粉,加50mL蒸馏水煮沸后保持5min,待煮液冷却至室温后过滤,滤液用蒸馏水定容至50mL,得浓度为40g/L的腊肠叶提取液;取25mL该提取液与25mL、摩尔浓度为3mmol/L的硝酸银溶液混合,置于恒温水浴摇床(30℃、150rpm)中振荡反应52h,即可得长度0.3~60μm,平均直径67.6nm的银纳米线。图4为本实施例制备的银纳米线的TEM图片,从图4中可以看出大量银纳米线的生成。
实施例4
准确称取4.0g研磨好的腊肠叶干粉,加50mL蒸馏水煮沸后保持10min,待煮液冷却至室温后过滤,滤液用蒸馏水定容至50mL,得浓度为80g/L的腊肠叶提取液;取25mL该提取液与25mL、摩尔浓度为8mmol/L的硝酸银溶液混合,置于恒温水浴摇床(20℃、150rpm)中振荡反应72h,即可得长度0.5~20μm,平均直径为50.6nm的银纳米线。图5为本实施例制备的银纳米线的TEM图片,从图5中可以看出有银纳米线的生成。
实施例5
准确称取0.5g研磨好的腊肠叶干粉,加50mL蒸馏水煮沸后保持1min,待煮液冷却至室温后过滤,滤液用蒸馏水定容至50mL,得浓度为10g/L的腊肠叶提取液;取25mL该提取液与25mL、摩尔浓度为0.5mmol/L的硝酸银溶液混合,置于恒温水浴摇床(40℃、150rpm)中振荡反应12h,即可得长度0.3~12μm,平均直径42.4nm的银纳米线。图6为本实施例制备的银纳米线的TEM图片,从图6中可以看出有银纳米线的生成。
Claims (5)
1.一种利用植物生物质还原制备单晶银纳米线的方法,其特征在于包括以下步骤:
1)将0.5~4.0g腊肠叶干粉加入50mL蒸馏水煮沸,冷却至室温后过滤,滤液用蒸馏水定容至50mL,得浓度为10~80g/L的腊肠叶提取液;
2)将步骤1)所得的腊肠叶提取液与摩尔浓度为0.5~8mmol/L的硝酸银溶液混合,置于水浴摇床中振荡反应,得产物单晶银纳米线。
2.如权利要求1所述的一种利用植物生物质还原制备单晶银纳米线的方法,其特征在于煮沸后保持1~10min再冷却至室温。
3.如权利要求1所述的一种利用植物生物质还原制备单晶银纳米线的方法,其特征在于按体积比,腊肠叶提取液∶硝酸银溶液为1∶1。
4.如权利要求1所述的一种利用植物生物质还原制备单晶银纳米线的方法,其特征在于所述水浴为20~40℃的恒温水浴。
5.如权利要求1所述的一种利用植物生物质还原制备单晶银纳米线的方法,其特征在于摇床中振荡反应的时间为12~72h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910110902XA CN101498037B (zh) | 2009-01-14 | 2009-01-14 | 一种利用植物生物质还原制备单晶银纳米线的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910110902XA CN101498037B (zh) | 2009-01-14 | 2009-01-14 | 一种利用植物生物质还原制备单晶银纳米线的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101498037A CN101498037A (zh) | 2009-08-05 |
CN101498037B true CN101498037B (zh) | 2011-04-27 |
Family
ID=40945303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910110902XA Expired - Fee Related CN101498037B (zh) | 2009-01-14 | 2009-01-14 | 一种利用植物生物质还原制备单晶银纳米线的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101498037B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101912976A (zh) * | 2010-08-24 | 2010-12-15 | 厦门大学 | 植物提取液还原制备银纳米颗粒的方法 |
WO2013008061A2 (en) * | 2011-07-12 | 2013-01-17 | Bendale Yogesh Narayan | Novel nano gold and process for preparation |
CN103192091B (zh) * | 2013-04-23 | 2015-04-08 | 湖南农业大学 | 利用猴欢喜树叶绿色合成水溶性纳米铁的方法 |
CN104148669B (zh) * | 2014-08-29 | 2016-11-02 | 厦门大学 | 一种双金属纳米线的制备方法 |
CN105665737A (zh) * | 2016-01-27 | 2016-06-15 | 陕西科技大学 | 一种纳米Ag的生物合成方法 |
CN105817643B (zh) * | 2016-05-06 | 2019-02-19 | 东北师范大学 | 一种利用人参提取皂甙后废弃物制备纳米粒子的方法 |
CN106513707B (zh) * | 2016-12-07 | 2018-06-08 | 鲁东大学 | 一种利用蓝莓叶提取液生物合成的纳米银抑菌剂及其制备工艺 |
CN106862590B (zh) * | 2017-02-24 | 2018-09-25 | 华中农业大学 | 一种利用广西杜荆叶片抽提物生物合成纳米银的方法 |
CN107309438B (zh) * | 2017-07-14 | 2021-03-09 | 福建农林大学 | 一种余甘多糖制备纳米银复合粒子的方法 |
CN109909512A (zh) * | 2017-12-12 | 2019-06-21 | 中国科学院深圳先进技术研究院 | 一种银纳米线及其绿色宏量制备方法 |
CN109550974B (zh) * | 2018-12-13 | 2021-03-30 | 华南理工大学 | 一种利用鼠尾草酸绿色合成纳米银的制备方法 |
CN114505489A (zh) * | 2020-10-27 | 2022-05-17 | 深圳市华科创智技术有限公司 | 一种银纳米线的制备方法 |
CN112705728B (zh) * | 2021-01-18 | 2023-05-23 | 山西大同大学 | 一种银纳米棒的绿色制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1424163A (zh) * | 2002-12-31 | 2003-06-18 | 中国科学院上海光学精密机械研究所 | 单晶银纳米线的合成方法 |
CN1709791A (zh) * | 2005-07-05 | 2005-12-21 | 华东理工大学 | 一种制备银纳米线的方法 |
CN1958198A (zh) * | 2006-11-28 | 2007-05-09 | 厦门大学 | 植物还原法制备银纳米颗粒和金纳米颗粒 |
-
2009
- 2009-01-14 CN CN200910110902XA patent/CN101498037B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1424163A (zh) * | 2002-12-31 | 2003-06-18 | 中国科学院上海光学精密机械研究所 | 单晶银纳米线的合成方法 |
CN1709791A (zh) * | 2005-07-05 | 2005-12-21 | 华东理工大学 | 一种制备银纳米线的方法 |
CN1958198A (zh) * | 2006-11-28 | 2007-05-09 | 厦门大学 | 植物还原法制备银纳米颗粒和金纳米颗粒 |
Also Published As
Publication number | Publication date |
---|---|
CN101498037A (zh) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101498037B (zh) | 一种利用植物生物质还原制备单晶银纳米线的方法 | |
Jia et al. | Wet-chemistry hydrogen doped TiO2 with switchable defects control for photocatalytic hydrogen evolution | |
Degefa et al. | Green Synthesis, Characterization of Zinc Oxide Nanoparticles, and Examination of Properties for Dye‐Sensitive Solar Cells Using Various Vegetable Extracts | |
LU102781B1 (en) | Carbon nitride quantum dot/tungsten trioxide composite photocatalytic material and preparation method thereof | |
Wu et al. | Uniformly assembling n-type metal oxide nanostructures (TiO2 nanoparticles and SnO2 nanowires) onto P doped g-C3N4 nanosheets for efficient photocatalytic water splitting | |
Duo et al. | A BiPO4/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent photocatalytic performance | |
Yadav et al. | Green synthesis of AgZnO nanoparticles: Structural analysis, hydrogen generation, formylation and biodiesel applications | |
Liu et al. | Dendritic CuSe with hierarchical side-branches: synthesis, efficient adsorption, and enhanced photocatalytic activities under daylight | |
Gao et al. | Microwave-assisted synthesis of flower-like Ag–BiOCl nanocomposite with enhanced visible-light photocatalytic activity | |
Song et al. | Highly crystalline mesoporous silicon spheres for efficient visible photocatalytic hydrogen evolution | |
Zhou et al. | Oxygen vacancies induced by Ce3+/Ce4+ doping mediate the formation of Bi0/Bi2O3/Bi2O2. 75 nanosheets for visible light-driven photocatalytic degradation of lignin | |
Nwaji et al. | Gold nanoparticle-decorated Bi2S3 nanorods and nanoflowers for photocatalytic wastewater treatment | |
CN103359773A (zh) | 一种氧化锌纳米棒的制备方法 | |
CN103464782A (zh) | 一种西柚皮提取液微波合成银纳米粒子的方法 | |
Sun et al. | Piezo-photocatalysis over phase-engineered MoSe2 modified Bi2WO6 hierarchical microspheres: Utilizing piezoelectric effect to enhance photocatalytic performance | |
Zhu et al. | Self-assembled 3D microflowery In (OH) 3 architecture and its conversion to In2O3 | |
Yang et al. | Enhanced photocatalytic performance of C3N4 via doping with π-deficient conjugated pyridine ring and BiOCl composite heterogeneous materials | |
Liu et al. | Replication of butterfly wing in TiO2 with ordered mesopores assembled inside for light harvesting | |
CN104399493B (zh) | 具有花簇状的NiS/ZnS可见光光催化剂及其制备方法 | |
Zhang et al. | Photocatalytic performance for palm-fiber-like SnS2 nanoflakes with full solar spectrum light response | |
CN103111628A (zh) | 一种可弯曲Ag纳米线的制备方法 | |
Shanmugapriya et al. | Role of graphene oxide/yttrium oxide nanocomposites as a cathode material for natural dye‐sensitized solar cell applications | |
Meena et al. | Bi2O3 nanoparticles: phytogenic synthesis, effect of calcination on physico-chemical characteristics and photocatalytic activity | |
Yuan et al. | Dual application of waste grape skin for photosensitizers and counter electrodes of dye-sensitized solar cells | |
Zhang | Synthesis and photocatalytic activity of Bi2WO6 microspheres with hierarchical structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110427 Termination date: 20140114 |